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1 Introduction 

1.1 The Complexity and Functional Connectivity of the Human Brain 

The human brain is an extraordinary organ, renowned for its complexity and capability. 

Encompassing several billion neurons, the brain facilitates an extensive range of functions 

that are essential for survival and interaction with the environment. These functions 

include basic physiological processes such as breathing and heart rate regulation, as well 

as more advanced activities like perception, language, memory, and reasoning. The 

architecture of the brain is intricately organized into distinct regions, each dedicated to 

specific roles. For instance, the occipital lobe is primarily involved in visual processing 

(1), the temporal lobe in auditory perception and memory (2), and the frontal lobe in 

executive functions and decision-making (3, 4). Despite their specialized roles, these 

regions do not function in isolation. Instead, they engage in constant communication, 

forming a highly integrated network that enables the brain to execute complex functions 

and tasks. Consequently, evaluating the functional connectivity (FC) of the brain – i.e., 

how the distinct brain regions interact with one another (5) – has gained significant 

traction through the past decades. The aim of this notion was to achieve a better 

understanding of the system-level neurophysiological foundation of mental processes and 

functioning (6). Earlier research has described that specific groups of brain regions form 

functional networks through their synchronized activity, including the default mode 

network (7), the task positive network (8), and the dorsal and frontotemporal attention 

networks (9). One particular relevance – among others – of such research lies in that it 

helps understanding alterations in cognitive functions related to aging from a multitude 

of aspects. 

1.2 Alterations of Connectivity in Healthy Aging 

1.2.1 Cognitive Decline 

It is well known that even in healthy aging several physiological functions gradually start 

to deteriorate, including the cardiovascular, respiratory, skeletomuscular or immune 

systems (10-12). Furthermore, the decline in cognitive abilities during healthy aging (13, 

14), in the absence of any pathological condition (15, 16), is particularly significant. The 

effects of aging-related cognitive decline are various and far-reaching. It affects a plethora 
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of daily activities decreasing quality of life and also carries physiological and socio-

economical consequences (17). Additionally, even with the methods and tools of current 

biomedical technology it is a strenuous and difficult task to distinguish naturally 

occurring loss of cognitive capacity from early dementia or developing Mild Cognitive 

Impairment (18). In these conditions early diagnosis is essential for an effective 

intervention, thus it is an especially important issue. Consequently, numerous studies 

aimed to find neurophysiological markers connected to various aspects of healthy aging; 

however, only a handful of biomarkers have been discovered that can be resolutely linked 

to loss of cognitive capabilities (19).  

1.2.2 Functional Network Topology  

It has been established in preceding studies that the aging brain demonstrates distinct 

functional network topology compared to those of younger individuals (20-22). As of 

now, the extent and precise nature of such changes are not fully understood; however, it 

is speculated that the cell and subsequent function loss, plus the resulting compensatory 

mechanisms manifest in these alterations (23, 24). Additionally, connections have been 

uncovered between resting-state FC patterns and performance in cognitive tests in the 

elderly population (25-27). FC has been proved to be affected in several clinical 

conditions (28) – predominantly in older individuals – that has an impact on cognitive 

functioning, for instance Alzheimer’s Disease, Parkinson’s Disease (29) or Mild 

Cognitive Impairment. Moreover, the severity of the symptoms was associated with 

connectivity measures (30-32). Considering another angle, earlier studies – employing a 

wide variety of imaging modalities – found that functional networks go through a 

reorganization reacting to the amplified mental workload or during task solving (33-37). 

The explanation behind this phenomenon might be that throughout task completion - in 

order to be more efficient - unnecessary connections should be trimmed and the 

appropriate ones for the task at hand activated (38). Also, it was suggested that such a 

task-related reorganization could be differing in the aged population compared to the 

youth. This notion is supported by recent evidence demonstrating age-related differences 

in task-induced functional reorganization, particularly within theta oscillatory networks. 

Gómez-Lombardi et al. (2024) (39) revealed that older adults exhibit slower individual 

frontal theta frequencies and weaker effective connectivity during an auditory inhibitory 

control task compared to younger adults. These alterations were associated with 
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diminished task performance, suggesting that the reduced capacity for efficient network 

reorganization of the aging brain may reflect underlying changes in oscillatory dynamics 

and connectivity patterns. This phenomenon in the elderly brain is possibly the 

manifestation of the diminished ability to handle increased workload (40). A 2024 review 

by Tanaka et al. (41) highlighted the potential of electroencephalography-based (EEG) 

markers for early detection of cognitive decline in older adults. They found that increased 

theta/alpha brain wave ratio and alterations in FC patterns may indicate early cognitive 

changes, even before a structural shift in the brain is apparent. Based on these 

considerations, FC might offer valuable insight into cognitive changes associated with 

aging and their underlying neurophysiological mechanisms. Nevertheless, despite  these 

recent efforts markers that might link brain connectivity pattern changes to age-related 

alterations in cognition are scarce, and therefore more research is warranted in this 

direction (24, 42-46).  

1.3 Fractal Dynamics in Complex Systems and Brain Networks 

Many complex systems express fractal dynamics manifesting as long-term 

autocorrelations decaying according to a power-law function. Such processes are often of 

natural phenomena (47), geophysical systems (48, 49), meteorological data (50), financial 

markets (51, 52) or functional brain networks (53-55). These systems share a common 

property: their statistical properties exhibit power-law scaling. Moreover, scale-free (or 

fractal) correlations are expressed both within the univariate dynamics of their separate 

components and within their interactions, too. In the former scenario, the autocorrelation 

function of the process demonstrates slow decay, whereas in the latter, a similar pattern 

is observed in the cross-correlation function of the two assessed processes. Regardless, a 

fundamental aspect of both situations is the ability to establish a power-law relationship 

between the correlation and the scale of observation (56). The same holds true in the 

frequency domain, as well. In that case, long-range coupling is indicated by the power-

law dependency of auto- and cross-spectral power on the frequency (57). Commonly, the 

attained fractal scaling exponent is used to characterize this power-law relationship, 

termed the Hurst exponent (𝐻) in the time- and spectral slope (𝛽) in the frequency 

domain. The two measures are related and inherently equivalent (57, 58). In the case of 

brain activity, fractal dynamics most commonly denotes the long-term autocorrelation in 

univariate neural fluctuations (58, 59). However, the importance of identifying long-term 
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couplings of distinct brain regions – and thus extending fractal analysis to the connectivity 

domain – lies in the fact that it can provide insight on the functional organization of the 

brain in a way which single-scale or scale dependent analyses cannot. For this reason, 

recent years saw an upsurge in research interest towards fractal connectivity (FrC) (53, 

54, 60-62). Novel research has further expanded the application of fractal measures to 

clinical contexts, offering unique insights into neurophysiological changes associated 

with therapeutic interventions. For instance, Denier et al. (2024) (63) utilized Higuchi's 

Fractal Dimension (HFD) – a measure of temporal complexity – to assess neuroplasticity 

induced by electroconvulsive therapy (ECT) in patients with depression. Their study 

demonstrated significant increases in HFD values within the anterior and posterior 

hippocampi following ECT, indicating enhanced complexity and irregularity in neural 

activity. These results align with prior evidence linking fractal scaling properties to 

cognitive performance and underscore the utility of fractal analysis for exploring brain 

dynamics beyond traditional connectivity measures. 

1.3.1 The Fractal Nature of Neural Activity and Functional Connectivity 

As stressed previously, it has been established by earlier studies that neural activity 

displays fractal temporal scaling in its dynamics,  and this property can be characterized 

with a scaling exponent both in the time and frequency domains (64). Despite the fact 

that the exact neural foundation of this scale-free nature is not yet completely understood, 

its physiological relevance is indicated by previous evidence showing that the fractal 

scaling exponent varies in various scenarios, such as during sustained attention (51), in 

certain psychiatric conditions like schizophrenia (65) or in aging (66-68). Recent research 

by Seeburger et al. (69) further supports this notion, demonstrating that time-varying 

functional connectivity of low-frequency fluctuations across different brain networks 

varies with fluctuations in sustained attention. These findings align with and extend the 

work of Achard and colleagues (53) who demonstrated that this phenomenon is not 

exclusively present in regional (i.e., univariate) neural activity, but it manifests in the 

coordinated activity across different brain regions, too. As a matter of fact, several studies 

– employing a wide selection of imaging modalities and techniques – confirmed since 

then the fractal scaling nature of FC dynamics (60, 70-72). Moreover, in a recent study 

FrC patterns were also found altered in reaction to a pattern recognition test, meant to 

induce increased mental workload (62), implying that FrC and cognitive functioning are 
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connected. Generally, one can apply two approaches in FrC assessment: i) connectivity 

is estimated in a time-resolved manner and then the fractal scaling is determined from the 

fluctuations in the acquired measurements (73-76), or ii) the power-law or scale-free 

coupling is computed directly and the fractal nature of the data is described through the 

bivariate scaling exponent (56, 57, 61, 77). Several techniques have been devised for both 

strategies; however, a common limitation of them is that in order to produce unbiased 

results the input data needs to be a purely fractal signal, devoid of any harmonic or 

oscillatory components. Thus, it is important to evaluate the degree of bias these 

components introduce in the estimation of fractal measures, not only for the 

characterization of the bias itself, but mainly because the two constituents (fractal and 

oscillatory) of the signal might also capture/represent separate underlying mechanisms. 

This concept in the case of neural activity is of key importance, as neurophysiological 

fluctuations are known as a combination of broad- and narrow-band (i.e. fractal and 

oscillatory) activities in an EEG recording: oscillatory components appear at 

characteristic frequencies such as theta or alpha oscillations, superimposed on a scale-

free “background” activity (64, 78, 79). Additionally, the mechanisms producing these 

fluctuations are presumed to be exceedingly dissimilar in the two instances (80, 81). The 

same concept is also relevant in the context of brain functional connectivity. For example, 

synchronized alpha activity could manifest as a peak overlaid on the otherwise broadband 

cross-coherence spectrum (82). Therefore, isolating the fractal constituents from the rest 

of the signal seems to be crucial in assessing fractal attributes of neural activity, and this 

holds true for both univariate and multivariate scenarios. 

1.3.2 Fractal Analysis of Neural Activity 

For univariate fractal analysis of electrocorticography (ECoG) recordings, He and 

colleagues (78) employed a method called coarse-graining spectral analysis (CGSA) in 

order to prune the power-spectra of the signals from oscillatory spikes and thus counteract 

the bias they introduce in the estimation of the spectral slope. The method was first 

proposed by Yamamoto and Hughson (83) whom later developed it further (84). 

Originally, they employed this approach in hear-rate variability analyses and 

interestingly, the method was applied to trim the fractal components from the data, not 

the oscillatory. In summary, CGSA takes advantage of the self-affine characteristics of 

fractal processes; more precisely, when the process is resampled at a different time scale, 
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the statistical distribution of the data remains unchanged (85). What this means is that the 

power spectrum of a fractal process remains the same only adjusted by the resampling 

factor and Hurst exponent after resampling, whereas in an oscillatory signal the spikes 

get relocated by the change in sampling rate (for more details, see section 3.1.1). To put 

it differently, for a given frequency this means that after resampling, power will remain 

as non-zero if the process displays fractal characteristics, while it will drop to nearly zero 

if the signal is only periodic at that frequency. This phenomenon enables one to recreate 

the power spectrum of a fractal signal by calculating the cross-spectrum of the original 

signal and its resampled version (83, 84). Building upon the same principles, Wen and 

Liu (86) introduced a more advanced method called irregular resampling auto-spectral 

analysis (IRASA) to differentiate between fractal and oscillatory components in neural 

activity. IRASA addresses several limitations of CGSA – such as its incapacity to manage 

numerous oscillatory components that are interconnected through the scaling factor – by 

using a series of non-integer rescaling factors, instead of only two. Specifically, additional 

details are available in the Methods section.  

Despite their many advantages, neither CGSA or IRASA can be employed in 

bivariate signal analysis, only in univariate scenarios (i.e. individual recordings). 

Additionally, identical difficulties arise when one is to explore FC in the frequency 

domain. The broadband cross-coherency spectrum, which implies fractal connectivity, 

might contain oscillatory peaks – the manifestation of e.g. extensive cortical alpha 

synchronization – even in resting (82) or during mental exercise (87). Therefore, methods 

that can remove the effects of such scale-dependent interactions and set apart the scale-

free constituent of statistical interdependence are essential for a deeper understanding of 

fractal brain connectivity. For this reason, our lab started to develop an extension of the 

IRASA method to the bivariate case, which we later termed Multiple-Resampling Cross-

Spectral analysis (MRCSA) for separating the fractal constituent within the cross-spectral 

density of paired neurophysiological signals (88). MRCSA can provide a theoretically 

unbiased estimate of the fractal cross-spectrum and consequently the cross-spectral slope, 

and while its ability to completely isolate the oscillatory constituents is hindered by the 

potentially intricate interactions between fractal and oscillatory components, it can 

contribute valuable insights into fractal connectivity by evaluating the ratio of fractal to 

overall cross-spectral power. Furthermore, MRCSA enables unbiased assessment of 
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fractal properties, not just in regional neural activity but also in fractal connectivity 

networks.  

In summary, functional connectivity and fractal dynamics of neurophysiological 

signals appear as a hallmark for complex brain functioning, which warrants further 

research. Specifically, these traits appear to be relevant for cognitive functions, as well as 

they were found altered in healthy aging, in line with reduced cognitive capabilities. 

Therefore, we hypothesized that integrating the two concepts of fractal dynamics and 

functional connectivity within fractal connectivity analysis could offer novel and useful 

neural markers connecting age-related alterations in brain network topology to decline in 

cognitive abilities. I was intrigued and captivated by the concept of fractal connectivity 

and its plausible physiological relevance and implications, and thus I made it the primary 

subject of interest during my PhD studies. My overall goal was to apply this concept on 

physiological data to explore conditions where it might prove to be valuable according to 

previous research. In what follows, I will demonstrate that fractal connectivity indeed 

plays a relevant role in adapting to increased mental workload, as well as I will show how 

it is affected in healthy aging and related changes in cognitive capabilities.  
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2 Objectives 

Fractal connectivity is an emerging concept in neuroscience that fuses the theory of 

functional connectivity with the well-known scale-free characteristic of neural dynamics; 

however, its physiological relevance is not yet understood. Accordingly, my work had 

two main objectives. My first goal was to validate our recently developed MRCSA 

technique to assess fractal connectivity in in vivo EEG recordings. Since both functional 

brain connectivity and fractal dynamics of regional neural activity had been previously 

associated with increased mental workload, I hypothesized that performing a simple 

cognitive task (such as word generation) would result in a reorganization of fractal 

connectivity networks. Then, my second goal was to utilize this method to better 

understand how fractal connectivity might reflect changes in neural dynamics related to 

healthy aging, and how these patterns might explain lower cognitive performance 

commonly observed in elderly individuals, even in the absence of a pathological 

condition. In line, both reduced functional connectivity and reduction of long-term 

correlations were previously reported in aging, and these changes were often found 

associated with cognitive performance in various tasks. Therefore, I hypothesized that 

fractal connectivity could be a sensitive tool to assess both aspects simultaneously. 

Finally, to better understand how these neural patterns relate to cognition, I intended to 

contrast them with performance measures from a wide range of cognitive tasks indicative 

in age-related cognitive decline. 
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3 Materials and Methods 

This section is organized as follows. 

• First, I briefly summarize the core characteristics of fractal time series and show 

how this property can be exploited to separate the fractal component of a process 

from other (e.g., oscillatory) signal constituents, as well as how and why this 

method can be particularly relevant in the analysis of neural recordings. Then, I 

demonstrate how this technique can be generalized to multivariate time series to 

analyse fractal connectivity, yielding our MRCSA method. 

• Second, I describe the dataset and the performed analyses that were utilized to 

validate MRCSA dataset on EEG recordings collected in resting-state and while 

performing a simple word generation task. 

• Finally, I introduce the study we performed to investigate how fractal connectivity 

patterns change in healthy aging and how these neural signatures relate to 

cognitive performance in the young and elderly. 

3.1 Fractal processes and connectivity 

3.1.1 Self-affinity of fractal processes 

To demonstrate the self-affine property, let us have a fractal process 𝑓 (𝑡) and resample 

it with ℎ >  0 resampling factor where the resampled version is 𝑓ℎ(𝑡) = 𝑓(𝑡/ℎ). The 

process is ‘up-sampled’ when ℎ >  1 and ‘down-sampled’ if 0 < ℎ < 1. For instance, in 

the case of ℎ = 2 𝑓ℎ(𝑡) is equal to 𝑓(𝑡) sampled at double the original rate, whereas ℎ =

1/2 means that 𝑓ℎ(𝑡) only contains every second sample from 𝑓(𝑡). Importantly, in case 

of a fractal process the statistical distribution of the signal remains unchanged, and the 

characteristic self-affinity of fractal processes can be described as 

 𝑓ℎ(𝑡) ≜  ℎ𝐻𝑓(𝑡) , (1) 

where 𝐻 is the Hurst exponent (58). This equation means that resampling 𝑓(𝑡) by ℎ 

results in the same distribution as previously, only rescaled by factor ℎ𝐻 in the resampled 

𝑓ℎ(𝑡) time series (59, 84, 85). Additionally, subjecting 𝑓(𝑡) and 𝑓ℎ(𝑡) to the Fourier 

transformation, this self-affine property can be equivalently recognized as the frequency-

scaling attribute: 
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 𝐹ℎ(𝜔) ≜  ℎ𝐻𝐹(𝜔) , (2) 

where 𝐹(𝜔) and 𝐹ℎ(𝜔) correspond to the amplitudes of 𝑓(𝑡) and 𝑓ℎ(𝑡) at angular 

frequency 𝜔. The angular frequency 𝜔 and sampling rate  𝑟𝑠 relate to each other as 𝜔 =

2𝜋𝑟𝑠. Relatedly, fractal processes show a continuous, broadband frequency distribution. 

