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1. Introduction 

1.1.  Neuropathic Pain  

Pain can be physiological in nature, acting as an early warning system to protect our 

bodies from various harmful stimuli. Inflammatory pain is the term used to describe pain 

that accompanies tissue damage surrounding the nociceptors. It has adaptive and 

protective properties, but responds to a low pain threshold. On the other hand, pain 

resulting from damage or dysfunction in the somatosensory system is called neuropathic 

pain (NP), a type of pathological pain that is maladaptive rather than protective (1). NP 

is a debilitating disease, and its treatment has not been fully solved thus far. The 

International Association for the Study of Pain (IASP) defined NP as pain resulting from 

damage or diseases affecting the somatosensory nervous system at the peripheral or 

central nervous system (CNS) or both (2). NP presents with a variety of symptoms, 

including two distinct manifestations: allodynia and hyperalgesia (3). According to the 

definition issued by IASP, allodynia is pain due to a stimulus that does not normally 

provoke pain. For instance, a light touch or gentle pressure may be perceived as painful. 

Hyperalgesia refers to an increased sensitivity to pain. In this case, stimuli that are usually 

painful are experienced as being even more intense (4). According to estimates, the 

incidence of NP varies between 7% and 10% worldwide. However, this prevalence rises 

to approximately 20% to 30% in diabetic patients (5). In general, chronic pain affects 

20% of the European population and 100 million American citizens (6,7). This prevalence 

even outpaces the number of individuals with diabetes mellitus, heart disease, or cancer. 

The treatment options that are currently being used by healthcare to manage NP are 

unfortunately severely limited by their poor efficacy and tolerability (8).  In this regard, 

less than 50% of patients respond to the current medications, leaving about 40% of 

patients inadequately treated and about 30% with no relief at all  (9–12). NP is classified 

into peripheral and central types or mixed (13). Peripheral NP conditions encompass 

peripheral nerve injury-induced NP, postherpetic neuralgia, trigeminal neuralgia, painful 

radiculopathy, chemotherapy-induced peripheral neuropathy, and NP caused by carpal 

tunnel syndrome (13,14). Central NP includes pain associated with spinal cord injury, 

brain injury, post-stroke pain, and pain associated with multiple sclerosis (13,14). 

Peripheral NP is further classified into mono- and poly-neuropathic pain types. 

Mononeuropathy affects one peripheral nerve and is caused by compression or trauma, 
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such as carpal tunnel syndrome, radial nerve palsy, or peroneal nerve palsy 

(15). Polyneuropathy affects many nerves where up to 50% of cases are idiopathic or may 

be induced by disease or toxin such as diabetes mellitus, alcohol abuse, human 

immunodeficiency viruses, porphyria, amyloidosis, vitamin B12 or folate deficiency, 

Guillain-Barré syndrome, and chemotherapeutic agents as cisplatin or oxaliplatin, among 

others (15). 

With respect to painful diabetic polyneuropathy (PDPN), it affects 30%–50% of patients 

where pain is caused by dysfunction of the somatosensory system attributed to diabetes 

mellitus (16). Recent data issued by the International Diabetes Federation have reported 

that 537 million people are currently suffering from diabetes, and the situation is even 

worse as it is predicted that this estimate will increase to 643 and 783 million by 2030 

and 2045, respectively. Based on that, as many as 270 million people with diabetes 

worldwide may be affected by PDPN (17). NP treatment is challenging due to complex 

symptoms, poor outcomes, and difficult treatment decisions. It significantly reduces 

patients' quality of life, which is reflected by a decrease in the productivity of the patients 

that contributes largely to socio-economic cost, yet the need for more medications and 

frequent healthcare visits further exacerbates the social burden (18). Therefore, 

developing non-addictive novel medications and treatment approaches or repurposing 

existing medications with adequate analgesia of fast onset and tolerable side effects is a 

profound challenge in pain research. 

1.2.  Molecular Mechanisms Attributed to Neuropathic Pain Development  

Peripheral and central molecular mechanisms are implicated in the development of NP. 

Peripheral neuropathy is developed as a result of damage to the peripheral pain-sensing 

neurons, causing changes in pain transduction, amplification, and conduction. Not to 

mention that afferent primary sensory neurons are exposed to inflammatory mediators 

and medications or toxins that are circulating in the blood due to their location. With 

respect to central neuropathy, the implication of both spinal and supraspinal targets is well 

established (19,20). Functional changes were observed in central targets that have been 

reported to govern the ascending and descending pain processing pathways. The pain 

pathway is a complex process influenced by neuronal, hormonal, and immunological 

factors, highlighting its multifaceted nature. Pain stimuli are transmitted by primary 

afferent sensory neurons, unmyelinated C fibers, and small myelinated Aδ. The C fibers 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/peroneus-nerve-paralysis
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host polymodal nociceptors responding to thermal, mechanical, and chemical noxious 

stimuli and carry pain of different stimuli (heat, chemicals, mechanical), whereas the later 

convey pain of high-threshold mechanoreceptors and cold from the peripheral sensory 

receptors to the dorsal part of spinal cord, specifically Rexed's laminae I and II (21). As a 

matter of fact, diseases or nerve injury can be associated with changes in pain perception 

and processing that enter the dorsal horn (DH) of the spinal cord and travel up to the 

brainstem, thalamus, somatosensory cortex, insular cortex, and anterior cingulate cortex, 

among other supraspinal structures (22–24). It is worth noting that, under NP, two 

fundamental structural, functional, and chemical changes take place, namely peripheral 

and central sensitization. These states contribute to the generation of pain in response to 

normally innocuous stimuli. In fact, despite superficial similarities, the molecular 

mechanisms behind central sensitization and its manifestation are significantly different 

from those of peripheral sensitization. Peripheral sensitization involves increased 

excitability of sensory neurons, typically triggered by peripheral nerve injury, tissue 

damage, or inflammation. This process is driven by the release of pro-nociceptive 

mediators from immune cells like macrophages and mast cells, as well as from adjacent 

nerve endings. These mediators, including prostaglandins, histamine, bradykinin, 

serotonin, substance P, extracellular ATP, protons, growth factors, cytokines, chemokines, 

and peptides, interact with specific receptors and ion channels or alter their sensitivity to 

stimuli (25–27). Glutamate, the primary excitatory neurotransmitter at central synapses, 

also contributes to peripheral sensitization through non-synaptic mechanisms. It binds to 

amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and N-methyl-D-

aspartate (NMDA) receptors located at peripheral nerve endings. This interaction 

supports peripheral cell-to-cell communication (e.g., upon release from immune cells) or 

autocrine regulation, as seen when glutamate is released from sensory nerve terminals 

following calcium influx mediated by transient receptor potential cation channel 

subfamily V member 1 (TRPV1) (28). Upon nerve injury, literature data have shed light 

on an increase in the expression of voltage-gated sodium channels (VGSCs) at the injury 

site and in the dorsal root ganglia (DRG), which significantly contributes to abnormal 

neuronal discharge (29). Various VGSCs, such as NaV 1.1, NaV 1.6, NaV 1.7, NaV 1.8, 

and NaV 1.9, are found in the sensory neurons, which are essential for neuronal 

excitability. Nav1.7 initiates an action potential that transmits nociceptive signals from 
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the peripheral nervous system to the CNS. At rest, the ion-conducting pores of most Na⁺ 

channels remain closed. When a stimulus is applied, these channels open, allowing Na⁺ 

influx, which leads to depolarization and the generation of an action potential that 

propagates to the DH of the spinal cord. Changes in VGSC expression and/or function 

can modify the firing behaviour of sensory primary afferent neurons as well as central 

neurons. Injury to sensory primary afferent neurons frequently leads to abnormal 

discharges or an increased response to subsequent sensory input, playing a role in the 

development of chronic inflammation and NP (30). The importance of VGSC in NP is 

recognized by administering lamotrigine and carbamazepine (CBZ), which are known as 

VGSC blockers, to manage NP (31,32). In addition, in diabetic neuropathy, there is a 

variation in the gene encoding NaV 1.7 (33). Another study reported that knocking down 

the VGSC NaV 1.6 encoding gene alleviated NP in mice (34). Furthermore, several 

studies have shown an elevated expression of NaV 1.8 channels in neuromas. These 

findings were also found for NaV 1.6 in another preclinical study in mice (34). The 

increased expression of VGSC leads to a lowered threshold and causes ectopic firing of 

nerve fibers (35,36). The recent discovery of suzetrigine, a selective inhibitor of NaV 1.8 

which is distributed in the peripheral pain-sensing neurons, further opens research 

avenues for developing drugs that are acting peripherally and are supposed to have a 

diminished CNS side effect owing to the absence of this sodium channel subtype in this 

region (37). Journavx (suzetrigine, oral tablets) was approved by the U.S. Food and Drug 

Administration, presenting the first-in-class non-opioid analgesic for the management of 

moderate to severe acute pain in adults (38–40). Ultimately, suzetrigine is also being 

evaluated in a phase 2, randomized, double-blind study in patients with PDPN (41). 

Central sensitization occurs when the central nociceptive neurons become hypersensitive 

to neuronal afferent input (42). This central sensitization becomes maladaptive in the case 

of peripheral NP, with continuous painful signals (43,44). Normally, the NMDAR channel 

is blocked by a magnesium (Mg2+) ion that resides in the receptor pore (45). Prolonged 

release of glutamate by nociceptors leads to membrane depolarization, which displaces 

Mg²⁺ from the NMDAR pore, enabling glutamate to bind to the receptor and generate an 

inward current (45). Glutamate is the main fast excitatory neurotransmitter in the DH of 

the spinal cord, released by primary afferent neurons following a noxious stimulus and 

activating postsynaptic glutamate receptors on the spinal DH neurons, including AMPA, 
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NMDA, and Kainate receptors and several metabotropic (G-protein coupled) glutamate 

receptor subtypes (mGluR) (46). Indeed, increased glutamatergic signaling in NP has 

been proven in several preclinical studies (47,48). In a rat model of chronic sciatic nerve 

ligation-induced NP, a high glutamate level was reported in the DH of the spinal cord 

(49). Additionally, an elevated glutamate concentration in the cerebrospinal fluid (CSF) 

was also found in nerve-ligated neuropathic rats, which may be attributed to an overflow 

resulting from excessive glutamate release at the spinal nerve endings (50). 

In addition to glutamate, other molecules such as substance P, calcitonin gene-related 

peptide (CGRP), and brain-derived neurotrophic factor are released. These bind to 

neurokinin 1 (NK1), CGRP1, and tyrosine receptor kinase B (TrkB) receptors, 

respectively, to promote central sensitization and enhance the ascending transmission of 

painful stimuli. Moreover, bradykinin can contribute to central sensitization by activating 

bradykinin B2 receptors, which leads to the potentiation of glutamatergic synaptic 

transmission (51). Similarly, the activation of nitric oxide receptors by nitric oxide leads 

to changes in neuronal excitability and synaptic strength by acting on both pre- and 

postsynaptic sites. Activation of NMDAR and mGluR causes a rapid increase in calcium, 

which activates intracellular kinases such as protein kinase C (PKC), calcium calmodulin-

dependent protein kinase II (CaM-KII), protein kinase A (PKA), and extracellular signal-

regulated kinase (ERK). These kinases then phosphorylate several key residues on the C-

terminus of ionotropic NMDA and AMPA glutamate receptors, resulting in functional 

changes that contribute to central sensitization (52,53).  Stimulation of AMPAR and group 

I mGluRs, alongside NMDAR, contributes to the activation of intracellular pathways 

such as PLC/PKC (54,55), phosphatidylinositol-3-kinase (PI3K) and the mitogen-

activated protein kinase (MAPK) pathways that maintain central sensitization. These 

pathways activate ERK1/2 and the cyclic adenosine monophosphate response element 

binding protein (CREB) (46). An increase in intracellular calcium can activate ERK and 

CREB by initiating a calmodulin-dependent stimulation of adenylyl cyclases 1 and 8. 

This activation leads to the production of cyclic adenosine monophosphate (cAMP), 

which then activates PKA and initiates subsequent cascades. The transcriptional changes 

driven by CREB activation and other transcription factors promote the expression of 

genes such as c-Fos, NK1, TrkB, and Cox-2, resulting in a long-lasting strengthening of 

the synapse (46). 
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Based on the crucial role that these molecular and cellular alterations play in maintaining 

NP, targeting them is a potential treatment approach. Chronic pain can be reduced by 

dampening the increased neuronal excitability and adjusting the activity of certain 

receptors, ion channels, and neurotransmitter systems implicated in central sensitization. 

Potential therapeutic targets to inhibit central sensitization include using NMDA receptor 

blockers, which block excitatory glutamatergic transmission, and gamma-aminobutyric 

acid (GABA) agonists, which enhance inhibitory control within the spinal cord, though 

no medications that affect GABAA receptors are utilized to manage NP. Nevertheless, 

data on the effect of GABAB agonists in NP conditions have been reported (56), which is 

overviewed below. Several preclinical studies in rodents with peripheral nerve injuries 

have examined the antinociceptive impact of NMDAR antagonists. Ketamine, MK-801, 

memantine, and dextrorphan have been found to alleviate or prevent allodynia and 

hyperalgesia, particularly following injuries such as sciatic nerve constriction and spinal 

nerve ligation (61–63). Additionally, the intrathecal administration of amino-5-

phosphonopentanoate, an NMDAR antagonist, relieves mechanical allodynia evoked by 

spinal cord injury (64). Mechanical and thermal hyperalgesia, but not sciatic nerve injury-

evoked tactile allodynia, were alleviated by nor-ketamine with minimal side effects (65). 

Memantine and neramexane have faster unblocking rates and exhibit greater voltage 

dependence. This makes them promising for targeting continuous NMDAR activity in NP 

conditions with fewer adverse effects. When administered for two weeks, both memantine 

and neramexane provide sustained relief from mechanical hyperalgesia and allodynia in 

diabetic NP rats (66). 

It is worth addressing that targeting voltage-gated calcium channels (VGCCs) and 

VGSCs, which are essential for neuronal excitability, has also demonstrated potential for 

lowering pain signals. As was already noted, one factor that leads to the development of 

NP is VGCC dysfunction. The VGCC can be classified as L, N, P/Q, R, and T types.  

Animal studies of NP reveal significant changes in the levels and structure of N-type 

calcium channels. These channels are important targets for new pain-relief drugs. 

Notably, mice without N-type channels show reduced sensitivity to pain compared to 

normal mice (67). The calcium channel blocker ziconotide has demonstrated clinical 

effectiveness in treating pain following intrathecal injection (68). Omega-conotoxin 

MVIIA alleviates NP after spinal cord injury by inhibiting N-type VGCCs on the spinal 
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DH (69). In addition, in sensory neurons, nifedipine, an L-type blocker, inhibits substance 

P release induced by inflammation, which indicates its involvement in nociception (70). 

Additionally, anticonvulsant drugs, such as gabapentinoids like pregabalin (PGB) and 

gabapentin, are considered first-line treatments for NP. They work by binding to the α2-δ 

subunits of VGCC in the DH of the spinal cord, which reduces the release of excitatory 

neurotransmitters like glutamate, substance P, and CGRP, thereby decreasing central 

sensitization and providing pain relief (71,72). In NP conditions, PGB was demonstrated 

to alleviate NP entities in several studies (73,74).  

At the DH part of the spinal cord, under NP conditions, convincing evidence has shed 

light on the existence of an imbalance between excitatory and inhibitory systems of pain 

control. In the descending inhibitory pathway, neuronal inhibition is mediated by 

GABAergic, glycinergic, and opioid neurons; these neurons release GABA, glycine, and 

endogenous opioids, respectively, which bind to their respective receptors: GABA, 

glycine, and opioid receptors, causing inhibition in the postsynaptic potentials (75,76). 

The binding of GABA to the GABA receptors on postsynaptic membranes exerts 

antinociceptive effects, which indicates the pivotal role of GABA receptors’ activity in 

NP. In rat models of chronic constriction injury, activating GABAA receptors with 

muscimol reduces pain sensitivity caused by peripheral nerve damage (77). Likewise, 

spinal delivery of muscimol or baclofen, a GABAB receptor agonist, lessens both 

mechanical hypersensitivity and neuronal overactivity in chronic dorsal root ganglion 

compression (78). Despite these findings, GABA receptors have not yet been validated 

as effective drug targets for NP. On the other hand, increasing evidence from preclinical 

studies highlights glycine transporter inhibitors as promising candidates for pain relief in 

NP conditions (21,50). Alongside GABA and the glycinergic system, the opioid system 

plays an important role in the descending inhibitory pathway. Most opioid analgesics, 

such as morphine, methadone, fentanyl, and oxycodone, exert their effects by targeting 

µ-opioid receptors (MORs). MORs are G-protein-coupled receptors that activate 

inhibitory Gi/o proteins, leading to intracellular signaling changes and modulation of ion 

channels. They are found in crucial areas like the periaqueductal gray (PAG), rostral 

ventromedial medulla (RVM), and the dorsal part of the spinal cord, all of which play 

important roles in the antinociceptive actions of opioids (79,80). At the level of the 

midbrain, next to Morph treatment, Morph binds to presynaptic MORs. It inhibits VGCC 
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via Gᵦγ proteins yet activates Gi/o proteins, which results in the inhibition of adenylyl 

cyclase and decreases cAMP production, whereas binding to postsynaptic MORs 

activates potassium channels via Gα proteins, resulting in an increase in potassium ion 

conductance that results in neuronal hyperpolarization. As a result, GABA release is 

blocked, which suppresses inhibition and enhances the output of the PAG neurons 

projecting to the RVM, which excite glutamate projections to off cells, which are 

GABAergic, thus inhibiting pain responses in the DH (80). Long-term opioid analgesic 

use develops opioid analgesic tolerance in patients, which remains an unresolved issue in 

clinical practice. Dose escalation is required to restore analgesic efficacy, which causes 

intolerable side effects (including overdose, opioid use disorders, constipation, opioid-

induced hyperalgesia, and others) (81). 

1.3.  Current Approaches for Neuropathic Pain Management 

 The currently available medication approaches for NP management include different 

pharmacological agents with different mechanisms of action. Antidepressants, 

gabapentinoids, and topical lidocaine are the first-line therapies for NP. Tricyclic 

antidepressants (TCAs) such as amitriptyline are also among the first-line antidepressants 

in the treatment of NP, which act by inhibiting the major monoamine neurotransmitters’ 

(serotonin, norepinephrine, and dopamine) reuptake, in addition to blocking VGSCs, 

which has also been proposed as a mechanism (82,83). Duloxetine (DUL) is a serotonin 

and norepinephrine reuptake inhibitor (SNRI) that was originally developed as an 

antidepressant. It facilitates the descending inhibitory pain pathway by inhibiting the 

reuptake of serotonin and norepinephrine to induce pain relief (84). Gabapentinoids (PGB 

and gabapentin) are anticonvulsants that act by binding to α2-δ subunits of VGCCs located 

in the DH of the spinal cord, thereby decreasing excitatory neurotransmitters release such 

as glutamate, substance P, and CGRP, so reducing central sensitization, decreasing 

neuronal excitability, and causing subsequent pain relief (71,72). 

Topical lidocaine is a VGSC blocker that causes local pain relief (71,85). Its use is limited 

to local allodynia due to its low bioavailability. Thus, it is not noteworthy to be 

administered orally (86). Lidocaine is the prototype of a class I/B  antidysrhythmics drug. 

Because of high first-pass metabolism, lidocaine is administered intravenously (87–89), 

but systemic metabolism is still an obstacle factor to giving lidocaine. In addition, in long-
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term treatment, the intravenous route of administration and the side effects are not 

favourable to patients.  

Moreover, preclinical studies carried out in dogs and rats that utilized both oral and 

intravenous lidocaine to evaluate its antiarrhythmic or antiallodynic effects have shown 

that the oral dose is much larger than the intravenous one (90,91).  In the context of NP, 

the translation of the applied doses in rats (15 mg/kg, intravenous) (91) to humans reveals 

that a much higher dose is required to obtain an antiallodynic effect in humans (2.4 mg/kg, 

intravenous) (92), which can be toxic without monitoring. On the other hand, topical 

lidocaine has been approved for the management of NP, specifically post-herpetic 

neuralgia (93). Studies have also shown some degree of efficacy and safety in the 

treatment of diabetic peripheral neuropathy, postsurgical pain, chronic lower back pain, 

carpal tunnel syndrome, and osteoarthritis (94). Also, a previous study reported that 

lidocaine induced antiallodynic and antihyperalgesic effects after local or systemic 

(intraplantar or intraperitoneal, respectively) administration in diabetic neuropathic rats 

(95).  

Most anticonvulsants that are used to alleviate NP are VGSC blockers, such as CBZ, 

phenytoin, valproic acid, and lamotrigine. CBZ is considered a third-line medication for 

NP treatment that blocks VGSCs; however, it’s a first choice for treating primary 

trigeminal neuralgia, which is not the object of the present work (96).  Antiarrhythmic 

agents are also effective in relieving pain. Mexiletine, an oral VGSC belonging to the I/B 

type antiarrhythmic class that is indicated for ventricular arrhythmias (86). All the 

previously mentioned VGSC blockers (local anesthetics, TCAs, antiarrhythmics, 

anticonvulsants) have therapeutic potential in NP management, which indicates that 

VGSCs are a crucial target for NP management (86). Opioids act as second (tramadol and 

tapentadol)- or third-line (Morph and oxycodone) treatments for NP (8). Tramadol and 

tapentadol have a dual mode of action that combines MOR agonism and serotonin and/or 

norepinephrine reuptake inhibition (24). Tramadol is used in peripheral NPs (24), whereas 

tapentadol is effective in diabetic peripheral neuropathy and chronic low back pain (97).  

Current monotherapies for NP develop several side effects, which may make them 

intolerable to the patients. Antidepressants such as TCAs have anticholinergic adverse 

effects, such as constipation and xerostomia, in addition to weight gain, somnolence, and 

dizziness (71), whereas SNRI as DUL can induce dizziness, somnolence, nausea, dry 
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mouth, and constipation (98). Gabapentinoids cause central side effects, such as 

somnolence, lightheadedness, and cognitive impairment, as well as peripheral side 

effects, like nausea and vomiting. Also, they can induce peripheral edema (rare), weight 

gain, fatigue, headache, and xerostomia, among others (99). Topical lidocaine can cause 

local skin reactions like irritation, tingling, and numbness in the application site (100). 

Weak opioids such as tramadol and tapentadol can cause gastrointestinal (GI) side effects 

such as constipation, where the risk is lower with tapentadol. Also, they have a lower risk 

of abuse compared to strong opioids (101,102). Strong opioid agonists, such as Morph, 

are effective in acute and chronic pain upon initiating therapy. However, they develop 

opioid analgesic tolerance, which emerges upon chronic administration demanding dose 

escalation. This dose increase can lead to serious side effects such as constipation and 

opioid use disorder, among others (81).  

All the previously mentioned approaches include various drugs of different targets, which 

indicate that NP has different etiologies and complex underlying mechanisms (23,103); 

however, a relatively large number of patients, about 35%, continued to experience pain. 

Indeed, dose escalation could further reduce the pain but is associated with the risk and 

cost of several side effects, which makes it intolerable to patients. As a result, the 

management of NPs is still a big challenge for clinicians. Therefore, satisfactory treatment 

has not yet been fulfilled.  

