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1 Introduction
1.1 The Complexity and Functional Connectivity of the Human Brain

The human brain is an extraordinary organ, renowned for its complexity and capability.
Encompassing several billion neurons, the brain facilitates an extensive range of functions
that are essential for survival and interaction with the environment. These functions
include basic physiological processes such as breathing and heart rate regulation, as well
as more advanced activities like perception, language, memory, and reasoning. The
architecture of the brain is intricately organized into distinct regions, each dedicated to
specific roles. For instance, the occipital lobe is primarily involved in visual processing
(1), the temporal lobe in auditory perception and memory (2), and the frontal lobe in
executive functions and decision-making (3, 4). Despite their specialized roles, these
regions do not function in isolation. Instead, they engage in constant communication,
forming a highly integrated network that enables the brain to execute complex functions
and tasks. Consequently, evaluating the functional connectivity (FC) of the brain — i.e.,
how the distinct brain regions interact with one another (5) — has gained significant
traction through the past decades. The aim of this notion was to achieve a better
understanding of the system-level neurophysiological foundation of mental processes and
functioning (6). Earlier research has described that specific groups of brain regions form
functional networks through their synchronized activity, including the default mode
network (7), the task positive network (8), and the dorsal and frontotemporal attention
networks (9). One particular relevance — among others — of such research lies in that it
helps understanding alterations in cognitive functions related to aging from a multitude

of aspects.

1.2 Alterations of Connectivity in Healthy Aging

1.2.1 Cognitive Decline

It is well known that even in healthy aging several physiological functions gradually start
to deteriorate, including the cardiovascular, respiratory, skeletomuscular or immune
systems (10-12). Furthermore, the decline in cognitive abilities during healthy aging (13,
14), in the absence of any pathological condition (15, 16), is particularly significant. The

effects of aging-related cognitive decline are various and far-reaching. It affects a plethora



of daily activities decreasing quality of life and also carries physiological and socio-
economical consequences (17). Additionally, even with the methods and tools of current
biomedical technology it is a strenuous and difficult task to distinguish naturally
occurring loss of cognitive capacity from early dementia or developing Mild Cognitive
Impairment (18). In these conditions early diagnosis is essential for an effective
intervention, thus it is an especially important issue. Consequently, numerous studies
aimed to find neurophysiological markers connected to various aspects of healthy aging;
however, only a handful of biomarkers have been discovered that can be resolutely linked

to loss of cognitive capabilities (19).
1.2.2 Functional Network Topology

It has been established in preceding studies that the aging brain demonstrates distinct
functional network topology compared to those of younger individuals (20-22). As of
now, the extent and precise nature of such changes are not fully understood; however, it
is speculated that the cell and subsequent function loss, plus the resulting compensatory
mechanisms manifest in these alterations (23, 24). Additionally, connections have been
uncovered between resting-state FC patterns and performance in cognitive tests in the
elderly population (25-27). FC has been proved to be affected in several clinical
conditions (28) — predominantly in older individuals — that has an impact on cognitive
functioning, for instance Alzheimer’s Disease, Parkinson’s Disease (29) or Mild
Cognitive Impairment. Moreover, the severity of the symptoms was associated with
connectivity measures (30-32). Considering another angle, earlier studies — employing a
wide variety of imaging modalities — found that functional networks go through a
reorganization reacting to the amplified mental workload or during task solving (33-37).
The explanation behind this phenomenon might be that throughout task completion - in
order to be more efficient - unnecessary connections should be trimmed and the
appropriate ones for the task at hand activated (38). Also, it was suggested that such a
task-related reorganization could be differing in the aged population compared to the
youth. This notion is supported by recent evidence demonstrating age-related differences
in task-induced functional reorganization, particularly within theta oscillatory networks.
Gomez-Lombardi et al. (2024) (39) revealed that older adults exhibit slower individual
frontal theta frequencies and weaker effective connectivity during an auditory inhibitory

control task compared to younger adults. These alterations were associated with



diminished task performance, suggesting that the reduced capacity for efficient network
reorganization of the aging brain may reflect underlying changes in oscillatory dynamics
and connectivity patterns. This phenomenon in the elderly brain is possibly the
manifestation of the diminished ability to handle increased workload (40). A 2024 review
by Tanaka et al. (41) highlighted the potential of electroencephalography-based (EEG)
markers for early detection of cognitive decline in older adults. They found that increased
theta/alpha brain wave ratio and alterations in FC patterns may indicate early cognitive
changes, even before a structural shift in the brain is apparent. Based on these
considerations, FC might offer valuable insight into cognitive changes associated with
aging and their underlying neurophysiological mechanisms. Nevertheless, despite these
recent efforts markers that might link brain connectivity pattern changes to age-related
alterations in cognition are scarce, and therefore more research is warranted in this

direction (24, 42-46).
1.3 Fractal Dynamics in Complex Systems and Brain Networks