Within such a distribution, the relationship between spectral power (i.e. the squared 

amplitude) and frequency is described by a power-law function with a scaling exponent 

𝛽𝑥. Furthermore, in most cases spectral power shows an inverse proportionality to 

frequency (59). One can formalise these concepts as 

 |𝐹(𝜔)|2 ∝ 𝑐 ×  𝜔−𝛽  , (3) 

where 𝑐 is a constant. Consequently, the spectral power of a fractal signal is non-zero all 

through the spectrum and if illustrated on a log-log scale, it adheres to a straight line 

(linear function) with a slope being −𝛽𝑥. It must be emphasised that 𝛽𝑥 and 𝐻 are related 

and essentially the same as they capture identical scaling characteristics of the process 

(58, 85). In summary, power or amplitude spectrum is statistically similar after 

resampling, except for being rescaled by factor ℎ𝐻   in case of a fractal process. In contrast, 

the power spectrum of a periodic/oscillatory signal 𝑥(𝑡) containing a distinct set of 

sinusoidal elements with its characteristic frequencies 𝜔𝑖 will be zero (or nearly zero) 

everywhere except where the specific characteristic frequencies correspond to the 

constituting sinusoids. Particularly, resampling a periodic signal results in the non-zero 

‘peaks’ relocating in the power spectrum, conforming to ℎ, while the spectral power 

remains zero elsewhere, even including the original characteristic frequencies. Figure 1. 

illustrates the above-mentioned effects of resampling. Taking advantage of this 

peculiarity offers solutions when one means to separate or decompose the power spectrum 
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of a signal of mixed nature (containing periodic/oscillatory and fractal signals as well) 

into fractal and oscillatory components. 

 

Figure 1.The effects of resampling. The upper panel showcases the power spectrum of a 

purely fractal signal and its up- and downsampled versions. The lower panel illustrates 

the power spectrum of a purely oscillatory signal and that of its resampled versions. The 

power spectrum of the fractal signal remains unchanged (in distribution) while in the 

latter case the oscillatory peak gets relocated according to the resampling factor h. 

 

3.1.2 Separating the fractal component of the power spectrum 

3.1.2.1 Coarse Graining Spectral Analysis (CGSA) 

Yamamoto and Hughson (83) were the first to introduce a method called Coarse Graining 

Spectral Analysis (CGSA) not to separate the fractal component of a broadband spectrum, 

but to reduce the fractal ‘background’ noise. Their team studied heart rate variability time 

series thus they used this approach to eliminate the fractal component granting a better 

estimation of the oscillatory peaks, the focal point of their work. In their study, firstly, the 

cross-spectral power was computed from the original signal 𝑋 and the ‘coarse-grained’ 

(i.e. resampled by ℎ =  2−1) and rescaled (by dividing it by ℎ−𝐻) version 𝑋ℎ, obtaining 

the fractal power spectrum 𝑆𝑋𝑋ℎ
. Then, to procure the oscillatory component, the authors 

simply subtracted the fractal elements from the auto-power spectrum of the original signal 

𝑆𝑋𝑋  (83). However, an inherent limitation of the method is that 𝐻 needs to be estimated 
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beforehand (see below). Expanding on the previously mentioned concepts, the authors 

took advantage of (i) resampling and rescaling a fractal process should yield an equivalent 

amplitude spectrum as the original. Consequently, their cross-spectrum will be non-zero 

throughout all frequencies. However, in contrast, (ii) the cross-spectrum of a periodic 

signal and its resampled variant will gravitate to zero across all frequencies, thanks to the 

shift of the non-zero amplitudes in the spectra. 

Despite the highly perceptive nature of this approach, it had a number of 

shortcomings. First of those being the need to estimate 𝐻 prior to CGSA. For this purpose, 

the authors used rescaled range analysis (89). This issue was soon resolved by resampling 

by two different factors, ℎ and its reciprocal 1/ℎ (84). This method yielded two versions, 

one rescaled by ℎ𝐻 and one by 1/ℎ𝐻  =  ℎ−𝐻. Then, taking the two cross-spectra denoted 

as 𝑆𝑋𝑋ℎ  and 𝑆𝑋𝑋1 ℎ⁄
 and their geometric mean as  

 𝑆𝑋̅𝑋ℎ
=  √‖𝑆𝑋𝑋ℎ

‖ ∙ ‖𝑆𝑋𝑋1/ℎ
‖, (4) 

where 𝑆𝑋̅𝑋ℎ
denotes the corrected fractal power spectrum, then the separate estimation of 

𝐻 is no longer needed. Also worth noting the independence of this method from the 

rescaling factor ℎ >  0. However, there is a more serious limitation of CGSA as per Wen 

and Liu (86), namely that there are non-negligible interactions between the fractal and 

oscillatory constituents of a signal, thus the cross-spectrum of the original and the 

resampled version of a process containing both will have the same issue preventing the 

total elimination of periodic peaks. Lastly, when numerous oscillatory peaks are present 

and the characteristic frequencies relate to each other as 𝜔𝑖 = ℎ × 𝜔𝑗 or 𝜔𝑖 = 1 ℎ⁄ × 𝜔𝑗, 

it inhibits the workings of CGSA. As a result, the CGSA technique needed to be 

developed further to ameliorate these limitations. 

3.1.2.2 Irregular-Resampling Auto-Spectral Analysis (IRASA) 

Accordingly, Wen and Liu (86) proposed Irregular Resampling Auto-Spectral Analysis 

(IRASA) – a method building on the foundations of CGSA – as a way to overcome the 

aforementioned obstacles. In such a simple model the process 𝑦(𝑡) is comprised of a 

fractal 𝑓(𝑡) and an oscillatory 𝑥(𝑡) constituent: 
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 𝑦(𝑡) = 𝑓(𝑡) + 𝑥(𝑡). (5) 

The method makes the assumption that the examined signal 𝑦(𝑡) is completely 

without additive noise. In accordance with the linearity property, if one applies the Fourier 

transform to 𝑦(𝑡) it yields 

𝑌 (𝜔) = 𝐹(𝜔)𝑒−𝑗𝛼𝑥(𝜔) + 𝑋(𝜔)𝑒−𝑗𝛽𝑥(𝜔), (6) 

where the amplitude and the phase of the fractal constituent at frequency 𝜔 is indicated 

by 𝐹(𝜔) and 𝛼𝑥(𝜔), respectively, and for the oscillatory constituent 𝑋(𝜔) and 𝛽𝑥(𝜔) 

denote the same terms. Next, if one resamples 𝑦(𝑡) by factors ℎ and 1/ℎ (ℎ >  0) and 

marks the new versions as 𝑦ℎ(𝑡) and 𝑦1/ℎ(𝑡), then the auto-spectral power at a given 𝜔 

frequency, with similar notation as in Eq. (6), can be described as 

 
𝑆𝑦ℎ𝑦ℎ

(𝜔) =  [𝐹ℎ(𝜔)𝑒−𝑗𝛼ℎ(𝜔) + 𝑋ℎ(𝜔)𝑒−𝑗𝛽ℎ(𝜔)][𝐹ℎ(𝜔)𝑒𝑗𝛼ℎ(𝜔)

+ 𝑋ℎ(𝜔)𝑒𝑗𝛽ℎ(𝜔)] 
(7) 

for 𝑦(𝑡), and for 𝑦1 ℎ⁄ (𝑡) 

 
𝑆𝑦1/ℎ𝑦1/ℎ

(𝜔) =  [𝐹1/ℎ(𝜔)𝑒−𝑗𝛼1/ℎ(𝜔) +

𝑋1/ℎ(𝜔)𝑒−𝑗𝛽1/ℎ(𝜔)][𝐹1/ℎ(𝜔)𝑒𝑗𝛼1/ℎ(𝜔) + 𝑋1/ℎ(𝜔)𝑒𝑗𝛽1/ℎ(𝜔)]. 
(8) 

Consequently, by utilizing the concept outlined in Eq. (2), the above listed equations 

(7) and (8) can be rearranged as 

 𝑆𝑦ℎ𝑦ℎ
(𝜔) = ℎ2𝐻𝐹2(𝜔) ‖1 +

𝑋ℎ(𝜔)

𝐹ℎ(𝜔)
𝑒𝑗𝛼ℎ(𝜔)−𝑗𝛽ℎ(𝜔)‖

2

 (9) 

and 

 𝑆𝑦1 ℎ⁄ 𝑦1 ℎ⁄
(𝜔) = ℎ−2𝐻𝐹2(𝜔) ‖1 +

𝑋1 ℎ⁄ (𝜔)

𝐹1 ℎ⁄ (𝜔)
𝑒𝑗𝛼1 ℎ⁄ (𝜔)−𝑗𝛽1 ℎ⁄ (𝜔)‖

2

. (10) 

Then, taking the geometric mean of the two auto-spectra similarly to Eq. (4) the 

initial estimation of the fractal power spectrum 𝑆ℎ̅(𝜔) becomes possible, independently 

of ℎ and 𝐻  as 
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𝑆ℎ̅(𝜔) = √𝑆𝑦ℎ𝑦ℎ
(𝜔)𝑆𝑦1 ℎ⁄ 𝑦1 ℎ⁄

(𝜔) = 

= 𝐹2(𝜔) ‖1 +
𝑋ℎ(𝜔)

𝐹ℎ(𝜔)
𝑒𝑗𝛼ℎ(𝜔)−𝑗𝛽ℎ(𝜔)‖ ‖1 +

𝑋1 ℎ⁄ (𝜔)

𝐹1 ℎ⁄ (𝜔)
𝑒𝑗𝛼1 ℎ⁄ (𝜔)−𝑗𝛽1 ℎ⁄ (𝜔)‖. 

(11) 

If one considers an oscillatory constituent 𝑥(𝑡) which is comprised only of a single 

sinusoid at harmonic frequency 𝜔0, then, according to Eq. (11)  𝑆ℎ̅(𝜔) ≠ 𝐹2(𝜔) solely 

in two instances: 

a) 𝑆ℎ̅(𝜔) = 𝐹2(𝜔) ‖1 +
𝑋ℎ(𝜔)

𝐹ℎ(𝜔)
𝑒𝑗𝛼ℎ(𝜔)−𝑗𝛽ℎ(𝜔)‖ if 𝜔 = ℎ𝜔0 and 

𝑆ℎ̅(𝜔) = 𝐹2(𝜔) ‖1 +
𝑋1 ℎ⁄ (𝜔)

𝐹1 ℎ⁄ (𝜔)
𝑒𝑗𝛼1 ℎ⁄ (𝜔)−𝑗𝛽1 ℎ⁄ (𝜔)‖ if 𝜔 = 𝜔0 ℎ⁄ . 

(12) 

 b) 

In these cases, the estimation of the fractal spectrum is dependent on ℎ and thus 

𝑆ℎ̅(𝜔) produces biased results, meaning that the oscillatory component is not completely 

eliminated, only attenuated. However, utilizing a series of different resampling factors 

the oscillatory power at 𝜔0, which is non-zero at this point, is relocated to a different 

frequency at each instance. Exploiting this during the estimation process in using distinct 

resampling factors and their reciprocals, one gets a set of fractal power estimates for all 

frequencies. These yields will centralize to the true 𝐹2(𝜔) save for the cases of Eq. (12), 

where usually one outlier corresponds to ℎ. Accordingly, taking the median of these 

estimates at the separate frequencies will result in an unbiased estimate of 𝐹2(𝜔) for all 

𝜔, insofar as the amount of the outliers does not exceed 50% of the number of estimates 

(86). Importantly, IRASA becomes robust against the occurrence of several oscillatory 

components if one employs a large enough set of ℎ and 1/ℎ  factor pairs through 

decreasing the chance of them being related as 𝜔𝑖 = ℎ × 𝜔𝑗 or 𝜔𝑖 = 1 ℎ⁄ × 𝜔𝑗. 

Finally, the power spectrum of a mixed signal as in Eq. (5) is obtained as 

𝑌2(𝜔) = 𝑌(𝜔)𝑌(𝜔)̅̅ ̅̅ ̅̅ ̅ = 𝐹2(𝜔) + 𝑋2(𝜔) + 2𝐹(𝜔)𝑋(𝜔) cos(𝛼(𝜔) − 𝛽(𝜔)) (13) 

where 𝑌(𝜔)̅̅ ̅̅ ̅̅ ̅ is the complex conjugate of 𝑌(𝜔). Note, that the mixed power spectrum is 

comprised of fractal and oscillatory spectral densities and an additional confounding term. 

Importantly, the confounding term is defined by the phase difference of the fractal and 
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oscillatory elements. However, assuming the two elements are uncoupled, the second part 

of the confounding term is expected to be zero thus the whole confounding term can be 

eliminated by utilizing numerous sections of data and averaging it over the acquired 

spectra (86). Keep in mind, that this also assumes that the process is stationary during the 

sections employed. Finally, the theoretically unbiased estimate of the oscillatory power 

spectrum can be obtained by subtracting the fractal power spectrum from the 

original/mixed spectrum (86). With the assistance of IRASA, the fractal spectral exponent 

can be determined from only the fractal component, without the distorting effects of 

oscillatory constituents, which is particularly important in the case of neural signals which 

are known for their composite nature (i.e. broadband activity and alpha peaks) 

3.1.3 Extension to fractal connectivity: Multiple-Resampling Cross-Spectral 

Analysis 

Despite IRASA improving upon many shortcomings of CGSA, the method is still only 

applicable in univariate scenarios, while long-term correlations could very well be found 

between multiple as cross-correlation (52, 90, 91). Detrended cross-correlation analysis 

(DCCA) by Podobnik and Stanley (56) was the first-proposed method to assess such long-

range fractal coupling between two non-stationary processes. This technique quickly 

gained traction and was soon extended to the multifractal domain (92). Additionally, 

numerous other time-domain methods expanded on it including the detrended moving-

average cross-correlation analysis (93) and the height cross-correlation analysis (77). Yet, 

all of these methods have the same limitation: they are susceptible to the bias introduced 

by the presence of oscillatory components (see below). Fractal scaling in the bivariate 

case is analogous to the univariate one in that it is characterized by a scaling exponent. 

For processes x and y the bivariate fractal scaling or bivariate Hurst exponent is denoted 

as 𝐻𝑥𝑦(77). Furthermore, Kristoufek (57) proved that the analogy between the Hurst 

exponent and spectral scaling exponent holds true in the bivariate case, too, i.e., long-

range fractal coupling can be assessed also in the frequency domain and characterized 

with the cross-spectral scaling exponent. Specifically, in the event of long-term fractal 

interaction or coupling among processes 𝑥 and 𝑦 the relationship between cross-spectral 

power and frequency is established through a power-law function: 
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|𝑆𝑆𝑥𝑦|(𝜔) ∝ 𝑐 × 𝜔−𝛽𝑥𝑦, (14) 

where 𝑆𝑆𝑥𝑦(𝜔) denotes the cross-spectral power, 𝜔 as the frequency and the cross-

spectral exponent as 𝛽𝑥𝑦. 

This equation is analogous to Eq. (3) - and is the foundation to Multiple-Resampling 

Cross-Spectral Analysis - only in the bivariate case and 𝛽𝑥𝑦 and 𝐻𝑥𝑦 are similarly 

correspondent as 𝛽𝑥 and 𝐻𝑥 (57, 94). MRCSA is the extension of IRASA to the bivariate 

domain, so that the bivariate fractal exponent can be estimated without the distorting 

effects of oscillatory components. Additionally, this scaling property manifests in the 

frequency domain, as well. If one takes two processes of fractal nature 𝑘(𝑡) and 𝑙(𝑡) with 

a bivariate Hurst exponent 𝐻𝑘𝑙, then using ℎ as resampling factor on the processes, their 

new cross-spectrum 𝑆𝑆𝑘ℎ𝑙ℎ
(𝜔) will be identical to the original cross-spectrum 𝑆𝑆𝑘𝑙(𝜔) 

rescaled by ℎ𝐻𝑘𝑙  as 

|𝑆𝑆𝑘ℎ𝑙ℎ
(𝜔)| ≜ ℎ𝐻𝑘𝑙|𝑆𝑆𝑘𝑙(𝜔)|. (15) 

One may demonstrate it through applying the form in Eq. (13) to gain the cross-spectrum: 

𝑆𝑆𝑘ℎ𝑙ℎ
(𝜔) = 𝐹𝑘ℎ

(𝜔)𝐹𝑙ℎ
(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℎ𝐻𝑘𝐹𝑘(𝜔)ℎ𝐻𝑙𝐹𝑙(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ℎ𝐻𝑘+𝐻𝑙𝐹𝑘(𝜔)𝐹𝑙(𝜔)̅̅ ̅̅ ̅̅ ̅ = ℎ2𝐻𝑘𝑙𝑆𝑆𝑘𝑙(𝜔). 
(16) 

Eq. (15) and (16) shows that 𝐻𝑥𝑦 =
𝐻𝑥+𝐻𝑦

2
 , which has been derived theoretically in 

antecedent studies (56, 95-97). More specifically, from the three possible scenarios only 

two are feasible:  

• 𝐻𝑥𝑦 =
𝐻𝑥+𝐻𝑦

2
⇒ 2(𝐻𝑥 + 𝐻𝑦 − 2𝐻𝑥𝑦) = 0 ⇒ lim

𝜔→0+
𝐾𝑥𝑦

2 (𝜔) ∝ 𝑐𝑜𝑛𝑠𝑡. ⇒  ✓ 

• 𝐻𝑥𝑦 <
𝐻𝑥+𝐻𝑦

2
⇒ 2(𝐻𝑥 + 𝐻𝑦 − 2𝐻𝑥𝑦) > 0 ⇒ lim

𝜔→0+
𝐾𝑥𝑦

2 (𝜔) = 0 ⇒ ✓ 

• 𝐻𝑥𝑦 >
𝐻𝑥+𝐻𝑦

2
⇒ 2(𝐻𝑥 + 𝐻𝑦 − 2𝐻𝑥𝑦) < 0 ⇒ lim

𝜔→0+
𝐾𝑥𝑦

2 (𝜔) = +∞ ⇒  , 

 

where 𝐾𝑥𝑦
2 (𝜔) is the squared spectrum coherency at frequency 𝜔. As 𝐾𝑥𝑦

2 (𝜔) lies 

between 0 and 1, the last case contradicts these boundaries, thus it is infeasible. (96, 98, 

99) (99). Consequently, following the notions described in Eq. (7)-(12) and exploiting 
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this property, one could construct a method to extract the fractal element from the cross-

spectrum. This technique, which we termed Multiple Resampling Cross-Spectral 

Analysis (defined as MRCSA previously) is the direct extension of IRASA from the 

univariate to the bivariate domain, and its main purpose is to provide unbiased estimates 

of the cross-power spectral exponent. Figure 2. illustrates the main steps of MRCSA. 