1.4.  The Standpoint Hypothesis of the Present Thesis 

Tolperisone (TOLP) was originally used as a skeletal muscle relaxant and acts within the 

CNS. Several clinical trials have approved its efficacy in relieving post-stroke spasticity, 

painful reflex muscle spasms, and muscle-related pain (104). Similar to lidocaine, TOLP 

has the ability to block ion channels, the VGSC isoform Nav1.7 in particular; this paves 

the way to its potential use in the treatment of NP as the inhibition of the excitatory pain 

pathway is an important target for NP management (30). Our previous study has shown 

the acute antiallodynic effect of TOLP in a rat model of partial sciatic nerve ligation 

(pSNL)-induced NP. A single oral dose of TOLP significantly reduced allodynia as 

measured by the Randall-Selitto test. These results were similar to that of PGB, which 

was used as a positive control. TOLP was also effective in decreasing glutamate release 

from rat brain synaptosomes (74). As previously stated, medications that block the 
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glutamatergic pathway have demonstrated antiallodynic effects in a variety of NP 

conditions (57,62,63). 

Preclinical studies are largely based on pain-related behaviours to quantify NP. To do this, 

the animals are subject to various types of pain stimuli, such as dynamic or static stimuli 

that gently stroke or press the affected paws, respectively. For the assessment of the 

former pain condition von Frey test, and for the later one the Randall-Selitto paw pressure 

test are used. These two assays are utilized to measure tactile allodynia (mechanical 

allodynia) or mechanical hyperalgesia, respectively (105). The effects of TOLP on tactile 

allodynia have not been investigated thus far. Nevertheless, in both preclinical and clinical 

contexts, medications with a pharmacological profile similar to TOLP, specifically VGSC 

blockage, have been demonstrated to attenuate tactile allodynia (71,86,95). 

Next, using multimodal analgesia containing two or more drugs at the sub-analgesic doses 

may increase efficacy and decrease side effects compared to using single-drug therapy 

(106). This strategy was followed in several clinical studies, to name just a few; 

gabapentinoids were combined with TCAs, such as nortriptyline or opioid analgesics, to 

relieve post-herpetic neuralgia or PDPN (107–109). The findings from these studies 

showed that the combination achieved a higher analgesic effect than every single drug. 

However, using anticholinergic and opioid agonists in these combination therapies 

increased the side effects, such as constipation and dry mouth, compared to the use of 

gabapentinoids alone (110). In another clinical study, treating diabetic neuropathic 

patients with an oxycodone/gabapentin combination showed no deterioration in the 

typical opioid-induced side effects, indicating that this combination is safe to use for 

managing NP (111). With respect to the analgesic effect of oxycodone/PGB, inconsistent 

results have been reported. In patients with either painful diabetic neuropathy or post-

herpetic neuralgia, oxycodone in a small dose has not been shown to improve PGB's 

ability to reduce pain (112). Several animal studies evaluated the impact of applying a 

combinational therapy for NP management. In 2002, Matthews and Dickenson carried 

out an animal model of spinal nerve ligation to induce NP. The study found that, unlike 

morphine, gabapentin enhanced the suppression of DH neuronal activity after being 

administered systemically (113), although the effect of Morph was abolished. Thus, based 

on the combination strategies described above, we postulated that various combinational 
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therapies comprising TOLP and additional medications with distinct mechanisms of 

action, like PGB, DUL, or Morph, are promising analgesics for NP. 

Acute or chronic administration of the combination of TOLP and Morph to treat pain has 

not yet been evaluated. Opioid analgesic tolerance is a barrier to continuing opioid 

treatment in the context of long-term treatment. To circumvent it requires dose escalation, 

which is associated with worsening opioid analgesics’ side effects. Previous studies have 

shown that VGSC blockers could delay the development of Morph antinociceptive 

tolerance. CBZ, a VGSC blocker, potentially reduces the upregulated sodium channels in 

Morph-dependent rats, thereby diminishing Morph tolerance development and enhancing 

the duration of Morph analgesia post-operatively (114). Moreover, Jun et al., 2009 

reported that intrathecal Morph administration for 7 days developed tolerance to the 

Morph antinociceptive effect. Intrathecal co-administration of oxcarbazepine with Morph 

blocked the development of antinociceptive tolerance assessed by tail-flick assay in rats 

(115). Similarly, intrathecal co-injection of lamotrigine with Morph delayed 

antinociceptive Morph tolerance in rats (116). Lidocaine, a commonly used local 

anesthetic, efficiently mitigates Morph tolerance. Intrathecally administered lidocaine 

potentiated an anti-nociceptive effect of Morph and attenuated chronic antinociceptive 

tolerance through the inhibition of neuroinflammation in mice assessed by the tail-flick 

assay as reported by Zhang et al., 2017 (117). On the other hand, a continuous intrathecal 

infusion of lidocaine with Morph in rats did not delay the development of Morph 

tolerance as previously reported (118). The aforementioned data provide justification for 

assessing TOLP's impact on the development of opioid antinociceptive tolerance. 

  



18 
 

2. Objectives  

1- To assess the antiallodynic effects of oral acute and long-term treatment with the 

following drugs: TOLP, CBZ, PGB, and DUL in rats with mono-neuropathic pain 

induced by pSNL and manifested by tactile allodynia. 

2- To evaluate the acute antiallodynic effects of the following combinations: sub-

analgesic doses of oral TOLP with oral PGB or DUL, or with subcutaneous (s.c.) 

Morph in pSNL-induced mono-neuropathic pain and manifested by tactile 

allodynia in rats. 

3- To further investigate the acute antiallodynic effect of the promising combination 

in rat mono-neuropathic pain in another pain model, type 1 diabetes-induced 

polyneuropathic pain in rats (induced by streptozotocin (STZ)).  

4- To assess the impact of TOLP compared to PGB in the development of Morph 

antinociceptive tolerance in the rat tail-flick test.  

5- To assess the impact of the promising combination (TOLP/PGB) on motor 

function and GI transit in rats. 

6- To decipher how the potential combination and its constituent drugs produce their 

antiallodynic effect. In this regard, the following measurements were made:  

6.a. Quantifying glutamate content in CSF of rats with mono-neuropathic pain 

evoked by pSNL and treated with TOLP, PGB, vehicle, or TOLP/PGB 

combination. 

6.b. Evaluation of the effect of TOLP, PGB, or their combination on glutamate 

release from rat brain synaptosomes induced by 4-aminopyridine. 

6.c. Determining MOR protein levels in spinal cord tissue from diabetic 

neuropathic rats by Western blot. 

6.d. Determining D-serine and glycine levels in CSF samples from tolerant 

rats by capillary electrophoresis. 

6.e. Assessing the efficacy (Emax) of the TOLP, PGB, and reference 

compounds (DAMGO, a highly MOR selective peptide, and Morph) in vitro 

in the mouse vas deferens (MVD) assay.  

6.f. Assessing the effect of TOLP and PGB or Morph combinations in MVD. 

6.g. Assessing the impact of TOLP or PGB on MVD developing tolerance to 

Morph. 
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3. Materials and Methods 

3.1. Animals  

In the present work of the thesis, male Wistar rats were used in studies designed to evoke 

a mono-neuropathic pain model by pSNL. The weight of the animals was 120-150 g at 

the operation time, and their weight ranged from 200–285 g at the time of acute and 

chronic drug testing. For the rat tail-flick, rotarod, and charcoal meal tests, 170–200 g 

male Wistar rats were used. In the polyneuropathic pain model, STZ-induced type 1 

diabetes mellitus, male Wistar rats weighing 200–230 g were used. In this set of test, rats 

were kept in a mesh-bottomed cage (type IV cage) according to the EU’s regulations. For 

the MVD assay, male NMRI mice (35–45 g) were used. The mice and rats were bought 

from Toxi-Coop Zrt., Budapest, Hungary. Animals were kept in standard cages designed 

for 4 or 5 animals, depending on their weights, and housed in the local animal house at 

the Department of Pharmacology and Pharmacotherapy, Semmelweis University 

(Budapest, Hungary). Animals were maintained at a controlled temperature (20 ± 2 °C), 

light/dark cycle (12/12 h), with free access to food and water. All procedures and housing 

conditions were performed in accordance with the European Communities Council 

Directives (2010/63/EU), the Hungarian Act for the Protection of Animals in Research 

(XXVIII.tv.32.§), and the local animal care committee (PEI/001/276-4/2013 and 

PE/EA/619-8/2018).  

3.2. Chemicals 

TOLP and PGB were obtained from Meditop Pharmaceuticals Ltd. (Budapest, Hungary). 

Morph-HCl was purchased from Alkaloida Chemical Company Zrt. (Tiszavasvári, 

Hungary). STZ, DUL, and CBZ were obtained from Sigma–Aldrich (St. Louis, MO, 

USA). For glutamate release measurement, glutamate oxidase, horseradish peroxidase, 

and Amplex Red, as well as hydroxyethyl cellulose, were purchased from Sigma–Aldrich 

(St. Louis, MO, USA). The constituents of Krebs solution were obtained from REANAL 

labor, Budapest, Hungary. All compounds were stored and used according to 

manufacturing procedures.  
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3.3. Experimental Protocols of the Animal Study            

The experimental schedule of the mono-neuropathic pain models is summarized in 

experimental schemes 1 and 2. First, animals´ paw withdrawal thresholds (PWTs) were 

measured before the operation using dynamic plantar esthesiometer 37450 (DPA) 

purchased from Ugo Basil, Gemonio, Italy, expressed in gram (g). These measurements 

were considered as the baseline then the surgery was done as described in the next Section 

(3.4). To determine the development of tactile allodynia, PWTs were measured again 7 

days post-operation, and neuropathic animals were selected and allocated randomly to 

different groups administered either oral vehicle or drugs. After acute oral treatment, 

PWTs were measured again at three time points (60, 120, and 180 min) to evaluate the 

acute antiallodynic effect of the administered drugs. After that, treatment was continued 

for 2 weeks/twice daily to investigate the chronic antiallodynic effects of the tested drugs. 

On days 14 and 21 post-operation, DPA measurements were repeated to assess the 

chronic effect of the tested compounds after 1 and 2 weeks of chronic administration, 

respectively (see Experimental Schedule 1). In another group of animals, baseline PWTs 

were measured, the surgery was done, PWTs were measured again two weeks post-

operation, and treatments were given orally to the neuropathic rats to test the acute 

antiallodynic effect on day 14 post-surgery. In these experiments, subsequent to oral 

administration, tactile allodynia was assessed again at 60, 120, and 180 min to evaluate 

the acute antiallodynic impact of the tested drugs and their combinations as shown in 

Experimental Schedule 2. 
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Experimental Schedule 1. illustrates the acute and chronic effects of PGB and TOLP 

(both at 25, 50, and 100 mg/kg), CBZ (16.25, 32.5, and 65 mg/kg), and DUL (10 and 20 

mg/kg) on tactile allodynia induced by pSNL in rats. Tactile allodynia was tested by DPA. 

Also, the treatment schedule and days for DPA measurements are indicated.  

Experimental Schedule 2. illustrates the acute antiallodynic effects of PGB, TOLP (both 

at 25, 50, and 100 mg/kg), their combination (both at 25 mg/kg), CBZ (16.25, 32.5, and 

65 mg/kg), DUL (10 and 20 mg/kg), the TOLP/DUL combination (25 mg/kg + 20 mg/kg), 

and TOLP/Morph combination (25 mg/kg + 3.22 mg/kg). Tactile allodynia was tested by 

DPA. Also, the day for treatment and DPA measurement is indicated.  

3.4. Partial Sciatic Nerve Ligation  

The pSNL was carried out as previously mentioned (119,120). In short, rats were 

anesthetized using a single intraperitoneal dose of pentobarbital 60 mg/kg, given in a 

volume of 2.5 mL/kg. After anesthesia, animals were kept on a warm mat at 30° C, and 

the fur covering the right paws' and thighs' dorsal skin was shaved. After that, in an aseptic 

condition, an incision was created to expose the sciatic nerve that was tightly ligated at 

the dorsal 1/3 to 1/2 of the nerve thickness at the thigh level using polypropylene wire 
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(size 7-0). Then, two stitches were used to seal the wound. In the sham-operated rats 

(controls), the sciatic nerve was exposed without ligation. 

3.5. Assessment of Static Tactile Mechanical Allodynia  

Based on the previous investigations, DPA was used to assess the development of tactile 

allodynia, which is the main symptom of NP (79,119). Two days before starting the 

experiment, animals were handled by placing them in the DPA chambers once a day for 

acclimatization to the experimental procedures. On the day of the operation, animals’ 

PWTs were measured after 5 min acclimatization and expressed in g; then, a small metal 

filament (0.5 mm in diameter) was directed to the rat’s hind paws alternately 

(incrementation: 10 g/s, maximal force: 50 g) 3 times for each paw, and then the 

measurements were averaged. Rat was considered allodynic if the average PWT value of 

the right operated paw was decreased by 20% compared to the left unoperated paw 

(79,121). Measurements were done according to instructions in Section 3.3 and 

experimental schedules 1 and 2. 

3.6. Treatment of Mono-neuropathic Animals 

On the 7-day post-operation, the PWTs were measured, and the neuropathic rats were 

chosen and allocated randomly to different treatment groups. Drugs used in the study are 

PGB and TOLP, which were given at the same doses (25, 50, and 100 mg/kg), DUL at 

(10 and 20 mg/kg), and CBZ at (16.25, 32.5, and 65 mg/kg). All drugs were administered 

orally, and then the allodynia was assessed again 60, 120, and 180 min post 

administration. On the same animals, treatments were given continuously for 2 weeks/ 

twice a day, and the effect of chronic treatment was checked on days 14 and 21 post-

operation. On another set of animals, on day 14 after pSNL, the acute effects of PGB and 

TOLP (both at 25, 50, and 100 mg/kg), DUL (10 and 20 mg/kg), CBZ (16.25, 32.5, and 

65 mg/kg), the TOLP/PGB combination (both at 25 mg/kg), and the TOLP/DUL 

combination (25 mg/kg + 20 mg/kg), as well as TOLP/Morph combination (25 mg/kg + 

3.22 mg/kg) were tested after acute oral treatment, except Morph that was given 

subcutaneously 30 min before the measurements. In a 1% hydroxyethyl cellulose 

solution, CBZ was suspended; however, the other drugs were dissolved in 0.9% saline 

and given in a volume of 5 mL/kg using an orogastric gavage, except morphine was given 

in a volume of 2.5 mL/kg. 
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3.7. Capillary Electrophoresis Analysis of Cerebrospinal Fluid Glutamate Content  

The CSF glutamate level was measured using a capillary electrophoresis laser-induced 

fluorescence technique developed in our lab (122). Two weeks after surgery, rats were 

euthanized with isoflurane, and CSF samples were obtained from both control and 

neuropathic rats by puncturing the cisterna magna. Samples were first centrifuged (2000 

× g for 10 min at 4 °C) and deproteinized by adding two volumes of cold acetonitrile. A 

second centrifugation was then performed (20,000 × g for 10 min at 4 °C). The resulting 

supernatants were derivatized with 1 mg/mL NBD-F in 20 mM borate buffer (pH 8.5) for 

20 min at 65 °C, with 1 µM L-cysteic acid serving as an internal standard. For analysis of 

the derivatized compounds, a P/ACE MDQ Plus capillary electrophoresis system 

equipped with a laser-induced fluorescence detector (SCIEX, Framingham, MA, USA) 

was used, with excitation and emission wavelengths set to 488 nm and 520 nm, 

respectively. Separation was carried out in polyacrylamide-coated fused silica capillaries 

(i.d.: 75 µm, effective/total length: 40/50 cm) at 15 °C, applying a constant voltage of ˗27 

kV in a 50 mM HEPES buffer at pH 7.0 containing 6 mM 6-monodeoxy-6-mono (3-

hydroxy) propylamino-β-cyclodextrin.    

3.8. Glutamate Release from Synaptosomes 

The impact of TOLP, PGB, or their combination on depolarization-induced glutamate 

release was tested using rat brain synaptosomes that were prepared in accordance with a 

modified Modi et al. method (123). In short, animals were sacrificed, their brain was taken 

quickly, and in 0.32 M sucrose and 4 mM HEPES (pH 7.4) solution, homogenization was 

done. Then, homogenate was centrifuged (2 × 10 min, 1500 × g, at 4 °C), and the 

supernatants were collected and centrifuged again (2 × 10 min, 20,000 × g, at 4 °C). After 

that, the pellet was collected and resuspended using a buffer solution composed of 4 mM 

HEPES, 0.32 M sucrose, 10% fetal bovine serum, and 10% dimethyl sulfoxide and stored 

at ˗80 °C to be used later.  

As previously described in our earlier study (74), glutamate release was measured as 

follows: The stored synaptosomal suspensions were thawed on the day of the experiment, 

and centrifugation was done (10 min, 20,000 × g, at 4 °C); then the pellet was resuspended 

using 10 mM HE-PES buffer composed of 5.4 mM KCl, 130 mM NaCl, 0.9 mM MgCl2, 

1.3 mM CaCl2, and 5.5 mM glucose (pH 7.4). Synaptosomal suspensions (10 mg) were 
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used to collect the supernatant that was centrifuged thereafter to an 8-well strip plate (15 

min, 2500 × g, at 4 °C). Equilibrium of synaptosomes was done for 2 × 10 min at 37 °C 

before stimulation in HEPES buffer containing 40 µM of DL-TBOA (a competitive, non-

transportable blocker of excitatory amino acid transporters) (124), to prevent glutamate 

reuptake. During the equilibration, tested drugs were added as a pretreatment. After the 

equilibration period, 1 mM 4-aminopyridine was used as a stimulation buffer to initiate 

depolarization and subsequent release of glutamate. After that, aliquots were taken at 8 

min and kept at ̠ 20 °C until the analysis with enzyme-linked fluorescent assay to be done. 

3.9. Enzyme-Linked Fluorescent Assay of Glutamate Released from Synaptosomes 

From Sigma–Aldrich (St. Louis, MO, USA), a Glutamate Oxidase Assay Kit was 

purchased, and glutamate release was determined using an enzyme-linked fluorescent 

assay. In brief, a working solution containing glutamate oxidase (0.04 U/mL), horseradish 

peroxidase (0.125 U/mL), and Amplex Red (50 µM) (final concentrations) was prepared 

and then mixed with the samples.  Fluorescent readings were carried out after 30 min 

incubation at 37 °C. Fluorescence was measured at 488 and 520 nm excitation and 

emission wavelengths, respectively. 

 3.10. Animal Model of Type 1 Diabetes-Induced Polyneuropathic Pain  

In accordance with the EU’s regulations, rats were kept in a mesh-bottomed cage (type 

IV cage). Type 1 diabetes was induced by intraperitoneal injection of a single large dose 

of STZ (60 mg/kg) that was freshly prepared using cold distilled water (1–3 °C) just 

before injection to avoid drug degradation (125,126). Using the Dcont Etalon blood 

glucose meter obtained from Roche Diagnostics GmbH, Mannheim, Germany, blood 

glucose level was measured 3 days later from tail vein blood, and those animals with 

blood glucose levels higher than >14 mmol/L were considered diabetic. The glucometer 

can determine blood glucose up to 33.3 mmol/L (127). The PWTs for the left and right 

paws were measured 3 times alternatively for each paw, assessed every 3 weeks, and 

expressed in g. After that, the average PWT values for each animal's two paws were 

calculated. Control rats were used, including age-matched non-diabetic animals of the 

same age as diabetic ones, and vehicle-treated animals. Tactile allodynia is determined 

by a 20% reduction in the average PWTs of the diabetic rats compared with the age-

matched non-diabetic rats (121). After 9 weeks, diabetic neuropathic rats were selected 
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and allocated randomly into different groups to receive either the vehicle or the drugs (25 

mg/kg PGB, 25 mg/kg TOLP, or their combination) to assess their acute antiallodynic 

effect measured at 60 and 120 min post single oral administration (see Experimental 

Schedule 3). 

 

Experimental Schedule 3. shows a schematic representation of the study design applied 

to type 1 diabetes-induced polyneuropathic pain. The scheme indicates the timeline of the 

blood glucose, body weight, DPA measurements, and the treatment day. 

3.11. Western Blot Analysis 

Using a TissueLyser (Qiagen, Venlo, Netherlands), spinal cord tissues were homogenized 

in lysis buffer containing a protease inhibitor cocktail (complete ULTRA Tablets, Roche, 

Basel, Switzerland) and PMSF (Sigma, St. Louis, MO, USA). After two rounds of 

centrifugation at 1500 × g for 15 min at 4 °C, the supernatants were collected. Protein 

concentrations were quantified using the bicinchoninic acid assay (BCA, Thermo Fisher 

Scientific, Waltham, MA, USA). Thirty-five micrograms of protein were mixed with a 

reducing loading buffer (Pierce Lane Marker, Thermo Fisher Scientific, Waltham, MA, 

USA), loaded, and separated in a 4%–20% precast Tris-glycine SDS polyacrylamide gel 

(BioRad, Hercules, CA, USA). Proteins were transferred overnight at 200 mA to a 

polyvinylidene difluoride membrane (BioRad, Hercules, CA, USA) which was blocked 

for 1 hr at room temperature with 5% non-fat dry milk (BioRad, Hercules, CA, USA) in 

Tris-buffered saline with 0.05% Tween-20 (0.05% TBS-T; Sigma, St. Louis, MO, USA). 

Following blocking, membranes were incubated overnight at 4 °C with a primary 
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antibody against MOR (ABIN617908, 1:1500) (antibodies-online GmbH, Aachen, 

Germany), then with the corresponding secondary antibody for 2 hr at room temperature. 

To control for sample loading and protein transfer and to normalize the content of the 

target protein, GAPDH (D16H11, 1:10000, Cell Signaling Technology, Danvers, MA, 

USA) was used. Each assay was repeated at least three times. To detect signals, a 

chemiluminescence kit was used (BioRad, Hercules, CA, USA) by Chemidoc XRS+ 

(BioRad, Hercules, CA, USA) (128). 

3.12. Morph Antinociceptive-Tolerance Model  

The rat tail-flick test (ITC Life Sciences equipment) was used to evaluate the effect of co-

administering oral doses of 100 mg/kg of TOLP or PGB on the development of morph 

antinociceptive tolerance evoked by s.c. dose of 10 mg/kg of morph. Handling was done 

to acclimatize the animals to the experimental conditions. All drugs were prepared in 

0.9% saline and administered twice daily for 10 days in a volume of 5 mL/kg for oral 

administration and 2.5 mL/kg for s.c. injections (under the skin over the neck). The tail-

flick test was performed as previously described (129,130). In brief, a beam of radiant 

heat was directed to the dorsum of the lower third of the rat tail, and then the time when 

rats flicked their tail was recorded as the latency time before (baseline) and 30, 60, 120, 

and 180 min after the drug administration to test the antinociceptive effect of the test 

compounds. Next, the latency time was calculated as a percentage of maximum possible 

effect (% MPE) = (post-drug latency−baseline latency) / (cut-off time−baseline latency) 

×100 (131). To avoid tissue damage, the cut-off time was set to 8 s. The treatment 

schedule and the Morph dose used to induce Morph antinociceptive tolerance were 

selected as described by our group (132) and are shown in Experimental Schedule 4. 

Experimental Schedule 4. shows the study design applied to induce Morph 

antinociceptive tolerance. The scheme indicates the timeline of the treatment and tail-

flick measurement.  
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3.13. Capillary Electrophoresis Analysis of Cerebrospinal Fluid D-serine and 

Glycine Content  

After 10 days of TOLP, Morph, Morph/TOLP, Morph/PGB, or vehicle treatment, CSF 

samples were collected to detect D-serine and glycine levels as detailed in section 3.7. 

3.14. Isolated Mouse Vas Deferens Assay 

All procedures were performed as reported by Lacko et al. (2012), with minor 

modifications (133). In brief, MVD experiments used 35-45 g male NMRI mice of 6-10 

weeks of age. Vasa deferentia were separated, taken out of their sheaths, and put in 5 ml 

organ baths containing Krebs solution aerated with a mixture of 95% O2+ 5% CO2 right 

away. They were then suspended between two electrodes; the lower one is straight, while 

the upper one is ring-shaped. The Krebs solution used contained the following 

components: 118.0 mM NaCl, 25.0 mM NaHCO₃, 4.7 mM KCl, 1.2 mM KH₂PO₄, 11.0 

mM glucose, 2.5 mM CaCl₂, and 1.2 mM MgSO₄. The organ's upper part was connected 

to a computer through a transducer and an amplifier. The resting tension was adjusted to 

0.1 g. Electrical stimulation consisted of 10 Hz trains, each containing 10 rectangular 

pulses lasting 1 ms, delivered at 9 V/cm (supramaximal intensity), and repeated every 10 

seconds (0.1 Hz) using a Stimulator 88 (Grass Medical Instruments, Quincy, MA, USA). 