Many complex systems express fractal dynamics manifesting as long-term
autocorrelations decaying according to a power-law function. Such processes are often of
natural phenomena (47), geophysical systems (48, 49), meteorological data (50), financial
markets (51, 52) or functional brain networks (53-55). These systems share a common
property: their statistical properties exhibit power-law scaling. Moreover, scale-free (or
fractal) correlations are expressed both within the univariate dynamics of their separate
components and within their interactions, too. In the former scenario, the autocorrelation
function of the process demonstrates slow decay, whereas in the latter, a similar pattern
is observed in the cross-correlation function of the two assessed processes. Regardless, a
fundamental aspect of both situations is the ability to establish a power-law relationship
between the correlation and the scale of observation (56). The same holds true in the
frequency domain, as well. In that case, long-range coupling is indicated by the power-
law dependency of auto- and cross-spectral power on the frequency (57). Commonly, the
attained fractal scaling exponent is used to characterize this power-law relationship,
termed the Hurst exponent (H) in the time- and spectral slope (f) in the frequency
domain. The two measures are related and inherently equivalent (57, 58). In the case of
brain activity, fractal dynamics most commonly denotes the long-term autocorrelation in

univariate neural fluctuations (58, 59). However, the importance of identifying long-term
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couplings of distinct brain regions — and thus extending fractal analysis to the connectivity
domain — lies in the fact that it can provide insight on the functional organization of the
brain in a way which single-scale or scale dependent analyses cannot. For this reason,
recent years saw an upsurge in research interest towards fractal connectivity (FrC) (53,
54, 60-62). Novel research has further expanded the application of fractal measures to
clinical contexts, offering unique insights into neurophysiological changes associated
with therapeutic interventions. For instance, Denier et al. (2024) (63) utilized Higuchi's
Fractal Dimension (HFD) — a measure of temporal complexity — to assess neuroplasticity
induced by electroconvulsive therapy (ECT) in patients with depression. Their study
demonstrated significant increases in HFD values within the anterior and posterior
hippocampi following ECT, indicating enhanced complexity and irregularity in neural
activity. These results align with prior evidence linking fractal scaling properties to
cognitive performance and underscore the utility of fractal analysis for exploring brain

dynamics beyond traditional connectivity measures.
1.3.1 The Fractal Nature of Neural Activity and Functional Connectivity

As stressed previously, it has been established by earlier studies that neural activity
displays fractal temporal scaling in its dynamics, and this property can be characterized
with a scaling exponent both in the time and frequency domains (64). Despite the fact
that the exact neural foundation of this scale-free nature is not yet completely understood,
its physiological relevance is indicated by previous evidence showing that the fractal
scaling exponent varies in various scenarios, such as during sustained attention (51), in
certain psychiatric conditions like schizophrenia (65) or in aging (66-68). Recent research
by Seeburger et al. (69) further supports this notion, demonstrating that time-varying
functional connectivity of low-frequency fluctuations across different brain networks
varies with fluctuations in sustained attention. These findings align with and extend the
work of Achard and colleagues (53) who demonstrated that this phenomenon is not
exclusively present in regional (i.e., univariate) neural activity, but it manifests in the
coordinated activity across different brain regions, too. As a matter of fact, several studies
— employing a wide selection of imaging modalities and techniques — confirmed since
then the fractal scaling nature of FC dynamics (60, 70-72). Moreover, in a recent study
FrC patterns were also found altered in reaction to a pattern recognition test, meant to

induce increased mental workload (62), implying that FrC and cognitive functioning are



connected. Generally, one can apply two approaches in FrC assessment: 1) connectivity
is estimated in a time-resolved manner and then the fractal scaling is determined from the
fluctuations in the acquired measurements (73-76), or ii) the power-law or scale-free
coupling is computed directly and the fractal nature of the data is described through the
bivariate scaling exponent (56, 57, 61, 77). Several techniques have been devised for both
strategies; however, a common limitation of them is that in order to produce unbiased
results the input data needs to be a purely fractal signal, devoid of any harmonic or
oscillatory components. Thus, it is important to evaluate the degree of bias these
components introduce in the estimation of fractal measures, not only for the
characterization of the bias itself, but mainly because the two constituents (fractal and
oscillatory) of the signal might also capture/represent separate underlying mechanisms.
This concept in the case of neural activity is of key importance, as neurophysiological
fluctuations are known as a combination of broad- and narrow-band (i.e. fractal and
oscillatory) activities in an EEG recording: oscillatory components appear at
characteristic frequencies such as theta or alpha oscillations, superimposed on a scale-
free “background” activity (64, 78, 79). Additionally, the mechanisms producing these
fluctuations are presumed to be exceedingly dissimilar in the two instances (80, 81). The
same concept is also relevant in the context of brain functional connectivity. For example,
synchronized alpha activity could manifest as a peak overlaid on the otherwise broadband
cross-coherence spectrum (82). Therefore, isolating the fractal constituents from the rest
of the signal seems to be crucial in assessing fractal attributes of neural activity, and this

holds true for both univariate and multivariate scenarios.
1.3.2 Fractal Analysis of Neural Activity

For univariate fractal analysis of electrocorticography (ECoG) recordings, He and
colleagues (78) employed a method called coarse-graining spectral analysis (CGSA) in
order to prune the power-spectra of the signals from oscillatory spikes and thus counteract
the bias they introduce in the estimation of the spectral slope. The method was first
proposed by Yamamoto and Hughson (83) whom later developed it further (84).
Originally, they employed this approach in hear-rate variability analyses and
interestingly, the method was applied to trim the fractal components from the data, not
the oscillatory. In summary, CGSA takes advantage of the self-affine characteristics of

fractal processes; more precisely, when the process is resampled at a different time scale,
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the statistical distribution of the data remains unchanged (85). What this means is that the
power spectrum of a fractal process remains the same only adjusted by the resampling
factor and Hurst exponent after resampling, whereas in an oscillatory signal the spikes
get relocated by the change in sampling rate (for more details, see section 3.1.1). To put
it differently, for a given frequency this means that after resampling, power will remain
as non-zero if the process displays fractal characteristics, while it will drop to nearly zero
if the signal is only periodic at that frequency. This phenomenon enables one to recreate
the power spectrum of a fractal signal by calculating the cross-spectrum of the original
signal and its resampled version (83, 84). Building upon the same principles, Wen and
Liu (86) introduced a more advanced method called irregular resampling auto-spectral
analysis (IRASA) to differentiate between fractal and oscillatory components in neural
activity. IRASA addresses several limitations of CGSA — such as its incapacity to manage
numerous oscillatory components that are interconnected through the scaling factor — by
using a series of non-integer rescaling factors, instead of only two. Specifically, additional

details are available in the Methods section.