Figure 2. Main steps of the MRCSA procedure. A: The left panel displays the cross-power 

spectrum acquired from a pair of long-range cross-correlated time series with a highly 

correlated oscillatory constituent at 10 Hz. The middle panels present the cross-power 

spectra after the signals have been upsampled (top) and downsampled (bottom) by factors 

ℎ and 1/ℎ, respectively. It is evident that resampling shifts the oscillatory peak from its 

‘original position’ at 10 Hz in both instances. The right panel illustrates the geometric 

mean of the up- and downsampled corss-spectra. B: The left panel shows the raw cross-

spectrum.  The middle panel displays the geometric means of the upsampled and 

h= 1,2 
h= 1,4 
h= 1,6 
h= 1,8 
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downsampled cross-spectra after resampling with different values of ℎ. Lastly, by taking 

the median, one can acquire the fractal cross-power spectrum, lacking an oscillatory 

peak (88). 

 

More elaborately, if one takes two processes of mixed nature, 𝑥(𝑡) = 𝑓𝑥(𝑡) + ℎ𝑥(𝑡) 

and 𝑦(𝑡) = 𝑓𝑦(𝑡) + ℎ𝑦(𝑡) with Hurst exponents of 𝐻𝑥 and 𝐻𝑦, respectively, where 𝑓𝑥(𝑡) 

is the fractal and ℎ𝑥(𝑡) is the oscillatory or harmonic component (not to be confused with 

ℎ, the rescaling factor), then one can gain the cross-spectrum of  𝑥(𝑡) and 𝑦(𝑡), denoted 

as |𝑆𝑆𝑥𝑦(𝜔)|: 

|𝑆𝑆𝑥𝑦(𝜔)| = |𝐹𝑥(𝜔)𝐹𝑦(𝜔)̅̅ ̅̅ ̅̅ ̅̅ |, (17) 

where the Fourier transforms of 𝑥(𝑡) and 𝑦(𝑡) are denoted as 𝐹𝑥(𝜔) and 𝐹𝑦(𝜔). Following 

the resampling procedure with ℎ and 1/ℎ, we get four different time series: 𝑥ℎ(𝑡), 𝑦ℎ(𝑡), 

𝑥1 ℎ⁄ (𝑡) and 𝑦1 ℎ⁄ (𝑡). Let us define the Fourier transforms of the fractal components as 

𝐹𝑋ℎ(𝜔)𝑒−𝑗𝛼ℎ(𝜔) and 𝐹𝑌ℎ(𝜔)𝑒−𝑗𝛾ℎ(𝜔) and of the oscillatory or harmonic components as 

𝐻𝑋ℎ(𝜔)𝑒−𝑗𝛽ℎ(𝜔) and 𝐻𝑌ℎ(𝜔)𝑒−𝑗𝛿ℎ(𝜔) , in the case of series 𝑥ℎ(𝑡) and 𝑦ℎ(𝑡). For 𝑥1 ℎ⁄ (𝑡) 

and 𝑦1 ℎ⁄ (𝑡) the notation is analogous with what has been described previously. From 

here, the cross-power spectrum of 𝑥ℎ(𝑡) and 𝑦ℎ(𝑡) can be acquired as 

𝑆𝑆𝑥ℎ𝑦ℎ
(𝜔) = [𝐹𝑋ℎ(𝜔)𝑒−𝑗𝛼ℎ(𝜔) + 𝐻𝑋ℎ(𝜔)𝑒−𝑗𝛽ℎ(𝜔)] 

[𝐹𝑌ℎ(𝜔)𝑒𝑗𝛾ℎ(𝜔) + 𝐻𝑌ℎ(𝜔)𝑒𝑗𝛿ℎ(𝜔)] = 

= ℎ𝐻𝑥+𝐻𝑦𝐹𝑋(𝜔)𝐹𝑌(𝜔)𝑒−𝑗(𝛼ℎ(𝜔)−𝛾ℎ(𝜔)) 

(1 +
𝐻𝑋ℎ(𝜔)

𝐹𝑋ℎ(𝜔)
𝑒−𝑗(𝛼ℎ(𝜔)−𝛽ℎ(𝜔))) (1 +

𝐻𝑌ℎ(𝜔)

𝐹𝑌ℎ(𝜔)
𝑒𝑗(𝛾ℎ(𝜔)−𝛿ℎ(𝜔))) 

(18) 

and in an equivalent manner for 𝑥1 ℎ⁄ (𝑡) and 𝑦1 ℎ⁄ (𝑡): 

𝑆𝑆𝑥1 ℎ⁄ 𝑦1 ℎ⁄
(𝜔) = [𝐹𝑋1 ℎ⁄ (𝜔)𝑒−𝑗𝛼1 ℎ⁄ (𝜔) + 𝐻𝑋1 ℎ⁄ (𝜔)𝑒−𝑗𝛽1 ℎ⁄ (𝜔)] 

[𝐹𝑌1 ℎ⁄ (𝜔)𝑒𝑗𝛾1 ℎ⁄ (𝜔) + 𝐻𝑌1 ℎ⁄ (𝜔)𝑒𝑗𝛿1 ℎ⁄ (𝜔)] = 

(19) 
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= ℎ−(𝐻𝑥+𝐻𝑦)𝐹𝑋(𝜔)𝐹𝑌(𝜔)𝑒−𝑗(𝛼1 ℎ⁄ (𝜔)−𝛾1 ℎ⁄ (𝜔)) 

(1 +
𝐻𝑋1 ℎ⁄ (𝜔)

𝐹𝑋1 ℎ⁄ (𝜔)
𝑒−𝑗(𝛼1 ℎ⁄ (𝜔)−𝛽1 ℎ⁄ (𝜔))) (1 +

𝐻𝑌1 ℎ⁄ (𝜔)

𝐹𝑌1 ℎ⁄ (𝜔)
𝑒𝑗(𝛾1 ℎ⁄ (𝜔)−𝛿1 ℎ⁄ (𝜔))). 

Then, the fractal cross-power spectrum, connoted as 𝑆𝑆̅̅ ̅
ℎ(𝜔), can be estimated by taking 

the geometric mean of ‖𝑆𝑥ℎ𝑦ℎ
(𝜔)‖ and 𝑆𝑥1 ℎ⁄ 𝑦1 ℎ⁄

 :   

𝑆𝑆̅̅ ̅
ℎ(𝜔) = √‖𝑆𝑥ℎ𝑦ℎ

(𝜔)‖ ‖𝑆𝑥1 ℎ⁄ 𝑦1 ℎ⁄
(𝜔)‖

= |𝐹𝑋(𝜔)𝐹𝑌(𝜔)|√‖1 + 𝐴ℎ(𝜔)‖‖1 + 𝐵ℎ(𝜔)‖‖1 + 𝐶1 ℎ⁄ (𝜔)‖‖1 + 𝐷1 ℎ⁄ (𝜔)‖, 

(20) 

where 

• 𝐴ℎ(𝜔) =
𝐻𝑋ℎ(𝜔)

𝐹𝑋ℎ(𝜔)
𝑒−𝑗(𝛼ℎ(𝜔)−𝛽ℎ(𝜔)) 

• 𝐵ℎ(𝜔) =
𝐻𝑌ℎ(𝜔)

𝐹𝑌ℎ(𝜔)
𝑒𝑗(𝛾ℎ(𝜔)−𝛿ℎ(𝜔))  

• 𝐶1 ℎ⁄ (𝜔) =
𝐻𝑋1 ℎ⁄ (𝜔)

𝐹𝑋1 ℎ⁄ (𝜔)
𝑒−𝑗(𝛼1 ℎ⁄ (𝜔)−𝛽1 ℎ⁄ (𝜔)) and 

• 𝐷1 ℎ⁄ (𝜔) =
𝐻𝑌1 ℎ⁄ (𝜔)

𝐹𝑌1 ℎ⁄ (𝜔)
𝑒𝑗(𝛾1 ℎ⁄ (𝜔)−𝛿1 ℎ⁄ (𝜔))

. 

These terms describe the relationship of the fractal and oscillatory elements in regard 

of their ratio of magnitudes and phase differences. Note that these terms and Eq. (20) let 

us draw similar conclusions as with IRASA, specifically: 

i. If 𝑥(𝑡) and 𝑦(𝑡) are composed solely of fractal elements then 𝑆𝑆̅̅ ̅
ℎ(𝜔) equals to 

the fractal cross-power spectrum and since all confounding terms are rendered 

zero at all 𝜔, the estimation is unbiased. 

ii. In the event of 𝑥(𝑡) containing a harmonic element with characteristic frequency 

denoted as 𝜔𝐻𝑋, the term 𝐴ℎ(𝜔) will exhibit a non-zero value at 𝜔1 = ℎ𝜔𝐻𝑋 and 

similarly term 𝐶1 ℎ⁄ (𝜔) will be non-zero at 𝜔2 = ℎ 𝜔𝐻𝑋⁄ . As a result, the 

estimated spectral slope of 𝑆𝑆̅̅ ̅
ℎ(𝜔) is biased at 𝜔1 and 𝜔2. 

iii. If 𝑦(𝑡) contains a harmonic element with characteristic frequency denoted as 𝜔𝐻𝑌, 

the term 𝐵ℎ(𝜔) will exhibit a non-zero value at 𝜔3 = ℎ𝜔𝐻𝑌 and similarly term 
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𝐷1 ℎ⁄ (𝜔) will be non-zero at 𝜔4 = ℎ 𝜔𝐻𝑌⁄ . As a result 𝑆𝑆̅̅ ̅
ℎ(𝜔) is biased at 𝜔3 and 

𝜔4. 

Importantly, the cases of ii. and iii., when the fractal cross-power spectrum cannot be 

estimated without bias, are dependent on the rescaling factor ℎ. Calculating 𝑆𝑆̅̅ ̅
ℎ(𝜔) with 

a variety of different ℎ values (analogously with IRASA), the frequencies at which the 

estimation error manifest will be different for each ℎ. Using a set of 𝑆𝑆̅̅ ̅
ℎ(𝜔) estimates, 

all with disparate ℎ values, and taking the median for each ℎ across all 𝜔 frequencies, one 

can obtain the unbiased estimate of the fractal cross-power spectrum. However, if the 

amount of outliers (number of the occurring estimation errors) exceed 50% of the number 

of estimates at the given frequency, the final estimate is no longer unbiased  (86, 100). 

With that, we derive the formula for unbiased estimation of the fractal cross-power 

spectrum for all 𝜔, denoted 𝑆𝐹𝑋𝑌(𝜔): 

𝑆𝐹𝑋𝑌(𝜔) = 𝑚𝑒𝑑𝑖𝑎𝑛ℎ{𝑆𝑆̅̅ ̅
ℎ(𝜔)}, (21) 

Finally, one may strive for an unbiased estimate of the oscillatory cross-power 

spectrum 𝑆𝐻𝑋𝑌(𝜔). It is found that computing |𝑆𝑆𝑋𝑌(𝜔)|2 similarly to Eq. (13) involves 

not only 𝑆𝐹𝑋𝑌(𝜔), 𝑆𝐻𝑋𝑌(𝜔) and the confounding terms based on relative phase 

differences, but also interaction terms between fractal and oscillatory elements of 𝑥(𝑡) 

and 𝑦(𝑡). While averaging cross-power spectra from several data segments helps 

eliminate confounding terms assuming no coupling between components, interaction 

terms remain unaffected by phase differences and cannot be excluded by averaging. Thus, 

while MRCSA offers an unbiased estimate strictly of the fractal cross-power spectrum, it 

does not ensure unbiased estimation of the oscillatory cross-power spectrum. 

Nonetheless, a maximum ceiling to the participation of the oscillatory elements in the 

cross-power spectrum can be determined by taking the percentage of fractal cross-power 

to the mixed (full) cross-spectral power:  

%𝐹𝑟𝑎𝑐𝑡𝑎𝑙 =
∑ 𝑆𝐹𝑋𝑌(𝜔)𝜔

∑ 𝑆𝑆𝑋𝑌(𝜔)𝜔
× 100, 

(22) 

 for all frequencies 𝜔. 
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There are two essential notions to discuss further. First, if one takes Eq. (17)-(21) and 

makes 𝑥(𝑡) = 𝑦(𝑡), the method returns the simple, univariate IRASA formula. Second, 

if one calculates the fractal and oscillatory spectra of 𝑥(𝑡) and 𝑦(𝑡) separately with 

IRASA and their fractal cross-power spectrum with MRCSA, the confounding interaction 

terms of |𝑆𝑆𝑋𝑌(𝜔)|2 can be ousted thus theoretically an unbiased estimate of oscillatory 

cross-spectral power can be gained. However, the scope of our team was to construct a 

method to estimate fractal cross-spectral power thus this will not be considered here any 

further. 

3.1.3.1 The Multiple Resampling Cross-Spectral Analysis algorithm 

To preserve coherence between the uni- and bivariate cases, the MRCSA algorithm 

follows the same blueprint as introduced by Wen and Liu (86) for IRASA.  

i. Fifteen segments, which overlap partially, are picked from a given pair of signals. 

All segments cover 90% of the original datasets and have equal number of time 

stamps. The difference between the starting time indices is kept constant and thus 

the segments are evenly spaced. 

ii. First, the mixed cross-power spectrum 𝑆𝑆𝑥𝑦(𝜔) is estimated for the first segment 

in accordance with Eq. (17). Using fast Fourier transforming and Hanning 

windowing, one attains the Fourier transforms. The frequency resolution is 

established at twice the smallest power of 2 that surpasses the number of data 

points within the time segments. This adjustment is accomplished by zero-

padding the time series when needed. The aim is to ensure that if ℎ is less than 2, 

the amount of frequencies exceed the number of data points in the original signal 

and its resampled versions, as well. 

iii. Using cubic spline interpolation, the segments are resampled by ℎ and 1/ℎ. In 

order to avoid aliasing when downsampling, the segments are treated with a low-

pass, fast Fourier transform-based filter. The cut-off frequency is set as the 

sampling rate divided by twice the smallest integer that exceeds the largest ℎ-

value. Identically to IRASA, the values of ℎ are set by default between 1.1 and 

1.9 using increments of 0.05 yielding 17 different pairs of resampling factors. 

iv. For the up- and down-sampled signal pairs the cross-power spectra are attained 

in a similar manner as detailed in step ii. Note, that the frequency resolution for 
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both the up- and down-sampled versions (with befitting zero-padding) are the 

same as for the mixed cross-power spectrum. 

v. Next, the geometric mean of the cross-power spectra is calculated for all pairs of 

{ℎ|1/ℎ}. Then, for all frequencies the median of the cross-power spectra over all 

ℎ is used to obtain the unbiased estimate of the fractal cross-power spectrum 

𝑆𝐹𝑋𝑌(𝜔). 

vi. Steps ii-v are iterated for each data segments attained in step i, followed by 

calculating the average of the mixed cross-power spectrum 𝑆𝑆𝑥𝑦(𝜔) and the 

fractal cross-power spectrum 𝑆𝐹𝑥𝑦(𝜔) by computing the arithmetic mean over 

the cross-spectra acquired from the 15 data segments. 

Following the completion of the MRCSA algorithm, one can continue with 

computing the cross-spectral slope, 𝛽𝑥𝑦 or the ratio of fractal to mixed cross-spectral 

power. On a log-log transformed fractal cross-power spectrum the spectral slope can be 

obtained by ordinary least squares linear regression. However, a straightforward log-log 

transformation would results in the over-representation of higher frequencies (86), thus 

after the log transformation the frequency elements are resampled to acquire an even 

frequency resolution in the log scale. Next, fitting a linear function on the resampled, log-

transformed fractal cross-power spectrum by ordinary least squares estimation yields the 

unbiased spectral slope estimate 𝛽𝑥𝑦 as the first coefficient of the function. Importantly, 

the fractal spectral slope is essentially negative (the distribution of cross-spectral power 

follows 1 𝜔−𝛽𝑥𝑦⁄ ). However, by convention the univariate 𝛽𝑥 values are given with 

reversed signs (59), meaning a steeper cross-spectrum is described with a larger 𝛽𝑥 value 

and the same stands true for the bivariate 𝛽𝑥𝑦 values. To calculate the fractal cross-

spectral power’s percentage one may simply apply Eq. (22) in the desired frequency 

range. 

Analogously to IRASA, MRCSA can also be employed in a sliding-window fashion 

to determine a time-frequency representation of fractal cross-spectral power between two 

interconnected processes over an extended period.  
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3.2 Validating Multiple Resampling Cross-Spectral Analysis: Fractal 

connectivity during increased mental workload 

As an initial step before analysing physiological data, we evaluated the MRCSA method 

in in silico experiments. These results are detailed in our original publication Racz et al. 

(88) in pages 8-12. Briefly, MRCSA was able to estimate the cross-spectral exponent 

accurately, even in the presence of noise. Precisely, the estimation error was within 5% 

even at a low signal-to-noise ratio of 10. After this technical validation, my goal was to 

assess the utility of MRCSA on empirical, in vivo signals. For this, I analysed a publicly 

available EEG dataset (101), as detailed below. 