Prior to drug administration, organs underwent a 50-60 min equilibration period under 

electrical field stimulation and were washed with Krebs solution every 5 min. After the 

equilibrium, concentration-response curves of drugs were constructed in a cumulative 

manner with 2 min of drug exposure. Applied concentration ranges were in nM: 10-

100,000; 10-1,000,000; 1.56-6,400; and 3.125-800 for TOLP, PGB, Morph, and 

DAMGO, respectively. 

3.15. Procedures and Assessment of Morph Tolerance in Isolated Mouse Vas 

Deferens Assay 

In this set of experiments, MVD was used to induce an ex vivo Morph tolerance model. 

A high concentration of Morph (1000 nM) was used, which is 4 times the EC50 (218.9) 

calculated from Morph concentration-response curves obtained from the previous 

experiments (see section 3.14). After the organ was isolated and prepared as described 

above, 1000 nM Morph was added into the organ bath with 5 min drug exposure followed 

by quick washing. This treatment form was repeated 3 times. Next, extensive washing 
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was done to regain at least 80% of the height of contractions, and then 500 nM Morph 

was injected into the organ bath. To evaluate the effect of PGB and TOLP on Morph 

tolerance, the organs were treated 3 times with the combination of 1000 nM Morph and 

PGB or TOLP. As a control, the vehicle was used instead of 1000 nM Morph. Finally, 

the effect of 500 nM Morph was assessed on Morph, Morph/PGB, Morph/TOLP, or 

vehicle-treated organs (134). 

3.16. Motor Function Test in Naïve Rats 

In naïve male Wistar rats, the effect of test drugs on motor function was tested using the 

rotarod test (Rat Rotarod, Model 7750; Ugo Basile, Gemonio, Italy). At 16 rpm, the speed 

of the rotating rod of the instrument was fixed, and rats were trained to stay on it for 180 

s (cut-off time) 24 hours before the experiment. On the next day, different drugs were 

given orally, including TOLP (100 and 150 mg/kg), PGB (25, 50, and 100 mg/kg), and 

the TOLP/PGB combination (both at 25 mg/kg), or vehicle, and their acute effect were 

evaluated at 60 and 120 min after acute oral treatment. The fall-off time, or the latency 

time, was used to indicate motor coordination (50,135).  

3.17. Determination of Gastrointestinal Peristalsis in Naïve Rats  

The effect of tested drugs on GI transit was evaluated in naïve male Wistar rats using the 

charcoal meal test (136). In short, after 18 hours of fasting, TOLP (25 and 50 mg/kg), 

PGB (25 and 50 mg/kg), or the TOLP/PGB combination both at 25 mg/kg were given 

orally. An oral charcoal suspension was prepared (10% charcoal in 5% gum Arabic) and 

given via oral gavage 30 min post-oral drug administration in a volume of 2 mL/animal. 

After another 30 min, animals were sacrificed, and the whole small intestines were taken. 

Then, the charcoal travel distance was measured and compared with the whole small 

intestinal length. 

3.18. Statistical Analysis 

Data were statistically analyzed using GraphPad Prism 8.0 Software (San Diego, CA, 

USA). Values were presented as mean ± standard error of means (S.E.M.). Data were 

analyzed by one-way or two-way ANOVA followed by Dunnett’s or Tukey’s post-hoc 

test for multiple comparisons. Data were analyzed by unpaired t-test for Figure 9, panels 

(a-c, e). Significant differences were considered if p < 0.05. ROUT analysis was done to 

find outliers, with a Q value = 0.5%. 
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4. Results 

4.1.  Oral TOLP and PGB Produce Significant Anti-tactile Allodynic Effects 

Only After Chronic Treatment in Rats with Mono-neuropathic Pain Induced by 

pSNL  

This section shows the results related to the effect of a single oral treatment of TOLP and 

PGB at day 7 post-operation and the chronic effect measured after 1 and 2 weeks of 

chronic oral treatment at days 14 and 21, respectively (Figures 1 and 2). The anti-tactile 

allodynic effects of TOLP and PGB were tested at 3 different doses (25, 50, and 100 

mg/kg). Tactile allodynia was evoked by pSNL and measured by DPA. Allodynia was 

evidenced by a decrease in the rat PWT. The effect of the test drugs was evaluated at 60, 

120, and 180 min after oral administration as described in Experimental Schedule (1).  

TOLP was ineffective in restoring the developed allodynia either after a single dose or 1 

week of chronic administration at all given doses, as presented in Figures 1a and b, 

respectively. On the other hand, the results depicted in Figure 1c indicate that TOLP 

treatment at 100 mg/kg dose produced a significant anti-tactile allodynic effect that was 

obtained at 60 min following 2 weeks of chronic treatment compared to the vehicle-

treated group (two-way ANOVA: F (treatment group; 4, 45) = 25.41, p < 0.0001, 

Dunnett’s post-hoc test: p = 0.0260). Similarly, after a single dose or 1 week of chronic 

administration, PGB in all tested doses failed to alleviate the developed allodynia (Figures 

2a, b). In addition, Figure 2c indicates that PGB treatment at 50 mg/kg dose can also exert 

a significant anti-tactile allodynic effect that was obtained at 60 min after 2 weeks of 

chronic treatment compared to the vehicle-treated group (two-way ANOVA: F (treatment 

group; 4, 39) = 23.91, p < 0.0001, Dunnett’s post-hoc test: p = 0.0080).   

https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f001
https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f002
https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f002
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Figure 1. shows the antiallodynic effect of TOLP on tactile allodynia induced by pSNL 

in rats. On day 7 post-operation, the PWTs were measured before and after a single 

administration (panel a). Also, on days 14 and 21 post-operation, PWTs were measured 

after 1 and 2 weeks of chronic administration, as shown in panels b and c, respectively. 

After oral treatment, tactile allodynia was assessed at 60, 120, and 180 min by DPA. 

Values are presented as the mean ± SEM of 8-13 animals/group. Data were analyzed by 

two-way ANOVA and Dunnett’s post-hoc test. *P < 0.05 means statistical significance 

versus the vehicle's right (R) operated paw at the indicated time points after 

administration. PWTs measured before the first administration are called baseline (b.l.), 

whereas single treatment indicates the PWTs measured after a single oral administration 

on day 7 post-operation. 
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Figure 2. shows the antiallodynic effect of PGB on tactile allodynia induced by pSNL in 

rats. On day 7 post-operation, the PWTs were measured before and after a single 

administration (panel a). Also, on days 14 and 21 post-operation, PWTs were measured 

after 1 and 2 weeks of chronic administration, as shown in panels b and c, respectively. 

After oral treatment, tactile allodynia was assessed at 60, 120, and 180 min by DPA. 

Values are presented as the mean ± SEM of 6-13 animals/group. Data were analyzed by 

two-way ANOVA and Dunnett’s post-hoc test. *P < 0.05 means statistical significance 

versus the vehicle's right (R) operated paw at the indicated time points after 

administration. PWTs measured before the first administration are called baseline (b.l.), 

whereas single treatment indicates the PWTs measured after a single oral administration 

on day 7 post-operation. 
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4.2.  Oral DUL and CBZ Fail to Produce Anti-tactile Allodynic Effects After 

Acute or Chronic Treatment in Rats with Mono-neuropathic Pain Induced by 

pSNL  

The acute effect was measured after a single oral treatment on day 7 post-operation, and 

the chronic effect was measured after 1 and 2 weeks of chronic oral treatment on days 14 

and 21 post-operation, respectively. DUL was given at 2 different doses (10 and 20 

mg/kg), and CBZ at 3 different doses (16.25, 32.5, and 65 mg/kg). Both drugs at all tested 

doses and treatment periods failed to attenuate the developed right hind-paw allodynia 

compared to vehicle-treated rats at all tested time points, as presented in Figures 3 and 4 

(a–c).  

 

Figure 3. shows the antiallodynic effect of DUL on tactile allodynia induced by pSNL in 

rats. On day 7 post-operation, the PWTs were measured before and after a single 

administration (panel a). Also, on days 14 and 21 post-operation, PWTs were measured 

after 1 and 2 weeks of chronic administration, as shown in panels b and c, respectively. 

https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f003
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After oral treatment, tactile allodynia was assessed at 60, 120, and 180 min by DPA. 

Values are presented as the mean ± SEM of 5–7 animals/group. Data were analyzed by 

two-way ANOVA and Dunnett’s post-hoc test. P > 0.05, statistically non-significant: 

treated groups versus the vehicle's right (R) operated paw at the indicated time points 

after administration. PWTs measured before the first administration are called baseline 

(b.l.), whereas single treatment indicates the PWTs measured after a single oral 

administration on day 7 post-operation. 

 

Figure 4. shows the antiallodynic effect of CBZ on tactile allodynia induced by pSNL in 

rats. On day 7 post-operation, the PWTs were measured before and after a single 

administration (panel a). Also, on days 14 and 21 post-operation, PWTs were measured 

after 1 and 2 weeks of chronic administration, as shown in panels b and c, respectively. 

After oral treatment, tactile allodynia was assessed at 60, 120, and 180 min by DPA. 

Values are presented as the mean ± SEM of 6–7 animals/group. Data were analyzed by 

two-way ANOVA and Dunnett’s post-hoc test. P > 0.05, statistically non-significant: 
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treated groups versus the vehicle's right (R) operated paw at the indicated time points 

after administration. PWTs measured before the first administration are called baseline 

(b.l.), whereas single treatment indicates the PWTs measured after a single oral 

administration on day 7 post-operation. 

4.3.  Acute Oral Treatment of TOLP, PGB, DUL, and CBZ Fail to Restore the 

Tactile Allodynia Evoked by pSNL in Rats on Day 14 Post-operation 

In this set of animals, the acute anti-tactile allodynic effects of TOLP (25, 50, and 100 

mg/kg), PGB (25, 50, and 100 mg/kg), DUL (10 and 20 mg/kg), and CBZ (16.25, 32.5, 

and 65 mg/kg) at the same doses were tested on day 14 post-operation, as shown in Figure 

5a, b, c, and d, respectively. All tested drugs failed to alleviate the developed allodynia 

measured at 60, 120, and 180 min after acute oral treatment, as presented in Figure 5 (a-

d).  

 

Figure 5. shows the acute antiallodynic effect of TOLP (panel a), PGB (panel b), DUL 

(panel c), and CBZ (panel d) on tactile allodynia induced by pSNL in rats measured by 

DPA at day 14 post-operation. After oral treatment, tactile allodynia was assessed at 60, 

120, and 180 min. Values are presented as the mean ± SEM of 6–8 animals/group panel 

(a), 8 animals/group panel (b), 4–5 panel (c), and 4–13 animals/group panel (d). Data 

were analyzed by two-way ANOVA and Dunnett’s post-hoc test.  P > 0.05, statistically 
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non-significant: treated groups versus the vehicle's right (R) operated paw at the indicated 

time points after administration. Baseline (b.l.): was measured before the treatment. 

4.4.  Acute Oral Co-Administration of TOLP with PGB but not with DUL or 

Morph Alleviates Tactile Allodynia Evoked by pSNL in Rats on Day 14 Post-

operation 

In this set of animals, combinations of two different drugs with different modes of action, 

namely multimodal analgesia, were applied, aiming to increase the efficacy and decrease 

the side effects. So, we investigated a combination of TOLP/PGB at the smallest doses 

(25 mg/kg for both) in rats that underwent pSNL on day 14 post-operation (Figure 6a). 

As previously mentioned, acute or chronic oral treatment with 25 mg/kg of either TOLP 

or PGB did not induce any significant antiallodynic effect (Figures 1 and 2). Moreover, 

the oral acute treatment with TOLP, PGB, or DUL failed to restore the developed 

allodynia in pSNL rats at day 14 post-operation, as presented in Figures 5a, b, and c, 

respectively. Surprisingly, the developed tactile allodynia was acutely alleviated by 

TOLP/PGB combination (both at 25 mg/kg) in pSNL rats 120 min post-acute oral 

treatment versus the vehicle's right (R) operated paw (two-way ANOVA: F (treatment 

group; 4, 28) = 17.81, p < 0.0001, Dunnett’s post-hoc test: p = 0.0266), PGB- or TOLP-

treated rats (Figure 6a).  

On the other hand, combinations of TOLP/DUL or s.c. Morph (3.22 mg/kg) failed to 

show an antiallodynic effect after acute oral treatment in pSNL rats at all tested doses and 

time points shown in Figures 6b and c. With respect to the antiallodynic effect of Morph 

per se, our previous results showed that acute Morph treatment in a small dose of 3.22 

mg/kg failed to produce an antiallodynic effect, but a dose of 6.44 mg/kg produced an 

effect on operated and non-operated paws at day 14 post-operation, indicating an 

antinociceptive effect (79). 

https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f004
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Figure 6. shows the acute antiallodynic effect of TOLP/PGB combination panel (a), 

TOLP/DUL combination panel (b), and TOLP/Morph combination panel (c) on tactile 

allodynia induced by pSNL in rats measured by DPA at day 14 post-operation. After oral 

treatment, tactile allodynia was assessed at 60, 120, and 180 min. Values are presented as 

the mean ± SEM of 5–8 animals panel (a), 5–8 animals panel (b), and 6–12 animals panel 

(c). Data were analyzed by two-way ANOVA and Dunnett’s post-hoc test. *P < 0.05 

means statistical significance versus the vehicle's right (R) operated paw at the indicated 

time points after administration. Baseline (b.l.): was measured before the treatment. 
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4.5.  The Impact of Acute Oral Administration of TOLP, PGB, or their 

Combination on Cerebrospinal Fluid Glutamate Content in Rats with Mono-

neuropathic Pain Evoked by pSNL  

On day 14 post-operation, CSF samples were collected from rats with mono-neuropathic 

pain evoked by pSNL, and then, by capillary electrophoresis, the CSF glutamate content 

was measured. Figure 7 depicts that a significant elevation of the CSF glutamate content 

was detected in the oral vehicle-treated neuropathic rats compared to the sham group 

(one-way ANOVA: F (4, 64) = 6.435, p = 0.0002, Dunnett’s post-hoc test: p = 0.0032). 

In addition, the elevation in the CSF glutamate content was significantly inhibited by the 

administration of per os TOLP, PGB, or their combination and reached the normal level 

of the sham group. 

 

Figure 7. CSF glutamate content of rats with mono-neuropathic pain evoked by pSNL 

and sham-operated rats following acute oral treatment with 25 mg/kg of either TOLP, 

PGB, or their combination (both at 25 mg/kg) on day 14 post-operation. Values are 

presented as mean ± SEM of 4–21 animals/group. Data were analyzed by one-way 

ANOVA and Dunnett’s post-hoc test, *P < 0.05 means statistical significance versus 

other groups. 

4.6.  Impact of Treatment with TOLP, PGB, or their Combination on 4-

Aminopyridine-Induced Glutamate Release from Rat Brain Synaptosomes 

The impact of the tested drugs or their combination on the glutamate release from naïve 

rat brain synaptosomes was made to elaborate on the possible mechanism behind their 

antiallodynic effects. Depolarization-induced glutamate release was induced by 4-

aminopyridine, which is a K+-channel inhibitor (137). TOLP, PGB, or their combination 

was applied at 100, 250, and 100 + 250 μM, respectively. 4-aminopyridine-induced 
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transmitter release through sodium and calcium channels activation (138) that was 

inhibited by TOLP but not by PGB, according to our previous study (74). In the current 

study, the TOLP/PGB combination significantly inhibited 4-aminopyridine-induced 

glutamate release (one-way ANOVA: F (3, 24) = 8.686, p = 0.0004, Dunnett’s post-hoc 

test: 100 μM TOLP, p = 0.0012; 100 μM TOLP and 250 μM PGB, p = 0.0016) as shown 

in Figure 8. 

 

Figure 8. shows the impact of 100 μM of TOLP, 250 μM of PGB, or their combination 

on 1 mM 4-aminopyridine-evoked glutamate release from rat brain synaptosomes. 

Twenty min before stimulation, tested drugs were given as a pretreatment, and six min 

after stimulation, released glutamate concentration was detected. All data points were 

normalized using the unstimulated baseline release and expressed as % of the stimulated 

glutamate release in the absence of the tested drugs (gray bar). Values are presented as 

the mean of glutamate release ± SEM in % in the indicated groups. In each treatment 

group, 4–13 parallel experiments were used. Data were analyzed by one-way ANOVA 

and Dunnett’s post-hoc test, *P < 0.05 means statistical significance versus stimulated 

glutamate release by 1 mM 4-aminopyridine alone and treatment groups. 

4.7.  The Effect of Acute Oral Administration of PGB, TOLP, or their 

Combination on Peripheral Diabetic Polyneuropathy in Rats  

The promising combination, TOLP/PGB (25 mg/kg), was further investigated in 

peripheral diabetic polyneuropathy induced by STZ in rats. Diabetes mellitus was induced 

based on our previous investigation (79). Type 1 diabetes-induced allodynia was induced 

by intraperitoneal injection of a single large dose of STZ (60 mg/kg). After 72 hr, 

significant hyperglycemia was observed in diabetic rats compared to age-matched non-

diabetic rats that were kept till the end of the study (9 weeks), as shown in Figure 9a. 
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There was a significant change in body weight of the diabetic and age-matched non-

diabetic rats that was detected after the first week and thereafter (Figure 9b).  

Three weeks after diabetes induction, tactile allodynia was detected by DPA and 

evidenced by the reduction in the PWTs of both paws that was maintained till week 9. 

Tactile allodynia was measured every third week till the end of the study period (Figure 

9c). To investigate the effect of body weight on the PWT, weight-matched non-diabetic 

rats were also used (Figure 9d). We found similar PWTs between both weight-matched 

and age-matched non-diabetic rats after 9 weeks at all tested time points. Therefore, in 

this experiment, age-matched non-diabetic rats were selected for comparison (9e). Nine 

weeks after STZ injection, tested drugs (TOLP and PGB) at 25 mg/kg and their 

combination were given orally, and tactile allodynia was tested at 60 and 120 min after 

treatment. Of the given treatments, only PGB treatment significantly alleviated the tactile 

allodynia 120 min post-administration (one-way ANOVA: F (11, 31) = 7.167, p < 0.0001, 

Dunnett’s post-hoc test: p = 0.0139) (Figure 9f). 

 

 

 

https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f005
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Figure 9. shows the level of blood glucose panel (a), age-matched non-diabetic and 

diabetic rats’ body weight over the study period panel (b), PWTs of both paws in diabetic 

and age-matched non-diabetic rats over the study period panel (c), age-, weight-matched 

non-diabetic, and diabetic animals’ body weight at the ninth-week panel (d), and age and 

weight-matched non-diabetic rats’ PWTs of both paws at the ninth-week at 60, 120, and 

180 min panel (e). Values are presented as mean ± S.E.M. of 6 weight-matched non-

diabetic, 6 age-matched non-diabetic, and 20 diabetic rats. Data were analyzed by 

unpaired t-test for panels (a-c, e). For panel (d), one-way ANOVA and Dunnett’s post-

hoc test were used. *P < 0.05 means statistical significance versus the age-matched non-

diabetic rats. Figure 9f shows the acute antiallodynic impact of TOLP (25 mg/kg), PGB 

(25 mg/kg), or their combination on type 1 diabetes-induced tactile allodynia. Nine weeks 

after diabetes induction, the left and right PWT was measured by DPA at 60 and 120 min 

after acute oral administration. Values are presented as the mean ± S.E.M. of 3–5 

animals/group. Data were analyzed by one-way ANOVA and Dunnett’s post-hoc test. *P 

< 0.05 means statistical significance versus the vehicle-treated rats. Baseline: PWTs 

measured before the treatment. 

4.8. Acute PGB Treatment Induced a Significant Increase in the Spinal Cord 

MOR Protein Level in Rats with Peripheral Diabetic Polyneuropathy 

To decipher the mechanism by which only PGB, among the tested drugs (see Figure 9f), 

produced a significant antiallodynic effect against allodynia developed as a consequence 
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of persistent high glucose levels in diabetic neuropathic rats, spinal cord tissues from 

diabetic neuropathic rats were subjected to measurement using Western blotting to 

quantify if there is an alteration in the protein level of MOR in response to treatments. 

For this purpose, tissues from rats acutely treated with TOLP (25 mg/kg), PGB (25 

mg/kg), or their combination were used. The vehicle-treated diabetic rats showed a 

decrease in the MOR protein level compared to the age- or weight-matched non-diabetic 

rats. After acute treatment with the tested compounds, only PGB alone induced a 

significant elevation in MOR protein level compared to the vehicle-treated diabetic rats 

(Figure 10).  This study suggests a connection between the opioid system and diabetic 

neuropathy, but more research is necessary to reach a firm conclusion. 

 

Figure 10. Spinal cord MOR protein levels relative to GAPDH after acute treatment in 

diabetic and non-diabetic rats. Representative bands are taken from the same membrane. 

Values are presented as mean ± S.E.M of 5-6 tissues/group. Data were analyzed by One-

way ANOVA and Dunnett’s post-hoc test, *P < 0.05 means statistical significance versus 

the vehicle group. 

4.9. PGB but not TOLP Delays the Development of Morph Antinociceptive 

Tolerance in the Rat Tail-Flick Assay 

The acute antinociceptive effect of 10 mg/kg Morph (s.c.) and per os 100 mg/kg TOLP 

or PGB was assessed by the rat tail-flick assay acutely on the first day and after 10 days 

of chronic treatment (Figure 11). Morph (10 mg/kg, s.c.) displayed a significant 

antinociceptive effect after acute administration (1st day) that peaked at 60 min (100 %) 

following treatment and was retained until 120 min (panel a). After 10 days of chronic 

treatment, this effect was significantly decreased, indicating the development of Morph 

antinociceptive tolerance (38.38 % at 30 min and 22.39 % at 60 min, Panel c).  Acute or 
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chronic administration of TOLP per se did not show antinociception at all tested time 

points (Figure 11a, b, c). On the other hand, acute Morph administration alone or in 

combination with PGB or TOLP produced comparable effects and was statistically 

significant in comparison to the group that received vehicle. At day 10, the chronic 

treatment with the combination of Morph and TOLP did not exhibit an antinociceptive 

effect, yet it showed a comparable effect to that seen in vehicle or Morph groups (panels 

a, b, c). This indicates that TOLP has no impact on Morph antinociceptive tolerance. 

Finally, when compared to the effects of vehicle or Morph per se chronic treatment, 

Morph/PGB combination showed a significant antinociceptive effect (panel c), indicating 

that PGB delays the development of Morph antinociceptive tolerance. 

 

 

Figure 11. Panel (a) shows the effect of acute treatment with s.c. 10 mg/kg Morph, oral 

100 mg/kg TOLP, or their vehicle on the tail-flick latency of naïve rats expressed as % 

MPE and measured at 30, 60, 120, and 180 min after administration (Day 1). Panels b 

and c show the acute and chronic effects, respectively, of TOLP (100 mg/kg, per os), 

Morph (10 mg/kg, s.c.), either alone or co-administered with oral 100 mg/kg of TOLP or 

PGB on the tail-flick latency of rats (% MPE) measured at 30 and 60 min after 

administration. Acute treatment  (Day 1, panel b) and following 10 days of chronic 
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treatment (Day 10, panel c). Data were analyzed by two-way ANOVA followed by 

Dunnett’s post hoc test. Values are presented as mean ± S.E.M of 5-6 animals/group. *P 

< 0.05 indicates statistical significance versus the vehicle group. 