Despite their many advantages, neither CGSA or IRASA can be employed in
bivariate signal analysis, only in univariate scenarios (i.e. individual recordings).
Additionally, identical difficulties arise when one is to explore FC in the frequency
domain. The broadband cross-coherency spectrum, which implies fractal connectivity,
might contain oscillatory peaks — the manifestation of e.g. extensive cortical alpha
synchronization — even in resting (82) or during mental exercise (87). Therefore, methods
that can remove the effects of such scale-dependent interactions and set apart the scale-
free constituent of statistical interdependence are essential for a deeper understanding of
fractal brain connectivity. For this reason, our lab started to develop an extension of the
IRASA method to the bivariate case, which we later termed Multiple-Resampling Cross-
Spectral analysis (MRCSA) for separating the fractal constituent within the cross-spectral
density of paired neurophysiological signals (88). MRCSA can provide a theoretically
unbiased estimate of the fractal cross-spectrum and consequently the cross-spectral slope,
and while its ability to completely isolate the oscillatory constituents is hindered by the
potentially intricate interactions between fractal and oscillatory components, it can
contribute valuable insights into fractal connectivity by evaluating the ratio of fractal to

overall cross-spectral power. Furthermore, MRCSA enables unbiased assessment of
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fractal properties, not just in regional neural activity but also in fractal connectivity

networks.

In summary, functional connectivity and fractal dynamics of neurophysiological
signals appear as a hallmark for complex brain functioning, which warrants further
research. Specifically, these traits appear to be relevant for cognitive functions, as well as
they were found altered in healthy aging, in line with reduced cognitive capabilities.
Therefore, we hypothesized that integrating the two concepts of fractal dynamics and
functional connectivity within fractal connectivity analysis could offer novel and useful
neural markers connecting age-related alterations in brain network topology to decline in
cognitive abilities. I was intrigued and captivated by the concept of fractal connectivity
and its plausible physiological relevance and implications, and thus I made it the primary
subject of interest during my PhD studies. My overall goal was to apply this concept on
physiological data to explore conditions where it might prove to be valuable according to
previous research. In what follows, I will demonstrate that fractal connectivity indeed
plays a relevant role in adapting to increased mental workload, as well as I will show how

it is affected in healthy aging and related changes in cognitive capabilities.
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2 Objectives

Fractal connectivity is an emerging concept in neuroscience that fuses the theory of
functional connectivity with the well-known scale-free characteristic of neural dynamics;
however, its physiological relevance is not yet understood. Accordingly, my work had
two main objectives. My first goal was to validate our recently developed MRCSA
technique to assess fractal connectivity in in vivo EEG recordings. Since both functional
brain connectivity and fractal dynamics of regional neural activity had been previously
associated with increased mental workload, I hypothesized that performing a simple
cognitive task (such as word generation) would result in a reorganization of fractal
connectivity networks. Then, my second goal was to utilize this method to better
understand how fractal connectivity might reflect changes in neural dynamics related to
healthy aging, and how these patterns might explain lower cognitive performance
commonly observed in elderly individuals, even in the absence of a pathological
condition. In line, both reduced functional connectivity and reduction of long-term
correlations were previously reported in aging, and these changes were often found
associated with cognitive performance in various tasks. Therefore, I hypothesized that
fractal connectivity could be a sensitive tool to assess both aspects simultaneously.
Finally, to better understand how these neural patterns relate to cognition, I intended to
contrast them with performance measures from a wide range of cognitive tasks indicative

in age-related cognitive decline.
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3 Materials and Methods

This section is organized as follows.

e First, I briefly summarize the core characteristics of fractal time series and show
how this property can be exploited to separate the fractal component of a process
from other (e.g., oscillatory) signal constituents, as well as how and why this
method can be particularly relevant in the analysis of neural recordings. Then, I
demonstrate how this technique can be generalized to multivariate time series to
analyse fractal connectivity, yielding our MRCSA method.

e Second, I describe the dataset and the performed analyses that were utilized to
validate MRCSA dataset on EEG recordings collected in resting-state and while
performing a simple word generation task.

¢ Finally, I introduce the study we performed to investigate how fractal connectivity
patterns change in healthy aging and how these neural signatures relate to

cognitive performance in the young and elderly.

3.1 Fractal processes and connectivity

3.1.1 Self-affinity of fractal processes

To demonstrate the self-affine property, let us have a fractal process f (t) and resample
it with h > 0 resampling factor where the resampled version is f,(t) = f(t/h). The
process is ‘up-sampled’ when h > 1 and ‘down-sampled’ if 0 < h < 1. For instance, in
the case of h = 2 f;,(t) is equal to f(t) sampled at double the original rate, whereas h =
1/2 means that f;, (t) only contains every second sample from f(t). Importantly, in case
of a fractal process the statistical distribution of the signal remains unchanged, and the

characteristic self-affinity of fractal processes can be described as

fu@® = Rf(), (1

where H is the Hurst exponent (58). This equation means that resampling f(t) by h
results in the same distribution as previously, only rescaled by factor h*! in the resampled
frn(t) time series (59, 84, 85). Additionally, subjecting f(t) and f;,(t) to the Fourier
transformation, this self-affine property can be equivalently recognized as the frequency-

scaling attribute:
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F(w) 2 hF(w), ()