3.2.1 Participants of the in vivo validation 

The dataset analysed in this study was made publicly available by Shin and colleagues 

(101). The entire repository consists of EEG recordings of 26 young, healthy participants 

(aged 26.1±3.5 years, all right-handed, 17 females and 9 males) collected under varying 

task conditions, from which we selected the baseline (BL) vs. word generation (WG) 

paradigm (Dataset C) as it represents a simple case of increased cognitive workload. The 

original experiment was conducted in line with the Declaration of Helsinki, approved by 

the institutional review board of the Berlin Institute of Technology (approval number: 

SH_01_20150330) and all participants provided written informed consent. None of the 

study subjects reported any history of a neuropsychiatric condition nor was on medication 

that might affect brain function or cognition. More details on the study population are 

reported in the original article and supplementary information at Shin et al. (101). 

3.2.2 Measurement protocol and data acquisition 

In the WG condition, participants were presented a letter at the beginning of each trial, 

and their task was to come up with as many different words as possible that start with the 

given letter in 10 seconds. In contrast, during the BL trials participants were instructed to 

rest for an equal duration and keep their sight on a fixation cross presented in the center 

of the screen. WG and BL trials were randomized in order and interspersed with inter-

trial intervals of about 20 seconds. One recording session consisted of 10 BL and 10 WG 

trials, and every participant completed three sessions resulting in a total number of 30-30 

trials for WG and BL. 
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During the protocol, EEG data was collected with a 28-channel BrainAmp amplifier 

(Brain Products GmbH, Gilching, Germany) at a sampling rate of 1000 Hz (down-

sampled to 200 Hz before data publication). The monitored cortical regions were standard 

positions of the international 10-5 system (102) and included Fp1, Fp2, AFF5h, AFF6h, 

AFz, F1, F2, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4, 

P7, P8, POz, O1, and O2 with reference and ground electrodes placed at TP9 and TP10, 

respectively. 

3.2.3 Data pre-processing and analysis 

EEG data was pre-processed using the EEGLAB toolbox (103) combined with custom 

MATLAB functions and scripts. First the data was divided into epochs of 30 seconds, 

starting at 5 seconds before trial onset and ending at 15 seconds after trial offset, thus 

consisting of 5 seconds of resting-state/preparation in the beginning, 10 seconds of WG 

or BL and another 15 seconds of resting-state at the end. This segmentation was required 

for the automated artefact elimination step (see below) that requires data segments that 

are at least 16 seconds long. Then, EEG epochs were band-pass filtered with a 4th order 

zero-phase Butterworth filter with cut-off frequencies 0.5 and 80 Hz, with additional line 

noise removal at 50 Hz using the cleanline algorithm of EEGLAB. Artefacts related to 

eye movements, blinks, skeletal muscle activity or other extra-neural sources (e.g., heart, 

white noise) were identified and eliminated using the independent component analysis 

(ICA)-based multiple artefact rejection algorithm (MARA) (104, 105). Finally, data was 

re-referenced to the common average electrode, and active 10-second segments of WG 

and BL were isolated for further analysis (30-30 epochs for WG and BL, 28-channels 

each, for every subject). 

Fractal connectivity analysis was performed using MRCSA. The analysis range was 

set to 1-25 Hz, and we used the standard set of resampling factors ℎ ranging from 1.1 to 

1.9 in increments of 0.05 as recommended by Wen and Liu (86). We investigated two 

output measures, i) the cross-spectral exponent 𝛽𝑥𝑦 and ii) the percentage of fractal 

spectral power in total (mixed) spectral power. These measures were obtained for every 

channel pair, yielding 28-by-28 matrices for each trial, and then for each subject the 30-

30 matrices for both conditions were averaged, yielding statistically robust estimates of 

the fractal connectivity patterns in WG and BL. 
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The outcome measures were compared between WG and BL along four axes: 

i. The auto-spectral slopes (𝛽𝑥, IRASA analysis) were compared in a channel-to-

channel manner using paired t-tests or Wilcoxon signed rank tests depending on 

data normality (assessed by Lilliefors test). 

ii. The sum of cross-spectral exponents 𝛽𝑥𝑦 for each channel were contrasted using 

the same statistical principles. Note that this measure is resemblant of the ‘node 

degree’ commonly used in functional connectivity analyses (106). 

iii. Cross-spectral exponents were also compared in a connection-to-connection 

manner. 

iv. Percentage of fractal power was also contrasted between WG and BL in a node 

degree and connection-to-connection fashion. 

The level of significance was defined as p<0.05, and for each level i.-iv. the outcomes 

were adjusted for multiple comparisons using the Bonferroni method. 

3.3 Investigating fractal connectivity and cognition in healthy aging 

After successfully validating MRCSA both in silico and in vivo, we applied this method 

in our follow up publication Czoch et al. (107), of which I am the first author. In this 

study, we investigated fractal connectivity in healthy aging using MRCSA, and addressed 

its plausible relationships with cognitive performance. Our study involved two cohorts: a 

healthy young (HY) group, defined as aged between 18-35 years and a healthy elderly 

(HE) group consisting of individuals over the age of 60 years. In both groups, we only 

enrolled healthy participants, i.e., those without any documented neuropsychiatric or 

general medical condition (including medication) that might affect central nervous system 

or cognition in particular. The study had two key aspects: resting-state neural activity as 

recorded by EEG, and cognitive performance as assessed by a comprehensive, automated 

test battery consisting of tasks indicative in age-related cognitive decline or early 

dementia. Study details are presented in the following. 

3.3.1 Participants of the comparative study 

A group of 47 volunteers, consisting of 25 young adults (18-35 years old, with a mean 

age of 25.7 and 12 females) and 22 elderly individuals (over 60 years old, with a mean 

age of 66.2 and 8 females), participated in this research. The study was conducted in 
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accordance with the Declaration of Helsinki and received approval from the Semmelweis 

University Regional and Institutional Committee of Science and Research Ethics 

(approval no. 2020/6). Prior to the measurement, written informed consent was obtained 

from all participants. Volunteers were instructed to abstain from substances that might 

affect cognitive function (e.g., caffeine) for at least 3 hours prior to measurement and 

have at least 6 hours of sleep the previous night. Individuals who had neuropsychological 

or psychiatric illnesses, a history of brain damage, were on medication that affects the 

central nervous system or severe cardiovascular pathologies were excluded from the 

study. Pregnancy was also an exclusion criterion. All individuals successfully completed 

the measurement protocol; however, one young and three elderly participants had to be 

later excluded from further analysis due to excessive head movement and/or inadequate 

signal quality. Consequently, the final sample size included 24 young (age: 25.37 ± 3.20 

years) and 19 elderly (age: 66.39 ± 6.09 years) participants, totalling to 43 participants. 

3.3.2 Measurement protocol 

The EEG recordings were conducted in the Department of Physiology at Semmelweis 

University, in a quiet, dimly lit room. The participants sat in a comfortable chair and faced 

a 24-inch computer screen, which was approximately at 0.8-meter distance throughout 

the measurement. They were instructed to avoid any movements or facial expressions to 

reduce signal artefacts. The measurement and ensuing analysis protocol were created and 

executed using MATLAB. (Mathworks, Natick, MA, United States). The session 

commenced with a 3-minute eyes-closed resting-state interval, succeeded by an eyes-

open resting-state period of equal duration. Please be aware that following the initial 

recording session, three distinct cognitive paradigms (visual pattern recognition, n-back, 

maze paradigm) were undertaken for about an hour. Nevertheless, in the present study, 

our analyses were confined to the EEG data obtained during the eyes-closed resting-state 

only. 

3.3.3 Data acquisition and pre-processing 

The EEG data were captured using a wireless Emotive Epoc+ device along with the 

associated EmotivPRO software (Emotiv Systems Inc., San Francisco, CA, United 

States). The initiation of data collection began only after maximal contact quality was 

affirmed, as indicated by the EmotivPRO software (i.e., electrode impedances were kept 
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under 5 kOhm). The device featured an internal sampling rate of 2048 Hz, with an 

effective bandwidth between 0.2 to 45 Hz. This is facilitated through the use of a 5th order 

Sinc filter, with additional notch filters at 50 and 60 Hz. After internally down-sampling 

the raw data to 256 Hz, it was sent wirelessly to a desktop computer. With the device set 

up, we could monitor neural activity of 14 brain regions, according to 10-10 standard 

montage locations, including AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, 

and O2. Reference and ground electrodes were positioned at P3 and P4, employing CMS 

and DRL. 

After the application of a further 4th order, zero-phase Butterworth-filter with cut-off 

frequencies of 0.5 and 45 Hz, the EEG recordings were visually assessed, and epochs 

uninterrupted by artefacts were selected by two separate investigators for the next stage 

of analysis. Only those segments that were found to be artefact-free by both investigators 

independently were included in further analyses. The final epoch length was defined as 

72 seconds, being the longest available interval from all recordings. For 4 participants (1 

young, 3 elderly) no such segment could be identified, thus we had to exclude them from 

further processing. Then, the adjusted segments underwent Independent Component 

Analysis (ICA), for which we used the EEGLAB toolbox (103). Artefacts related to eye 

movements, skeletal muscle activity or other sources of noise were discerned and 

eliminated by manually scrutinizing the independent components. Note that the 

previously utilized, automated MARA tool could not be employed here, as its reliability 

in terms of artefact detection drops substantially for a low channel number of 14 (104, 

105). Independent components associated with artefactual signal constituents were 

identified based on the characteristics as utilized by MARA, outlined in the work of 

Gabard-Durnam and colleagues (108). After removing artefact components, we 

performed reverse ICA, and finally, the data was re-referenced to the common-average 

electrode. 

3.3.4 Cognitive testing: Cambridge Neuropsychological Test Automated 

Battery (CANTAB) 

After concluding the EEG recording session, a baseline assessment of cognitive 

performance was conducted using seven cognitive tests from the Cambridge 

Neuropsychological Test Automated Battery (CANTAB). CANTAB, initially created by 
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the University of Cambridge, functions as a precise, standardized and validated 

assessment tool for various facets of cognition. CANTAB tests include tasks involving 

working, visual, and spatial memory, as well as learning and executive function, reaction 

time, information processing, and numerous other cognitive domains, among others. 

Additionally, they offer insights into the conditions under which a specific test could be 

the most suggestive. From the range of options, we have chosen seven activities linked to 

the decline in cognitive function related to ageing and dementia, as outlined by Csipo et 

al (109). These included the Motor Screening Task (MOT), Delayed Match to Sample 

(DMS), Paired Associates Learning (PAL), immediate and delayed Pattern Recognition 

Memory (PRM), Reaction Time (RTI), Rapid Visual Processing (RVP), and Spatial 

Working Memory (SWM) tasks. Table 1 provides a short description of each task, while 

for more detailed explanations and video demonstrations the reader is referred to the 

official CANTAB website (https://www.cambridgecognition.com/cantab/).  

Table 1. Employed cognitive tests. MOT: Motor Screening Task; DMS: Delayed 

Matching to Sample; PAL: Paired Associates Learning; PRM: Pattern Recognition 

Memory; RTI: Reaction Time; RVP: Rapid Visual Information Processing; SWM: 

Spatial Working Memory (modified after Czoch et al. (107))  

https://www.cambridgecognition.com/cantab/
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Name Description (time in minutes) Assessed functions Outcome 

MOT 

Colored crosses appear on random locations 

on the screen and the participant must tap 

on them as fast as possible. (2) 

Sensorimotor skills Reaction time, 

precision 

DMS 

The participant must choose from 4 visual 

patterns the one presented before a brief 

delay (0, 4 or 12 seconds) (7) 

Short-term visual 

recognition memory 

and matching ability 

Response 

latency, 

number of 

correct 

choices 

PAL 

Boxes are shown on the screen, one or more 

contains a visual pattern. After opening 

every box, the patterns are presented one by 

one and the participant must choose which 

box they came from. (8)  

Visual memory and 

learning 

Number of 

errors and 

attempts, First 

attempt 

memory score 

PRM 

A series of visually intricate, verbally 

indescribable patterns are shown to the 

participant. First, they view two patterns, 

one familiar and one new, selecting the 

previously seen pattern. The task is repeated 

after a 20-minute delay. (4 and 4) 

Visual pattern 

recognition memory 

Number and 

percentage of 

correct 

responses, 

response 

latency 

RTI 

The participant must hold down a button at 

the bottom of the screen. One or five buttons 

are presented on the top of the screen, after 

a random delay one of them turns yellow 

and the participant must release the starting- 

and tap the new button as quickly as 

possible. (3) 

Motor- and mental 

response accuracy, 

latency and speed  

Reaction time, 

movement 

time, number 

of errors 

RVP 

A series of digits ranging from 2 to 9 are 

shown in a pseudorandom sequence (100 

digits/minute). The participant must 

identify a specific target sequence (e.g., 3-

5-7) and respond by quickly tapping a 

button. Difficulty increases when 

participants are required to watch for 

multiple target sequences simultaneously. 

(7) 

Sustained attention Response 

latency, 

correct 

responses, 

probability of 

false alarms, 

sensitivity 

SWM 

The participant must search for a token in 

boxes presented on the screen. After 

selecting one box, it closes again, and 

remains on the screen. The difficulty 

depends on the number of boxes (4, 6, 8 or 

12 boxes).(4) 

Working memory, 

strategy in problem 

solving, manipulation 

of visuospatial 

information 

Between 

errors, within 

errors, total 

errors, 

strategy 
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Each task within the battery started with an instructional introduction session, 

customizable to the user's native language (either Hungarian or English in this study). 

Participants were required to complete the training before proceeding to the actual test, 

ensuring a solid grasp of the forthcoming task. To reduce the likelihood of any influence 

or bias from investigators, participants undertook the CANTAB assessment in isolation 

within a separate room, which typically lasted 40 to 50 minutes. Subjects engaged in the 

CANTAB session using a 10.2" iPad tablet computer, for which the tasks were 

standardized. 

3.3.5 Estimating fractal connectivity with Multiple Resampling Cross-

Spectral Analysis 

In this study, the activity of the brain in resting state was recorded by EEG, a method 

considered to be non-stationary on longer time scales (110). Accordingly, the previously 

selected, pre-processed, 72-second-long segments were cut into non-overlapping epochs 

of 8 seconds, resulting in 9 epochs for each participant. These shorter epochs provided 

the grounds for fractal connectivity analysis, which we completed on all epochs 

separately. To perform MRCSA certain parameters had to be specified: the computation 

of spectral power occurred within the frequency range of 2 and 22.5 Hz with the 

frequency resolution set to 0.128 Hz. As mentioned above and in line with Wen and Liu 

(86), 17 different pairs of resampling factors ℎ and their reciprocals 1/ℎ were applied, 

starting from 1.1 in increments of 0.05 to 1.9. The effective frequency range was 

determined between 2 and 22.5 Hz, as the effect of any previously used filter persists 

even after the resampling process, effectively reducing the range for analysis (65). The 

analysis and the following spectral slope estimation was performed in this frequency 

range. To procure the estimates of spectral slope 𝛽𝑥 and the cross-spectral slope 𝛽𝑥𝑦, least 

squares regression was utilized with log cross-spectral power fitted on log frequency, 

resulting in 14-by-14 matrices for 𝛽𝑥𝑦 for every epoch. Additionally, by summing the 

power between the broadband frequency range’s boundaries (2-22.5 Hz) the integrated 

spectral power was computed, yielding a 14-by-14 matrix per type of spectrum (fractal, 

oscillatory, mixed) for every epoch. Finally, by averaging matching matrices over the 

initial 9 epochs we obtained robust estimates for every measure considered in the analysis. 
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3.3.6 Statistical analysis 

Comparisons between the CANTAB scores of the young and elderly cohorts were made 

using two-sample, unpaired tests. Specifically, Lilliefors test was used to verify the 

normal distribution of the data. If normality was confirmed, a two-sample t test followed, 

otherwise a Mann-Whitney U test was performed. Since multiple CANTAB output 

measures retrieve primarily the same information regarding performance (e.g. number of 

attempts vs number of errors, median vs mean) the number of comparisons was 

unnecessarily large (𝑛𝐶𝐴𝑁𝑇𝐴𝐵 = 154). To address this issue, the false discovery rate 

method (FDR) of Benjamini and Hochberg (111) was employed to adjust the statistical 

test outcomes.  

Fractal connectivity estimates were scrutinized on a connection-by-connection basis 

using two-sample tests to compare the two groups. This process followed the same 

statistical principles as outlined with the CANTAB scores. To seek more distinctive 

differences, the results were subjected to adjustment for multiple comparisons using 

Bonferroni's method, applied individually for every connectivity measure (𝑛𝑐𝑜𝑛𝑛 =

(14 ⋅ 13)/2 = 91).  

Lastly, to explore potential relations, a preliminary analysis was conducted to 

evaluate if those CANTAB measures that suggested differences in the cognitive 

performance between young and elderly had any relationship with those connections that 

showed differences in fractal connectivity between the two groups. To achieve this, we 

examined the groups individually and calculated the Spearman cross-correlation 

coefficient between the CANTAB scores and connectivity measures. Note, that the 

quantity of the comparisons was large (𝑛𝑐𝑜𝑚𝑏 = 2 ⋅ 17 ⋅ 54 = 1836) in contrast with the 

sample size, thus the results obtained here were not adjusted for multiple comparisons 

(that would lead to most results being statistically insignificant). Therefore, caution is 

required when interpreting these results and they should be considered as exploratory. 
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4 Results 

4.1 Effect of increased cognitive load on fractal connectivity 

Group-level results regarding 𝛽𝑥𝑦 and percentage fractal power are shown on Figures 3. 

and 4., respectively. In Figure 3. it can be observed that word generation resulted in a 

ubiquitous increase in cross-spectral slope (BL: left panel, WG: middle panel), most 

prominently in connections involving the frontal and prefrontal cortices. The right panel 

shows the statistically significant differences (p<0.05, Bonferroni-adjusted), with white 

cells indicating the connections where 𝛽𝑥𝑦 was significantly different in WG compared 

to BL. In total, the cross-spectral slope was increased in WG for 143 out of 378 

connections. Similar results were obtained for node degree-level analysis (not shown). 