4.10. D-serine but not Glycine Levels are Decreased in Rat Cerebrospinal Fluid 

After Chronic Concurrent Treatment with Morph and PGB 

To have insight into the possible mechanisms underlying the development of Morph 

antinociceptive tolerance, we have measured D-serine and glycine levels in CSF obtained 

from rats treated for 10 days with Morph, TOLP, or a Morph combination with either 

TOLP or PGB (Figure 12). Co-administering PGB with Morph resulted in a decrease in 

D-serine level compared to the vehicle group. It is worth noting that the TOLP/Morph 

combination was able to reduce the D-serine level, however, this decrease was not 

significant (panel a). On the other hand, none of the treatment groups affected the glycine 

levels compared to the vehicle group (panel b). 

 

Figure 12. CSF D-serine (panel a) or glycine (panel b) content of rats chronically treated 

with Morph, TOLP, or Morph combination with either TOLP or PGB. Values are 

presented as mean ± SEM of 3–5 animals/group. Data were analyzed by one-way 

ANOVA and Dunnett’s post-hoc test; *P < 0.05 indicates statistical significance versus 

the vehicle group. 

4.11. TOLP and PGB Combination Produces a More Potent inhibitory Effect than 

TOLP or PGB Per se in Isolated Mouse Vas Deferens  

In order to examine how the combination of TOLP and PGB affected MVD contraction 

induced by electrical field stimulation, the effect of each test compound was first assessed 

independently. As controls, Morph and DAMGO were used. The Emax of test compounds 
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was calculated from the concentration-response curves and served as a parameter to 

indicate the magnitude of the efficacy of the tested compounds.  Before the drugs were 

administered, a calibration time of 50–60 minutes was used, as explained in section 3.14. 

As depicted in Figure 13a, TOLP, PGB, Morph, or DAMGO, in a concentration-

dependent manner, inhibited the electrically evoked MVD smooth muscle contractions. 

The measured Emax for TOLP, PGB, Morph, or DAMGO was 84.85, 36.57, 74.01, or 

91.06%, respectively. Next, TOLP, PGB, and Morph at concentrations that produced an 

equipotent inhibitory effect (20% inhibition) were tested separately or in drug 

combinations. In these series of experiments, the submaximal concentrations chosen were 

1000 nM, 10000 nM, and 25 nM for TOLP, PGB, and Morph, respectively (Figure 13b). 

As a result, only the TOLP/PGB-based combination produced 26% inhibition versus 16% 

evoked by either TOLP or PGB per se (Figure 13b). This character was not seen when 

TOLP or PGB was combined with Morph. 
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Figure 13. Shows the effect of tested compounds on isolated MVD assay. (a) shows the 

concentration-response curves for TOLP, PGB, Morph, and DAMGO. TOLP (10-100000 

nM), PGB (10-1000000 nM), Morph (1.56-6400 nM), and DAMGO (3.125-800 nM) 

induced inhibition in the smooth muscle contractions in a concentration-dependent 

manner. Emax was calculated from individual concentration-response curves by nonlinear 

regression (Hill slope, three parameters) of logarithmic concentration-response 

curves. Values are presented as the mean ± SEM of n = 5-9. (b) shows the effect (%) of 

the submaximal concentrations of TOLP (1000 nM), PGB (10000 nM), and Morph (25 

nM) alone and in combination on the contractions of the MVD in response to electrical 

stimulation. Values are presented as the mean ± SEM of n = 4-12. Data were analyzed by 

one-way ANOVA and Tukey’s multiple comparisons post-hoc test, *P < 0.05 indicates 

statistical significance versus TOLP/PGB combination. 

4.12. PGB and TOLP Restore the Developed Morph Tolerance in Isolated Mouse 

Vas Deferens  

A 60.95% inhibitory effect of Morph (500 nM) was measured in MVD that received 

vehicle treatments. On the other hand, Morph produced a 27.22% inhibitory effect on 

muscle contractions of organs that underwent three consecutive treatments with 1000 nM 

Morph. These data indicate the development of Morph tolerance in MVD. Next, 

pretreatments with Morph (1000 nM) in the presence of 1000 nM PGB or 100 nM TOLP 

and Morph (500 nM) caused 59.35% and 46.28% inhibitory effects, respectively. These 

data indicate that both PGB and TOLP when co-administered with Morph, restore the 

developed Morph tolerance in MVD. It is worth noting that 1000 nM PGB and 100 nM 

TOLP per se produce an equipotent inhibitory effect, namely, 13.82% and 10.73%, 

respectively (Figure 14), and this effect was statistically significant compared to their 

combinations with Morph (Figure 14).  
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Figure 14. shows the effect of 100 nM TOLP or 1000 nM PGB co-administered with 

1000 nM Morph on the developed Morph tolerance in isolated mouse vas deferens. 

Values are presented as the mean ± SEM of n = 5-11. Data were analyzed by one-way 

ANOVA and Tukey’s multiple comparisons post-hoc test. *P < 0.05 indicates statistical 

significance versus (Morph 500 nM after Morph 1000 nM + TOLP 100 nM), +P < 0.05 

indicates statistical significance versus (Morph 500 nM after Morph 1000 nM + PGB 

1000 nM), and $P < 0.05 indicates statistical significance versus (TOLP 100 nM).   

4.13.  The Effect of PGB, TOLP, and PGB/TOLP Combination on Motor 

Coordination and Balance in Naïve Rats 

Acute oral treatment with PGB at doses of 50 and 100 mg/kg induced motor dysfunction 

and coordination imbalance in naïve rats, as confirmed by a significant reduction in the 

latency time, a time when the animal can stay on the rotating rod (one-way ANOVA: F 

(13, 84) = 11.12, p < 0.0001, Dunnett’s post-hoc test: 50 mg/kg, 60 min, p = 0.0326; 100 

mg/kg, 60 min, p = 0.0010, 50 mg/kg; 120 min, p < 0.0001, 100 mg/kg; 120 min, p < 

0.0001). However, oral administration of 100 and 150 mg/kg of TOLP and 25 mg/kg of 

PGB didn’t affect the motor function and coordination of naïve rats. After oral 

administration, the TOLP/PGB combination (both at 25 mg/kg) didn’t alter rats’ motor 

coordination and balance versus the vehicle-treated rats, either 60 or 120 min post-

treatment (Figure 15). 
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Figure 15. Impact of acute oral treatment of TOLP (100 and 150 mg/kg), PGB (25, 50, 

and 100 mg/kg), and TOLP/PGB combination (both at 25 mg/kg) or vehicle on motor 

coordination and balance of naïve rats at 60 and 120 min post-treatment. Columns show 

the time latency in the rotarod test. Values are presented as the mean ± SEM of 5–19 

animals/group, measured at the peak effect of test drugs. Data were analyzed by one-way 

ANOVA and Dunnett’s post-hoc test, *P < 0.05 means statistical significance versus the 

vehicle group. 

4.14.  The Impact of PGB, TOLP, and PGB/TOLP Combination on 

Gastrointestinal Transit in Naïve Rats 

Treatment with 25 and 50 mg/kg of TOLP, 25 mg/kg of PGB, and TOLP/PGB 

combination both at 25 mg/kg, didn’t elicit any delay in GI transit after oral charcoal 

suspension in naïve rats. On the other hand, acute treatment with 50 mg/kg of PGB 

induced a moderate delay in the GI transit in rats compared to the vehicle group, albeit 

such delay was statistically significant (one-way ANOVA: F (5, 29) = 3.297, p = 0.0177, 

Dunnett’s post-hoc test: p = 0.0110), as shown in Figure 16. 

https://www.mdpi.com/1424-8247/16/8/1115#fig_body_display_pharmaceuticals-16-01115-f009
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Figure 16. Impact of acute oral treatment of 25 and 50 mg/kg of TOLP, 25 and 50 mg/kg 

of PGB, and the TOLP/PGB combination both at 25 mg/kg on the GI transit of naïve rats 

30 min post oral administration of a charcoal suspension. Columns show the % of 

charcoal travel in the charcoal meal test. Values are presented as the mean ± SEM of 5–

6 animals/group, measured at the peak effect of test drugs. Data were analyzed by one-

way ANOVA and Dunnett’s post-hoc test, *P < 0.05 means statistical significance versus 

the vehicle group. 
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5. Discussion 

Chronic pain, especially NP, is a debilitating condition that impacts the patient's everyday 

life and the income of the entire society. NP results from a disease or damage affecting 

the somatosensory neurons as defined by IASP (139). The various etiologies and the 

intricacy of the underlying mechanisms make treating painful neuropathy difficult. 

Although there are several monotherapy-based treatments available in the clinical setting, 

a high and variable number needed to treat (NNT) indicates that adequate NP control is 

still necessary (8). Therefore, the development of mono- or combination-based novel 

treatment approaches to treat NP remains a major unmet need. The potential for 

repurposing medications used to treat other diseases in clinical settings to manage NP is 

thus the focus of the current thesis. In addition, we sought for novel combination-based 

approaches to treat NP. In this regard, drugs with various modes of action are being 

applied in clinical settings in the hope of achieving analgesia of rapid onset, significant 

efficacy, and tolerable side effects (106). To this aim, we have focused on the mechanisms 

of the majority of first-line medications that are prescribed for various forms of NP as 

well as drugs that share pharmacological targets with them but are indicated for other 

diseases (8,140). In light of this, we have chosen TOLP because it has a 

pharmacodynamic effect hosted by drugs that are considered first or third-line medication 

to treat NP, namely the blockage of VGSCs and VGCCs, which are explained in more 

depth below (140). In this stage of the study, we examined the short-term and long-term 

antiallodynic effects of oral TOLP in an animal model of mono-neuropathic pain brought 

on by pSNL, comparing it to PGB, DUL, or CBZ administered per se. Then, applying the 

same pain model, we have further investigated the antiallodynic effect of TOLP combined 

with either PGB, DUL, or Morph. After that, we extended our study to investigate the 

antiallodynic effect of the effective combination of TOLP/PGB on type 1 diabetes-

induced polyneuropathic pain in rats. Further investigations were being done to determine 

how glutamate, as an excitatory neurotransmitter, has been changed in the CSF of mono-

neuropathic rats treated with either PGB, TOLP, or both. An imbalance between these 

two systems has been documented in numerous previous studies on animals with NP. 

Glutamate release from rat brain synaptosomes was further investigated in relation to 

treatments with either PGB, TOLP, or both. To further understand how TOLP and PGB 

affect transmitter release and their positive effects on NP and opioid antinociceptive 
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tolerance, the interaction between these two drugs was also examined in MVD. To look 

into the side effects, the impact of TOLP/PGB on motor coordination and balance, and 

GI transit was evaluated.  

In line with our previous results, the potential mechanism implicated in the antiallodynic 

effect was also explored (74). In this regard, we have previously found that acute 

administration of TOLP or PGB alleviated mechanical allodynia in pSNL rats (74). 

However, herein, we used another technique, called DPA, which is applied to measure 

more localized tactile allodynia in a narrow dynamic range.  

In order to assess the antiallodynic effect of the substances under test, the first step was 

to create a mono-neuropathic pain model in rats using the Seltzer technique that based on 

pSNL (120). Allodynia, the cardinal symptom of NP, was identified as the onset of NP. 

In our investigation, allodynia was confirmed by a decrease in the pain threshold of the 

operated paws on days 7, 14, and 21 following the operation, which is consistent with 

earlier works (120,141,142). In these trials, we have investigated the acute and chronic 

antiallodynic effects of the tested drugs, namely, TOLP, PGB, DUL, or CBZ. Days 7 and 

14 following the operation were chosen as the two time points to assess the effects of the 

tested drugs following acute administration. Neuropathic rats were selected on day 7, 

following the baseline PWT measurement, and the tested drugs were administered orally. 

Then, the effect of these compounds was evaluated at 60, 120, and 180 min post-

administration and considered as acute effects of the tested drugs. In terms of evaluating 

the long-term impact, the treatment was extended for 14 days, and the chronic 

antiallodynic effect was evaluated 1 week and 2 weeks after treatment on days 14 and 21 

post-operation, respectively. In the current study, pSNL rat model was applied to test the 

effect of the single drugs or combination therapies against tactile allodynia within the 

indicated test period. We started the measurements on day 7 post-operation, and it was 

planned to end it before day 28, after which regeneration of the neurons occurs, which 

may conflict with our results (141,143). 

The results obtained in these trials indicate that acute TOLP treatment failed to alleviate 

tactile allodynia of rats with mono-neuropathic pain. This ineffectiveness was also 

observed after acute treatment with PGB or DUL, first-line treatments for NP, and CBZ, 

a third-line therapy for NP (144,145). On the other hand, two weeks of chronic treatment 

with TOLP and PGB at doses of 100 mg/kg and 50 mg/kg, respectively, produced 
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significant antiallodynic effects that peaked at 60 minutes post-treatment.  These rat doses 

are equivalent to 1000 mg and 500 mg in human doses, as calculated previously by other 

research teams (92,146).  Our and other previous studies confirmed the development of 

tactile allodynia on day 7 after the ligation and continued till day 28 post-operation; based 

on that, study design, including the start of the treatment and the days for the PWT 

measurements, was established (120,147). The results of the acute treatment contrasted 

with our previous finding, where PGB or TOLP acutely alleviated mechanical allodynia 

evoked by pSNL. However, a different experimental tool was applied for the 

measurement of mechanical allodynia (74). To shed light on this, our previous study 

detected the mechanical allodynia using the Randall–Selitto assay. This assay evaluates 

how the tested compounds affect pain thresholds triggered by mechanical pressure, and 

although it is effective, it is generally considered a complement to cutaneous mechanical 

hyperalgesic assays (148). In contrast, the DPA was used in this work to detect static 

tactile allodynia, also known as cutaneous mechanical hyperalgesia, by applying a tiny 

metal filament to the rat's hind paw's plantar surface (141). This suggests that DPA detects 

tactile allodynia, which needs long-term medication therapy to relieve. Furthermore, in 

this assay, even first-line drugs like amitriptyline did not exhibit an anti-tactile allodynic 

effect following long-term therapy (141). Our lab has previously shown (121) that when 

DPA is employed, substantially higher analgesic doses are needed, which is considered a 

difference between DPA and Randall-Selitto. Apart from our previous results, herein, we 

have shown that TOLP is comparable to PGB in its ability to relieve tactile allodynia 

during long-term treatment.  

In fact, several studies have reported conflicting results regarding the onset of the 

antiallodynic effect of either PGB or DUL (149–152). For example, an earlier study 

carried out by Kuo et al., 2021 reported the acute anti-allodynic and anti-hyperalgesic 

effects of 3-100 mg/kg per os bolus doses of PGB, whereas DUL acutely reversed the 

developed mechanical hyperalgesia in a dose-dependent manner (10 to 100 mg/kg) in 

cisplatin-induced peripheral neuropathy in rats (73). Additionally, three days of oral PGB 

administration alleviated the allodynia induced by cuffing the main branch of the sciatic 

nerve in mice, where allodynia was assessed by Von Frey filaments similar to our applied 

assay, DPA (153), though the phenotype of animal is different. Indeed, several factors 

could affect the analgesic effect of the tested compounds, PGB and DUL, including the 
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analgesic test, the administration route, and especially the type of NP being applied 

(108,154–158). Regarding the chronic effect of the tested drugs, both TOLP and PGB 

were able to induce an antiallodynic effect 2 weeks after treatment. Similar lag durations 

have been documented by a number of preclinical and clinical investigations for PGB, 

but not for TOLP because it has never been examined (159–161). This validates our new 

discovery about TOLP's antiallodynic activity in rats with preexisting tactile allodynia, 

and the findings support its potential use in NP management. 

In the present work, in relation to DUL, no significant antiallodynic effect could be 

measured either after acute or 1 or 2 weeks of chronic oral administration in pSNL model, 

which conflicts with the previous results (162). DUL is an SNRI that was primarily used 

as an antidepressant. It facilitates the descending inhibitory pathway by inhibiting 

serotonin and norepinephrine reuptake to relieve pain (84). In 2004, the US Food and 

Drug Administration approved it as a first-line therapy for people suffering from painful 

diabetic peripheral neuropathy (163). DUL induces pain relief that starts sooner and at a 

lower dosage than that used for the treatment of depression, and its pain-relieving action 

is the same either in patients with or without depression (164). The descending 

serotonergic pathways for NP have been demonstrated to have either facilitative or 

inhibitory effects by several pharmacological studies, including SNRIs. The applied 

stimuli, the inconsistent techniques, and the time of pain measurement were all attributed 

to this controversial or inadequate effect of serotonin (165,166). 

CBZ is a VGSC blocker that is used for the treatment of epilepsy and is used as an 

analgesic medication for the management of chronic pain, specifically trigeminal 

neuralgia (167–170). Several studies have discussed the effect of CBZ, either alone or in 

combination with other drugs, to treat NP. A previous preclinical study carried out by Fox 

et al. have explored that a single treatment with CBZ failed to reverse the developed 

mechanical hyperalgesia or tactile allodynia in pSNL rat model, whereas it reversed 

mechanical hyperalgesia in guinea-pig NP induced by pSNL (151,171). In the present 

study, CBZ failed to reverse the developed tactile allodynia either after acute or chronic 

administration in rats, which is consistent with the previously reported data. Furthermore, 

Hahm et al., 2012 reported that higher doses of the PGB/CBZ combination produced a 

synergistic antiallodynic effect in the spinal nerve ligation model in rats. This 

combination alleviated the developed allodynia when both drugs were administered at 
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dosages higher than the ED75 values. However, the side effects were not evaluated (172). 

Although trigeminal neuralgia is not the subject of the present work, it is important to 

note that several preclinical and clinical studies have examined the effectiveness of CBZ, 

gabapentin, and PGB in the management of trigeminal neuralgia (96,173–176).  

In line with our and other previous studies, the acute antiallodynic effect of the TOLP, 

PGB, DUL, or CBZ was also tested on day 14 post-operation. None of the tested 

compounds induced significant antiallodynic effects in the mono-neuropathic rats. 

Regardless of the evaluation period, these data once again demonstrate that the tested 

compounds do not show an effect against tactile allodynia after acute administration, 

either 7 or 14 days post-operation. These outcomes compelled us to use a combination 

approach in the hopes of identifying a combination that has a fast onset antiallodynic 

effect. In this regard, we have kept in mind the pharmacodynamic profile of each in the 

combination to increase the chance of finding one that has an acute effect on tactile 

allodynia. Furthermore, it is widely acknowledged that combining drugs with distinct 

modes of action is unlikely to result in a more severe side effect. Therefore, in the present 

study, drugs that have different modes of action, such as PGB, DUL, or Morph, were 

combined with TOLP. CBZ works by blocking VGSCs, so its mechanism is similar to 

TOLP, in addition to its liver microsomal enzyme stimulatory effect (177,178); thereby, 

the TOLP/CBZ combination wasn’t evaluated. It is worth noting that it's too early to 

predict whether combining drugs will result in a lower or higher risk of side effects 

without having insight into the pharmacokinetic profile of both the combination and the 

individual drug. Future research is necessary to explore this issue further, since while 

these studies are essential, they are not part of the current work's scope and serve as a 

limitation. Herein, our results have demonstrated that TOLP/PGB, but not TOLP/DUL or 

TOLP/Morph, produced a significant antiallodynic effect after acute oral treatment on 

day 14 post-operation. To the best of our knowledge, this is the first study to investigate 

the acute antiallodynic effect of oral TOLP/PGB combination at low doses (25 mg/kg) in 

rats with mono-neuropathic pain. Also, a combination of TOLP/PGB is devoid of adverse 

effects related to motor incoordination and imbalance or delay in the GI transit of naïve 

rats. In fact, numerous clinical and preclinical studies have already examined the 

analgesic efficacy and safety of PGB per se or in combination with several medications, 

but not with TOLP, for NP management (179–183). The antiallodynic impact of the PGB 
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and TOLP combination is attributed to their ability to block the α2-δ subunit of the VGCC 

in addition to different VGSCs, respectively (74,108,109,184). As a consequence, 

calcium influx is reduced, which in turn decreases excitatory neurotransmitter release 

from the primary afferent neuron's central terminal, particularly at the spinal cord level. 

It is important to note that these channels are targets for first-line drugs currently applied 

for treating different types of NP of mono- and polyneuropathic pain character (108,185–

187). In recent decades, the uncovered mechanism of action of PGB in relation to NP 

relief has been extensively studied (109,188,189). Although PGB is a GABA analog, it 

does not interact with GABA receptors. The generally accepted mechanism of the effect 

of PGB on NP is attributed to its ability to block VGCCs on neurons that host the α2-δ 

subunit, though new studies have revealed that it also has a facilitating effect on the 

descending pain pathway (108,190,191). 

With respect to the mechanism of action of TOLP, the first proposed mechanism was the 

VGSC blocking effect (184,192) due to its chemical similarities with lidocaine, an 

approved local anesthetic that blocks the VGSCs and is used topically as first-line therapy 

for NP treatment (106). Also, a study by Kastrup and co-workers has shown that 

intravenous infusion of lidocaine can produce measurable analgesia in humans with 

chronic painful diabetic neuropathy (193). Since lidocaine has poor bioavailability after 

oral administration, it is thus inconvenient for long-term treatment by the intravenous 

route. Several medications, including mexiletine and phenytoin, that block VGSCs have 

been shown to have analgesic effects in humans with NP; however, controversial data 

were also reported (86,194–196). Thus, none of these medications are included in the 

most modern approaches of controlling NP. Recently, our group has also reported on the 

effectiveness of TOLP to decrease glutamate release from rat brain synaptosomes (74). 

This opens the door for its possible application in the treatment of NP by blocking the 

excitatory pain pathway, which uses glutamate as a neurotransmitter (30).  

TOLP was originally used as a skeletal muscle relaxant and acts within the CNS. Several 

clinical trials have approved its efficacy in relieving post-stroke spasticity, painful reflex 

muscle spasms, and muscle-related pain (104). TOLP has also been reported to inhibit 

muscle spasms with an advantageous side effect profile compared to other centrally acting 

skeletal muscle relaxants (197). These properties encouraged us to test its effect in 

combination with PGB. The current study was carried out to find a new combination-
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based therapy that has higher efficacy and fewer side effects. Regarding the side effects, 

PGB induces unwanted effects where more than 50% of patients are seen with excessive 

sedation (198). Considering previous findings along with our current data, the 

TOLP/PGB combination might be of clinical value, paving the way for drug repurposing. 

Peripheral nerve injury-induced NP triggers both peripheral and central sensitization, 

which further induce disturbance in the spinal excitatory and inhibitory systems (21). 

Elevations in spinal glutamate have been identified as a primary factor in the process 

behind NP development. Indeed, NMDAR blockers are among the effective management 

approaches for chronic pain (21,199). The inhibition of glutamate activity is being 

considered among the proposed mechanisms of mono- and polyneuropathic pain relief 

(59–62,66,74).  In the current study, the CSF glutamate content was also measured, which 

was found to be increased in neuropathic rats. On the other hand, the increased level was 

restored by TOLP or PGB alone as well as by TOLP/PGB combination. Based on these 

data, we can assume that one of the mechanisms underlying the antiallodynic action of 

PGB, TOLP, or their combination is the suppression of the CNS's glutamate-based 

excitatory effect. It thereby corrects the imbalance between the pain-related excitatory 

and inhibitory circuits that arises in NP (21). In fact, the pathophysiology of NP in 

mammals involves the glutamatergic system in a more intricate way than just stimulating 

or inhibiting it.  

To decipher the mechanism of action of TOLP, PGB, or their combination, we also 

assessed their impact on glutamate release from rat synaptosomes. Our findings support 

the in vivo results for TOLP but not for PGB in terms of glutamate release inhibition. 