where F(w) and F,(w) correspond to the amplitudes of f(t) and f,(t) at angular
frequency w. The angular frequency w and sampling rate 7; relate to each other as w =
2nr. Relatedly, fractal processes show a continuous, broadband frequency distribution.
Within such a distribution, the relationship between spectral power (i.e. the squared
amplitude) and frequency is described by a power-law function with a scaling exponent
By. Furthermore, in most cases spectral power shows an inverse proportionality to

frequency (59). One can formalise these concepts as
IF()]? xcx 0P, A3)

where c is a constant. Consequently, the spectral power of a fractal signal is non-zero all
through the spectrum and if illustrated on a log-log scale, it adheres to a straight line
(linear function) with a slope being —f,.. It must be emphasised that 5, and H are related
and essentially the same as they capture identical scaling characteristics of the process
(58, 85). In summary, power or amplitude spectrum is statistically similar after
resampling, except for being rescaled by factor hf in case of a fractal process. In contrast,
the power spectrum of a periodic/oscillatory signal x(t) containing a distinct set of
sinusoidal elements with its characteristic frequencies w; will be zero (or nearly zero)
everywhere except where the specific characteristic frequencies correspond to the
constituting sinusoids. Particularly, resampling a periodic signal results in the non-zero
‘peaks’ relocating in the power spectrum, conforming to h, while the spectral power
remains zero elsewhere, even including the original characteristic frequencies. Figure 1.
illustrates the above-mentioned effects of resampling. Taking advantage of this

peculiarity offers solutions when one means to separate or decompose the power spectrum
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of a signal of mixed nature (containing periodic/oscillatory and fractal signals as well)

into fractal and oscillatory components.

Upsampling Downsampling
h=2 h=1/2

108 10 "
%a 10 Resampling by I %ﬂ 102 ,f:n 102
e St 20

10° 10! 102 100 10! 10 100 10! 102
Log Frequency Log Frequency Log Frequency

10° 10! 102 10° 10! 102 10° 10! 102
Log Frequency Log Frequency Log Frequency

Figure 1.The effects of resampling. The upper panel showcases the power spectrum of a
purely fractal signal and its up- and downsampled versions. The lower panel illustrates
the power spectrum of a purely oscillatory signal and that of its resampled versions. The
power spectrum of the fractal signal remains unchanged (in distribution) while in the
latter case the oscillatory peak gets relocated according to the resampling factor h.

3.1.2 Separating the fractal component of the power spectrum

3.1.2.1 Coarse Graining Spectral Analysis (CGSA)

Yamamoto and Hughson (83) were the first to introduce a method called Coarse Graining
Spectral Analysis (CGSA) not to separate the fractal component of a broadband spectrum,
but to reduce the fractal ‘background’ noise. Their team studied heart rate variability time
series thus they used this approach to eliminate the fractal component granting a better
estimation of the oscillatory peaks, the focal point of their work. In their study, firstly, the
cross-spectral power was computed from the original signal X and the ‘coarse-grained’
(i.e. resampled by h = 271) and rescaled (by dividing it by h~) version X}, obtaining
the fractal power spectrum Sy, . Then, to procure the oscillatory component, the authors
simply subtracted the fractal elements from the auto-power spectrum of the original signal

Sxx (83). However, an inherent limitation of the method is that H needs to be estimated
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beforehand (see below). Expanding on the previously mentioned concepts, the authors
took advantage of (i) resampling and rescaling a fractal process should yield an equivalent
amplitude spectrum as the original. Consequently, their cross-spectrum will be non-zero
throughout all frequencies. However, in contrast, (ii) the cross-spectrum of a periodic
signal and its resampled variant will gravitate to zero across all frequencies, thanks to the

shift of the non-zero amplitudes in the spectra.

Despite the highly perceptive nature of this approach, it had a number of
shortcomings. First of those being the need to estimate H prior to CGSA. For this purpose,
the authors used rescaled range analysis (89). This issue was soon resolved by resampling
by two different factors, h and its reciprocal 1/h (84). This method yielded two versions,
one rescaled by h* and one by 1/h" = h™H Then, taking the two cross-spectra denoted

as Sxx, and Syx, n and their geometric mean as

S = 1Sxl | er, @

where S. xx,denotes the corrected fractal power spectrum, then the separate estimation of
H is no longer needed. Also worth noting the independence of this method from the
rescaling factor h > 0. However, there is a more serious limitation of CGSA as per Wen
and Liu (86), namely that there are non-negligible interactions between the fractal and
oscillatory constituents of a signal, thus the cross-spectrum of the original and the
resampled version of a process containing both will have the same issue preventing the
total elimination of periodic peaks. Lastly, when numerous oscillatory peaks are present
and the characteristic frequencies relate to each other as w; = h X w; or w; = 1/h X wj,
it inhibits the workings of CGSA. As a result, the CGSA technique needed to be

developed further to ameliorate these limitations.
3.1.2.2 Irregular-Resampling Auto-Spectral Analysis (IRASA)

Accordingly, Wen and Liu (86) proposed Irregular Resampling Auto-Spectral Analysis
(IRASA) — a method building on the foundations of CGSA — as a way to overcome the
aforementioned obstacles. In such a simple model the process y(t) is comprised of a

fractal f(t) and an oscillatory x(t) constituent:

17



y(@) = f() +x(0). )

The method makes the assumption that the examined signal y(t) is completely
without additive noise. In accordance with the linearity property, if one applies the Fourier

transform to y(t) it yields
Y (0) = F(w)e /%@ + X(w)e /Px(@), (6)

where the amplitude and the phase of the fractal constituent at frequency w is indicated
by F(w) and a,(w), respectively, and for the oscillatory constituent X (w) and B, (w)
denote the same terms. Next, if one resamples y(t) by factors h and 1/h (h > 0) and
marks the new versions as y,(t) and y; /5 (t), then the auto-spectral power at a given w

frequency, with similar notation as in Eq. (6), can be described as

Sypyn (@) = [Fh(w)e_jah(w) + Xh(w)e_jﬁh(w)][Fh(a))ej“h(“’)

