Differential Synaptic Vesicle Priming States Determine Synaptic Strength at Hippocampal Glutamatergic Synapses

A Short Thesis Book by:

Mohammad Nour Eddin Mahmoud Aldahabi

János Szentágothai Neurosciences Division Doctoral College, Semmelweis University

Supervisor: Zoltan Nusser, DSc

Official reviewers: Gergely Zachar, PhD

Gábor Molnár, PhD

President of the Complex exam committee:

Gábor Gerber, DMD, PhD

Complex examination committee:

Zita Puskár, M.D, PhD Tibor Zelles, PhD Katalin Schlett, PhD

Budapest, 2025

1. INTRODUCTION

The hippocampal formation, located in the medial temporal lobe, plays a vital role in spatial and episodic memory, as well as cognitive map formation and attentional control. Information within its subfields is precisely regulated by various types of principal neurons and interneurons. This thesis focuses on synaptic transmission within the hippocampal CA1 region, specifically examining the connections between pyramidal cells (PCs) and two distinct types of GABAergic interneurons (INs).

Synaptic transmission, the fundamental process of neuronal communication, occurs at chemical synapses. When an action potential (AP) reaches presynaptic boutons, synaptic vesicles (SVs) fuse with the active zone (AZ) membrane, releasing neurotransmitters into the synaptic cleft. These neurotransmitters then bind to postsynaptic neurotransmitter receptors, causing them to open and generate a postsynaptic current. This intricate process involves SV tethering, docking and priming at the AZ, followed by Ca²⁺-triggered fusion. The strength of

this communication, or synaptic efficacy, depends on the probability and amount of neurotransmitter release, alongside the number of activated postsynaptic receptors.

Synaptic efficacy is dynamic; it undergoes activitydependent changes known as short-term plasticity (STP), which can manifest as either facilitation or depression. A key observation in cortical networks is that PCs form strong synapses characterized by high SV release probability (Pv) and short-term depression (STD) when they innervate parvalbumin-expressing fast-spiking interneurons (FSINs). In contrast, the same PC axons form weak synapses with low Pv and short-term facilitation (STF) when they innervate somatostatinexpressing interneurons (SST-INs), such as orienslacunosum moleculare interneurons (O-LM INs). Despite their distinct functional roles, the precise molecular mechanisms driving these differences in Pv and STP at hippocampal CA1 PC - FSIN and PC - O-LM IN synapses are largely unknown. This study aims to shed light on these mechanisms.

2. OBJECTIVES

Despite extensive research, the exact molecular mechanisms underlying differences in Pv and STP remain incompletely understood. This study investigated the distinct functional properties of hippocampal CA1 PC to FSIN connections (characterized by high Pv, STD) and PC to O-LM IN connections (characterized by low Pv, STF). This research aimed to answer the following key questions about these mechanisms:

- Target-cell-specific localization of presynaptic molecules: To investigate the target-cell-specific localization of presynaptic molecules, particularly Munc13-2, at AZs of PC axons targeting O-LM INs, and determine its influence on Pv and STF.
- **Differential Effective [Ca2+] Reaching Docked SVs:** To examine if differences in the effective [Ca²⁺] reaching SVs at their release sites (RSs) contribute to the *Pv* disparity. This could be due to variations in the number or conductance of voltage-gated Ca²⁺ channels (VGCCs), or the

coupling distance between these channels and the Ca²⁺ sensor for SV fusion.

- Differential Occupancy of RSs by SVs: To assess whether a lower occupancy of RSs by SVs at PC O-LM IN synapses contributes to their low Pv. Pv can be viewed as the product of the probability that a docking site is occupied by an SV (Pocc) and the probability with which a docked vesicle is released (Pfusion) upon AP arrival.
- **Priming State of Docked SVs:** To determine if differences in the priming state of docked SVs, specifically a lower proportion of fusion-competent vesicles at O-LM IN-innervating synapses, are the primary cause of *Pv* differences.

3. METHODS

This study employed a multi-faceted approach combining electrophysiology, pharmacology, high-resolution immunolocalization, and mathematical modelling to investigate synaptic properties in hippocampal CA1 PCs.