 

Figure 3. Cross-spectral slopes of functional connections. In comparison to the baseline 

condition (left), the cross-spectral slope prominently increases across most connections 

in word generation (middle). Connections that showed significant differences are 

highlighted in white on the right panel BL: baseline; WG: word generation (88). 

Percentage of fractal power exhibited a similar pattern (Figure 4.); however, most 

differences were rendered non-significant by multiple comparisons adjustment. In detail, 

this measure was only significantly different in case of FC1-CP6 connection (p=0,0329), 

while percentage fractal power was higher over regions FC6 (p=0,0478) and C4 

(p=0,0134) in WG compared to BL. Node degree analysis proved to be more sensitive, 

indicating increased percentage of fractal power in connections of C4, CP6 and P4 regions 

(p=0,0235, 0,0122 and 0,0478, respectively) in WG when contrasted to BL. 
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Figure 4. Ratio of fractal power of functional connections. Generally, the proportion of 

fractal cross-spectral power appears lower during baseline (left) compared to word 

generation (middle) condition. Channels indicating a significant increase are highlighted 

in white on the right panel. Following Bonferroni-adjustment only the connection 

between FC1 and CP6 showed significant difference. Additionally, higher percentages of 

fractal auto-spectral power were observed at regions FC6 and C4, as denoted by the two 

white cells along the main diagonal (88). 

In summary, in this study we demonstrated for the first time that increased mental 

workload results in a reorganization of fractal brain networks. These results indicated that 

neural signatures identified with MRCSA analysis capture information that is relevant for 

cognitive functioning. Therefore, in our subsequent study, our goal was to better 

understand this phenomenon in a condition that is broadly relevant both in a medical and 

a socio-economic sense: healthy aging. 

4.2 Effects of aging on fractal connectivity and cognition 

4.2.1 Behavioral results 

In this section, I will present the results of our follow-up study, in which we utilized 

MRCSA to analyse EEG recordings of healthy young and elderly participants and 

employed CANTAB to evaluate the cognitive performances. In general, the elderly group 

had worse performance in generally all cognitive domains investigated (see below). As a 
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reminder, Figure 5. provides a schematic illustration of the CANTAB tasks.

 

Figure 5. Schematic illustrations of the CANTAB tasks. MOT: Motor Screening Task; 

DMS: Delayed Matching to Sample; PAL: Paired Associates Learning; PRM: Pattern 

Recognition Memory; RTI: Reaction Time; RVP: Rapid Visual Information Processing; 

SWM: Spatial Working Memory. (Figure made by Zalán Káposzta) 

First, to confirm that the differences in the results were not likely to be caused by the 

lack of sensorimotor skills, we examined the scores of the MOT task. Here, no significant 

differences were found, supporting the notion that the participants’ sensorimotor skills 

sufficed to solve the remaining tasks and the emerging differences were not confounded 

by it. Regarding the other cognitive tests, significant differences were found in 54 cases 

between the young and elderly group’s CANTAB scores after the FDR adjustment. More 

elaborately, in 10 metrics for DMS, 16 for PAL, 4 for PRM, 4 for RTI, 8 for RVP and 12 

for the SWM task. 

In the DMS task the participants were shown a visual pattern, then they had to select 

the previously presented pattern among a set of new ones. These new sets were shown to 

the participants after predetermined latencies. We found that elderly individuals 
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responded slower compared to those in the young group when the original pattern and the 

new set were shown simultaneously (median correct latency, simultaneous, young: 

2.2525s, elderly: 3.2389s, p=0.0010) or with the different delays (mean correct latency, 

all delays, young: 2.4870s, elderly: 3.9567s, p=0.0184). Moreover, the standard deviation 

of response times increased in the elderly, but only in the 4-s delay variation (p=0.0427). 

Interestingly, the two groups’ performance did not differ significantly, meaning the 

proportion of correct/erroneous answers were similar. 

The most significant contrast between the groups occurred in the PAL task (16 

metrics), a test assessing the visuo-spatial memory skills, since the participants had to 

remember the exact locations of patterns. The results of the elderly group exhibit a 

universal drop in performance in all task scenarios (recalling the locations of 4, 6, 8 and 

12 patterns), however with increasing the difficulty these differences become less distinct. 

Precisely, the general first attempt memory score (PALFAM28, “The number of times a 

subject chose the correct box on their first attempt when recalling the pattern locations. 

Calculated across assessed trials, omitting 12 box level”) averaged to 16.5417 in the 

young and 11.9474 in the elderly group (p=0.0004). The number of errors and 

consequently the number of attempts were found increased in the elderly group in the 

scenario with 4 (errors: p=0.0251, attempts: p=0.0241), 6 (errors: p=0.0012, attempts: 

p=0.0013) and 8 (errors: p=0.0314) patterns. In general, the elderly group displayed 

reduced performance which was more distinct in the easier scenarios with 4 and 6 

patterns, but less for the more difficult ones of 8 and 12 patterns. 

Third, the PRM task tested the pattern recognition memory. We observed that even 

though the response time of the elderly were higher in both the immediate (median correct 

latency, young: 1.2803s, elderly: 1.7440s, p=0.0015) and in the delayed recognition 

scenarios (median correct latency, young: 1.5310s, elderly: 1.9278s, p=0.0033), the 

proportion of correct answers did not differ between the groups. 

In the RTI task the participants’ response time and accuracy were tested with one or 

five potential targets. Overall, elderly participants were less accurate in their responses 

(p=0.0244). Additionally, the mean (young: 0.3415s, elderly: 0.3915, p=0.0022) and 

standard deviation (young: 0.0365s, elderly: 0.0469s, p=0.0228) of response times were 

found to be greater in the elderly compared to the young group. 
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Testing sustained attention and working memory, the RVP task results demonstrated 

greater response times (median latency, young: 0.4115s, elderly: 0.5280s, p=0.0002) and 

worse performance, calculated regardless of latency from all hits/misses, in the elderly 

(young: 0.9398, elderly: 0.8971, p=0.0143). 

The most elaborate and complex test included in our set was the SWM task. This test 

assessed spatial working memory skills and task solving strategy. There were 3 different 

types of mistakes a participant could make: i) between errors, in this case the participant 

re-checked a box where a token was already found, ii) within errors, where a box that 

already-proven-empty was re-checked, and iii) total errors, the combination of the two 

above, meaning they re-checked a box which certainly did not contain a token. We found 

that in all levels of complexity the elderly performed worse than the young group, 

manifesting in the increased number of between and total errors (SWMBE468, between 

errors for 4-6-8 boxes, young: 5, elderly: 19, p=0.0181; SWMBE12 young: 14, elderly: 

35, p=0.0082; SWMTE468 total errors for 4-6-8 boxes, young: 6.375, elderly: 15.7895, 

p=0.0086; SWMTE12 young: 14, elderly: 35, p=0.0113). Moreover, the strategies 

employed by the elderly in searching for the tokens proved less effective compared to the 

young participants’ (p=0.0241). 

In general, the elderly group could be described with greater response time and worse 

performance compared to the young group. Specifically, no differences emerged in the 

MOT task, in two tests (RTI and RVP) the increased response latency was associated with 

reduced performance; on the other hand, with once again two tests (DMS and PRM) the 

greater response times were accompanied by similar performances when comparing the 

elderly to the young group. In four tests (DMS, PRM, RTI, and RVP), higher response 

times were observed, while in another four tests (PAL, RTI, RVP, and SWM), we found 

that the elderly group underperformed. 

4.2.2 Age-related differences in fractal connectivity 

In this section I present the results regarding fractal connectivity. We observed 17 

connections where the cross-spectral slope proved to be diminished in the elderly group 

(Figure 6.) and seven additional locations where the auto-spectral exponent was reduced, 

compared to the young group. Overall, the young group could be characterized with 

higher auto- and cross-spectral slopes (Figure 6. left panel) over the whole cortex, but 
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the significantly different connections were associated mainly with the right temporal and 

frontal areas. Relatedly, the differences in auto-spectral slopes emerged over the bilateral 

frontal and temporal areas, and also in the left occipital region (Figure 6. right panel). 

 No differences were found in auto- or cross-spectral power in the fractal, 

oscillatory or mixed spectra when comparing the two groups. 

 

Figure 6. Auto- and cross-spectral slopes in the young and elderly cohorts. In the left and 

middle panels, black and red squares indicate the locations or connections where 

significant differences in the spectral exponent were observed between the two groups. 

The right panel illustrates the cortical topology of the significant connections and 

locations. Orange lines shows the connections and circles the locations (107). 

4.2.3 Correlations of fractal connectivity and cognitive function 

Finally, our objective was to identify markers linking natural changes in cognition to 

neurophysiological processes in aging, therefore we narrowed down our analysis to those 

CANTAB measures and brain connections/areas that were found to be different between 

the cohorts. The correlation analyses were performed separately on the two groups. 

Interestingly, the young group showed only occasional relationships between 

cognition and fractal connectivity (in the selected subset of features). In more detail, we 

found the cross-spectral slope 𝛽𝑥𝑦 in one connection (O1-FC6, r=0.4363, p=0.0330) 

correlated to the PAL mean error metric and in three connections (O1-AF4, r=0.4070, p= 

0.0495; FC6-AF4, r=0.4470, p= 0.0297; F4-AF4, r=0.4200, p=0.0421) with the standard 

deviation of response latency in the DMS task. Furthermore, the auto-spectral slope 𝛽𝑥 

of AF4 was found to be correlating with two metrics, namely mean and standard deviation 
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of latency in DMS (r=0.4409, p=0.0322 and r=0.4861, p=0.0171, respectively), and that 

of T7 with the standard deviation of five-choice RTI latency (r=-0.4217, p=0.0412). 

In contrast, the elderly group showed significant correlations between cross- and 

auto-spectral slopes and CANTAB metrics. Precisely, in 59 cases with cross-spectral and 

26 cases with auto-spectral slopes. After streamlining redundant measures and 

considering their impact, the bulk of these connections emerged with regards to the RVP 

performance and PAL performance for 6 patterns. 

Figure 7. (left) showcases the connection topology of cross-spectral slope correlation 

with the RVPA (“The signal detection measure of a subject's sensitivity to the target 

sequence (string of three numbers), regardless of response tendency”) metric (7 

instances), while rings indicate the regions of the cortex where the auto-spectral slope 

showed correlations (4 regions). On the right side of Figure 7., blue and yellow scatter-

plots demonstrate the correlations found with cross- and auto-spectral slope, respectively. 

The inverse relationship indicates that a lower spectral slope could be associated with 

better performance in the RVP task.  

A notable outlier is shown on the scatterplots, potentially influencing the results. To 

investigate its impact, we excluded that participant and repeated the analysis. We found 

no significant differences in the results (more details can be found in the supplementary 

material of the original publication (107)). Therefore, the outlier did not account for the 

observed correlations. 
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Figure 7. Significant correlations between spectral slopes and Rapid Visual Processing 

scores (RVPA). On the left panel, the cortical topology of the significant locations 

(circles) and connections (lines) are shown, where 𝛽𝑥 or 𝛽𝑥𝑦 expressed significant 

correlation with RVPA scores. The right panel displays individual scatterplots for all 

relationships (yellow: 𝛽𝑥  vs. RVPA, blue: 𝛽𝑥𝑦 vs. RVPA) (107). 

Figure 8. depicts the relation of the total number of attempts in the 6 pattern PAL 

task with spectral slopes, in a similar manner as previously. Once again, a greater spectral 

slope (4 connections and 1 location) was accompanied by more attempts, i.e., worse 

performance. 
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Figure 8. Significant correlations between spectral slopes and Paired Associates 

Learning Total Errors in case of 6 patterns (PALTA6). On the left panel are the locations 

(circles) and connections (orange lines) where 𝛽𝑥 or 𝛽𝑥𝑦 expressed significant 

correlation with PALTA6 scores. The right panel displays individual scatterplots for all 

relationships (yellow: 𝛽𝑥  vs. PALTA6, blue: 𝛽𝑥𝑦 vs. PALTA6) (107). 

Conforming to expectations, we discovered nearly identical results with regards to 

the probability of hits in RVP (RVPPH). And similarly with the percentile-transformed 

and z-scored RVPA values. The other task’s CANTAB scores showed only the occasional 

correlation with fractal connectivity and those results did not present a comprehensible 

trend or pattern. Table 2. shows CANTAB output measures that were found to be 

different between the groups. All p-values reported in Table 2.Hiba! A hivatkozási 

forrás nem található. are adjusted using False Discovery Rate correction of Benjamini 

and Hochberg (111). 

Table 2. Significant differences in CANTAB scores between young and elderly groups. 

DMS: Delayed Matching to Sample; PAL: Paired Associates Learning; PRM: Pattern 

Recognition Memory; RTI: Reaction Time; RVP: Rapid Visual Information Processing; 

SWM: Spatial Working Memory; SD: standard deviation; CL: correct latency. (modified 

after the supplementary table of Czoch et al. (107))



 

 

 

Task Measure Definition Young Elderly p-value Task Measure Definition Young Elderly p-value 

D
M

S
 

DMSL4SD Correct latency SD 827.6 1456.7 0.0427 

P
R

M
 

PRMMCLD 
Mean correct latency 

delayed 
1667.1 2082.1 0.0123 

DMSMDL Median correct latency 2284 3459 0.0122 PRMMCLI Mean CL immediate 1516.4 1900.7 0.0142 

DMSMDL12 
Median correct latency 

12 
2513.3 3869 0.0097 PRMMDCLD Median CL delayed 1531 1927.8 0.0033 

DMSMDLAD 
Median correct latency 

all 
2287.8 3586 0.0241 PRMMDCLI Median CL immediate 1280.3 1744 0.0015 

DMSMDLS 
Simultaneous 

DMSMDL 
2252.5 3238.9 0.0010 

R
T

I 

RTIFMDRT Median reaction time 5 
334.354

2 

383.789

5 
0.0022 

DMSML Mean correct latency 2820.4 3677.5 0.0270 RTIFMRT Mean reaction time 5 
341.505

4 

391.446

8 
0.0022 

DMSML12 Mean correct latency 12 2846.1 4322 0.0189 RTIFRTSD Reaction time 5 SD 36.5422 46.9 0.0228 

DMSML4 Mean correct latency 4 2475.7 3634.2 0.0218 

R
V

P
 

RVPA RVP A prime measure 0.9398 0.89871 0.0143 

DMSMLAD Mean correct latency all 2487 3956.7 0.0184 RVPA% RVPA percentile 59.9583 36.2632 0.0126 

DMSMLS Simultaneous DMSML 2403.7 3276.6 0.0033 RVPAZ RVPA Z-score 0.3454 -0.4242 0.0186 

P
A

L
 

PALFAMS28 
First attempt memory 

score 
16.4517 11.9474 0.0004 RVPMDL Median response latency 411.5 528 0.0002 

PALFAMS28% PALFAMS28 percentile 66.5 44.0526 0.0197 RVPML Mean response latency 466.620 568 0.0010 

PALFAMS28Z PALFAMS28 Z-score 0.6242 -0.1684 0.0178 RVPPH Probability of hit 0.7431 0.6140 0.0423 

PALMETS28 Mean errors to success 1 2 0.0013 RVPTH Total hits 40.1250 33.1579 0.0415 

PALTA28 Total attempts all 6 8 0.0032 RVPTM Total misses 13.8750 20.8421 0.0407 

PALTA6 Total attempts 6 1 2 0.0013 

S
W

M
 

SWMBE12 Between errors 12  14 35 0.0082 

PALTE28 Total errors all 5 13.1579 0.0014 SWMBE4 Between errors 4 0 2 0.0192 

PALTE6 Total errors 6 0 3 0.0012 SWMBE468 Between errors 4-6-8 5 19 0.0181 

PALTE8 Total errors 8 4.0417 8.1579 0.0314 SWMBE6 Between errors 6 0 6 0.0277 

PALTEA12 Adjusted PALTE 12 5.5 12 0.0185 SWMS Strategy score 6-8 6.7083 8.9474 0.0302 

PALTEA28 Adjusted PALTE all 5 13.1579 0.0013 SWMS6 Strategy score 6 3 4 0.0139 

PALTEA6 Adjusted PALTE 6 0 3 0.0010 SWMSX Strategy score 6-12 11.375 
15.526

3 
0.0241 

PALTEA8 Adjusted PALTE 8 4.0417 8.1579 0.0308 SWMTE12 Total errors 12 14 35 0.0113 

 



 

 

5 Discussion  

5.1 Fractal connectivity characteristics of different mental states 

Our first validation of the MRCSA method on physiological data revealed an increase in 

cross-spectral exponents of brain networks in response to increased mental workload (as 

evoked by generating words). Even though this analysis was the first to demonstrate this 

pattern using this specific methodology, similar results have been observed before: in one 

of our previous studies (62) we showed that the bivariate Hurst exponent – another 

measure capturing bivariate fractality of coupled processes – increases when performing 

a visual pattern recognition task, in accordance with our findings. Even though MRCSA 

operates in the frequency domain, the bivariate fractal scaling exponent can be obtained 

equivalently in the frequency- and time domains (57). However, while time domain 

methods such as detrended cross-correlation analysis (56) cannot account for the biasing 

effect for oscillatory signal components, MRCSA can ameliorate this issue and thus 

MRCSA estimates of the bivariate scaling exponent should be considered more precise 

and robust than those obtained with other techniques. In this regard, our current results 

(88) confirmed our previous ones (62) in terms of the effect of mental workload on fractal 

connectivity in the brain. These findings align with theoretical insights into fractal 

networks, such as those described by Zakar-Polyák et al (112). Their analysis of fractal 

network models highlights how structural characteristics contribute to fractality. These 

properties may parallel neural network adaptations under cognitive load, where increased 

fractal connectivity could reflect a reorganization aimed at optimizing processing 

efficiency. Their findings suggest that neural networks might transiently adopt more 

fractal-like configurations during demanding tasks. This perspective provides a robust 

framework for interpreting our MRCSA-derived measures and underscores the 

physiological relevance of FrC as a marker for cognitive functioning. 