7
+ Xh(w)ejﬁh(w)] ™

for y(t), and for y; / (t)

SJ’1/hy1/h(w) = [F1/h(a))e_j“1/h(w) +

' ; - @)
Xl/h(w)e_ml/h(w)][Fl/h(a))e]al/h(“’) + Xl/h(w)e]'gl/h(w)],

Consequently, by utilizing the concept outlined in Eq. (2), the above listed equations

(7) and (8) can be rearranged as

2

Xp(w) . .
SYhyh(“)) — hZHFZ(w) Hl + me}orh(w) JjBr(w) )
and
X1/h(w) ; ) 2
= h™?HF? ZhANT Ly p(w)=jByn(w)
S)’1/hy1/h(0)) = h™*"F*(w) Hl + By (o el®in 1/h . (10)

Then, taking the geometric mean of the two auto-spectra similarly to Eq. (4) the
initial estimation of the fractal power spectrum Sy, (w) becomes possible, independently

of hand H as
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Sn(w) = \/SJ’hJ’h (w)SY1/hY1/h(a)) =
(11)

o) an(@)=jBn @)

2 Xn(w)
=F (a))H1+Fh )

Hl + Mejal/h(w)—jﬁl/h(w) )
F1/h(0)

If one considers an oscillatory constituent x(t) which is comprised only of a single
sinusoid at harmonic frequency w,, then, according to Eq. (11) Sj,(w) # F2(w) solely

in two instances:

a) Sp(w) = F3(w) ”1 + ;(hgj; jan(@)= Jﬁh(“’)” if w = hw, and (12)
b) $u(w) = F2(w) ”1 + )F‘j:g;’; eI /@ =iB1n@ | if 6 = wo /.

In these cases, the estimation of the fractal spectrum is dependent on h and thus
Sy (w) produces biased results, meaning that the oscillatory component is not completely
eliminated, only attenuated. However, utilizing a series of different resampling factors
the oscillatory power at w,, which is non-zero at this point, is relocated to a different
frequency at each instance. Exploiting this during the estimation process in using distinct
resampling factors and their reciprocals, one gets a set of fractal power estimates for all
frequencies. These yields will centralize to the true F2(w) save for the cases of Eq. (12),
where usually one outlier corresponds to h. Accordingly, taking the median of these
estimates at the separate frequencies will result in an unbiased estimate of F2(w) for all
w, insofar as the amount of the outliers does not exceed 50% of the number of estimates
(86). Importantly, IRASA becomes robust against the occurrence of several oscillatory
components if one employs a large enough set of h and 1/h factor pairs through

decreasing the chance of them being related as w; = h X wj or w; = 1/h X w;.

Finally, the power spectrum of a mixed signal as in Eq. (5) is obtained as
Y2(w) = Y(0)Y (w) = F3(w) + X?() + 2F (@)X (w) cos(a(w) — B(w))  (13)

where Y (w) is the complex conjugate of Y (w). Note, that the mixed power spectrum is
comprised of fractal and oscillatory spectral densities and an additional confounding term.

Importantly, the confounding term is defined by the phase difference of the fractal and
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oscillatory elements. However, assuming the two elements are uncoupled, the second part
of the confounding term is expected to be zero thus the whole confounding term can be
eliminated by utilizing numerous sections of data and averaging it over the acquired
spectra (86). Keep in mind, that this also assumes that the process is stationary during the
sections employed. Finally, the theoretically unbiased estimate of the oscillatory power
spectrum can be obtained by subtracting the fractal power spectrum from the
original/mixed spectrum (86). With the assistance of IRASA, the fractal spectral exponent
can be determined from only the fractal component, without the distorting effects of
oscillatory constituents, which is particularly important in the case of neural signals which

are known for their composite nature (i.e. broadband activity and alpha peaks)

3.1.3 Extension to fractal connectivity: Multiple-Resampling Cross-Spectral

Analysis

Despite IRASA improving upon many shortcomings of CGSA, the method is still only
applicable in univariate scenarios, while long-term correlations could very well be found
between multiple as cross-correlation (52, 90, 91). Detrended cross-correlation analysis
(DCCA) by Podobnik and Stanley (56) was the first-proposed method to assess such long-
range fractal coupling between two non-stationary processes. This technique quickly
gained traction and was soon extended to the multifractal domain (92). Additionally,
numerous other time-domain methods expanded on it including the detrended moving-
average cross-correlation analysis (93) and the height cross-correlation analysis (77). Yet,
all of these methods have the same limitation: they are susceptible to the bias introduced
by the presence of oscillatory components (see below). Fractal scaling in the bivariate
case is analogous to the univariate one in that it is characterized by a scaling exponent.
For processes x and y the bivariate fractal scaling or bivariate Hurst exponent is denoted
as H,, (77). Furthermore, Kristoufek (57) proved that the analogy between the Hurst
exponent and spectral scaling exponent holds true in the bivariate case, too, i.e., long-
range fractal coupling can be assessed also in the frequency domain and characterized
with the cross-spectral scaling exponent. Specifically, in the event of long-term fractal
interaction or coupling among processes x and y the relationship between cross-spectral

power and frequency is established through a power-law function:
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155, | (@) o< ¢ X 0P, (14)

where 55, (w) denotes the cross-spectral power, w as the frequency and the cross-

spectral exponent as f,,.