- Animals: Adult male and female transgenic mice (Chrna2-Cre-tdTomato for IN O-LM identification. Elfn1-KO. and Munc13-2 conditional KO) were used. C57BL/6J mice were used for SDS-FRL and immunofluorescent experiments. All experiments adhered Hungarian Act of Animal Care and Experimentation.
- Virus Injection: AAVs expressing Crerecombinase were injected into the dorsal hippocampus to achieve conditional gene knockout of Munc13-2 in CA1 PCs.
- Slice Preparation: Acute coronal hippocampal slices (250-300 μm thick) were prepared from anesthetized mice using a vibratome and

incubated in oxygenated artificial cerebrospinal fluid (ACSF).

- patch-clamp paired recordings were performed at 32-33°C. Presynaptic PCs were held in current-clamp, and postsynaptic INs (FSINs or O-LM INs identified by fluorescence/morphology/firing pattern) were held in voltage-clamp. Action potentials were evoked in PCs using depolarizing current pulses, and excitatory postsynaptic currents (EPSCs) were recorded. Various stimulation protocols (e.g., 3-5 APs at 40 Hz, trains at 5, 20, 100 Hz, and complex protocols for modelling) were applied.
- Pharmacological agents, including ω-Conotoxin GVIA (N-type Ca²⁺ channel blocker), 4-aminopyridine (4-AP, a K⁺ channel blocker), and Phorbol 12,13-dibutyrate (PDBU, a Munc13 activator), were used to assess their effects on EPSC amplitudes and STP.

- Two-Photon Laser Scanning Microscopy: Ca²⁺ imaging was conducted in local axon collaterals of CA1 PCs to measure AP-evoked Ca²⁺ transients using Fluo5F, with postsynaptic targets (parvalbumin+- or mGluR1α+-targeting boutons) identified *post hoc*.
- Tissue Processing and Immunolabeling: After electrophysiological recordings, slices were fixed, sectioned, and biocytin-filled cells were visualized. Multiplexed postembedding immunolabeling was performed to investigate the colocalization and density of synaptic proteins (e.g., Munc13-2, mGluR1α, mGluR7, PSD95, AMPA receptors, Bassoon, Cav2.1 VGCC subunit, Rim1/2).
- EM Tomography: Electron microscopy tomography was used to analyse the ultrastructure of synapses and quantify the density and spatial distribution of docked SVs in AZs targeting FSINs or O-LM INs.

- SDS-Digested Freeze-Fracture Replica
 Labeling (SDS-FRL): This technique was used to
 investigate the nanoscale distribution of Ca_v2.1
 (P/Q-type VGCC) and Munc13-1 (as a marker for
 RSs) in AZs targeting FSINs or O-LM INs. The
 mirror replica method allowed for simultaneous
 labeling of pre- and postsynaptic components.
- Modelling Short-Term Plasticity: The sequential two-step priming model (Lin et al., 2022) was implemented in Berkeley Madonna. This model includes loosely docked (LS) and tightly docked (TS) states, with an additional labile tightly docked state (TSL) for high-frequency release. Model parameters were optimized to fit experimental EPSC data, and root-mean-square deviation (RMSD) was calculated to quantify the goodness of fit.

4. CONCLUSIONS

This study investigated the mechanisms underlying postsynaptic target cell type-dependent *Pv* and STP at two distinct hippocampal CA1 PC connections: those to FSINs and those to O-LM INs.

Our key findings are as follows:

- Differential Synaptic Strength and STP: PC –
 FSIN connections exhibited strong synapses with
 a Pv more than ten times greater than PC O-LM
 IN connections, displaying STD. Conversely, PC
 O-LM IN connections were weak and displayed
 STF.
- Munc13-2 Localization and Function:
 Presynaptic Munc13-2 was selectively enriched at low-Pv PC O-LM IN synapses in an Elfn1-dependent manner. However, conditional knockout of Munc13-2 in CA1 PCs did not significantly affect the evoked EPSC peak amplitudes or STP patterns, indicating that Munc13-2 is not the primary determinant of the

low Pv at these synapses. This suggests that the functional effects of Elfn1 removal (increased EPSC amplitude and reduced STF) are solely due to the loss of mGluR7.