It is important to note that an increase in 𝛽𝑥𝑦 does not necessarily mean stronger 

functional coupling, but instead it indicates that the coupling – regardless of its strength 

– is maintained even for long time scales (99). This phenomenon might be understood in 

terms of the WG paradigm the following way. The WG task itself requires the alignment 

of multiple, higher-order cognitive functions such as short- and long-term memory, 
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associative skills and attention. Furthermore, the task condition was induced for 10 

seconds, which might indeed be manifested in long-term coupling as co-operation of 

these functions (and associated brain regions) had to be maintained throughout the trial. 

With this hypothesis in mind, we could observe that connections where significant 

difference was detected compared to resting-state (BL) were associated to those brain 

regions that are relevant for the aforementioned cognitive domains, such as the prefrontal 

cortex or constituents of the dorsal- and ventral attention networks (75, 113). However, it 

must be noted that our analysis was carried out in the electrode (and not the source) space, 

and therefore conclusions regarding the activity and involvement of underlying brain 

regions are speculative and should be treated with caution (114). 

In addition, the increase in percentage of fractal spectral power indicates a decrease 

in oscillatory activity. These results might reflect a decrease in oscillatory alpha activity 

– the most prominent narrow-band component in human EEG –, which suggests a 

decrease in inhibitory tone and is commonly observed in conditions requiring increased 

mental workload (115). 

5.2 Changes in cognitive performance and response latency in healthy 

aging 

Recent research has increasingly focused on exploring the relationship between age-

related cognitive decline and functional connectivity during resting-state (20, 21, 25). 

Additionally, it has also been described that fractal dynamics is affected by aging (116, 

117). Despite the surging interest, most studies in the field focus either solely on 

‘traditional’ connectivity patterns and brain networks or fractal dynamics and how these 

are altered in certain conditions. We, on the other hand, aimed to combine these concepts 

and find resting-state fractal connectivity patterns that could be linked to (or even 

forecast) cognitive performance in the elderly. To test our hypothesis, we completed an 

extensive assessment concentrating on those cognitive domains which are affected by 

aging the most (118, 119). We have chosen these seven (along with the MOT task for 

baseline) tests because it has been demonstrated previously that they are sensitive and 

efficient in detecting cognitive impairment in aging (120). The results of Csipo and 

colleagues (120) correspond strongly with our findings. During MOT, the baseline task, 

the two groups were indistinguishable, verifying that all subject from both cohorts 
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possessed sufficient sensorimotor skills to complete the remaining tasks. A further 

similarity was in the DMS task where the response times were higher, and in the PAL, 

RVP and SWM tasks where we observed the same decrease in performance in the elderly. 

However, in the former, in our study no reduction of performance accompanied the 

increased latency and in the latter ones our aging group achieved worse performances as 

well, compared to the youth. Additionally, our aging group replied slower than the young 

in the PRM task too, contrasting the outcomes of Csipo et. al (120). On the whole, three 

deductions can be made from the behavioral results. One, in alignment with earlier 

findings our results support that this set of cognitive tasks is sensitive, quantifiable and 

can be efficiently employed in capturing age-related decline in several cognitive domains. 

Perhaps not surprisingly, but even in the absence of any neuropathological condition the 

elderly displayed worse performance. Two, excluding the MOT task, the response times 

of the elderly subjects were typically longer than those of the young group across almost 

all tasks where it was measured. In two instances, namely in the DMS and PRM tasks 

which test visual pattern recognition- and short-term visual memory, the elderly displayed 

comparable performance to the young group. This phenomenon implies that despite the 

affection or ‘aging’ of the neural circuits needed to solve the task, elderly participants 

could compensate the reduced efficiency with increased processing duration. A similar 

occurrence has been observed in the elderly in error perception and response inhibition 

tasks (121, 122). Three, also in line with previous results (123, 124), four tasks (PAL, 

RTI, RVP and SWM, while in RTI and RVP the response latency was increased as well) 

saw a significant reduction in performance when it came to the elderly. These tests 

assessed a broad range of cognitive domains, except pattern recognition/matching. 

Interestingly, two very similar tasks, MOT and RTI produced starkly different results. 

The RTI task involved a preparatory phase and more options to select the correct one 

from contrary to MOT where there was only one button to press, but only in the former 

did we observe increased response time and decreased performance/accuracy in the 

elderly. Once again, previous studies have found the same phenomenon, that the aging 

population are more prone to error when forced to react quickly (121). Moreover, also in 

line with earlier research (125, 126), it could signify that aging affects neurophysiological 

processes linked to preparation and cued action (which we did not assess in our current 

study). The SWM task was the most complex task applied in our study. After taking the 
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redundancy of the outcome measures into account (e.g. the number of attempts increase 

with the number of errors), this task proved to be most challenging for the elderly 

compared to the young, as their performance was reduced across all difficulty levels (4, 

6, 8 and 12 boxes). This result further backs that increasing task complexity diminishes 

performance in older adults (127), possibly related to naturally occurring loss of cognitive 

reserves. 

5.3 Changes in fractal connectivity in healthy aging 

Overall, the most notable reveal of the fractal connectivity analysis was the reduction of 

the cross- and auto-spectral slope across the whole cortex (Figure 6). Multiple previous 

studies reporting changes in functional connectivity in aging agree that disconnectivity 

increases with age (20), which can be linked to cognitive impairment (128). However, it 

is critical to note that direct comparison of these results is not feasible because the cross-

spectral slope/exponent does not translate into the ‘strength’ of the coupling between the 

signals. Rather, it indicates how the strength of the coupled processes change over various 

time scales. Interestingly, comparing integrated cross-spectral density (a more 

‘conventional’ measure of FC), no differences emerged between the groups, contrary to 

previous findings (129). This difference could be caused by the differing analysis 

strategies. Here, we only examined broadband spectral power and connection-to-

connection comparisons after FDR-adjustment, meanwhile a more comprehensive 

investigation in the individual frequency ranges combined with network theoretical 

methods could prove to be more discerning in revealing changes linked to aging. Another 

study found that aging involves a shift from segregated to integrated functional networks, 

particularly in the frontal lobe (130). This reorganization aligns with our findings that 

changes in fractal connectivity (FrC) reflect disruptions in neuronal dynamics across 

cortical regions. Regardless, our focus was specifically set on FrC and our results prove 

that evaluating it can reveal age-related changes other, more ‘traditional’ methods could 

not. Consequently, as far as we know, no studies had examined FrC in aging and how it 

might be linked to cognitive performance previously. Prior to MRCSA, our group 

proposed a novel, parallel approach (for a similar purpose of characterizing fractal 

connectivity) called bivariate focus-based multifractal formalism (BFMF), to analyse 

multifractal connectivity (61), in the time domain. In our follow-up papers, with the use 

of BFMF we demonstrated that FrC is altered in a visual pattern recognition paradigm 
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(62) and also in Parkinson’s Disease and reacts to dopaminergic treatment (131).  Despite 

the implications of these outcomes suggesting a connection between FrC and cognitive 

performance, none of these studies examined the contrast in FrC between young and 

healthy elderly groups. Additionally, our goal was not to assess the plausible multifractal 

nature of connectivity, but instead to obtain precise, unbiased estimates of the 

(mono)fractal scaling property and thus we utilized the advanced MRCSA instead of the 

BFMF method. In spite of finding differences linked to aging in FrC, the underlying 

neurophysiological processes (and fractal neural dynamics in general) are yet to be 

understood. Based on the neural network oscillator model, larger neuronal assemblies 

produce slower fluctuations. Thus, the 1/𝑓 characteristic of neural activity emerges from 

the overlay of incoming signals from neuronal populations of various sizes (80, 132). 

Building upon this notion, the decreased cross-spectral slope could very well indicate that 

disconnectivity emerges in the aging brain affecting neuronal populations to various 

extents. An additional prevalent hypothesis associates scale-free neural activity with a 

condition of self-organized criticality in the brain (133), making it capable of global 

reorganization quickly in reaction to external stimuli (134, 135). As per this concept, 

altered spectral exponents might indicate changes in the balance of excitatory and 

inhibitory stimuli (136, 137) and the resulting regional imbalance could very well lead to 

a desynchronization of various cortical areas across several frequency ranges (138), 

although further research is required to confirm this theory. Most of the differences in 

auto- and cross-spectral exponents were concentrated on the frontal and temporal regions 

(right panel of Figure 6). This can be explained by that the univariate spectral slope can 

in fact determine the bivariate scaling exponent (99). Our findings on fractal connectivity 

changes in healthy aging align with recent research on functional brain network 

alterations across the lifespan. A comprehensive study by Doval et al. (139) using 

magnetoencephalography data from 792 healthy individuals revealed significant shifts in 

functional connectivity patterns across multiple frequency bands. Notably, they observed 

decreased connectivity in the elderly group, particularly in occipital regions and their 

connections with hippocampal and parahippocampal areas in the delta band, and a 

widespread decrease in theta connectivity. These patterns support the notion that aging 

involves specific regional changes in neural dynamics. Moreover, the identified 

involvement of the frontotemporal network in aging is consistent with previous research 



52 

 

(140, 141), and is further supported by the findings of Doval et al. of altered connectivity 

in frontal and temporal regions across various frequency bands, particularly in the alpha 

and gamma ranges (139). 

5.4 Associations between fractal connectivity and cognitive abilities in 

older adults 

The most numerous correlations of FrC and performance emerged in the RVP and PAL 

tasks (Figure 7. and Figure 8.). The RVP task assessed the sustained attention skills of 

the participants. The task interface is very similar to the widely favoured n-back working 

memory paradigm (142). In contrast with n-back, the subjects had to identify one (or 

more) previously fixed sequence, without updating it every trial. Among cognitive 

domains, working memory stands out as one of the earliest to be affected by aging, as 

indicated by prior research (143), thus it is not unexpected to find that a similar task 

produced the most correlations with neural signatures. Moreover, studies agree that the 

frontal and prefrontal areas (e.g. the dorsolateral prefrontal cortex) play an important role 

in working memory and sustained attention (69, 144, 145). This is further supported by 

the correlations found between regional spectral exponents of these areas and 

performance in RVP. The PAL task, which assessed visual memory and learning, saw an 

analogous pattern related to the number of attempts emerging. Earlier it has been shown 

that the cortical regions responsible for visual memory go through a reorganization with 

aging (146), however differences in performance between young and elderly have not 

been scrutinized. In contrast, our findings suggest that when long term coupling occurs 

between the frontal and parietal brain areas, it hinders the continuity of visual memory. 

Precisely, this is indicated by the reduced auto- and cross-spectral slopes found in the 

aging group. Interestingly, an inverse relationship (Figure 7.) was uncovered between 

spectral slopes and RVP score (the greater, the better), and additionally, a positive 

relationship (Figure 8.) between the spectral slopes and the number of attempts at PAL 

(the lower slope, the better the performance). Recent findings from Jauny et al. (2024) 

(147) show that lower structural-functional connectivity similarity in parietal and 

temporal regions correlates with better cognitive performance in older adults. This aligns 

with our observation that reduced spectral slopes may reflect compensatory mechanisms, 

suggesting FrC changes represent adaptive reorganization rather than decline. As the 
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young group had an overall better performance, it is somewhat remarkable that they also 

exhibited higher spectral slopes, therefore one could connect the higher 𝛽𝑥 and 𝛽𝑥𝑦 values 

to sharper cognitive abilities. Note that in spite of this, nearly none of the cognitive scores 

showed correlations with spectral exponents in the young cohort, hence universal 

associations cannot be made and the observed correlations in the elderly should not be 

dismissed. Rather, the gathered data implies that there might be a (yet unknown) 

compensatory mechanism in the aging brain as a response to diminished cognitive 

capabilities, which manifests as a reduction in spectral exponents. Regardless, these 

questions were ultimately beyond the scope of our study and require further research. 

5.5 The physiological role of fractal connectivity 

The exact role and meaning of fractal connectivity – and fractal neural activity – is still a 

subject of debate and active research among the neuroscience community. On the one 

hand, the functional relevance of fractal neural dynamics has been demonstrated in a 

plethora of conditions, such as mental workload (51, 78, 148, 149), self-consciousness 

(150, 151) or anxiety (152). Even though exact generating mechanisms were not 

identified in most cases, the robust changes observed in spectral slope (or Hurst exponent) 

indicates that processes governing fractal scaling are task relevant. Recent research 

proposed that the spectral exponent might reflect the ratio of incoming excitatory and 

inhibitory signalling to a given region (153), which is a similar notion to the one proposed 

by Ivanov and colleagues (154) to explain the emergence of fractal dynamics in the 

presence of non-linear, antagonistic feedback loops. On the other hand, the ubiquitous 

nature of fractal ‘1/𝑓’ dynamics in many natural processes provides a reason for 

scepticism (155, 156), and thus many approaches consider fractal neural dynamics simply 

as ‘1/𝑓 noise’(157). Nevertheless, most previous approaches considered fractal 

characteristics of regional neural dynamics, while studies assessing fractal connectivity 

are scarce (53, 60, 61, 70), especially those doing so in response to a cognitive task (54, 

62). In my work, I provided two arguments supporting the physiological role and 

relevance of fractal connectivity. First, I showed that fractal connectivity patterns change 

in response to a mental workload task, and these changes appear to be aligned with task-

relevant functional brain regions. Second, I showed that not only fractal connectivity (and 

regional fractal dynamics) decreases with age, but this alteration is correlated with 
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cognitive performance in multiple domains. Although the exact neural mechanisms 

behind these findings could not be disentangled with our experimental setup and 

limitations, investigating fractal connectivity nevertheless appears as an interesting and 

relevant direction for future neuroscience research. 

5.6 Limitations and future perspectives 

Despite the fact that MRCSA can effectively separate the fractal constituent from the 

cross-power spectrum, some prior assumptions must be made at its application, as 

mentioned above. Regardless, future theoretical and technical advancements could 

potentially address or expand upon certain limitations of the method presented here. Also, 

MRCSA might be extendable to the bimodal domain, based on the works of Nagy et al. 

(158) and Mukli et al. (68). Moreover, fractal processes in nature can rarely be 

characterized with one scaling exponent since the scaling property itself can change over 

time. To provide a solution, Benzi et al. (159) and Mandelbrot (160) proposed a 

phenomenon termed multifractality, that instead of one, a set of exponents should be 

estimated in these cases. Various processes in physiology exhibit multifractality such as 

heart rate variability (161) or cerebral hemodynamics (162). More importantly, functional 

connectivity has been shown to exhibit multifractal dynamics in terms of the topological 

properties of the overall network (71, 76) and also in individual connections (61, 62, 72).  

The MRCSA method as presented here is only able to describe the global monofractal 

character of functional coupling, however a sliding window approach could prove useful 

in obtaining a distribution of local cross-spectral exponents over time, then the degree of 

multifractality could be computed from the distribution width. Finally, MRCSA could be 

an effective tool in other fields than neuroscience, as well. In financial data analysis, 

assessing long-term coupling is gaining traction (56, 163), as these time series express 

long-range auto- and cross-correlations, interspersed with periodic peaks (monthly/yearly 

periods or cycles). MRCSA effectively eliminates the interference of multiple periodic 

elements simultaneously, thus it has the potential to serve as a valuable tool in financial 

data analysis as well. 

Furthermore, MRCSA is computationally very costly method, thus online 

applications are not feasible. If one intends to monitor cognitive states in real-time, the 

newly proposed real-time detrended cross-correlation analysis (164) provides an 
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alternative solution. Lastly, in my work the focus was on identifying biomarkers which 

are connected to changes in brain networks in healthy aging. Consequently, a significant 

challenge lies in distinguishing between the natural changes that accompany aging and 

those that are typical in certain pathological conditions – like mild cognitive impairment 

or Alzheimer’s Disease – is a challenge for the future, albeit an equally important one. 

Therefore, among our future objectives, we aim to explore the relationship between 

cognition and FrC in pertinent clinical conditions.  
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6 Conclusions 

During my work, we proposed and developed the bivariate extension of IRASA, called 

MRCSA, for isolating the fractal component of a cross-spectra of long-term coupled 

signals. We demonstrated that MRCSA is a potent method to eliminate oscillatory or 

narrow-band peaks from the cross-power spectrum. We showcased the relevancy of 

MRCSA on real-world EEG recordings and how the obtained cross-spectral slopes could 

be employed in differentiating between resting state and increased mental workload. 

Moreover, MRCSA could prove useful in other disciplines where periodic patterns pose 

a similar difficulty as narrow-band oscillations in neurophysiological signals, for instance 

in financial data analysis. 

After validating the method, I set out to investigate resting-state fractal connectivity 

in healthy elderly and young participants and scrutinized its connections with cognitive 

performance and compared the results of the two groups. The cognitive evaluation 

showed an increase in response time and decreased performance in the elderly in several 

tasks, concurrent with an overall reduction in local and cross-regional spectral exponents. 