This equation is analogous to Eq. (3) - and is the foundation to Multiple-Resampling
Cross-Spectral Analysis - only in the bivariate case and By, and H,, are similarly
correspondent as 5, and H, (57, 94). MRCSA is the extension of IRASA to the bivariate
domain, so that the bivariate fractal exponent can be estimated without the distorting
effects of oscillatory components. Additionally, this scaling property manifests in the
frequency domain, as well. If one takes two processes of fractal nature k(t) and [(t) with
a bivariate Hurst exponent Hy;, then using h as resampling factor on the processes, their

new cross-spectrum SSy, ;. (w) will be identical to the original cross-spectrum SSy;(w)

rescaled by h'lkl as
|SSkhlh ()| 2 hHK|SSy (). (15)
One may demonstrate it through applying the form in Eq. (13) to gain the cross-spectrum:

SSkpi, (@) = Fy, (0)F, (w) = K% F (w) i F (w) 16)
= th+Hle((1))Fl((1)) = hZHleSkl((lJ).

Hy+H,

Eq. (15) and (16) shows that H,, =

, which has been derived theoretically in

antecedent studies (56, 95-97). More specifically, from the three possible scenarios only

two are feasible:

e Hy, = Bthly o 2(H, + H, — 2ny) =0 = Q}Lr(r)l+ K%, (w) « const.= v
Hy+H .

* Hy <——2>>2(H,+H,—2H,)>0 = Q}Lr(r)1+Kfy(a)) =0=>Vv

o Hy > 022 2(Het Hy = 2Hy) <0 = lim K3 (@) = 40> %

where K7, (w) is the squared spectrum coherency at frequency w. As K7y (w) lies

between 0 and 1, the last case contradicts these boundaries, thus it is infeasible. (96, 98,

99) (99). Consequently, following the notions described in Eq. (7)-(12) and exploiting
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this property, one could construct a method to extract the fractal element from the cross-
spectrum. This technique, which we termed Multiple Resampling Cross-Spectral
Analysis (defined as MRCSA previously) is the direct extension of IRASA from the
univariate to the bivariate domain, and its main purpose is to provide unbiased estimates
of the cross-power spectral exponent. Figure 2. illustrates the main steps of MRCSA.
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Figure 2. Main steps of the MRCSA procedure. A: The left panel displays the cross-power
spectrum acquired from a pair of long-range cross-correlated time series with a highly
correlated oscillatory constituent at 10 Hz. The middle panels present the cross-power
spectra after the signals have been upsampled (top) and downsampled (bottom) by factors
h and 1/h, respectively. It is evident that resampling shifts the oscillatory peak from its
‘original position’ at 10 Hz in both instances. The right panel illustrates the geometric
mean of the up- and downsampled corss-spectra. B: The left panel shows the raw cross-

spectrum. The middle panel displays the geometric means of the upsampled and
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downsampled cross-spectra after resampling with different values of h. Lastly, by taking
the median, one can acquire the fractal cross-power spectrum, lacking an oscillatory

peak (88).

More elaborately, if one takes two processes of mixed nature, x(t) = f,.(t) + h,(t)

and y(t) = f,(t) + h,(t) with Hurst exponents of H, and H,, respectively, where f, (t)

is the fractal and h, (t) is the oscillatory or harmonic component (not to be confused with
h, the rescaling factor), then one can gain the cross-spectrum of x(t) and y(t), denoted

as |SSxy(a))|:

|SSxy(w)| = |Fx(w)Fy(w)|' (17)

where the Fourier transforms of x(t) and y(t) are denoted as F,(w) and F, (w). Following

the resampling procedure with h and 1/h, we get four different time series: x, (t), ¥, (t),

X1/n(t) and y; /5 (t). Let us define the Fourier transforms of the fractal components as
FXp,(w)e /(@) and FY}, (w)e /(@) and of the oscillatory or harmonic components as
HXp,(w)e7Pr(@) and Y, (w)e™/9r(®) in the case of series xy, (t) and y,,(t). For X1/n ()
and y;,,(t) the notation is analogous with what has been described previously. From

here, the cross-power spectrum of x; (t) and y, (t) can be acquired as

5SSy, (@) = [FXh(a))e—jah(w) + HXh(w)e_jﬁh(“’)]

[FY (@)@ + HY, (w)e (@] =

= h”x+Hny(w)Fy(w)e—j(ah(w)—yh(w)) (18)
(1 + HXn () e-f<“h(w>-ﬁh(w)>) (1 + HYp (@) ej(m(w)—sh(w)))
FXp(w) Y, (w)
and in an equivalent manner for x; /, (t) and yq s, (£):
Sy ypyn (@) = [FX1/n(@)e™@m@ + HX, \ (w)e~ /@]
(19)

[FYl/h(w)ejh/h(w) + HYl/h(w)ef51/h(“’)] _
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= h~Ex*tH) FX () FY (w)e ™/ (@1/n(@)=V1/n()

<1 HX1/p(w) e—j(al/h(w)—ﬁl/h(“’))> <1 + HY: /(@) ej()/l/h(w)—51/h(w))>_
FX1/n(w) FYy/n(w)

Then, the fractal cross-power spectrum, connoted as SS;, (w), can be estimated by taking

the geometric mean of ||Sx (a))” and S,

hYh 1/hY1/h -

ﬁh((l)) = \/”thyh(w)” ||Sx1/hJ’1/h(w)||
(20)

= IFX(w)FY(w)I\/Ill + Ap(@)II1 + Br(@)l||1 + Co/n(@)||[|1 + D1yn ()],

where

o Ay(w)= %e_j(ah(w)—ﬁh(w))

HYp(w) i -
° Bh(a)) = #(Z)e](yh(w) Sp(w))