This inhibitory trend was also observed with the combination. In the synaptosomes 

experiment, the neurotransmitter release induced by 4-aminopyridine mechanistically 

involves the contributions of both VGCCs and VGSCs. 4-Aminopyridine selectively 

blocks A-type potassium channels, initiating synaptic depolarization, yet evokes 

glutamate release in a tetrodotoxin-sensitive and calcium channel-dependent manner. It 

also generates repeated action potentials that resemble natural neuronal signaling (200). 

A preclinical study investigated how VGSCs affect the levels of intracellular sodium, 

potassium, and calcium, as well as the release of neurotransmitters such as dopamine, 

glutamate, and GABA in response to applying different concentrations of 4-

aminopyridine to striatal synaptosomes. When a low concentration of 4-aminopyridine 
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was used, tetrodotoxin was able to block the increase in intracellular sodium. However, 

when a high concentration (1 mM) of 4-aminopyridine was applied, tetrodotoxin only 

reduced the rise in intracellular sodium by about 30 percent. Therefore, these data show 

that the impact of 4-aminopyridine on sodium levels and neurotransmitter release is 

concentration-dependent and implies a complex interaction between sodium channels and 

other cellular mechanisms (201). In another study, 1 mM of 4-aminopyridine induced 

glutamate release and an increase in cytosolic free calcium concentration were almost 

inhibited by tetrodotoxin. This indicates that glutamate release associated with 4-

aminopyridine is largely dependent on VGSCs. These data support the distinct role of 

sodium channels in mediating transmitter release in this scenario (202).  

Therefore, the inhibitory effect of TOLP can be attributed to its ability to block these 

channels, as mentioned above and as previously described by other research groups 

(137,200). This effect was also observed when TOLP was combined with PGB. The α2-

δ containing VGCCs have been reported to be upregulated under NP conditions, which 

may explain PGB's ability to inhibit glutamate content in vivo. In contrast, the 

synaptosomes used in this study were obtained from naïve animals, which are free from 

pathophysiological changes. To gain insight into the differences between the effect of 

PGB in synaptosomes and the in vivo conditions, synaptosomes should be prepared from 

neuropathic animals. Furthermore, these results explain the outcome of the present study 

under the given circumstances and the concentrations used. Finally, additional 

experiments are necessary to elucidate the extent of participation of each specific channel 

type within synaptosomes derived from animals with NP. 

The current pharmacological treatment options for the treatment of NP include TCAs, 

SNRI antidepressants (DUL, venlafaxine), anticonvulsants (PGB, gabapentin), opioid 

analgesics, and topical medications (lidocaine, capsaicin) (203–205). The treatment 

options for PDPN type include PGB, gabapentin, DUL, opioid analgesics (tapentadol, 

tramadol), and 8% capsaicin; nonetheless, 35% of diabetic patients continue to experience 

pain (205–207). Despite the fact that VGSC blockers, specifically CBZ, are not included 

among the first-line medications to manage PDPN, they have historically been and 

continue to be used in certain cases for the management of diabetic neuropathy, indicating 

that VGSCs have an effect in this type of pain (208–210). In addition, the non-selective 

inhibitors of VGSCs with current clinical use, such as CBZ, lidocaine, and mexiletine, 
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have demonstrated effectiveness against certain pain conditions related to mutations in 

the NaV 1.7 channel. These mutations can cause pain by increasing their response to 

stimuli. NaV 1.7 variants have been reported to contribute to the development of NP in 

subjects with diabetic neuropathy (211,212). 

Given these facts, the impact of the promising combination of TOLP/PGB was further 

investigated in type 1 diabetic polyneuropathy. In this test, we used a PDPN pain model 

of advanced diabetes, namely six weeks after allodynia onset and nine weeks following 

elevated blood glucose levels (Figure 9). The experiment showed that only acute PGB 

administration induced a more effective antiallodynic effect compared to the combination 

of TOLP and PGB, which was superior to the individual drugs in the pSNL rat model of 

mono-neuropathic pain. The antiallodynic effect of PGB in diabetic neuropathic rats was 

expected, as numerous preclinical and clinical studies have confirmed its efficacy in 

diabetic NP (213–216). On the other hand, TOLP alone or in combination with PGB 

failed to produce a significant effect. However, to the best of our knowledge, no studies 

have been reported on such treatment strategies in advanced rat diabetes at 9 weeks. 

Preclinical studies on allodynia in diabetic peripheral neuropathy have demonstrated a 

response to topical and systemic medications that block VGSCs, such as CBZ and 

lidocaine; however, there is currently no clinical evidence to support the use of oral 

lidocaine (217,218). However, drugs that block VGSCs, such as CBZ, have been shown 

to improve NP in diabetic patients following 12 weeks of treatment (219). It is worth 

mentioning that the mono-pharmacotherapy treatment algorithm recently published by 

Preston and coworkers shows that CBZ is considered a first-line medication in PDPN 

only in one guideline, which was issued by the American Academy of Neurology (220). 

As mentioned above, in contrast to PGB, several guidelines do not include CBZ as a first-

line for PDPN (220,221). This indicates that inhibiting the VGCCs hosting the α2-δ 

subunit is a more relevant target in NP evoked by diabetes.  Indeed, the discovery of more 

selective blockers for individual VGSCs may be of future value in managing NP 

associated with diabetes (222). Even yet, the TOLP, which was administered orally and 

inhibits VGSC channels, was unable to have an impact that was significant in terms of 

inhibition of allodynia under the present experiment conditions. The concurrent 

administration of PGB did not improve this effect. Rigorous testing using a multiple-dose 
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strategy to assess the impact of acute versus chronic treatments with TOLP, alone or in 

combination with PGB, may develop an effective algorithm for managing PDPN.  

Western blot analysis and immunohistological assays of spinal tissues from diabetic 

neuropathic rats revealed a decrease in MOR protein levels and numbers, as previously 

reported (79,223,224). Acute treatment with TOLP, PGB, and their combination tends to 

increase the MOR level, with a significant effect observed only following PGB treatment. 

These findings lend more credence to the earlier that the opioid system plays a role in the 

analgesic effects of both gabapentin and PGB (225–227). In this regard, previous studies 

have shown that acute PGB injection (100 mg/kg) induced an antinociceptive effect in 

the tail flick test in naive mice, and this effect was naloxone reversible (225). 

Furthermore, acute administration of gabapentin has been reported to elicit a naltrexone-

sensitive antinociceptive effect in a model of acute inflammatory pain, namely the 

orofacial formalin test in mice (226). These data indicate the involvement of the 

endogenous opioid system since naloxone and naltrexone, the classical opioid 

antagonists, could reverse the analgesic effect of gabapentinoids. Nevertheless, future in-

depth research is necessary to fully understand the effects of TOLP on PDPN type, taking 

into account both the drug's long-term effects alone and in combination with PGB. The 

current findings support its effectiveness in peripheral nerve injury-induced NP, 

especially in combination with PGB. A key limitation of this work was that, in the diabetic 

induced polyneuropathic pain model, only TOLP, PGB, and their combination were 

evaluated at a fixed dose of 25 mg/kg. Notably, the TOLP/PGB combination showed 

effectiveness solely in mono-neuropathic pain resulting from peripheral nerve injury. To 

gain a more comprehensive understanding, future research should investigate the 

antiallodynic impact of these drugs at different doses and explore potential alternative 

mechanisms of action. Additionally, assessing the effects of chronic administration of the 

combination in this and other NP models would help further validate its therapeutic 

potential. 

Since TOLP's impact on the development of Morph antinociceptive tolerance has not yet 

been studied, we have also evaluated the impact of TOLP alone versus PGB or their 

combination in this scenario. It is known that if opioid analgesics are used for a long time, 

the development of opioid analgesic tolerance occurs. Rats treated with 10 mg/kg Morph 

developed significant antinociceptive tolerance in thermal pain models within 10 days 
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(132,228,229). Our results have corroborated those previously reported on Morph 

antinociceptive tolerance by our and other research teams using the rat tail-flick assay 

(132,230–232). The current findings highlight the fact that Morph antinociceptive 

tolerance development has been delayed by co-administered PGB, but not by TOLP. The 

role of NMDARs in Morph antinociceptive tolerance has been our primary focus to 

elucidate the mechanism of action, as NMDAR antagonists have been recognized to delay 

morphine analgesic tolerance in both preclinical and clinical settings (233–236). Among 

other mechanisms, NMDARs have been implicated in the development of NP and opioid 

tolerance, which are accompanied by central sensitization (237–241). NMDAR activation 

requires co-agonists such as glycine or D-serine in addition to glutamate; any change in 

the level of these co-agonists may affect the NMDARs function (242–244). 

PGB and gabapentin inhibit Ca2+ influx into glutamatergic terminals by acting 

presynaptically on the α2-δ subunit of VGCCs, subsequently attenuating the release of the 

excitatory amino acids, glutamate, and aspartate. A previous study demonstrated that 

intrathecal gabapentin not only enhances the antinociceptive effects of Morph but also 

reduces morphine tolerance by lowering excitatory amino acids (glutamate and aspartate) 

in CSF (245). In the present work, co-administering PGB with Morph resulted in a 

decrease in D-serine levels. This can be explained by the reduction in calcium influx by 

PGB leads to decreased activity of serine racemase, the enzyme responsible for 

converting L-serine to D-serine. This results in a lowering of the concentration of D-

serine, which is an NMDA receptor co-agonist, so it decreases NMDA overactivity that 

has been reported in animals with opioid tolerance and may thus delay Morph tolerance 

(246). In addition, differences in the pharmacokinetics of both drugs could be the reason 

why the PGB/Morph combination but not the TOLP/Morph combination delays Morph 

antinociceptive tolerance. After oral administration, TOLP is quickly absorbed but has a 

low bioavailability of 16.7% (247). It is metabolized into hydroxymethyl-TOLP primarily 

by cytochrome P450 (CYP) enzymes, mainly CYP2D6, with minor contributions from 

CYP2C19 and CYP1A (248). In contrast, PGB shows about 90% oral bioavailability, 

which is consistent regardless of dose or dosing frequency, and undergoes minimal 

metabolism (249). It is extremely challenging to forecast the results of the interaction at 

the level of metabolism since we lack information on the interactions between the drugs 
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composing the tested combinations. Therefore, more research is needed to examine this 

matter. 

In order to circumvent the in vivo drug metabolism, we have further examined the 

pharmacological characteristics of TOLP, PGB, Morph, and their combination in the 

MVD assay. This assay also enabled us to further decipher the mechanism underlying the 

effect and fast onset of the TOLP/PGB or Morph combination. This organ, besides 

hosting ion channels that mediate the effects of both PGB and TOLP, contains opioid, 

adrenergic, and purinergic receptors, among other receptors. The results obtained for 

TOLP, PGB, or Morph showed that all drugs induced an inhibitory effect on the MVD in 

a concentration-dependent manner, potentially through modulating calcium (250) and 

sodium channels (251) as well as MOR (252). The combined effect of PGB and TOLP 

was stronger than the effects of either medication per se. This feature was not present 

when TOLP and Morph were combined, though, which is consistent with the findings of 

studies intended to evaluate the effect of TOLP on Morph antinociceptive tolerance (see 

below). Our results suggest that the combination's acute antiallodynic impact in the 

current study may be explained by the simultaneous blocking of calcium and sodium 

channels, which is not limited to a single relay point on the pain transmission pathway.  

As mentioned above, only the combination of TOLP and PGB showed a significant 

inhibitory effect on MVD contractions compared to the effect of TOLP or PGB per se. 

Additionally, the effects of PGB and TOLP on Morph-induced tolerance in this 

preparation have been assessed. The MVD test has been used for decades to evaluate the 

effects of various drugs. Studies have explored the potential for MVD to develop 

tolerance to morphine after multiple treatments. Regarding whether Morph tolerance 

develops in isolated MVD in conjunction with treating the organ or the entire animal, 

there is no agreement (253–255). In the current study, however, we discovered that Morph 

tolerance developed as a result of three consecutive treatments of MVD with 1000 nM 

Morph (see result section). These outcomes corroborate the findings from the PGB in 

vivo study, which was intended to look at how PGB affected Morph tolerance (see above). 

TOLP, on the other hand, inhibited the development of Morph tolerance in MVD but had 

no effect on Morph tolerance in rats. We may now speculate that factors related to 

pharmacokinetic and pharmacodynamic profiles, such as inhibitory effects on VGSCs and 

VGCCs, may play a major role in the current situation when it comes to Morph 
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antinociceptive tolerance. The impact of TOLP on the development of Morph tolerance 

in in vitro assays is very difficult to characterize and transfer to in vivo experiments 

appropriately; therefore, a more comprehensive study is required to fully define the 

mechanism of action beyond that. 

In the MVD, both combinations were able to restore the developed Morph tolerance. This 

may be explained by TOLP's ability to act pre- and post-synaptically. Kocsis et al. (2005) 

showed that in an isolated hemisected spinal cord model, stimulation of the dorsal root 

evoked ventral root potentials (DR-VRP), which were recorded from the L5 ventral root. 

TOLP (50 to 400 μM) and its related compounds (eperisone, lanperisone, inaperisone, 

and silperisone) and lidocaine (200–800 μM) induced a concentration-dependent 

reduction in all measured DR-VRP components, suppressed monosynaptic reflexes, 

afferent fiber responses, and excitatory postsynaptic potentials (140). 

Generally, when a combination therapy is developed, both the therapeutic and side effect 

profiles are considered. TOLP exerts a CNS-mediated skeletal muscle relaxant effect, 

lacking sedative effects, unlike other centrally acting muscle relaxants. Thus, we have 

anticipated that a combination of sub-analgesic doses of TOLP and PGB or Morph should 

have fewer side effects compared to mono-therapeutic dose of PGB per se.  Our results 

are corroborated with previous data showing a significant motor dysfunction following 

oral PGB treatment, even in lower doses (187,256). With respect to TOLP, even higher 

oral doses (150 mg/kg) failed to alter the rats' motor function, supporting previous data 

that stated the absence of central side effects of TOLP (257). Since voltage-sensitive ion 

channels have indispensable pharmacological effects on GI function, we have extended 

our study to investigate the impact of TOLP and PGB or their combination in the GI tract. 

In this study, TOLP was devoid of GI side effects related to the GI transit. On the other 

hand, PGB induced a delay in GI transit, which is in line with previous data published by 

other research groups (258,259). In vitro, PGB strongly binds to the α2-δ subunit of 

VGCSs, reducing calcium entry into presynaptic nerve terminals, thus decreasing the 

release of neurotransmitters participating in GI motility (260). Lastly, the PGB/TOLP 

combination, which showed promise in the NP model, was examined for GI transit. 

Regarding the side effects related to GI motility, our research has produced encouraging 

findings. As a result, the TOLP/PGB combination has opened up a new treatment option 

for NP that has a quick onset and fewer GI and motor adverse effects.  
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6. Conclusions 

1. Like PGB, the onset of the antiallodynic effect of TOLP requires chronic treatment 

to be measured. 

2. The present results for the first time suggest that the cooperation between TOLP 

and PGB, but not Morph, results in an acute anti-tactile allodynic effect of fast 

onset when combined. This suggests that it is worthwhile to use a combination of 

medications that target both VGSC and VGCC channels to treat NP acutely. 

3. The fast onset of the TOLP/PGB combination may be attributed to the ability of 

the combination to inhibit glutamate release, the key transmitter in the 

neurochemical changes that occur in NP.  

4. The fast onset of action of the TOLP/PGB combination may also be attributed to 

the ability of the single drugs to influence the glutamatergic system, a key player 

in NP development, through different mechanisms. 

5. In the therapy of diabetic polyneuropathic pain, inhibition of VGCCs is more 

relevant than inhibition of VGSCs. 

6. PGB's capacity to restore and even promote spinal opioid system function is one 

of its main advantageous effects in diabetic polyneuropathic pain. 

7. The effect of PGB on delaying the development of Morph antinociceptive 

tolerance can be mediated by lowering the spinal level of D-serine, a co-agonist 

of NMDARs, a key transmitter in the development of opioid tolerance. 

8. The augmented effect between drugs targeting VGSCs and VGCCs on MVD 

muscle contractions further supports the cooperation between the two channels in 

the context of transmitters’ release.  

9. The in vitro data related to Morph antinociceptive tolerance suggest that both 

VGSC and VGCC inhibitors can inhibit the development of opioid tolerance and 

point to the possibility of interference of pharmacokinetic factors when TOLP is 

investigated in the whole animal. 
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7. Summary 

Two different pain models for NP, rat mono-neuropathic and polyneuropathic pains 

evoked by pSNL and STZ, respectively, were used. Tactile allodynia, which is the cardinal 

sign of NP, was assessed by DPA. TOLP and PGB produced an antiallodynic effect after 

2 weeks of chronic treatment in rats with mono-neuropathic pain at 100 mg/kg and 50 

mg/kg, respectively. As a novel finding, a combination of TOLP/PGB at the sub-

antiallodynic doses (both at 25 mg/kg) has shown an acute anti-tactile allodynic effect of 

fast onset in the rat mono-neuropathic pain. Enhanced glutamate content in the CSF of 

neuropathic rats was measured. This elevation in glutamate contents was restored by the 

administration of either TOLP, PGB, or their combination. Likewise, except for PGB, this 

treatment strategy was able to decrease the glutamate release in vitro in the rat brain 

synaptosomes. The TOLP/PGB combination, which was proven to be effective against 

mono-neuropathic pain, was unable to reverse the established allodynia in rats with 

diabetic polyneuropathic pain under the current experimental conditions. However, only 

PGB per se caused a significant anti-tactile allodynic effect associated with an increase 

in the MOR level in the spinal tissue of treated rats. Morph antinociceptive tolerance was 

induced by chronic Morph treatments. Rats subjected to simultaneous treatment with 

Morph and PGB but not with TOLP have shown a delay in the development of Morph 

antinociceptive tolerance. D-serine level was low in the CSF samples of rats receiving 

chronic Morph/PGB but not TOLP/Morph combination. To avoid the systemic 

metabolism and interaction between the combined drugs, the possible mechanism of the 

interaction between TOLP and PGB or Morph was further investigated in the MVD assay. 

Combining TOLP with PGB, but not Morph, resulted in an augmented inhibitory effect 

in MVD muscle contraction evoked by field electrical stimulation. MVD treated with 

three subsequent Morph administrations has shown tolerance to Morph inhibitory effect. 

In this study, the development of Morph tolerance was inhibited by co-treatment with 

either PGB or TOLP. When comparing the in vitro and in vivo data, pharmacokinetic 

parameters may have an impact on the reported effects of TOLP with regard to Morph 

tolerance, which further urges more research. Finally, considering the side effects, the 

combination of TOLP/PGB has demonstrated significant promise in rat motor 

performance and GI transit. 
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Recent Molecular Insights into
Agonist-specific Binding to the
Mu-Opioid Receptor
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Opioid agonists produce their analgesic effects primarily by acting at the µ-opioid receptor
(µOR). µOR agonists with different efficacies exert diverse molecular changes in the µOR
which dictate the faith of the receptor’s signaling pathway and possibly it’s the degree of
desensitization. Since the development of the active conformations of the µOR, growing
data have been published in relation to ligand-specific changes in µOR activation. In this
regard, this review summarizes recent data regarding the most studied opioid agonists in
in silico µOR activation, including how these ligands are recognized by the µOR, how their
binding signal is transmitted toward the intracellular parts of the µOR, and finally, what type
of large-scale movements do these changes trigger in the µOR’s domains.

Keywords: μ-opioid receptor, agonist-specific receptor activation, prototypic μ-opioid receptor agonist, TRV-130,
PZM21

INTRODUCTION

Growing data support that the rate of opioid side-effects including analgesic tolerance development
strongly correlates with the pharmacodynamic properties of opioid ligands. Opioids with different
efficacies distinctly induce molecular mechanisms related to tolerance, namely receptor
phosphorylation and endocytosis, as the basis of G-protein coupled µ-opioid receptor (µOR)
desensitization (Williams et al., 2013; Allouche et al., 2014; Lemel et al., 2020). It has been
proposed that the selective and sequential phosphorylation of the C-terminus is due to the
possible different conformational states of the receptor-triggered agonist specifically (Lemel
et al., 2020). In recent years, we have gained more information regarding the nature of opioid
agonists binding to the active conformation of the µOR (Huang et al., 2015; Koehl et al., 2018). This
review will focus on the current knowledge of agonist specific residue contacts (Figure 1B), how the
different agonists transmit the ligand-binding signal toward the intracellular receptor parts
(Figure 1C), and finally, how these affect the orientation of certain receptor domains (e.g.,
transmembrane regions (TM) or intracellular loops (IL)) (Table 1), which eventually decide the
faith of the receptor’s downstream signaling and the rate of desensitization. In addition, only data
with the active conformation of the µORwill be reviewed here, namely the BU72 co-crystallized form
and µOR-Gi complex co-crystallized with D-Ala2, N-MePhe4, and Gly-ol-enkephalin (DAMGO;
PDB: 5C1M and PDB: 6DDF, respectively). Data on prototypic µOR-specific agonist ligands
(Figure 1A), namely morphine, DAMGO, and fentanyl, will be reviewed alongside BU72, the
first compound to be crystallized with the active conformational state of the µOR (Huang et al.,
2015). TRV-130 and PZM21, newly developed G-protein-biased agonists, will be also reviewed
(Figure 1A). In general, in the highlighted studies CHARMM (Brooks et al., 2009) and/or AMBER
(Maier et al., 2015) force field was used, with 0.1–3.5 µs simulation time (in some cases, 24 µs; see Vo
et al. (2020) in POPC (palmitoyl-oleoyl-phosphatidylcholine) lipid membrane model at ~1 bar
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pressure and 310 K temperature in a ~75–85 x 75–85 x 90–140 Å
size simulation box. Some studies also used NMR spectroscopy to
obtain dynamic structural information (Okude et al., 2015;
Sounier et al., 2015). Such a pool of data will help us to better
understand the basic molecular factors of ligand-specific receptor
activation and tolerance, and allow us to purposefully develop
opioids with delayed analgesic tolerance profiles and ameliorated
side effects.

LIGAND RECOGNITION: RESIDUE
CONTACTS, BINDING MODES, AND
BINDING POSES
Based on site-directed mutagenesis and in silico studies, multiple
conserved residues have been identified in the µOR binding
pocket, which have significant roles in ligand orientation and
receptor activation (Mansour et al., 1997; Manglik et al., 2012,
2015, 2016; Katritch et al., 2013; Kaserer et al., 2016; Koehl et al.,
2018; Marino et al., 2018; Manglik, 2020; Ricarte et al., 2021).
Hitherto, data on the agonist-specific residue contacts and
binding modes will be reviewed in this section.

Despite morphine and fentanyl interacting with the same
contact residues (Figure 1B), their binding poses were less
overlapped (Lipiński et al., 2019). Accordingly, fentanyl is in
close proximity to seven TM3 residues and three TM6 residues,

while in the case of morphine these numbers are four and five
with respect to the same transmembrane domains. They also
interact with TM7 to a similar extent but with different positions.
Fentanyl is also able to reach the ECL1, ECL2, and the
N-terminus. These findings were later confirmed by another
group (Ricarte et al., 2021).

Analyzing the dissociation of morphine from the µOR, it
showed that morphine directly dissociated from the
orthosteric site region and also transitioned to the
vestibule region after the Asp3.32 salt bridge was disrupted
(Ribeiro et al., 2020) (superscript numbering refers to the
Ballesteros and Weinstein’s generic numbering scheme
(Ballesteros and Weinstein, 1995)).