Analyzing the correlations, it was found that performance showed an inverse relationship 

with fractal connectivity dynamics in the elderly. Such reduction in FrC is likely the 

manifestation of compensating for decreased cognitive abilities. These results are the first 

to uncover alterations in fractal connectivity connected to aging and their associations to 

cognitive functioning, and thus will lay the groundwork for future studies focused on 

employing these markers for monitoring, screening or potential intervention.  
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7 Summary 

I investigated the relationship between fractal connectivity and cognitive functions within 

the context of healthy aging. My primary objective was to uncover how age-related 

alterations in brain connectivity patterns influenced cognitive abilities. Firstly, I delved 

into fractal connectivity (FrC), which represents the self-similar patterns of brain activity 

crucial for cognitive performance. To estimate and analyze FrC our lab developed a 

method termed Multiple-Resampling Cross-Spectral Analysis (MRCSA), the bivariate 

extension of Irregular-Resampling Auto-Spectral Analysis (IRASA). This technique 

allowed for an unbiased estimation of the spectral slope, which characterizes fractal 

connectivity. Secondly, to test cognitive performance I utilized tasks from the Cambridge 

Neuropsychological Test Automated Battery (CANTAB) to assess various cognitive 

domains. These tests provided comprehensive insights into visual memory, attention, 

reaction time, and problem-solving abilities. The impact of aging on fractal connectivity 

and cognitive performance formed the third focal area of my study. I investigated age-

related differences in connectivity patterns and their correlations with cognitive test 

outcomes. The results revealed that healthy aging was associated with distinct changes in 

fractal connectivity, which might be the underlying cause for the observed decline in 

specific cognitive capabilities. To ensure statistical robustness, the False Discovery Rate 

(FDR) method was employed to adjust the number of comparisons in the case of 

CANTAB and Bonferroni’s method of multiple comparisons with the connectivity 

metrics. The results of my study indicated that increased cognitive load affected FrC 

differently in younger and older adults. Healthy elderly individuals displayed distinct 

connectivity patterns compared to younger participants, and these patterns correlated with 

their cognitive performance. I identified significant age-related differences in fractal 

connectivity linked to specific cognitive domains, highlighting the potential of FrC as a 

biomarker for cognitive aging. It must be stressed that further research is needed to 

explore potential therapeutic interventions that could mitigate age-related cognitive 

decline. In conclusion, my dissertation established that FrC plays a crucial role in 

cognitive functioning, and its alteration with age might contribute to cognitive decline. 

By understanding the neural mechanisms underlying age-related cognitive changes, we 

could develop more effective strategies to support cognitive longevity.  



58 

 

8 References 

1. Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. 

Neuron. 2007;56(2):366-383. 

2. Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 

2004;27:279-306. 

3. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annual 

review of neuroscience. 2001;24:167-202. 

4. Alvarez JA, Emory E. Executive Function and the Frontal Lobes: A Meta-

Analytic Review. Neuropsychology Review. 2006;16(1):17-42. 

5. Friston KJ. Functional and effective connectivity: a review. Brain Connect. 

2011;1(1):13-36. 

6. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging 

methods and principles. Trends in cognitive sciences. 2010;14(6):277-290. 

7. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 

A default mode of brain function. PNAS. 2001;98(2):676-682. 

8. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The 

human brain is intrinsically organized into dynamic, anticorrelated functional networks. 

PNAS. 2005;102(27):9673-9678. 

9. Szczepanski SM, Pinsk MA, Douglas MM, Kastner S, Saalmann YB. Functional 

and structural architecture of the human dorsal frontoparietal attention network. PNAS. 

2013;110(39):15806-15811. 

10. Folkow B, Svanborg A. Physiology of Cardiovascular Aging. Physiol Rev. 

1993;73(4):725-764. 

11. Kirkendall DT, Garrett WE. The effects of aging and training on skeletal muscle. 

Am J Sport Med. 1998;26(4):598-602. 

12. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and 

immunology. Clin Interv Aging. 2006;1(3):253-260. 

13. Murman DL. The Impact of Age on Cognition. Semin Hear. 2015;36(3):111-121. 



59 

 

14. Salthouse TA. Selective review of cognitive aging. J Int Neuropsych Soc. 

2010;16(5):754-760. 

15. Glisky EL. Changes in Cognitive Function in Human Aging. In: Riddle DR, 

editor. Brain Aging: Models, Methods, and Mechanisms. Frontiers in Neuroscience. Boca 

Raton (FL)2007. 

16. Pettigrew C, Martin RC. Cognitive declines in healthy aging: evidence from 

multiple aspects of interference resolution. Psychol Aging. 2014;29(2):187-204. 

17. Pichora-Fuller MK, Mick P, Reed M. Hearing, Cognition, and Healthy Aging: 

Social and Public Health Implications of the Links between Age-Related Declines in 

Hearing and Cognition. Semin Hear. 2015;36(3):122-139. 

18. Roalf DR, Moberg PJ, Xie SX, Wolk DA, Moelter ST, Arnold SE. Comparative 

accuracies of two common screening instruments for classification of Alzheimer's 

disease, mild cognitive impairment, and healthy aging. Alzheimers Dement. 

2013;9(5):529-537. 

19. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive 

decline. Nature. 2010;464(7288):529-535. 

20. Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain 

aging. Neurosci Biobehav R. 2013;37(3):384-400. 

21. Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in 

aging: a review of functional connectivity studies. Frontiers in psychology. 2015;6:663. 

22. Damoiseaux JS. Effects of aging on functional and structural brain connectivity. 

Neuroimage. 2017;160:32-40. 

23. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation 

hypothesis. Curr Dir Psychol Sci. 2008;17(3):177-182. 

24. Sala-Llonch R, Arenaza-Urquijo EM, Valls-Pedret C, Vidal-Pineiro D, Bargallo 

N, Junque C, Bartres-Faz D. Dynamic functional reorganizations and relationship with 

working memory performance in healthy aging. Front Hum Neurosci. 2012;6:152. 

25. Onoda K, Ishihara M, Yamaguchi S. Decreased Functional Connectivity by Aging 

Is Associated with Cognitive Decline. J Cognitive Neurosci. 2012;24(11):2186-2198. 



60 

 

26. Hirsiger S, Koppelmans V, Merillat S, Liem F, Erdeniz B, Seidler RD, Jancke L. 

Structural and functional connectivity in healthy aging: Associations for cognition and 

motor behavior. Hum Brain Mapp. 2016;37(3):855-867. 

27. Hausman HK, O'Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten 

EJ, Bharadwaj PK, Smith SG, Porges E, Hishaw GA, Wu S, DeKosky S, Alexander GE, 

Marsiske M, Cohen R, Woods AJ. The Role of Resting-State Network Functional 

Connectivity in Cognitive Aging. Front Aging Neurosci. 2020;12. 

28. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 

2014;15(10):683-695. 

29. Lal U, Chikkankod AV, Longo L. Fractal dimensions and machine learning for 

detection of Parkinson’s disease in resting-state electroencephalography. Neural 

Computing and Applications. 2024;36(15):8257-8280. 

30. Lin Q, Rosenberg MD, Yoo K, Hsu TW, O'Connell TP, Chun MM, Initi ADN. 

Resting-State Functional Connectivity Predicts Cognitive Impairment Related to 

Alzheimer's Disease. Front Aging Neurosci. 2018;10. 

31. Dubbelink KTEO, Hillebrand A, Stoffers D, Deijen JB, Twisk JWR, Stam CJ, 

Berendse HW. Disrupted brain network topology in Parkinson's disease: a longitudinal 

magnetoencephalography study. Brain. 2014;137:197-207. 

32. Bajo R, Maestu F, Nevado A, Sancho M, Gutierrez R, Campo P, Castellanos NP, 

Gil P, Moratti S, Pereda E, del-Pozo F. Functional Connectivity in Mild Cognitive 

Impairment During a Memory Task: Implications for the Disconnection Hypothesis. J 

Alzheimers Dis. 2010;22(1):183-193. 

33. Rissman J, Gazzaley A, D'Esposito M. Measuring functional connectivity during 

distinct stages of a cognitive task. Neuroimage. 2004;23(2):752-763. 

34. Racz FS, Mukli P, Nagy Z, Eke A. Increased prefrontal cortex connectivity during 

cognitive challenge assessed by fNIRS imaging. Biomed Opt Express. 2017;8(8):3842-

3855. 

35. O'Neill GC, Tewarie PK, Colclough GL, Gascoyne LE, Hunt BAE, Morris PG, 

Woolrich MW, Brookes MJ. Measurement of dynamic task related functional networks 

using MEG. Neuroimage. 2017;146:667-678. 



61 

 

36. Dimitrakopoulos GN, Kakkos I, Dai ZX, Lim J, deSouza JJ, Bezerianos A, Sun 

Y. Task-Independent Mental Workload Classification Based Upon Common Multiband 

EEG Cortical Connectivity. Ieee T Neur Sys Reh. 2017;25(11):1940-1949. 

37. Kaposzta Z, Stylianou O, Mukli P, Eke A, Racz F. Decreased connection density 

and modularity of functional brain networks during n-back working memory paradigm. 

Brain and Behavior. 2020:e01932-e01932. 

38. Friston KJ. The labile brain. II. Transients, complexity and selection. Philos Trans 

R Soc Lond B Biol Sci. 2000;355(1394):237-252. 

39. Gómez-Lombardi A, Costa BG, Gutiérrez PP, Carvajal PM, Rivera LZ, El-Deredy 

W. The cognitive triad network - oscillation - behaviour links individual differences in 

EEG theta frequency with task performance and effective connectivity. Sci Rep-Uk. 

2024;14(1):21482. 

40. Hou FZ, Liu C, Yu ZN, Xu XD, Zhang JY, Peng CK, Wu CY, Yang A. Age-

Related Alterations in Electroencephalography Connectivity and Network Topology 

During n-Back Working Memory Task. Frontiers in Human Neuroscience. 2018;12. 

41. Tanaka M, Yamada E, Mori F. Neurophysiological markers of early cognitive 

decline in older adults: a mini-review of electroencephalography studies for precursors of 

dementia. Front Aging Neurosci. 2024;16. 

42. Nagel IE, Preuschhof C, Li SC, Nyberg L, Backman L, Lindenberger U, Heekeren 

HR. Load Modulation of BOLD Response and Connectivity Predicts Working Memory 

Performance in Younger and Older Adults. J Cognitive Neurosci. 2011;23(8):2030-2045. 

43. Cao J, Zhao Y, Shan X, Wei H-l, Guo Y, Chen L, Erkoyuncu JA, Sarrigiannis PG. 

Brain functional and effective connectivity based on electroencephalography recordings: 

A review. Hum Brain Mapp. 2022;43(2):860-879. 

44. Di Gregorio F, Battaglia S. Advances in EEG-based functional connectivity 

approaches to the study of the central nervous system in health and disease. Adv Clin Exp 

Med. 2023;32(6):607-612. 

45. Perinelli A, Assecondi S, Tagliabue CF, Mazza V. Power shift and connectivity 

changes in healthy aging during resting-state EEG. NeuroImage. 2022;256:119247. 



62 

 

46. Javaid H, Kumarnsit E, Chatpun S. Age-Related Alterations in EEG Network 

Connectivity in Healthy Aging. Brain Sciences. 2022;12(2):218. 

47. Mandelbrot B. The Fractal Geometry of Nature. New York: W. H. Freeman and 

Co; 1983. 

48. Campillo M, Paul A. Long-range correlations in the diffuse seismic coda. Science. 

2003;299(5606):547-549. 

49. Marinho EBS, Sousa AMYR, Andrade RFS. Using Detrended Cross-Correlation 

Analysis in geophysical data. Physica A. 2013;392(9):2195-2201. 

50. Vassoler RT, Zebende GF. DCCA cross-correlation coefficient apply in time 

series of air temperature and air relative humidity. Physica A. 2012;391(7):2438-2443. 

51. He BJ. Scale-free properties of the functional magnetic resonance imaging signal 

during rest and task. J Neurosci. 2011;31(39):13786-13795. 

52. Podobnik B, Horvatic D, Ng AL, Stanley HE, Ivanov PC. Modeling long-range 

cross-correlations in two-component ARFIMA and FIARCH processes. Physica A. 

2008;387(15):3954-3959. 

53. Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore ET. Fractal connectivity 

of long-memory networks. Phys Rev E. 2008;77(3). 

54. Ciuciu P, Abry P, He BJ. Interplay between functional connectivity and scale-free 

dynamics in intrinsic fMRI networks. Neuroimage. 2014;95:248-263. 

55. Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel 

M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. 

Cereb Cortex. 2022;33(8):4574-4605. 

56. Podobnik B, Stanley HE. Detrended cross-correlation analysis: a new method for 

analyzing two nonstationary time series. Physical review letters. 2008;100(8):084102. 

57. Kristoufek L. Spectrum-based estimators of the bivariate Hurst exponent. Phys 

Rev E. 2014;90(6). 

58. Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, 

Balla I, Ikrenyi C. Physiological time series: distinguishing fractal noises from motions. 

Pflugers Arch. 2000;439(4):403-415. 



63 

 

59. Eke A, Herman P, Kocsis L, Kozak LR. Fractal characterization of complexity in 

temporal physiological signals. Physiol Meas. 2002;23(1):1-38. 

60. La Rocca D, Wendt H, van Wassenhove V, Ciuciu P, Abry P. Revisiting 

Functional Connectivity for Infraslow Scale-Free Brain Dynamics Using Complex 

Wavelets. Front Physiol. 2021;11. 

61. Stylianou O, Racz FS, Eke A, Mukli P. Scale-Free Coupled Dynamics in Brain 

Networks Captured by Bivariate Focus-Based Multifractal Analysis. Front Physiol. 

2020;11:615961. 

62. Stylianou O, Racz FS, Kim K, Kaposzta Z, Czoch A, Yabluchanskiy A, Eke A, 

Mukli P. Multifractal Functional Connectivity Analysis of Electroencephalogram 

Reveals Reorganization of Brain Networks in a Visual Pattern Recognition Paradigm. 

Front Hum Neurosci. 2021;15:740225. 

63. Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer 

A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive 

therapy: Unraveling complexity in structural and functional neuroimaging. NeuroImage. 

2024;297:120671. 

64. He BYJ. Scale-free brain activity: past, present, and future. Trends in cognitive 

sciences. 2014;18(9):480-487. 

65. Racz FS, Farkas K, Stylianou O, Kaposzta Z, Czoch A, Mukli P, Csukly G, Eke 

A. Separating scale-free and oscillatory components of neural activity in schizophrenia. 

Brain Behav. 2021;11(5):e02047. 

66. Eke A, Herman P, Hajnal M. Fractal and noisy CBV dynamics in humans: 

influence of age and gender. Journal of cerebral blood flow and metabolism : official 

journal of the International Society of Cerebral Blood Flow and Metabolism. 

2006;26(7):891-898. 

67. Churchill NW, Spring R, Grady C, Cimprich B, Askren MK, Reuter-Lorenz PA, 

Jung MS, Peltier S, Strother SC, Berman MG. The suppression of scale-free fMRI brain 

dynamics across three different sources of effort: aging, task novelty and task difficulty. 

Sci Rep-Uk. 2016;6. 



64 

 

68. Mukli P, Nagy Z, Racz FS, Herman P, Eke A. Impact of Healthy Aging on 

Multifractal Hemodynamic Fluctuations in the Human Prefrontal Cortex. Front Physiol. 

2018;9. 

69. Seeburger DT, Xu N, Ma M, Larson S, Godwin C, Keilholz SD, Schumacher EH. 

Time-varying functional connectivity predicts fluctuations in sustained attention in a 

serial tapping task. Cognitive, affective & behavioral neuroscience. 2024;24(1):111-125. 

70. Wang J, Zhao DQ. Detrended cross-correlation analysis of electroencephalogram. 

Chinese Phys B. 2012;21(2). 

71. Racz FS, Mukli P, Nagy Z, Eke A. Multifractal dynamics of resting-state 

functional connectivity in the prefrontal cortex. Physiol Meas. 2018;39(2):024003. 

72. Racz FS, Stylianou O, Mukli P, Eke A. Multifractal Dynamic Functional 

Connectivity in the Resting-State Brain. Front Physiol. 2018;9:1704. 

73. Stam CJ, de Bruin EA. Scale-free dynamics of global functional connectivity in 

the human brain. Hum Brain Mapp. 2004;22(2):97-109. 

74. Van de Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans 

at rest reveal scale-free dynamics. PNAS. 2010;107(42):18179-18184. 

75. Racz FS, Stylianou O, Mukli P, Eke A. Multifractal and entropy analysis of 

resting-state electroencephalography reveals spatial organization in local dynamic 

functional connectivity. Sci Rep-Uk. 2019;9. 

76. Racz FS, Stylianou O, Mukli P, Eke A. Multifractal and Entropy-Based Analysis 

of Delta Band Neural Activity Reveals Altered Functional Connectivity Dynamics in 

Schizophrenia. Front Syst Neurosci. 2020;14. 

77. Kristoufek L. Multifractal height cross-correlation analysis: A new method for 

analyzing long-range cross-correlations. Epl-Europhys Lett. 2011;95(6). 

78. He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and 

functional significance of scale-free brain activity. Neuron. 2010;66(3):353-369. 

79. Gonzalez J, Gamundi A, Rial R, Nicolau MC, De Vera L, Pereda E. Nonlinear, 

fractal, and spectral analysis of the EEG of lizard, Gallotia galloti. Am J Physiol-Reg I. 

1999;277(1):R86-R93. 



65 

 

80. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 

2004;304(5679):1926-1929. 

81. Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and 

currents - EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407-420. 

82. Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity 

reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62(3):270-

273. 

83. Yamamoto Y, Hughson RL. Coarse-Graining Spectral-Analysis - New Method 

for Studying Heart-Rate-Variability. J Appl Physiol. 1991;71(3):1143-1150. 

84. Yamamoto Y, Hughson RL. Extracting Fractal Components from Time-Series. 

Physica D. 1993;68(2):250-264. 

85. Mandelbrot BB, Van Ness JW. Fractional Brownian motions, fractional noises 

and applications. SIAM review. 1968;10(4):422-437. 

86. Wen HG, Liu ZM. Separating Fractal and Oscillatory Components in the Power 

Spectrum of Neurophysiological Signal. Brain Topogr. 2016;29(1):13-26. 