HXy (@) _; _
e (yplw)= %e J(@yn(@)=B1/n(@)) qnd

HYl/h(w) ej(yl/h(w)—61/h(w)).

s D1/h(w) = FY 1 /(@)

These terms describe the relationship of the fractal and oscillatory elements in regard
of their ratio of magnitudes and phase differences. Note that these terms and Eq. (20) let

us draw similar conclusions as with IRASA, specifically:

i. Ifx(t) and y(t) are composed solely of fractal elements then SS;,(w) equals to
the fractal cross-power spectrum and since all confounding terms are rendered
zero at all w, the estimation is unbiased.

ii.  Inthe event of x(t) containing a harmonic element with characteristic frequency
denoted as wyy, the term Ay, (w) will exhibit a non-zero value at w; = hwyy and
similarly term Cj/p(w) will be non-zero at w, = h/wyy. As a result, the
estimated spectral slope of SS}, (w) is biased at w; and w,.

iii.  Ify(t) contains a harmonic element with characteristic frequency denoted as wyy,

the term By, (w) will exhibit a non-zero value at ws = hwyy and similarly term
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D4 /n(w) will be non-zero at wy = h/wyy. As aresult SS; (w) is biased at w3 and

Wy.

Importantly, the cases of ii. and iii., when the fractal cross-power spectrum cannot be
estimated without bias, are dependent on the rescaling factor h. Calculating SS, (w) with
a variety of different h values (analogously with IRASA), the frequencies at which the
estimation error manifest will be different for each h. Using a set of SS},(w) estimates,
all with disparate h values, and taking the median for each h across all w frequencies, one
can obtain the unbiased estimate of the fractal cross-power spectrum. However, if the
amount of outliers (number of the occurring estimation errors) exceed 50% of the number
of estimates at the given frequency, the final estimate is no longer unbiased (86, 100).
With that, we derive the formula for unbiased estimation of the fractal cross-power

spectrum for all w, denoted SFyy (w):
SFyy(w) = median,{SS,(w)}, (21

Finally, one may strive for an unbiased estimate of the oscillatory cross-power
spectrum SHyy (w). It is found that computing |SSyy (w)|? similarly to Eq. (13) involves
not only SFyy(w), SHyy(w) and the confounding terms based on relative phase
differences, but also interaction terms between fractal and oscillatory elements of x(t)
and y(t). While averaging cross-power spectra from several data segments helps
eliminate confounding terms assuming no coupling between components, interaction
terms remain unaffected by phase differences and cannot be excluded by averaging. Thus,
while MRCSA offers an unbiased estimate strictly of the fractal cross-power spectrum, it
does not ensure unbiased estimation of the oscillatory cross-power spectrum.
Nonetheless, a maximum ceiling to the participation of the oscillatory elements in the
cross-power spectrum can be determined by taking the percentage of fractal cross-power
to the mixed (full) cross-spectral power:

SF. 22
%Fractal = M x 100 (22)

Yo SSxy(w) ’

for all frequencies w.
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There are two essential notions to discuss further. First, if one takes Eq. (17)-(21) and
makes x(t) = y(t), the method returns the simple, univariate IRASA formula. Second,
if one calculates the fractal and oscillatory spectra of x(t) and y(t) separately with
IRASA and their fractal cross-power spectrum with MRCSA, the confounding interaction
terms of |SSyy(w)|? can be ousted thus theoretically an unbiased estimate of oscillatory
cross-spectral power can be gained. However, the scope of our team was to construct a
method to estimate fractal cross-spectral power thus this will not be considered here any

further.
3.1.3.1 The Multiple Resampling Cross-Spectral Analysis algorithm

To preserve coherence between the uni- and bivariate cases, the MRCSA algorithm

follows the same blueprint as introduced by Wen and Liu (86) for IRASA.

i.  Fifteen segments, which overlap partially, are picked from a given pair of signals.
All segments cover 90% of the original datasets and have equal number of time
stamps. The difference between the starting time indices is kept constant and thus
the segments are evenly spaced.

ii.  First, the mixed cross-power spectrum SS,,, (w) is estimated for the first segment
in accordance with Eq. (17). Using fast Fourier transforming and Hanning
windowing, one attains the Fourier transforms. The frequency resolution is
established at twice the smallest power of 2 that surpasses the number of data
points within the time segments. This adjustment is accomplished by zero-
padding the time series when needed. The aim is to ensure that if h is less than 2,
the amount of frequencies exceed the number of data points in the original signal
and its resampled versions, as well.

iii.  Using cubic spline interpolation, the segments are resampled by h and 1/h. In
order to avoid aliasing when downsampling, the segments are treated with a low-
pass, fast Fourier transform-based filter. The cut-off frequency is set as the
sampling rate divided by twice the smallest integer that exceeds the largest h-
value. Identically to IRASA, the values of h are set by default between 1.1 and
1.9 using increments of 0.05 yielding 17 different pairs of resampling factors.

iv.  For the up- and down-sampled signal pairs the cross-power spectra are attained

in a similar manner as detailed in step ii. Note, that the frequency resolution for
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both the up- and down-sampled versions (with befitting zero-padding) are the
same as for the mixed cross-power spectrum.

v.  Next, the geometric mean of the cross-power spectra is calculated for all pairs of
{h|1/h}. Then, for all frequencies the median of the cross-power spectra over all
h is used to obtain the unbiased estimate of the fractal cross-power spectrum
SFyy(w).

vi.  Steps ii-v are iterated for each data segments attained in step i, followed by
calculating the average of the mixed cross-power spectrum SS,, (w) and the
fractal cross-power spectrum SF,,,(w) by computing the arithmetic mean over

the cross-spectra acquired from the 15 data segments.