Fentanyl binds deeper compared to morphinan structures
(for fentanyl it is indicated by a lower ΔZ value, the distance
between the centers of mass (COM) of fentanyl and µOR z
direction) and it can form a salt-bridge interaction between the
piperidine amine and the conserved Asp3.32 (Vo et al., 2020)
similar to DAMGO or BU72 (Huang et al., 2015; Weis and
Kobilka, 2018). Vo and co-workers described a His6.52 binding
mode unique to fentanyl, which was also dependent on the
protonation state of this residue (Vo et al., 2020). Another study
found that the dissociation pathways, time, the depth of
insertion, and the strength of TM6 interaction of fentanyl are
dependent on the protonation state of His6.52

(Mahinthichaichan et al., 2021).

FIGURE 1 | (A)Chemical structures of µOR-selective agonists discussed in the review. (B) The known µOR residual contacts of the indicated agonists. The original
concept of the figure was based on Figure 4 of Podlewska and co-workers’ study (Podlewska et al., 2020) and extended by other data (Huang et al., 2015; Cheng et al.,
2018; Koehl et al., 2018; Mafi et al., 2020; Ricarte et al., 2021). (C) Individual movements of the highlighted residues, molecular switches, and TM domains based on the
data reviewed in the 3rd and 4th sections.. Participating residues are indicated in orange, arched arrows indicate the presence of spatial movements (but not the
direction itself), while straight arrows depict the presence of altered distance between two residues. The corresponding agonists inducing these movements and
alterations are not indicated for clarity; for details see in the 3rd and 4th sections. µOR is transparent for better visibility. The figure was constructed with UCSF Chimera
1.13.1 (Pettersen et al., 2004) based on Huang and co-workers using the BU72 co-crystallized active µOR structure (PDB: 5C1M) (Huang et al., 2015).
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In the case of BU72, most of its interactions with the active
µOR are hydrophobic or aromatic. The phenolic hydroxyl group
of BU72 interacts with His6.52 in a water-mediated fashion
(Huang et al., 2015). There is also an ionic interaction
between Asp3.32 and the morphinan tertiary amine structure of
BU72. BU72 stabilizes the rearrangement of a triad of conserved
residues upon receptor activation (Huang et al., 2015). BU72 also
forms a hydrophobic surface with Ile6.51 and Val6.55 in TM6 and

Ile7.39 in TM7, similarly to other morphinan structures
(Figure 1B) (Huang et al., 2015). Another study demonstrated
that BU72 binding poses distinct from the active µOR crystal
structures and presumed that the high affinity and agonist
character of BU72 is in part presented by its configurational
entropy (Feinberg et al., 2017).

Koehl et al. found that the conformation of the active-state
binding pocket and the orientation of the residues that interact

TABLE 1 | Main differences and similarities within the highlighted ligands once bound to the µOR in terms of ligand recognition, binding signal transmission, and global
movements.

Aspects Differences Similarities References

Residue contacts,
binding modes, and
poses

Fentanyl has a deeper binding pose compared
to morphine and has a unique His6.52 binding
mode, which is dependent on the residue’s
protonation state

All compounds interact with Asp3.32, Tyr3.33,
and His6.52

Huang et al. (2015); Koehl et al. (2018); Lipiński
et al. (2019); Dumitrascuta et al. (2020); Mafi et al.
(2020); Podlewska et al. (2020); Vo et al. (2020);
Lee et al. (2021); Mahinthichaichan et al. (2021)

DAMGO binding pose extends further toward
the ECLs

Fentanyl and morphine interact with TM7 to
a similar extent

TRV-130 has stronger contacts with TM2 and
TM3 compared to morphine and DAMGO

DAMGO and BU72 have similar binding
poses

PZM21 has the strongest contact with Asp3.32

compared to fentanyl and morphine
Morphine, BU72, fentanyl, and DAMGO
interact with Val6.55

Ligand binding signal
transmission

TM1 is necessary for morphine-induced µOR
activation

Similar changes in microswitches with
bound DAMGO and BU72

Huang et al. (2015); Schneider et al. (2016);
Kapoor et al. (2017); Sader et al. (2018); Lipiński
et al.(2019); Zhao et al. (2020); Liao et al. (2021);
Ricarte et al. (2021)

The H-bond within the 3–7 lock switch was
stronger with fentanyl

Morphine and PZM21 have similar activated
network paths toward the intracellular end
of TM6

Different torsion angles of Phe6.44 and Trp6.48

with morphine and fentanyl
Overall, more information is transferred across
the receptor when TRV-130 is bound
compared to morphine
With PZM21 certain molecular switches
behaved differently and the activated network
paths were different at the end of TM7
compared to morphine
With PZM21, Trp6.48 and Tyr7.43 behaved
differently compared to morphine or TRV-130

Higher-order
structural changes

With morphine, µOR exists in equilibrium
between the closed and open conformations,
with DAMGO the receptor mainly adopts the
open conformation toward the intracellular
space, while with TRV-130 µOR exists in
equilibrium between the closed and open
conformations, but with larger intracellular
cavity

Morphine and fentanyl stabilize TM6 in
active-like conformation from the activated
state

Huang et al. (2015); Okude et al. (2015); Sounier
et al. (2015); Kapoor et al. (2017); Mafi et al.
(2020); Zhao et al. (2020); Liao et al. (2021);
Ricarte et al. (2021)

Fentanyl induces TM3 for a more upward
conformation compared to morphine

Both BU72 and DAMGO induced ICL1 and
H8 for a larger conformational change
compared to TM5 and TM6

With BU72, TM6 makes a large outward
movement and a smaller inward movement of
TM5 and TM7
TM6 repositions when TRV-130 is bound,
which hinders β-arrestin2 binding to
phosphorylated µOR
With PZM21, intracellular ends of TM5–7 bent
further outward compared to morphine, which
is more favorable for G-protein binding
With PZM21, smaller ECL1–3 and ICL3
fluctuations compared to TRV-130
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with the agonist are highly similar between BU72 and DAMGO,
despite the structural differences (Figure 1B) (Koehl et al., 2018).
On the other hand, compared to BU72, the C-terminus of
DAMGO extends further toward the ECLs. Another study
with DAMGO has shown that the tyrosine of the peptide
forms lipophilic contacts with Met3.36, Ile6.51, and Val6.55

residues and forms a charge interaction with Asp3.32

(Figure 1B) (Dumitrascuta et al., 2020).
It has been proved that TRV-130 has stronger interactions (a

greater number of hydrophobic contacts) with TM2 and TM3
compared to morphine or DAMGO in β-arrestin2 stabilized with
phosphorylated µOR (Mafi et al., 2020). Based on docking
simulations, the protonated nitrogen ion of TRV130 formed
electrostatic interactions with Asp3.32 and through its ring
structure formed interactions with His6.52 (Figure 1B) (Cheng
et al., 2018).

PZM21 interacts with the active µOR binding pocket by
hydrogen bonds, hydrophobic interactions, and an ionic bond
(Manglik et al., 2016). Podlewska and co-workers have compared
PZM21 with fentanyl or morphine in docking and MD
simulations in BU72 and DAMGO co-crystallized active
structures (Podlewska et al., 2020). Interestingly, all
compounds showed less stability in their orientations in the
DAMGO co-crystallized conformation, especially morphine,
meaning that their initial and final binding orientations were
significantly different during the simulation. They also found that
during simulation time, PZM21 had more contacts with Asp3.32

in both crystal structures compared to fentanyl or morphine
(Podlewska et al., 2020). Another recent study compared PZM21
to morphine in MD simulations and found that besides PZM21
interacting with key residues Asp3.32 and Tyr3.33 of TM3
(Figure 1B), similar to morphine, yet it strongly interacts with
Tyr7.43 of TM7 (Figure 1B), as indicated by a higher percentage of
interaction fractions in H-bonds (Liao et al., 2021). Finally, Lee
and co-workers have performed molecular docking with new
potential biased µOR agonists, where they also compared these
novel compounds to TRV-130 and PZM21 for control. Here, they
found that TRV-130 and PZM21 failed to accomplish contact
with Val6.55 in contrast to the novel compounds, which is heavily
involved with hydrophobic interactions (Lee et al., 2021).

LIGAND BINDING SIGNAL TRANSMISSION

The subtle changes in the ligand-binding pocket induced by the
bound ligand trigger further delicate changes through a channel
of residues within certain TM domains. These changes transmit
the ligand-binding signal from the ligand-binding site to the
cytoplasmic region of the receptor (Weng et al., 2017; Liao et al.,
2021). Some of these groups of residues are generally termed as
molecular switches and they are conserved across the GPCR
family. Among these, the 3–7 lock switch, the NPxxY motif (Asn-
Pro-Xaa-Xaa-Tyr), the tyrosine (Tyr7.53) toggle switch, the
Trp6.48 rotamer toggle switch, ionic lock (or DRY motif, Asp-
Arg-Tyr), or the transmission switch (or CWxP motif, Cys-Trp-
Xaa-Pro) have been described to be altered in an agonist specific
manner in the µOR and will be discussed in this section, among

other related data. The role of these molecular switches has been
described in detail in other studies (Lagerström and Schiöth,
2008; Nygaard et al., 2009; Chabbert et al., 2012; Trzaskowski
et al., 2012; Marino et al., 2018; Filipek, 2019) and due to length
limitations will not be discussed here.

A study demonstrated that the conformations of certain
residues (Met3.36 and Gln2.60) were different compared to
morphine and fentanyl bound states (Figure 1C) (Ricarte
et al., 2021). These differences affected the Asp3.32−Tyr7.43 H-
bonding (3–7 lock switch) (Figure 1C), which was stronger when
fentanyl was present (indicated by higher H-bond occupancy
values) (Ricarte et al., 2021). They also found that the
conformational changes in the NPxxY motif were consistently
induced in the more stable active-like state by fentanyl (Ricarte
et al., 2021). These specific changes might explain the higher
efficacy of fentanyl. Another study proposed that the N-aniline
ring of fentanyl mediates µOR β-arrestin coupling through the
Met3.36 residue (de Waal et al., 2020). Additionally, a clear
difference was shown in torsion angles of Trp6.48 between
morphine and fentanyl (Figure 1C) (Lipiński et al., 2019).
Also, the frequency changes of the torsion angles of Phe6.44

were considered the main difference between morphine and
fentanyl. The same study revealed differences between
morphine and fentanyl in the 3–7 lock switch and being
tighter in the presence of morphine (Figure 1C) (Lipiński
et al., 2019).

Sena et al. showed that morphine tends to drive the receptor
toward increasing the distance in the 3–7 lock switch (Figure 1C)
and found an important conformational change in TM5 when
morphine was present (Sena et al., 2021). It is worth noting that
MD simulations have been performed with morphine and a µOR
splice variant lacking the complete TM1 (Majumdar et al.,
2011,2012; Lu et al., 2015) where TM1 truncation results in
the loss of key interactions that are necessary for morphine-
induced µOR activation (Sader et al., 2018).

Huang and co-workers revealed an extensive network of polar
interactions between the orthosteric binding pocket and the
G-protein coupling interface, which rearranges upon receptor
activation with BU72 (Huang et al., 2015). The NPxxY motif is
also involved in this polar network and moves inward toward the
TM5 upon activation (Figure 1C) (Huang et al., 2015). Later on,
they found similar changes in the microswitches when DAMGO
was bound to the µOR–Gi protein complex structure (Koehl et al.,
2018).

Cheng and co-workers compared BU72 and TRV130, where
the stability of Asp3.32 was lower with TRV-130 compared to
BU72 (Figure 1C) since the dominant torsion angle was ~ -12°

and occupied ~23% of the simulation time in the presence of
TRV-130 (BU72: ~28°, ~45%) (Cheng et al., 2018). A study
analyzed the allosteric communication between the orthosteric
binding pocket and the intracellular region of the µOR with TRV-
130 compared to morphine (Schneider et al., 2016). According to
contact probability calculations, TRV-130 only communicated
with residues of the intracellular end of TM3 and there was no
strong contact with residues at the end of TM6. Morphine
allosterically regulated significant interactions with the
intracellular ends of both TM3 and TM6. Additionally, the
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network of side-chain interactions adjacent to TRV-130 was
significantly smaller compared to morphine (Schneider et al.,
2016). Also, when TRV-130 was bound, the residues in the EC2
and EC3 loops of the µOR formed a substantially extensive
network of polar interactions when compared to morphine
(Schneider et al., 2016). Kapoor and co-workers had found
that more information is transferred across the receptor in
TRV-130-bound µOR than in morphine-bound µOR based on
transfer entropy analysis; for instance, the three extracellular loop
regions are not involved entirely in any information transfer in
the case of morphine (Kapoor et al., 2017).

Another study has found that morphine- and PZM21-
activated network paths toward the intracellular end of TM6
were mostly identical, but the paths to the end of TM7 were
evidently different (Liao et al., 2021). The same study also
compared three key molecular switches, the ionic lock (DRY),
transmission (CWxP), and Tyr toggle switches. Here, they found
distance and rotational changes between morphine- and PMZ21-
bound µOR, which affect the positions of TM5-7 (see later)
(Figure 1C) (Liao et al., 2021). In another MD simulation,
they compared TRV-130 and PZM21 with morphine, and one
of the main differences was that the side chain of Trp6.48

(Figure 1C) was reversed with a delay with PZM21 compared
to morphine (300 vs. 50 ns) and that Tyr7.43 side chain
(Figure 1C) rotated with less fluctuation range compared to
TRV-130-bound µOR (PZM21: 100°–175° vs. TRV-130:
100°–150°) (Zhao et al., 2020). These results also point to the
low potency and lower bias effect of PZM21.

HIGHER-ORDER STRUCTURAL CHANGES,
GLOBAL MOVEMENTS

With GPCRs, the subtle changes in the ligand-binding pocket and
ligand binding signal transmission throughout the TM domains
add up to large, global toggle switch movements of the TM
domains (Nygaard et al., 2009; Venkatakrishnan et al., 2013).
These movements are crucial in the receptor inactive–active
conformation transition (Huang et al., 2015; Zhou et al., 2019).
However, regarding the µOR, there are multiple data pointing out
that agonists with different efficacies or functional selectivities
trigger these large movements differently or to a different
degree. Such data will be reviewed in this section.

A study comparing fentanyl and morphine showed that
fentanyl selects for more upward conformations of TM3 than
morphine (+0.6 Å vs +0.2 Å) (Ricarte et al., 2021). Additionally,
both compounds are able to stabilize an active-like conformation
of TM6 in simulations initiated from the activated state; however,
only fentanyl can achieve the same when starting from the
inactive state of the receptor. This difference may contribute
to the greater efficacy of fentanyl relative to morphine.

In the case of BU72, upon activation, TM6 makes a large 10 Å
outward movement and smaller inward movement of TM5 and
TM7 (Figure 1C) (Huang et al., 2015). Complementing these
data in the presence of a G-protein mimetic nanobody in
solution-state NMR, a weak allosteric coupling was revealed
between the agonist-binding pocket and the G-protein-

coupling interface (TM5 and TM6) (Sounier et al., 2015),
similar to that observed for the β2-adrenergic receptor
(Manglik et al., 2015). Most interestingly, in the presence of
BU72 or DAMGO alone, ICL1 and H8 showed larger
conformational changes (Figure 1C) (indicated by larger
spectral signals) compared to TM5 and TM6, suggesting that
these domains might play a role in the initial interaction with the
G-protein (Sounier et al., 2015).

Okude et al. studied the NMR signals from methionine
residues of the µOR in the morphine-, DAMGO-, and TRV-
130-bound states. They found that when morphine was bound,
µOR exists in equilibrium between the closed and open
conformations; in the DAMGO-bound state, the receptor
mainly adopts the open conformation. Upon TRV-130
binding, µOR exists in equilibrium between the closed and
open conformations; however, in such cases, the open
conformation adopts a larger intracellular cavity (Okude et al.,
2015). The study also demonstrated that the population of each
open conformation defines the G-protein- and arrestin-mediated
signaling levels in each ligand-bound state.

Kapoor et al. found that morphine-bound μOR motions
involved the cytoplasmic ends of only TM6, TM3, and TM5
(Figure 1C). On the other hand, the TRV-130-bound μOR
motions involved residues in TM1, TM2, TM3, TM5, TM7,
and helix 8 (Kapoor et al., 2017). Also, TM6 bending and
intra-helical backbone hydrogen bond rearrangement were
only observed with morphine- but not with TRV-130-bound
µOR (Kapoor et al., 2017).

Mafi and co-workers compared morphine, DAMGO, and
TRV-130 in MD simulations with the β-arrestin2-stabilized
active phosphorylated µOR (Mafi et al., 2020). Accordingly, in
the presence of non-biased agonists, β-arrestin2 coupled to the
phosphorylated µOR by forming more polar connections with
ICL2 and either the ICL3 or the cytoplasmic region of TM6. In
contrast, TRV-130 induced a reposition of TM6 in the
cytoplasmic region of the µOR by forming more polar
interactions with TM2 and TM3. This repositioning hinders β-
arrestin2 from properly binding to the phosphorylated µOR.

PZM21 was bound to µOR, TM5-6 and TM7 showed a larger
outward and less inward movement, respectively (Figure 1C)
(Liao et al., 2021). Also, the further outward movement of TM5–7
of the PZM21-bound µOR created a larger cavity potentially
favorable for G protein binding. Zhao et al. analyzed and
compared the flexibility of the loop region of PZM21 with
morphine and TRV-130, and they found that the protein root
mean square fluctuation (RMSF) values of morphine- and
PZM21-bound µOR in the ECL1-3 and ICL3 regions were
significantly smaller than those of TRV130-bound µOR (Zhao
et al., 2020).

DISCUSSION AND CONCLUSION

The introduction of the two active conformational structures of
the µOR now allows a more precise analysis of ligand-specific
changes in the receptor. Reviewing the increasing amount of the
data regarding ligand-specific structural changes in µOR
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activation, certain tendencies can be observed (Table 1;
Figure 1C). The current data proved that ligand recognition
largely depends on the structural properties of the ligand. The
highlighted ligands in this review differ in terms of flexibility,
H-bond capabilities, and energy landscapes (Podlewska et al.,
2020; Vo et al., 2020; Giannos et al., 2021). For instance,
morphine and fentanyl despite being in contact with similar
residues (Figure 1B), the binding pose itself is significantly
different since morphine is more rigid and compact, while
fentanyl is more flexible with an elongated shape. On the
other hand, BU72 and DAMGO structurally differ significantly
and there is also a difference regarding the depth of their binding
pose. However, the conformation of the active binding pocket is
highly similar. In the case of biased agonists TRV-130 and
PZM21, it seems that they accomplish stronger and/or more
contact with the receptor compared to unbiased ligands.

There are significantly more differences than similarities
when it comes to forwarding the ligand-binding signal to the
intracellular regions of the receptor. There are subtle, but
important ligand-specific changes within the molecular
switches; for instance, the different torsion angles or
distances between the involved residues (Figure 1C). As
mentioned above, such minor changes might also explain
the higher efficacy of fentanyl (Ricarte et al., 2021) or β-
arrestin coupling (de Waal et al., 2020). Another interesting
finding is that with PZM21 the difference in rotations of
certain residues can be associated with its lower bias effect
(Zhao et al., 2020). Such delicate changes induce larger-scale
movements for the µOR, which eventually dictate the faith of
the receptor’s signaling pathway and possibly it’s degree of
desensitization. These larger movements in essence allow a

physical barrier or a favorable position for either the
G-protein or β-arrestins, depending on the bound ligand.

In conclusion, ligand-specific µOR activation is defined by the
following: 1) distinct number and/or degree of residue contacts
within the ligand-binding pocket; 2) ligand-specific subtle
changes within the residues (with respect to torsion angles and
distances) of the TM regions, and as a consequence 3) triggers
large-scale movements, toggles in certain domains of the receptor
defining the type of downstream signaling of the µOR, as well as
the degree of receptor desensitization. Further mapping these
steps might open new strategies to develop opioid agonists with
reduced analgesic tolerance and other side effects.
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Abstract: The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel
agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin,
and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation
(pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT)
measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed
at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again,
PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallo-
dynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In
other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or dulox-
etine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin
combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced
elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to
motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium
and calcium channels, respectively. The dual blockade effect of the combination might explain its
advantageous acute analgesic effect in the present work.

Keywords: neuropathic pain; allodynia; tolperisone; pregabalin; duloxetine; CSF glutamate content;
synaptosome; neuronal glutamate release

1. Introduction

Neuropathic pain (NP) is a debilitating chronic condition that results from disease,
trauma, or dysfunction affecting the somatosensory neurons. Several mechanisms are
involved in the development of NP; mechanisms that alter the balance between operating
excitatory and inhibitory neurotransmitters at the spinal cord level are of importance [1].
The current pharmacological lines of therapy for NP encompass different drugs. First-line
treatments include gabapentinoids affecting the high voltage-activated calcium channels
hosting α2δ-1 subunits that are localized on the excitatory neurons on the dorsal horn
of the spinal cord, and antidepressants that are non-selective or selective inhibitors of
serotonin and noradrenaline reuptake, such as amitriptyline or duloxetine, respectively.
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The second-line treatments include the use of voltage-gated sodium channel inhibitors,
such as topical lidocaine or drugs acting on other receptors, including tramadol, which
simultaneously target both the noradrenergic and serotoninergic systems, yet activate
opioid receptors [2,3]. The third-line treatments are strong opioids and subcutaneous
botulinum toxin A. Furthermore, treatments include combination therapy, antiepileptic
agents, selective serotonin reuptake inhibitors, NMDA receptor antagonists, and local
capsaicin [3–7]. All the above-mentioned treatment approaches consist of different drugs
of various pharmacodynamic targets, reflecting the complex nature of the pathophysiology
of neuropathic pain [8–12]. Despite these treatment options, the current drugs used to
treat NP cause side effects that result in dose escalation being practically impossible. To
solve this problem, multimodal analgesia containing two or more analgesics at lower
doses may provide additive or synergistic effects of increased efficacy, and decreased
side effects compared to the single therapy. Several human studies have followed this
strategy; among them is the combination of gabapentinoids with tricyclic antidepressants,
such as nortriptyline or opioid analgesics, to manage post-herpetic neuralgia or painful
diabetic polyneuropathy [13–15]. In these studies, the combination offers better analgesia
as compared to the use of single-drug therapy. However, the adverse effects, such as
dry mouth and constipation, among others, caused by the anticholinergic and opioid
constituents of the combination were higher compared to gabapentinoids medication
alone [16]. Another study showed that treating NP of diabetic patients with a combination
composed of oxycodone and gabapentin did not worsen the commonly observed opioid-
induced side effects, which supports the use of this combination for neuropathic pain
control [17]. A discrepancy between studies has been reported regarding the analgesic
effect of the combination of oxycodone and gabapentinoids, such as pregabalin, where
a small dose of oxycodone has failed to enhance pregabalin’s ability to relieve pain in
patients with either painful diabetic neuropathy or post-herpetic neuralgia [18]. Numerous
preclinical studies have also been carried out to evaluate the combination of different drugs
that were used to manage human neuropathic pain. In neuropathic rats that underwent
spinal nerve ligation, Matthews and Dickenson (2002) showed that, in contrast to morphine,
gabapentin’s inhibitory effect is increased in the dorsal horn neuronal response following its
systemic administration [19], yet the response to morphine was diminished. The pregabalin–
carbamazepine (sodium channel blocker) combination was found to produce a synergistic
antiallodynic effect in the spinal nerve ligation model in rats. In this study, the antiallodynic
effect was only seen when the drugs were combined in doses that exceeded ED75 values,
although the side effects were not studied [20]. For more details on the analgesic and side
effects of drug combinations being used to treat NP, see [21].

Tolperisone is a centrally acting muscle relaxant used clinically for various conditions,
such as painful reflex muscle spasms and post-stroke spasticity [22,23]. Its mechanism of
action has been suggested to include the blocking of sodium and calcium channels [24–26].
Recent research carried out by our group reported that acute oral tolperisone administration
can induce a measurable acute antinociceptive effect against mechanical allodynia in
neuropathic rats [27].