87. Murias M, Swanson JM, Srinivasan R. Functional connectivity of frontal cortex 

in healthy and ADHD children reflected in EEG coherence. Cereb Cortex. 

2007;17(8):1788-1799. 

88. Racz FS, Czoch A, Kaposzta Z, Stylianou O, Mukli P, Eke A. Multiple-

Resampling Cross-Spectral Analysis: An Unbiased Tool for Estimating Fractal 

Connectivity With an Application to Neurophysiological Signals. Front Physiol. 2022;13. 

89. Mandelbrot BB, Wallis JR. Computer Experiments With Fractional Gaussian 

Noises: Part 1, Averages and Variances. Water Resources Research. 1969;5(1):228-241. 

90. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ. Long-range 

temporal correlations and scaling behavior in human brain oscillations. J Neurosci. 

2001;21(4):1370-1377. 

91. Podobnik B, Fu DF, Stanley HE, Ivanov PC. Power-law autocorrelated stochastic 

processes with long-rangecross-correlations. The European Physical Journal B. 

2007;56(1):47-52. 



66 

 

92. Zhou WX. Multifractal detrended cross-correlation analysis for two nonstationary 

signals. Physical review E, Statistical, nonlinear, and soft matter physics. 2008;77(6 Pt 

2):066211. 

93. Arianos S, Carbone A. Cross-correlation of long-range correlated series. J Stat 

Mech-Theory E. 2009. 

94. Kristoufek L. Fractal approach towards power-law coherency to measure cross-

correlations between time series. Commun Nonlinear Sci. 2017;50:193-200. 

95. Podobnik B, Jiang ZQ, Zhou WX, Stanley HE. Statistical tests for power-law 

cross-correlated processes. Phys Rev E. 2011;84(6). 

96. Kristoufek L. Mixed-correlated ARFIMA processes for power-law cross-

correlations. Physica A. 2013;392(24):6484-6493. 

97. Kristoufek L. Testing power-law cross-correlations: rescaled covariance test. Eur 

Phys J B. 2013;86(10). 

98. Sela RJ, Hurvich CM. The averaged periodogram estimator for a power law in 

coherency. J Time Ser Anal. 2012;33(2):340-363. 

99. Kristoufek L. Can the bivariate Hurst exponent be higher than an average of the 

separate Hurst exponents? Physica A. 2015;431:124-127. 

100. Bassett GW. Equivariant, Monotonic, 50-Percent Breakdown Estimators. Am 

Stat. 1991;45(2):135-137. 

101. Shin J, von Luhmann A, Kim DW, Mehnert J, Hwang HJ, Muller KR. Data 

Descriptor: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an 

open access dataset. Sci Data. 2018;5. 

102. Oostenveld R, Praamstra P. The five percent electrode system for high-resolution 

EEG and ERP measurements. Clin Neurophysiol. 2001;112(4):713-719. 

103. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. J Neurosci Methods. 

2004;134(1):9-21. 

104. Winkler I, Haufe S, Tangermann M. Automatic Classification of Artifactual ICA-

Components for Artifact Removal in EEG Signals. Behav Brain Funct. 2011;7. 



67 

 

105. Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M. Robust 

artifactual independent component classification for BCI practitioners. J Neural Eng. 

2014;11(3). 

106. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses 

and interpretations. NeuroImage. 2010;52(3):1059-1069. 

107. Czoch A, Kaposzta Z, Mukli P, Stylianou O, Eke A, Racz FS. Resting-state fractal 

brain connectivity is associated with impaired cognitive performance in healthy aging. 

GeroScience. 2024;46(1):473-489. 

108. Gabard-Durnam LJ, Leal ASM, Wilkinson CL, Levin AR. The Harvard 

Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized 

Processing Software for Developmental and High-Artifact Data. Front Neurosci. 

2018;12:97. 

109. Csipo T, Mukli P, Lipecz A, Tarantini S, Bahadli D, Abdulhussein O, Owens C, 

Kiss T, Balasubramanian P, Nyul-Toth A, Hand RA, Yabluchanska V, Sorond FA, 

Csiszar A, Ungvari Z, Yabluchanskiy A. Assessment of age-related decline of 

neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in 

humans. Geroscience. 2019;41(5):495-509. 

110. Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of 

spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res. 

2008;99(1-3):225-237. 

111. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and 

Powerful Approach to Multiple Testing. J R Stat Soc B. 1995;57(1):289-300. 

112. Zakar-Polyák E, Nagy M, Molontay R. Towards a better understanding of the 

characteristics of fractal networks. Applied Network Science. 2023;8(1):17. 

113. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, 

Roffman JL, Smoller JW, Zoller L, Polimeni JR, Fischl B, Liu HS, Buckner RL. The 

organization of the human cerebral cortex estimated by intrinsic functional connectivity. 

J Neurophysiol. 2011;106(3):1125-1165. 



68 

 

114. Giacometti P, Perdue KL, Diamond SG. Algorithm to find high density EEG scalp 

coordinates and analysis of their correspondence to structural and functional regions of 

the brain. J Neurosci Methods. 2014;229:84-96. 

115. Klimesch W, Doppelmayr M, Schimke H, Ripper B. Theta synchronization and 

alpha desynchronization in a memory task. Psychophysiology. 1997;34(2):169-176. 

116. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and 

multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. 

Hum Brain Mapp. 2008;29(7):791-801. 

117. Kaposzta Z, Czoch A, Mukli P, Stylianou O, Liu DH, Eke A, Racz FS. 

Fingerprints of decreased cognitive performance on fractal connectivity dynamics in 

healthy aging. GeroScience. 2024;46(1):713-736. 

118. Rabbitt P, Lowe C. Patterns of cognitive ageing. Psychol Res-Psych Fo. 

2000;63(3-4):308-316. 

119. Wild K, Howieson D, Webbe F, Seelye A, Kaye J. Status of computerized 

cognitive testing in aging: A systematic review. Alzheimers & Dementia. 2008;4(6):428-

437. 

120. Csipo T, Lipecz A, Fulop GA, Hand RA, Ngo BTN, Dzialendzik M, Tarantini S, 

Balasubramanian P, Kiss T, Yabluchanska V, Silva-Palacios F, Courtney DL, Dasari TW, 

Sorond F, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A. Age-related decline in 

peripheral vascular health predicts cognitive impairment. Geroscience. 2019;41(2):125-

136. 

121. Endrass T, Schreiber M, Kathmann N. Speeding up older adults: Age-effects on 

error processing in speed and accuracy conditions. Biol Psychol. 2012;89(2):426-432. 

122. Starns JJ, Ratcliff R. The Effects of Aging on the Speed-Accuracy Compromise: 

Boundary Optimality in the Diffusion Model. Psychology and Aging. 2010;25(2):377-

390. 

123. Peich MC, Husain M, Bays PM. Age-Related Decline of Precision and Binding 

in Visual Working Memory. Psychology and Aging. 2013;28(3):729-743. 



69 

 

124. Carriere JSA, Cheyne JA, Solman GJF, Smilek D. Age Trends for Failures of 

Sustained Attention. Psychology and Aging. 2010;25(3):569-574. 

125. Loveless NE, Sanford AJ. Effects of age on the contingent negative variation and 

preparatory set in a reaction-time task. J Gerontol. 1974;29(1):52-63. 

126. Michalewski HJ, Thompson LW, Smith DB, Patterson JV, Bowman TE, 

Litzelman D, Brent G. Age differences in the contingent negative variation (CNV): 

reduced frontal activity in the elderly. J Gerontol. 1980;35(4):542-549. 

127. Brustio PR, Magistro D, Zecca M, Rabaglietti E, Liubicich ME. Age-related 

decrements in dual-task performance: Comparison of different mobility and cognitive 

tasks. A cross sectional study. PLoS One. 2017;12(7):e0181698. 

128. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, 

Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron. 

2007;56(5):924-935. 

129. Vecchio F, Miraglia F, Marra C, Quaranta D, Vita MG, Bramanti P, Rossini PM. 

Human brain networks in cognitive decline: a graph theoretical analysis of cortical 

connectivity from EEG data. J Alzheimers Dis. 2014;41(1):113-127. 

130. Stumme J, Krämer C, Miller T, Schreiber J, Caspers S, Jockwitz C. Interrelating 

differences in structural and functional connectivity in the older adult's brain. Hum Brain 

Mapp. 2022;43(18):5543-5561. 

131. Stylianou O, Kaposzta Z, Czoch A, Stefanovski L, Yabluchanskiy A, Racz FS, 

Ritter P, Eke A, Mukli P. Scale-Free Functional Brain Networks Exhibit Increased 

Connectivity, Are More Integrated and Less Segregated in Patients with Parkinson's 

Disease following Dopaminergic Treatment. Fractal Fract. 2022;6(12). 

132. Buzsaki G. Rhythms of the Brain: Oxford University Press; 2006. 

133. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f 

noise. Physical review letters. 1987;59(4):381-384. 

134. Chialvo DR. Critical brain networks. Physica A. 2004;340(4):756-765. 

135. Hesse J, Gross T. Self-organized criticality as a fundamental property of neural 

systems. Front Syst Neurosci. 2014;8:166. 



70 

 

136. Beggs JM, Timme N. Being critical of criticality in the brain. Front Physiol. 

2012;3:163. 

137. Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K. Critical-state 

dynamics of avalanches and oscillations jointly emerge from balanced 

excitation/inhibition in neuronal networks. J Neurosci. 2012;32(29):9817-9823. 

138. Schirner M, Mclntosh AR, Jirsa V, Deco G, Ritter P. Inferring multi-scale neural 

mechanisms with brain network modelling. Elife. 2018;7. 

139. Doval S, Nebreda A, Bruña R. Functional connectivity across the lifespan: a cross-

sectional analysis of changes. Cereb Cortex. 2024;34(10). 

140. Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Cappa SF, Scola E, 

Quatto P, Horsfield MA, Falini A, Comi G, Filippi M. Brain network connectivity 

assessed using graph theory in frontotemporal dementia. Neurology. 2013;81(2):134-143. 

141. Davis SW, Kragel JE, Madden DJ, Cabeza R. The architecture of cross-

hemispheric communication in the aging brain: linking behavior to functional and 

structural connectivity. Cereb Cortex. 2012;22(1):232-242. 

142. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory 

paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain 

Mapp. 2005;25(1):46-59. 

143. Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging 

and brain maintenance. Trends in cognitive sciences. 2012;16(5):292-305. 

144. Pardo JV, Fox PT, Raichle ME. Localization of a Human System for Sustained 

Attention by Positron Emission Tomography. Nature. 1991;349(6304):61-64. 

145. Kimberg DY, D'Esposito M, Farah MJ. Cognitive functions in the prefrontal 

cortex - Working memory and executive control. Curr Dir Psychol Sci. 1997;6(6):185-

192. 

146. Bennett PJ, Sekuler AB, McIntosh AR, Della-Maggiore V. The effects of aging 

on visual memory: evidence for functional reorganization of cortical networks. Acta 

Psychol. 2001;107(1-3):249-273. 



71 

 

147. Jauny G, Mijalkov M, Canal-Garcia A, Volpe G, Pereira J, Eustache F, Hinault T. 

Linking structural and functional changes during aging using multilayer brain network 

analysis. Commun Biol. 2024;7(1):239. 

148. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. Scale-Free and 

Multifractal Time Dynamics of fMRI Signals during Rest and Task. Front Physiol. 

2012;3:186. 

149. Zilber N, Ciuciu P, Abry P, van Wassenhove V. Modulation of Scale-Free 

Properties of Brain Activity in Meg. 9th IEEE Isbi. 2012:1531-1534. 

150. Huang ZR, Ohara N, Davis H, Pokorny J, Northoff G. The temporal structure of 

resting-state brain activity in the medial prefrontal cortex predicts self-consciousness. 

Neuropsychologia. 2016;82:161-170. 

151. Kolvoort IR, Wainio-Theberge S, Wolff A, Northoff G. Temporal integration as 

"common currency" of brain and self-scale-free activity in resting-state EEG correlates 

with temporal delay effects on self-relatedness. Hum Brain Mapp. 2020. 

152. Tolkunov D, Rubin D, Mujica-Parodi LR. Power spectrum scale invariance 

quantifies limbic dysregulation in trait anxious adults using fMRI: Adapting methods 

optimized for characterizing autonomic dysregulation to neural dynamic time series. 

Neuroimage. 2010;50(1):72-80. 

153. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance 

from field potentials. NeuroImage. 2017;158:70-78. 

154. Ivanov P, Nunes Amaral LA, Goldberger AL, Stanley HE. Stochastic feedback 

and the regulation of biological rhythms. Europhys Lett. 1998;43(4):363-368. 

155. Bak P. How nature works: the science of self-organized criticality. New York: 

Springer Science & Business Media; 1996. 

156. Gisiger T. Scale invariance in biology: coincidence or footprint of a universal 

mechanism? Biol Rev. 2001;76(2):161-209. 

157. Mitra PP, Pesaran B. Analysis of dynamic brain imaging data. Biophys J. 

1999;76(2):691-708. 



72 

 

158. Nagy Z, Mukli P, Herman P, Eke A. Decomposing multifractal crossovers. Front 

Physiol. 2017;8(JUL):533. 

159. Benzi R, Paladin G, Parisi G, Vulpiani A. On the Multifractal Nature of Fully-

Developed Turbulence and Chaotic Systems. J Phys a-Math Gen. 1984;17(18):3521-

3531. 

160. Mandelbrot BB. Multifractals and Fractals. Phys Today. 1986;39(9):11. 

161. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, 

Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461-

465. 

162. Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based 

multifractal analysis of fMRI time series. Neuroimage. 2004;22(3):1195-1202. 

163. Podobnik B, Horvatic D, Petersen AM, Stanley HE. Cross-correlations between 

volume change and price change. PNAS. 2009;106(52):22079-22084. 

164. Kaposzta Z, Czoch A, Stylianou O, Kim K, Mukli P, Eke A, Racz FS. Real-Time 

Algorithm for Detrended Cross-Correlation Analysis of Long-Range Coupled Processes. 

Front Physiol. 2022;13. 

  



73 

 

 

9  Bibliography of the candidate’s publications 

9.1 Publications forming the basis of the thesis 

• Czoch, Akos, Zalan Kaposzta, Peter Mukli, Orestis Stylianou, Andras Eke, and 

Frigyes Samuel Racz. "Resting-state fractal brain connectivity is associated 

with impaired cognitive performance in healthy aging." GeroScience 46, no. 

1 (2024): 473-489. 

o Impact factor: 5,4 (2025) 

• Racz, Frigyes Samuel, Akos Czoch, Zalan Kaposzta, Orestis Stylianou, Peter 

Mukli, and Andras Eke. "Multiple-resampling cross-spectral analysis: an 

unbiased tool for estimating fractal connectivity with an application to 

neurophysiological signals." Frontiers in Physiology 13 (2022): 817239 

o  Impact factor: 4,0 (2025) 

9.2 Additional publications from the candidate  

Racz FS, Farkas K, Stylianou O, Kaposzta Z, Czoch A, Mukli P, Csukly G, Eke A. 

Separating scale-free and oscillatory components of neural activity in schizophrenia. 

Brain Behav. 2021;11(5):e02047. 

Stylianou O, Kaposzta Z, Czoch A, Stefanovski L, Yabluchanskiy A, Racz FS, Ritter P, 

Eke A, Mukli P. Scale-Free Functional Brain Networks Exhibit Increased Connectivity, 

Are More Integrated and Less Segregated in Patients with Parkinson's Disease following 

Dopaminergic Treatment. Fractal Fract. 2022;6(12). 

Kaposzta Z, Czoch A, Stylianou O, Kim K, Mukli P, Eke A, Racz FS. Real-Time 

Algorithm for Detrended Cross-Correlation Analysis of Long-Range Coupled Processes. 

Front Physiol. 2022;13. 

Stylianou O, Racz FS, Kim K, Kaposzta Z, Czoch A, Yabluchanskiy A, Eke A, Mukli P. 

Multifractal Functional Connectivity Analysis of Electroencephalogram Reveals 

Reorganization of Brain Networks in a Visual Pattern Recognition Paradigm. Front Hum 

Neurosci. 2021;15:740225. 



74 

 

Kaposzta Z, Czoch A, Mukli P, Stylianou O, Liu DH, Eke A, Racz FS. Fingerprints of 

decreased cognitive performance on fractal connectivity dynamics in healthy aging. 

GeroScience. 2024;46(1):713-736. 

Racz FS, Kumar S, Kaposzta Z, Alawieh H, Liu DH, Liu R, Czoch A, Mukli P, Millán 

JdR. Combining detrended cross-correlation analysis with Riemannian geometry-based 

classification for improved brain-computer interface performance. Front Neurosci. 

2024;Volume 18 - 2024. 

  



75 

 

10 Acknowledgements 

I would like to express my gratitude to my supervisor Frigyes Sámuel Rácz for the 

continuous support, the complete trust in my work, the straightforward conversations and 

for guiding me through this endeavour. I also deeply thank Prof. Attila Mócsai, the head 

of Department of Physiology, for supporting my PhD work in the department. My sincere 

thanks go to our lab, Dr. András Eke, Dr. Péter Mukli, Dr. Orestis Stylianou and Dr. Zalán 

Balázs Káposzta for the support, help, good advice and company. My deepest gratitude 

goes to Dr. Eszter Horváth, who supported, advised and helped me in any way 

imaginable. I would like to thank the support of all colleagues from the Department of 

Physiology. I also would like to thank our participants. This dissertation could not have 

been completed without their contribution. I am profoundly thankful to my Friends, who 

did not choose to embark on this adventure, yet they stuck with me through it all. Last, 

but not least, I am grateful for my Family for their continuous and unconditional love and 

support. I am sure that I would not have been able to finish my PhD without them. 