Calcium Channel Distribution and Influx: High-resolution immunolocalization revealed that while the overall spatial distribution of Cav2.1 (P/Q-type VGCC) around RSs was similar, the density of these channels was significantly higher in FSIN-targeting AZs compared to O-LM INtargeting AZs. While presynaptic AP-evoked Ca²⁺ influx was approximately 40% greater at PC -FSIN connections, this difference alone was insufficient to explain the ~10-fold disparity in synaptic strength. Experimentally matching Ca²⁺ influx with 4-AP only resulted in a 2.7-fold increase in evoked EPSCs at PC - O-LM IN connections, which still remained ~7-fold smaller than PC – FSIN synapses. This argues that P_{fusion} is not the sole, or even primary, limiting factor for Pv.

- Synaptic Vesicle Priming States: The phorbol ester analog PDBU, which enhances Munc13 activity and SV priming, caused a significant ~4.5-fold augmentation of evoked EPSCs at PC O-LM IN synapses, compared to only a 1.7-fold increase at PC FSIN synapses. This differential sensitivity strongly indicates distinct SV priming states between the two synapse types. Electron microscopy analysis showed similar densities of docked SVs in AZs innervating both FSINs and O-LM INs, ruling out differences in RS occupancy by morphologically docked vesicles. This points to incompletely primed, yet docked, vesicles limiting PC O-LM IN synapse output.
- Mathematical Modelling of Priming: Using a sequential two-step SV priming model, we accurately reproduced the complex STP patterns observed at both PC FSIN and PC O-LM IN synapses. The model revealed that the primary difference underlying the distinct *Pv* at these connections lies in a substantial difference in the

fraction of well-primed SVs (TS fraction), rather than a major difference in the P_{fusion} of these SVs. Specifically, PC – FSIN connections had a P_{fusion} of 0.6 and a TS fraction of 0.44, while PC – O-LM IN synapses had a P_{fusion} of only 0.36, but a remarkably lower TS fraction of 0.07. The model demonstrated that modifying only three key parameters related to the second priming step (k_{2_0} and s_2) and P_{fusion} was sufficient to transform the depressing PC – FSIN-like release dynamics into facilitating PC – O-LM IN-like dynamics.

In summary, this study provides compelling evidence that the profound differences in synaptic strength and STP between two hippocampal glutamatergic synapses targeting distinct IN types are primarily governed by the differential proportion of SVs residing in a fusion-competent, well-primed state, rather than variations in Ca^{2+} influx or the intrinsic P_{fusion} of these vesicles. These findings not only clarify the fundamental principles governing synaptic strength but also open new avenues

for understanding and potentially modulating neuronal circuit function in health and disease.

5. BIBLIOGRAPHY OF PUBLICATIONS

Publications Related to the Thesis:

- Holderith, N., Aldahabi, M., & Nusser, Z. (2022).
 Selective Enrichment of Munc13-2 in Presynaptic Active Zones of Hippocampal Pyramidal Cells That Innervate mGluR1α Expressing Interneurons. Frontiers in Synaptic Neuroscience, 13. https://doi.org/10.3389/fnsyn.2021.773209
- Aldahabi, M., Balint, F., Holderith, N., Lorincz, A., Reva, M., & Nusser, Z. (2022). Different priming states of synaptic vesicles underlie distinct release probabilities at hippocampal excitatory synapses. Neuron, 110(24), 4144-4161.e7.

https://doi.org/10.1016/j.neuron.2022.09.035

 Aldahabi, M., Neher, E., & Nusser, Z. (2024).
 Different states of synaptic vesicle priming explain target cell type-dependent differences in neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 121(18). https://doi.org/10.1073/pnas.2322550121

Publications Not Related to the Thesis:

- Heredi, J., Olah, G., Sumegi, M., Paul Lukacs, I., Aldahabi, M., Újfalussy, B. B., Makara, J. K., & Nusser, Z. (2025). Increased excitatory synapse size in hippocampal place cells compared to silent cells. Proceedings of the National Academy of Sciences, 122(23). https://doi.org/10.1073/pnas.2505322122
- Alzghoul, L., Abdelhamid, S. S., Yanis, A. H., Qwaider, Y. Z., Aldahabi, M., & Albdour, S. A. (2019). The association between levels of inflammatory markers in autistic children compared to their unaffected siblings and unrelated healthy controls. Turkish Journal of Medical Sciences, 49(4).

https://doi.org/10.3906/sag-1812-16