The present preclinical work includes a comparative study of drugs used to ameliorate
human neuropathic pain by different mechanisms of action, such as pregabalin, duloxetine,
and carbamazepine. A multimodal approach to manage NP has long been appreciated;
thus, the present study also intended to explore the potential relevance of tolperisone in
tactile allodynia treatment, particularly when combined with pregabalin, a combination
that has not been tested before. In this regard, we hypothesized that the use of two
mechanistically different analgesics, tolperisone (sodium channel blocker) with pregabalin
(calcium channel blocker), at sub-analgesic doses may provide superior analgesia with a
better adverse effect profile in tactile allodynia induced by partial sciatic nerve ligation or
streptozotocin (STZ)-induced peripheral neuropathic pain in rats compared to each single
drug to identify new combinational therapies for neuropathic pain treatment in future
clinical trials. The study also includes experiments on the impact of the co-administration
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of tolperisone and duloxetine on pSNL-induced NP. Finally, we assessed the motor and
gastrointestinal side effects of the combination-based promising analgesic approach to
treat NP.

2. Results
2.1. Chronic Treatment Is Essential for Both Tolperisone and Pregabalin to Alleviate Tactile
Allodynia Evoked by Partial Sciatic Nerve Ligation (pSNL)

Figures 1 and 2 depict the effect of orally administered tolperisone or pregabalin (25,
50, and 100 mg/kg) in pSNL-induced tactile allodynia in rats on day 7 (single treatment),
14 (1 week treatment), and 21 (2 weeks treatment) after the operation at 60, 120, and 180 min.
Tactile allodynia was indicated by a decrease in the rat paw withdrawal threshold (PWT)
measured by a dynamic plantar aesthesiometer (DPA).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 24 
 

 

each single drug to identify new combinational therapies for neuropathic pain treatment 
in future clinical trials. The study also includes experiments on the impact of the co-ad-
ministration of tolperisone and duloxetine on pSNL-induced NP. Finally, we assessed the 
motor and gastrointestinal side effects of the combination-based promising analgesic ap-
proach to treat NP. 

2. Results 
2.1. Chronic Treatment Is Essential for Both Tolperisone and Pregabalin to Alleviate Tactile  
Allodynia Evoked by Partial Sciatic Nerve Ligation (pSNL) 

Figures 1 and 2 depict the effect of orally administered tolperisone or pregabalin (25, 
50, and 100 mg/kg) in pSNL-induced tactile allodynia in rats on day 7 (single treatment), 
14 (1 week treatment), and 21 (2 weeks treatment) after the operation at 60, 120, and 180 
min. Tactile allodynia was indicated by a decrease in the rat paw withdrawal threshold 
(PWT) measured by a dynamic plantar aesthesiometer (DPA). 

 

(a) Single treatment 

 

(b) One week treatment 

 
(c) Two weeks treatment 

b.l. 0 60 120 180
0

10

20

30

40

50

PW
T 

(g
)

sham R
vehicle R
tolperisone 25 mg/kg R
tolperisone 50 mg/kg R
tolperisone 100 mg/kg R

Drug administration

min

b.l. 0 60 120 180
0

10

20

30

40

50

PW
T 

(g
)

sham R
vehicle R
tolperisone 25 mg/kg R
tolperisone 50 mg/kg R
tolperisone 100 mg/kg R

Drug administration

min

b.l. 0 60 120 180
0

10

20

30

40

50

PW
T 

(g
)

sham R
vehicle R
tolperisone 25 mg/kg R
tolperisone 50 mg/kg R
tolperisone 100 mg/kg R

*

Drug administration

min

Figure 1. The antiallodynic effect of tolperisone on pSNL evoked allodynia. The PWTs were measured
postoperatively on day 7 prior to and after a single treatment (panel (a)), on day 14 after 1 week of
chronic treatment (panel (b)), and on day 21 after 2 weeks of chronic treatment (panel (c)). Tactile
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allodynia was measured by DPA at 60, 120, and 180 min after oral treatment. Data are shown as
the mean ± SEM of 8–13 animals per group. * p < 0.05 statistically significant compared to the
vehicle-treated group at the indicated time points after treatment (two-way ANOVA followed by
Dunnett’s post-hoc test). Baseline (b.l.): was measured before the first treatment. Single treatment:
was measured after acute administration on day 7 after the operation.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 4 of 24 
 

 

Figure 1. The antiallodynic effect of tolperisone on pSNL evoked allodynia. The PWTs were meas-
ured postoperatively on day 7 prior to and after a single treatment (panel (a)), on day 14 after 1 week 
of chronic treatment (panel (b)), and on day 21 after 2 weeks of chronic treatment (panel (c)). Tactile 
allodynia was measured by DPA at 60, 120, and 180 min after oral treatment. Data are shown as the 
mean ± SEM of 8–13 animals per group. * p < 0.05 statistically significant compared to the vehicle-
treated group at the indicated time points after treatment (two-way ANOVA followed by Dunnett’s 
post-hoc test). Baseline (b.l.): was measured before the first treatment. Single treatment: was meas-
ured after acute administration on day 7 after the operation. 

 

(a) Single treatment 

 

(b) One week treatment 

 
 

(c) Two weeks treatment 

Figure 2. The antiallodynic effect of pregabalin on pSNL evoked allodynia. The PWTs were meas-
ured on day 7 prior to and after a single treatment (panel (a)), on day 14 (1 week treatment) (panel 
(b)), and on day 21 (2 weeks treatment) (panel (c)) after the operation. Tactile allodynia was meas-
ured by DPA at 60, 120, and 180 min after oral treatment. Data are shown as the mean ± SEM of 6–

b.l. 0 60 120 180
0

10

20

30

40

50
PW

T 
(g

)
sham R
vehicle R
pregabalin 25 mg/kg R
pregabalin 50 mg/kg R
pregabalin 100 mg/kg R

Drug administration

min

b.l. 0 60 120 180
0

10

20

30

40

50

PW
T 

(g
)

sham R
vehicle R
pregabalin 25 mg/kg R
pregabalin 50 mg/kg R
pregabalin 100 mg/kg R

Drug administration

min

b.l. 0 60 120 180
0

10

20

30

40

50

PW
T 

(g
)

sham R
vehicle R
pregabalin 25 mg/kg R
pregabalin 50 mg/kg R
pregabalin 100 mg/kg R

*

Drug administration

min

Figure 2. The antiallodynic effect of pregabalin on pSNL evoked allodynia. The PWTs were measured
on day 7 prior to and after a single treatment (panel (a)), on day 14 (1 week treatment) (panel (b)), and
on day 21 (2 weeks treatment) (panel (c)) after the operation. Tactile allodynia was measured by DPA
at 60, 120, and 180 min after oral treatment. Data are shown as the mean ± SEM of 6–13 animals per
group. * p < 0.05, statistically significant compared to the vehicle right (operated) paw at the indicated
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time points after treatment (two-way ANOVA followed by Dunnett’s post-hoc test). Baseline (b.l.):
was measured before the first treatment. Single treatment: was measured after acute administration
on day 7 after the operation.

In this series of experiments, we intended to measure the acute effect of oral (25, 50, and
100 mg/kg) tolperisone or pregabalin on the developed tactile allodynia of rats with pSNL
on day 7, as well as of rats that were treated for 2 consecutive weeks (Figures 1 and 2).
As shown in Figure 1a,b, oral test doses of tolperisone failed to produce a significant
antiallodynic effect either after acute treatment or 1 week of chronic treatment, respectively.
After 2 weeks of treatment, following oral administration, 100 mg/kg of tolperisone showed
a significant effect against the developed tactile allodynia, 60 min after oral administration
(Figure 1c) compared to the vehicle-treated group (two-way ANOVA: F (treatment group;
4, 45) = 25.41, p < 0.0001, Dunnett’s post-hoc test: p = 0.0260).

Similar to tolperisone, pregabalin in test doses was ineffective in alleviating rat tactile
allodynia following acute treatment or 1 week of chronic treatment (Figure 2a,b). How-
ever, 2 weeks of consecutive treatment with 50 mg/kg pregabalin significantly alleviated
tactile allodynia 60 min after oral administration (two-way ANOVA: F (treatment group;
4, 39) = 23.91, p < 0.0001, Dunnett’s post-hoc test: p = 0.0080) when compared to the
vehicle-treated group (Figure 2c).

On the other hand, duloxetine in test doses was ineffective in alleviating rat tactile allo-
dynia following acute or chronic treatment compared to vehicle-treated rats (Figure 3a–c).
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Figure 3. The antiallodynic effect of duloxetine on pSNL evoked allodynia. The PWTs were measured
on day 7 prior to and after a single treatment (panel (a)), on day 14 (1 week treatment) (panel (b)), and
on day 21 (2 weeks treatment) (panel (c)) after the operation. Tactile allodynia was measured by DPA
at 60, 120, and 180 min after oral treatment. Data are shown as the mean ± SEM of 5–7 animals per
group. p < 0.05, statistically significant compared to the vehicle right (operated) paw at the indicated
time points after treatment (two-way ANOVA followed by Dunnett’s post-hoc test). Baseline (b.l.):
was measured before the first treatment. Single treatment: was measured after acute administration
on day 7 after the operation.

2.2. Acute Oral Co-Administration of Tolperisone with Pregabalin but Not Duloxetine Alleviates
Tactile Allodynia of Rats with Neuropathic Pain Evoked by pSNL

In this phase of the study, we followed a strategy of multimodal analgesia namely
combining pregabalin and tolperisone. Thus, the pregabalin and tolperisone combination
was investigated in animals showing allodynia two weeks after pSNL (Figure 4). As stated
above, treatment with tolperisone or pregabalin at a dose of 25 mg/kg did not cause sig-
nificant analgesic effects after either acute or chronic oral administration (Figures 1 and 2).
Furthermore, Figure 4 showed that a single treatment with tolperisone (Figure 4a), prega-
balin (Figure 4b), or duloxetine (Figure 4d) failed to induce significant effects in the PWTs
of all treatment groups at 60, 120, and 180 min. Interestingly, pregabalin and tolperisone
(25 mg + 25 mg) significantly alleviated the tactile allodynia of rats with NP at 120 min after
acute oral administration compared to the vehicle (two-way ANOVA: F (treatment group;
4, 28) = 17.81, p < 0.0001, Dunnett’s post-hoc test: p = 0.0266), tolperisone, or pregabalin-
treated groups (Figure 4c). In contrast, the combination of tolperisone and duloxetine failed
to attenuate the rat tactile allodynia following acute oral administration at the doses and
time points indicated in Figure 4e.
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Figure 4. The acute antiallodynic effect of tolperisone (panel (a)), pregabalin (panel (b)), a combination
of tolperisone and pregabalin (panel (c)), duloxetine (panel (d)), and a combination of tolperisone and
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duloxetine (e) on the pSNL evoked allodynia. The PWT was measured on day 14 after the operation.
Tactile allodynia was measured by DPA at 60, 120, and 180 min after acute oral treatment. Data are
shown as the mean ± SEM of 6–8 animals (panel (a)), 8 animals (panel (b)), 5–8 animals (panel (c)),
4–5 animals (panel (d)), and 5–8 animals (panel (e)) per group. * p < 0.05, statistically significant
compared to the vehicle right (operated) paw at the indicated time points after treatment (two-way
ANOVA followed by Dunnett’s post-hoc test). Baseline (b.l.): was measured before the treatment.

2.3. The Impact of Pregabalin and Tolperisone on Peripheral Neuropathic Pain of Diabetic Rats after
Acute Administration

Based on the promising effect obtained in the mononeuropathic pain model, we ex-
tended our investigations to assess the antiallodynic effect of the tolperisone–pregabalin
combination (25 and 25 mg/kg) in streptozotocin (STZ)-induced diabetic polyneuropathy.
In accordance with our previous study [28], STZ treatment evoked a significant increase
in the blood glucose level observed 72 h after 60 mg/kg STZ intraperitoneal injection
compared to age-matched control animals that were maintained over the entire experiment
(9 weeks), (see Figure A1a). Additionally, 3 weeks after STZ injection, the onset of tactile
allodynia was indicated by a significant decrease in left and right PWTs that was main-
tained over the whole period (see Figure A1b). We determined the effect of the individual
components of the combination (pregabalin and tolperisone both at 25 mg/kg), as well as
the combination itself, 9 weeks following STZ treatment at 60 and 120 min after oral admin-
istration. Acute treatment with 25 mg/kg pregabalin produced a significant antiallodynic
effect after 120 min (one-way ANOVA: F (11, 31) = 7.167, p < 0.0001, Dunnett’s post-hoc test:
p = 0.0139); however, tolperisone or the combination could induce only a tendentious effect
(Figure 5). Significant changes between the body weight of diabetic rats and the nondiabetic
age-matched animals were observed after 1 week and thereafter (see Figure A1c). In order
to justify our results, weight-matched animals were also used in order to assess the impact
of body weight on the PWT (see Figure A1d). Since the weight-matched animals showed a
PWT similar to that of the age-matched animals at 9 weeks at all tested time points (see
Figure A1e), the age-matched animals were used for comparison in this experiment.
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Figure 5. The acute antiallodynic effect of tolperisone and pregabalin on type 1 diabetes evoked
tactile allodynia. The left and right PWT was measured in week 9 after diabetes induction. Tactile
allodynia was measured by DPA at 60 and 120 min after acute oral treatment. Data are shown
as the mean ± SEM of 3–5 animals per group. * p < 0.05, statistically significant compared to the
vehicle-treated groups (one-way ANOVA followed by Dunnett’s post-hoc test). The baseline was
measured before treatment.
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2.4. Effects of Acute Treatment with Tolperisone, Pregabalin, or their Combination on CSF
Glutamate Content in Rats with pSNL-Induced Neuropathic Pain

Samples of cerebrospinal fluid (CSF) were taken from mono-neuropathic animals
14 days after pSNL operation, and their glutamate content was assessed by capillary elec-
trophoresis. The vehicle treated mono-neuropathic animals showed a significant increase in
the CSF glutamate concentration compared to the sham operated group (one-way ANOVA:
F (4, 64) = 6.435, p = 0.0002, Dunnett’s post-hoc test: p = 0.0032). Tolperisone, pregabalin,
or their combination significantly inhibited the nerve injury induced elevation of the CSF
glutamate content and normalized it to the level of the sham operated group (Figure 6).
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Figure 6. CSF glutamate content of mono-neuropathic (pSNL) and sham operated rats after acute
treatment with orally administered tolperisone (25 mg/kg), pregabalin (25 mg/kg), or their com-
bination (both at 25 mg/kg) on day 14 after pSNL operation. Data are shown as mean ± SEM of
n = 4–21 animals per group. * p < 0.05 vs. other groups (one-way ANOVA followed by Dunnett’s
post-hoc test).

2.5. Effects of Treatment with Tolperisone, Pregabalin, or Their Combination on
4-Aminopyridine-Induced Glutamate Release from Rat Synaptosomes

The effect of tolperisone (100 µM), pregabalin (250 µM), or their combination on
depolarization-induced glutamate release from rat brain synaptosomes was measured
to better understand their probable mode of action. 4-aminopyridine, a K+-channel in-
hibitor, was used to induce depolarization and subsequent neurotransmitter release [29].
4-aminopyridine-induced transmitter release depends on the activation of sodium and
calcium channels [30] and was blocked by tolperisone but not by pregabalin in accordance
with our previous results [27]. Here, the combination was found to also significantly in-
hibit glutamate release induced by 4-aminopyridine (one-way ANOVA: F (3, 24) = 8.686,
p = 0.0004, Dunnett’s post-hoc test: 100 µM tolperisone, p = 0.0012; 100 µM tolperisone and
250 µM pregabalin, p = 0.0016, Figure 7).
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Figure 7. Effect of tolperisone (100 µM), pregabalin (250 µM), or their combination on glutamate
release from rat brain synaptosomes induced by 1 mM 4-aminopyridine. Drugs were administered as
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a pretreatment 20 min prior to stimulation. The concentration of released glutamate was measured
6 min after stimulation. All data points were normalized using the unstimulated, baseline release
and presented as % of the stimulated glutamate release in the absence of test compounds (gray bar).
All columns show the mean of glutamate release ± SEM in % in the indicated groups. * p < 0.05
vs. stimulated glutamate release by 1 mM 4-aminopyridine alone and treatment groups (one-way
ANOVA followed by Dunnett’s post-hoc test). In each treatment group, 4–13 parallel experiments
were used.

2.6. The Impact of Pregabalin, Tolperisone, and Pregabalin/Tolperisone Combination on Motor
Dysfunction and Coordination Imbalance in Naïve Rats

Acute oral pregabalin (50 and 100 mg/kg) but not tolperisone (100 and 150 mg/kg)
treatments negatively influenced rats’ motor coordination and balance, as indicated by a
significant decrease in time to stay on a rotating rod (one-way ANOVA: F (13, 84) = 11.12,
p < 0.0001, Dunnett’s post-hoc test: 50 mg/kg, 60 min, p = 0.0326; 100 mg/kg, 60 min,
p = 0.0010, 50 mg/kg; 120 min, p < 0.0001, 100 mg/kg; 120 min, p < 0.0001, Figure 8). On
the other hand, pregabalin, at a dose of 25 mg/kg, did not elicit a change in rats’ motor
coordination and balance (Figure 8). The treatment with the combination of pregabalin and
tolperisone (both at 25 mg/kg) failed to elicit alteration in rats’ motor coordination and
balance compared to the vehicle-treated group either 60 or 120 min after oral administration
(Figure 8).
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Figure 8. Effect of acute oral administration of tolperisone (100 and 150 mg/kg), pregabalin (25, 50,
and 100 mg/kg), and the combination of tolperisone and pregabalin (both at 25 mg/kg) or vehicle at
60 and 120 min on motor coordination and balance of animals. Columns show the time latency in the
rotarod assay. Data are shown as the mean ± SEM of 5–19 animals per group, measured at the peak
effect of test compounds. * p < 0.05 statistically significant compared to the vehicle (one-way ANOVA
followed by Dunnett’s post-hoc test).

2.7. The Impact of Pregabalin, Tolperisone, and Pregabalin/Tolperisone Combination on
Gastrointestinal (GI) Transit in Naïve Rats

Acute oral administration of tolperisone (25 and 50 mg/kg), pregabalin (25 mg/kg),
and a combination of tolperisone and pregabalin (both at 25 mg/kg) failed to exhibit delays
in the GI transit of a charcoal suspension in rats. However, acute pregabalin treatment with
a dose of 50 mg/kg induced a moderate but significant delay in the GI transit of a charcoal
suspension in rats compared to the vehicle (one-way ANOVA: F (5, 29) = 3.297, p = 0.0177,
Dunnett’s post-hoc test: p = 0.0110, Figure 9).
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Figure 9. Effect of acute oral administration of tolperisone (25 and 50 mg/kg), pregabalin (25 and
50 mg/kg), and the tolperisone and pregabalin combination (both at 25 mg/kg) on the GI transit of
naïve animals 30 min after a charcoal meal. Columns represent the charcoal travel (%) in the charcoal
meal test. Data are shown as the mean ± SEM of 5–6 animals per group, measured at the peak effect
of test compounds. * p < 0.05 statistically significant compared to the vehicle (one-way ANOVA
followed by Dunnett’s post-hoc test).

3. Discussion

It is of great clinical significance to develop a new medication or a novel combination
treatment approach to treat NP. The difficulty in treating NP stems from the diversity of
etiologies (injuries, illnesses, drugs, etc.) and the intricacy of the underlying mechanisms.
All these factors contribute to the poor effects of the current mono or combination therapies
to effectively manage NP symptoms. In this regard, the current therapeutic strategies
of NP continue to be unsatisfactory because they have a low efficacy of pain inhibition,
delayed onset of action, and deleterious adverse effects. Thus, an effective mono or
combination therapy with a significant analgesic effect, fast onset of action, and a good
safety profile is desperately needed [31,32]. In this context, the present study principally
intended to investigate the antiallodynic effect of tolperisone compared to pregabalin or
duloxetine as monotherapy. Of importance, the efficacy of combinations composed of either
tolperisone with pregabalin or duloxetine was also studied in the same NP model. In our
previous work, we have only shown that tolperisone or pregabalin alone acutely inhibit
the developed mechanical allodynia. However, herein, we applied another measurement
approach, namely DPA, which is designed to determine more localized tactile allodynia in
a small dynamic range. Furthermore, the effect of long-term treatment was also assessed.
Similar to our previous work, the possible mechanism for inhibiting tactile allodynia was
also investigated. We have also extended our investigations to assess the impact of the
tolperisone–pregabalin combination on another neuropathic pain type, polyneuropathic
pain evoked by type 1 diabetes. Finally, the possible effect of the promising combination on
motor coordination and balance as well as gastrointestinal transit was assessed.

Mono-neuropathic pain was induced by pSNL in rats based on the Seltzer method. In
comparison studies, the evolution of the antiallodynic effect of test compounds was carried
out acutely and on day 7 or 14 post-operation. In experiments intended to evaluate the
effect of chronic treatments, the treatment was initiated on day 7 after the operation and
was continued for 14 days, and the antiallodynic impact was assessed on the 14th and 21st
days after the operation. The suitability of the time periods for undertaking the treatment
and pain assessment based on the present and previous studies has established that pSNL
evokes stable tactile allodynia within 1 week following nerve ligation and lasts for at least
4 weeks [33,34]. Herein, we used this rat model to show the effect of test compounds and
combinations against developed tactile allodynia within the described test period; the
investigation was started on day 7 and ended before day 28, enabling us to avoid factors
that may disturb the quality and productivity of the study. The results obtained from
the rat mono-neuropathic pain model indicate that acute tolperisone treatment failed to
alleviate tactile allodynia. This ineffectuality was also seen following acute treatment with
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pregabalin or duloxetine, two medications being used as first-line therapies for NP [35,36].
As already noted, the lack of an acute antiallodynic effect is in contrast with our previous
results where mechanical allodynia was attenuated by acute tolperisone or pregabalin treat-
ment, although the applied assay was different, as mentioned above [27]. To explain this, in
our previous study, the antiallodynic effect of tolperisone or pregabalin was determined by
the Randall–Selitto assay, which has been developed to measure the antinociceptive effect
of test drugs on the pain thresholds evoked by mechanical pressure stimulation, although
it can be considered a complement to cutaneous mechanical hyperalgesic assays [37]. On
the other hand, we applied DPA, which is generally used to assess cutaneous mechanical
hyperalgesia by applying filament stimuli to the plantar surfaces of the hind paws. It means
that DPA likely detects tactile allodynia that needs long-term drug treatment to alleviate it.
The difference between DPA and Randall–Selitto in terms of the dose of the drug adminis-
tered was also observed previously by our group [38], namely, much higher analgesic doses
are needed when DPA was used. Indeed, reports on the onset of the antiallodynic effect
of pregabalin and duloxetine are contradictory [39–42]. For instance, applying a similar
assay for at least 3 days was required for oral pregabalin to produce am antiallodynic
effect in mice with NP evoked by cuffing the main branch of the sciatic nerve [43]. In
addition, the analgesic assay, the route of administration, and particularly the type of NP
are the main determinant factors in drawing a consensus about the analgesic effects of
pregabalin and duloxetine, among others [15,44–48]. However, after chronic treatment,
both tolperisone and pregabalin were able to elicit an antiallodynic effect. In fact, several
preclinical and clinical studies have shown a similar lag time for pregabalin [49–51], but
not for tolperisone. To the best of our knowledge, tolperisone has not been evaluated for
potential analgesia in rats with preexisting tactile allodynia. This result raises a promising
possibility for repurposing tolperisone for NP. With respect to duloxetine, despite the previ-
ous positive results, no significant antiallodynic effect could be measured either after acute
or chronic oral treatment for 1 or 2 weeks [5]. Duloxetine is a serotonin and noradrenaline
reuptake inhibitor; independent of its effect on depression, it alleviates allodynia in diabetic
neuropathy. In this regard, spinal serotonin and noradrenaline play an important role in
pain transmission. Pharmacological studies with serotonin and noradrenaline reuptake
inhibitors have shown facilitatory or inhibitory effects on the descending serotonergic
pathways that play a crucial role in neuropathic pain. This controversial or poor effect of
serotonin has been attributed to the applied stimuli, the variable methods, and the timing
of pain measurement [52,53].

Despite the discrepancy in the onset of action of the tested drugs, the essential finding
of the present study is that the tolperisone/pregabalin, but not tolperisone/duloxetine,
combination elicited a remarkable acute effect on the pSNL-induced allodynia at day 14
following operation. This result, to our best knowledge, is the first one to demonstrate
the acute tactile antiallodynic efficacy of a low dose tolperisone–pregabalin combination
in rat models of neuropathic pain. In addition, the effect of the combination was not
associated with motor dysfunction or GI transit-related side effects. Indeed, the analgesic
efficacy and safety of pregabalin alone or in combination with several drugs, but not with
tolperisone, have been previously investigated in several clinical and preclinical studies
for neuropathic pain treatment. Pregabalin and tolpersisone exert their analgesic effects
against NP by inhibiting voltage-gated calcium channels hosting the α2-δ subunit and
different voltage-dependent sodium channels, respectively [14,15,24,27]. Inhibition of these
channels causes a reduction in calcium influx, neurotransmitter release, and, as a result,
total neuronal excitability. It is worth noting that these channels are targets for first-line
medications currently used to treat NP of different entities, including peripheral mono-
neuropathic pain among others [15,54–57]. In addition, tolperisone has been reported
to inhibit muscle spasms with an advantageous side-effect profile; it is devoid of the
central side effects of the other centrally acting skeletal muscle relaxants. This property
encouraged us to investigate its effect once combined with pregabalin. Voltage-gated
sodium channel blockers, such as carbamazepine, are among the medications that are
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prescribed to treat NP [58,59]. The effect of carbamazepine either alone or combined
with different drugs was studied in different neuropathic conditions. Fox et al. has
reported that a single treatment with carbamazepine was ineffective against mechanical
hyperalgesia or tactile allodynia in rats; however, it reversed mechanical hyperalgesia in
guinea-pig NP evoked by pSNL [41,60]. This indicates that there is an overlap between
the previously reported and present study regarding acute treatment with tolperisone or
carbamazepine (see Figure A2a–d). With respect to the combination, it was shown that a
gabapentin and carbamazepine combination induced synergistic analgesia compared to
single drug administration, as indicated by high latency in the hot plate test in diabetic
neuropathic rats [61]. Further, the pregabalin/carbamazepine combination was found
to produce a synergistic antiallodynic effect in the rat spinal nerve ligation model. In
fact, the antiallodynic effect was only seen when the drugs were combined in doses that
exceeded the ED75 values, although, the side effects were not studied [20]. In fact, in
our present study, the examined doses of tolperisone, pregabalin, or duloxetine that were
shown to produce analgesia after chronic treatment are higher than the applied doses in the
combination. It is worth noting that several preclinical and clinical studies have focused
on the efficacy of carbamazepine, gabapentin, and pregabalin in managing trigeminal
neuralgia, which is not the object of the present work [62–66]. Fortunately, the present
study proceeded to identify combination therapy as having higher efficacy and fewer side
effects. With respect to side effects, more than 50% of patients taking pregabalin experience
considerable unwanted effects, most notably, excessive sedation [67]. Based on the above-
mentioned literature of previous work and our present results, the tolperisone/pregabalin
combination might be of clinical value, opening a possibility of repurposing.

It has been well established that rat NP evoked by peripheral nerve injury initiates
both peripheral and central sensitization that concomitantly occurs with an imbalance
between spinal excitatory and inhibitory systems [1]. An increase in spinal glutamate
levels has been described as one of the major contributors to the mechanism responsible
for the development of NP. Indeed, drugs that inhibit NMDA receptors are known to be
among the effective management strategies for chronic pain [1,68]. Therefore, we also
measured the CSF glutamate content, which was found to be increased in rats with NP. The
inhibition of glutamatergic activity is one of the explanations proposed by researchers for
the inhibition of mono and polyneuropathic pain [27,69–73]. However, the contribution of
the glutamatergic system to the pathophysiology of NP is more complex than the simple
thought of enhancing or decreasing the glutamatergic system.

We have also assessed the impact of the tolperisone–pregabalin combination on
polyneuropathic pain evoked by type 1 diabetes. In this series of experiments, prega-
balin has been shown to be a more efficacious analgesic than the combination that proved
to be superior in mono-neuropathic pain, namely in the pSNL model. This effect of prega-
balin was not surprising as several preclinical and clinical data support its effectiveness in
diabetic neuropathy [74–76]. With respect to tolperisone, further future studies are needed
to fully characterize its antiallodynic effect, but the present results suggest that it is most
effective in nerve injury-induced NP, particularly when combined with pregabalin.

The major limitation of the present work was that in the diabetes-induced polyneu-
ropathic pain model tolperisone, pregabalin, and their combination were only tested at a
dose of 25 mg/kg, which was effective in nerve injury-induced mono-neuropathic pain. In
fact, to have the full picture, future studies are needed to elucidate the antiallodynic effect
of the test compounds at different doses and possible other mechanisms of action. Finally
examining the effect of the combination following chronic treatment applied to the present
and other animal models of NP would further justify the efficacy of the combination of
tolperisone and pregabalin.
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4. Materials and Methods
4.1. Animals

In the current study, 120–150 g male Wistar rats underwent partial sciatic nerve
ligation (pSNL), and 170–200 g male Wistar rats were used for the rotarod assay and
charcoal meal test to be matched with the operated animal’s body weights on the test
days. Animals were purchased from Toxi-Coop Zrt. (Budapest, Hungary) and housed
in standard cages of up to 4 or 5 animals/cage based on their weights, maintained at a
controlled temperature (20 ± 2 ◦C), light/dark cycle (12/12 h), and allowed free access
to food and water in the local animal house of Semmelweis University, Department of
Pharmacology and Pharmacotherapy (Budapest, Hungary). All procedures and housing
conditions were performed according to the European Communities Council Directives
(2010/63/EU), the Hungarian Act for the Protection of Animals in Research (XXVIII.tv.
32.§), and the local animal care committee (PEI/001/276-4/2013 and PE/EA/619-8/2018).

4.2. Chemicals

Tolperisone and pregabalin were kindly provided as a gift by Meditop Pharmaceuticals
Ltd. (Budapest, Hungary). Streptozotocin (STZ), carbamazepine, and duloxetine were
purchased from Sigma–Aldrich (St. Louis, MO, USA). From Sigma–Aldrich, hydroxy
ethyl cellulose, as well as glutamate oxidase, horseradish peroxidase, and Amplex Red for
glutamate release measurement were purchased (St. Louis, MO, USA). All compounds
were stored and handled according to manufacturing procedures.

4.3. Experimental Protocols of the Animal Study

Experimental schedule 1 displays a schematic overview of the experimental techniques
used in this work. Baseline measurements were carried out by DPA (dynamic plantar
esthesiometer 37450; Ugo Basil, Gemonio, Italy) to evaluate paw withdrawal thresholds
before the operation, and animals then underwent pSNL surgery (see Section 4.4). On day 7
after the operation, baseline measurements were taken once more to test the development
of mechanical allodynia, and neuropathic rats were then treated with compounds or
vehicles. Mechanical allodynia was tested once more at 60, 120, and 180 min after acute
oral administration to investigate the acute antiallodynic effect of the test drugs. In the
chronic experiments, rats were given daily treatments for 14 days to assess the chronic
antiallodynic impact of the investigated compounds, and then DPA was carried out on
days 14 and 21, respectively, after surgery.

In another set of animals, baseline measurements were carried out by DPA, and pSNL
surgery was performed. On day 14 after the operation, baseline measurements were taken
once more to test the development of mechanical allodynia, and neuropathic rats were then
treated with compounds or vehicles. Mechanical allodynia was tested once more at 60, 120,
and 180 min after acute oral administration to investigate the acute antiallodynic effect of
the test drugs and their combinations (Experimental schedule 2).

Experimental schedule 1 (Scheme 1) shows the antiallodynic effects of pregabalin and
tolperisone (both at 25, 50, and 100 mg/kg), carbamazepine (16.25, 32.5, and 65 mg/kg),
and duloxetine (10 and 20 mg/kg) in rats that underwent partial sciatic nerve ligation
evoked tactile allodynia measured by a DPA (dynamic plantar esthesiometer). In addition,
the treatment day timeline and the precise intervals during the treatment days for DPA
measurements are shown. Experimental schedule 2 shows the acute antiallodynic effects
of pregabalin, tolperisone (both at 25, 50, and 100 mg/kg), their combination (25 mg and
25 mg), duloxetine (10 and 20 mg/kg), and the tolperisone and duloxetine combination
(25 mg and 20 mg) in rats that underwent partial sciatic nerve ligation evoked tactile
allodynia measured by DPA. The treatment day timeline and the precise intervals during
the treatment days for DPA measurements are also shown.
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4.4. Partial Sciatic Nerve Ligation (pSNL)

This was performed as previously described [33,77] for partial ligation of the sciatic
nerve (pSNL). In summary, pentobarbital (i.p., 60 mg/kg, in a volume of 2.5 mL/kg) was
used to produce anesthesia on the day of the operation, and rats were then placed on a
pillow at 30 ◦C. The right dorsal back was shaved, an incision was created, and the sciatic
nerve was carefully exposed in an aseptic setting. A size 7-0 polypropylene wire was then
used to tightly ligate the exposed nerve at the level of the thigh, ensuring that the dorsal
1/3 to 1/2 of the nerve thickness was ligated. The wound was then closed with two stiches.
In the sham group (controls), the sciatic nerve was exposed but not ligated.

4.5. Assessment of Mechanical Allodynia

Mechanical allodynia, the main symptom of neuropathic pain, was measured using
the DPA, as previously mentioned [28,77]. Handling was performed in the days preceding
the beginning of the experiments to acclimatize the animals to the experimental conditions
by putting them in the plastic cages of the experimental setup once a day. The paw
withdrawal thresholds (PWTs) of the animals were measured in grams (g). PWT values were
assessed following a 5 min cage acclimatization period for each measurement. According
to the manufacturer’s instructions, a metal filament with a diameter of 0.5 mm is raised
alternately to the right and left hind paws (incrementation: 10 g/s, maximal force: 50 g).
Three PWT measurements were performed on each paw, and the average of the three
readings was calculated. For each animal, allodynia was defined as a 20% decrease in
the average PWT value of the operated (right) paw compared to the unoperated (left)
paw [28,38]. Measurements were performed in accordance with instructions in Section 4.3
or experimental schedules 1 and 2.

4.6. Treatment of Neuropathic Animals

The effects of pregabalin and tolperisone (both at 25, 50, and 100 mg/kg), duloxetine
(10 and 20 mg/kg), and carbamazepine (16.25, 32.5, and 65 mg/kg) were investigated
on day 7 after pSNL and assessments of allodynia began 60, 120, and 180 min after ad-
ministration. The chronic treatments continued for 1–2 weeks, and again, assessment of
the allodynia was determined on the day 14 and 21 after the operation. All drugs were
administered twice per day in the chronic treatment experiments. In addition, the effects of
pregabalin and tolperisone (both at 25, 50, and 100 mg/kg), duloxetine (10 and 20 mg/kg),
the tolperisone and pregabalin combination (both at 25 mg/kg), and the tolperisone and



Pharmaceuticals 2023, 16, 1115 16 of 24

duloxetine combination (25 mg/kg and 20 mg/kg), as well as carbamazepine (16.25, 32.5,
and 65 mg/kg), were investigated after a single oral dose on day 14 after pSNL. The
solution of all drugs was prepared in 0.9% saline, except for carbamazepine, which was
suspended in 1% hydroxyethyl cellulose solution. All drugs were administered in a volume
of 5 mL/kg via an orogastric gavage.

4.7. Motor Function Test

The rotarod test (Rat Rotarod, Model 7750; Ugo Basile, Gemonio, Italy) was used to
evaluate the effect of test drugs on motor coordination in naïve rats. One day prior to the
experiment, animals were trained to stay on the rotating rod of the apparatus for 180 s (cut-
off time) where the instrument’s speed was adjusted to 16 rpm. On the following day, the
acute effects of tolperisone (100 and 150 mg/kg), pregabalin (25, 50, and 100 mg/kg), and
the tolperisone and pregabalin combination (both at 25 mg/kg), or vehicle, were tested after
oral treatment at the time of the peak effect of the test drugs (60 and 120 min). The fall-off
time, or the latency time, was recorded as an indication of motor coordination [10,78].

4.8. Determination of GastroIntestinal Peristalsis in Rats

The charcoal meal test was utilized to test the effect of tolperisone (25 and 50 mg/kg),
pregabalin (25 and 50 mg/kg), or the tolperisone and pregabalin combination (both at
25 mg/kg) on gastrointestinal transit in rats after oral treatment [79]. In brief, naïve male
Wistar rats were given free access to water and fasted for 18 h before the experiment. Drugs
were administered, and 30 min later, an oral charcoal suspension (10% charcoal in 5% gum
Arabic) in a volume of 2 mL/animal was given via oral gavage. After another 30 min, the
rats were euthanized to take the whole small intestines. The charcoal travel distance was
measured and compared to the whole small intestinal length.

4.9. Animal Model of Type 1 Diabetes-Induced Polyneuropathic Pain

For the STZ-induced type 1 diabetes model, male Wistar rats weighing 200–230 g were
used. Animals were housed in a mesh-bottomed cage (type IV cage) that meets the EU’s
requirement. To induce diabetes, we used a single intraperitoneal injection of 60 mg/kg
of STZ, freshly dissolved in cold distilled water (1–3 ◦C) right before injection to prevent
any degradation [80,81]. Three days later, diabetes was confirmed by measuring the blood
glucose level (>14 mmol/L) in the blood obtained from the tail vein using the Dcont Etalon
blood glucose meter (Roche Diagnostics GmbH, Mannheim, Germany). The highest blood
glucose level that may be measured using a blood glucose test is 33.3 mmol/L [82]. Every
third week, the PWTs were measured and expressed in g. Each hind paw’s PWT was
measured three times alternatively. The average PWT values for each animal’s two paws
were then determined. Age-matched (i.e., animals with age-matched to diabetic ones) and
vehicle-treated groups were utilized as controls. An animal was considered neuropathic
when the PWT value decreased by at least 20% compared to age-matched animals [38].

4.10. Capillary Electrophoresis Analysis of CSF Glutamate Content

In our lab, a modified technique of capillary electrophoresis laser-induced fluorescence
detection was established [83] for assessing the glutamate level in CSF samples. At 14 days
after the pSNL, neuropathic and control rats were sacrificed with isoflurane. CSF samples
were obtained by puncturing the cisterna magna, centrifuged at 2000× g and 4 ◦C for 10 min,
and deproteinized by combining with two volumes of cold acetonitrile and centrifuging at
20,000× g for 10 min at 4 ◦C. Supernatants were derivatized using NBD-F (1 mg/mL final
concentration) in 20 mM borate buffer pH 8.5 for 20 min at 65 ◦C. As an internal standard,
1 µM L-cysteic acid was utilized. A P/ACE MDQ Plus capillary electrophoresis system
with a laser-induced fluorescence detector adjusted to 488 and 520 nm excitation and
emission wavelengths, respectively (SCIEX, Framingham, MA, USA), was used to evaluate
derivatized materials. Separations were performed in polyacrylamide-coated fused silica
capillaries (i.d.: 75 µm, effective/total length: 40/50 cm) at 15 ◦C with a constant voltage of
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−27 kV while using a 50 mM HEPES buffer pH 7.0 containing 6 mM 6-monodeoxy-6-mono
(3-hydroxy) propylamino-β-cyclodextrin.

4.11. Glutamate Release from Synaptosomes

To examine the effects of tolperisone, pregabalin, or their combination on depolarization-
evoked glutamate release, rat brain synaptosomes were prepared using a modified Modi et al.
method [84]. In summary, animals were promptly decapitated, and their brains were sepa-
rated and homogenized in a solution of 0.32 M sucrose and 4 mM HEPES (pH 7.4). After
homogenate centrifugation (2 × 10 min, 1500× g, 4 ◦C), supernatants were collected and
combined. After centrifuging the supernatant (2 × 10 min, 20,000× g, 4 ◦C), the pellet was
resuspended in a buffer solution containing 4 mM HEPES, 0.32 M sucrose, 10% fetal bovine
serum, and 10% dimethyl sulfoxide (DMSO), and stored at −80 ◦C until use. Glutamate
release experiments were performed using a method described previously in our earlier
publication [27].

On the experimental day, synaptosomal suspensions were defrosted, centrifuged
(10 min, 20,000× g, 4 ◦C), and the pellet was resuspended in 10 mM HE-PES buffer contain-
ing 5.4 mM KCl, 130 mM NaCl, 0.9 mM MgCl2, 1.3 mM CaCl2, and 5.5 mM glucose (pH 7.4).
The supernatant was collected from 10 mg synaptosomal suspensions centrifuged to an
8-well strip plate (15 min, 2500× g, 4 ◦C). Synaptosomes were equilibrated for 2 × 10 min
at 37 ◦C before stimulation in HEPES buffer containing 40 µM DL-TBOA, a competitive,
non-transportable blocker of excitatory amino acid transporters [23], to prevent glutamate
reuptake. In the experiments, test drugs were added during the equilibration periods as
pretreatment. After equilibration, a stimulation buffer containing 1 mM 4-aminopyridine
was used to induce depolarization and subsequent glutamate release. Following stimula-
tion, aliquots were taken at 8 min and stored at −20 ◦C until enzyme-linked fluorescent
assay analysis.

4.12. Enzyme-Linked Fluorescent Assay of Glutamate Released from Synaptosomes

Glutamate release was measured using Glutamate Oxidase Assay Kit purchased from
Sigma–Aldrich (St. Louis, MO, USA) using an enzyme-linked fluorescent assay. Briefly, the
samples were mixed with a working solution containing glutamate oxidase (0.04 U/mL),
horseradish peroxidase (0.125 U/mL), and Amplex Red (50 µM) (final concentrations),
and fluorescent readings were performed after 30 min incubation at 37 ◦C. Excitation and
emission wavelengths were 530 nm and 590 nm, respectively.

4.13. Statistical Analysis

GraphPad Prism 8.0 Software (San Diego, CA, USA), a statistical analysis program,
was used to analyze the data. All data were presented as mean ± standard error of means
(S.E.M.). All data were analyzed by one-way or two-way ANOVA followed by Dunnett’s
post-hoc test for multiple comparisons. Significant differences were considered if p < 0.05.
ROUT analysis was performed to identify outliers, with a Q value = 0.5%

5. Conclusions

The current consensus from the present work is that the onset of action of pregabalin
and tolperisone to produce an antiallodynic effect is 2 weeks after oral administration.
We have demonstrated, for the first time, that the oral combination of tolperisone and
pregabalin acutely produces analgesia against allodynia evoked by pSNL without motor
or gastrointestinal transit-related adverse effects. Mechanistically, targeting both voltage-
gated sodium and calcium channels could modulate the glutamatergic neurotransmission
as reflected by the normalized neuropathy-induced elevation of the CSF glutamate content.
The preclinical pharmacological characterization of existing and novel medications, or their
combination, can provide clinical researchers with actionable and objective insights into
developing or repurposing attitudes.
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Figure A2. The antiallodynic effect of carbamazepine on pSNL evoked allodynia. The PWTs were
measured on day 7 prior to and after a single treatment (panel (a)), on day 14 (1 week treatment)
(panel (b)), on day 21 (2 weeks treatment) (panel (c)), and on day 14 after a single treatment (panel
(d)) after the operation. Tactile allodynia was measured by DPA at 60, 120, and 180 min after oral
treatment. Data are shown as the mean ± SEM of 6–7 animals (panels (a–c)) and 4–13 animals
(panel (d)) in each group. p > 0.05, statistically not significant: treated groups versus the vehicle
right (operated) paw at the indicated time points after treatment (two-way ANOVA followed by
Dunnett’s post-hoc test). Baseline (b.l.): was measured before the first treatment. Single treatment:
was measured after acute administration on day 7 after the operation.
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79. Zádor, F.; Balogh, M.; Váradi, A.; Zádori, Z.S.; Király, K.; Szűcs, E.; Varga, B.; Lázár, B.; Hosztafi, S.; Riba, P.; et al. 14-O-
Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity. Eur. J. Pharmacol. 2017, 814,
264–273. [CrossRef] [PubMed]

80. Courteix, C.; Bardin, M.; Chantelauze, C.; Lavarenne, J.; Eschalier, A. Study of the sensitivity of the diabetes-induced pain model
in rats to a range of analgesics. Pain 1994, 57, 153–160. [CrossRef]

81. Rajaei, Z.; Hadjzadeh, M.-A.; Nemati, H.; Hosseini, M.; Ahmadi, M.; Shafiee, S. Antihyperglycemic and Antioxidant Activity of
Crocin in Streptozotocin-Induced Diabetic Rats. J. Med. Food 2013, 16, 206–210. [CrossRef] [PubMed]

82. Courteix, C.; Eschalier, A.; Lavarenne, J. Streptozocin-induced diabetic rats: Behavioural evidence for a model of chronic pain.
Pain 1993, 53, 81–88. [CrossRef] [PubMed]

https://doi.org/10.1016/S0304-3959(99)00169-4
https://doi.org/10.1016/j.pbb.2015.11.008
https://www.ncbi.nlm.nih.gov/pubmed/26597514
https://www.ncbi.nlm.nih.gov/pubmed/9435180
https://doi.org/10.1124/mol.113.090472
https://doi.org/10.1002/ejp.1192
https://www.ncbi.nlm.nih.gov/pubmed/29369456
https://doi.org/10.4103/2231-0738.106987
https://doi.org/10.4314/tjpr.v15i6.11
https://doi.org/10.1111/j.1528-1157.1999.tb00936.x
https://doi.org/10.1111/j.1468-2982.2007.01483.x
https://doi.org/10.1136/pgmj.57.663.16
https://www.ncbi.nlm.nih.gov/pubmed/7279817
https://doi.org/10.2147/DHPS.S22385
https://doi.org/10.1097/01.nrl.0000144733.61110.25
https://doi.org/10.1093/bja/aen088
https://www.ncbi.nlm.nih.gov/pubmed/18417503
https://doi.org/10.1016/j.neuropharm.2009.04.010
https://www.ncbi.nlm.nih.gov/pubmed/19422840
https://doi.org/10.1016/0304-3940(95)11326-R
https://doi.org/10.1016/0006-8993(93)91368-3
www.elsevier.nl/locate/pain
https://doi.org/10.1016/j.jpain.2004.12.007
https://doi.org/10.1212/01.WNL.0000145767.36287.A1
https://www.ncbi.nlm.nih.gov/pubmed/15596757
https://doi.org/10.4183/aeb.2018.294
https://www.ncbi.nlm.nih.gov/pubmed/31149274
https://doi.org/10.1016/j.brainresbull.2019.02.001
https://www.ncbi.nlm.nih.gov/pubmed/30738866
https://doi.org/10.1016/j.ejphar.2017.08.034
https://www.ncbi.nlm.nih.gov/pubmed/28864212
https://doi.org/10.1016/0304-3959(94)90218-6
https://doi.org/10.1089/jmf.2012.2407
https://www.ncbi.nlm.nih.gov/pubmed/23437790
https://doi.org/10.1016/0304-3959(93)90059-X
https://www.ncbi.nlm.nih.gov/pubmed/8316394


Pharmaceuticals 2023, 16, 1115 24 of 24
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