Following the completion of the MRCSA algorithm, one can continue with
computing the cross-spectral slope, By, or the ratio of fractal to mixed cross-spectral
power. On a log-log transformed fractal cross-power spectrum the spectral slope can be
obtained by ordinary least squares linear regression. However, a straightforward log-log
transformation would results in the over-representation of higher frequencies (86), thus
after the log transformation the frequency elements are resampled to acquire an even
frequency resolution in the log scale. Next, fitting a linear function on the resampled, log-
transformed fractal cross-power spectrum by ordinary least squares estimation yields the
unbiased spectral slope estimate 3, as the first coefficient of the function. Importantly,
the fractal spectral slope is essentially negative (the distribution of cross-spectral power
follows 1/w~P*¥). However, by convention the univariate 8, values are given with
reversed signs (59), meaning a steeper cross-spectrum is described with a larger 5, value
and the same stands true for the bivariate By, values. To calculate the fractal cross-
spectral power’s percentage one may simply apply Eq. (22) in the desired frequency

range.

Analogously to IRASA, MRCSA can also be employed in a sliding-window fashion
to determine a time-frequency representation of fractal cross-spectral power between two

interconnected processes over an extended period.

27



3.2 Validating Multiple Resampling Cross-Spectral Analysis: Fractal

connectivity during increased mental workload

As an initial step before analysing physiological data, we evaluated the MRCSA method
in in silico experiments. These results are detailed in our original publication Racz et al.
(88) in pages 8-12. Briefly, MRCSA was able to estimate the cross-spectral exponent
accurately, even in the presence of noise. Precisely, the estimation error was within 5%
even at a low signal-to-noise ratio of 10. After this technical validation, my goal was to
assess the utility of MRCSA on empirical, in vivo signals. For this, I analysed a publicly
available EEG dataset (101), as detailed below.

3.2.1 Participants of the in vivo validation

The dataset analysed in this study was made publicly available by Shin and colleagues
(101). The entire repository consists of EEG recordings of 26 young, healthy participants
(aged 26.1£3.5 years, all right-handed, 17 females and 9 males) collected under varying
task conditions, from which we selected the baseline (BL) vs. word generation (WGQG)
paradigm (Dataset C) as it represents a simple case of increased cognitive workload. The
original experiment was conducted in line with the Declaration of Helsinki, approved by
the institutional review board of the Berlin Institute of Technology (approval number:
SH 01 20150330) and all participants provided written informed consent. None of the
study subjects reported any history of a neuropsychiatric condition nor was on medication
that might affect brain function or cognition. More details on the study population are

reported in the original article and supplementary information at Shin et al. (101).
3.2.2 Measurement protocol and data acquisition

In the WG condition, participants were presented a letter at the beginning of each trial,
and their task was to come up with as many different words as possible that start with the
given letter in 10 seconds. In contrast, during the BL trials participants were instructed to
rest for an equal duration and keep their sight on a fixation cross presented in the center
of the screen. WG and BL trials were randomized in order and interspersed with inter-
trial intervals of about 20 seconds. One recording session consisted of 10 BL and 10 WG
trials, and every participant completed three sessions resulting in a total number of 30-30

trials for WG and BL.
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During the protocol, EEG data was collected with a 28-channel BrainAmp amplifier
(Brain Products GmbH, Gilching, Germany) at a sampling rate of 1000 Hz (down-
sampled to 200 Hz before data publication). The monitored cortical regions were standard
positions of the international 10-5 system (102) and included Fp1, Fp2, AFF5h, AFF6h,
AFz, F1, F2, FC1, FC2, FCS5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4,
P7, P8, POz, O1, and O2 with reference and ground electrodes placed at TP9 and TP10,

respectively.
3.2.3 Data pre-processing and analysis

EEG data was pre-processed using the EEGLAB toolbox (103) combined with custom
MATLAB functions and scripts. First the data was divided into epochs of 30 seconds,
starting at 5 seconds before trial onset and ending at 15 seconds after trial offset, thus
consisting of 5 seconds of resting-state/preparation in the beginning, 10 seconds of WG
or BL and another 15 seconds of resting-state at the end. This segmentation was required
for the automated artefact elimination step (see below) that requires data segments that
are at least 16 seconds long. Then, EEG epochs were band-pass filtered with a 4™ order
zero-phase Butterworth filter with cut-off frequencies 0.5 and 80 Hz, with additional line
noise removal at 50 Hz using the cleanline algorithm of EEGLAB. Artefacts related to
eye movements, blinks, skeletal muscle activity or other extra-neural sources (e.g., heart,
white noise) were identified and eliminated using the independent component analysis
(ICA)-based multiple artefact rejection algorithm (MARA) (104, 105). Finally, data was
re-referenced to the common average electrode, and active 10-second segments of WG
and BL were isolated for further analysis (30-30 epochs for WG and BL, 28-channels

each, for every subject).

Fractal connectivity analysis was performed using MRCSA. The analysis range was
set to 1-25 Hz, and we used the standard set of resampling factors h ranging from 1.1 to
1.9 in increments of 0.05 as recommended by Wen and Liu (86). We investigated two
output measures, i) the cross-spectral exponent f,, and ii) the percentage of fractal
spectral power in total (mixed) spectral power. These measures were obtained for every
channel pair, yielding 28-by-28 matrices for each trial, and then for each subject the 30-
30 matrices for both conditions were averaged, yielding statistically robust estimates of

the fractal connectivity patterns in WG and BL.
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The outcome measures were compared between WG and BL along four axes:

i.  The auto-spectral slopes (f,, IRASA analysis) were compared in a channel-to-
channel manner using paired t-tests or Wilcoxon signed rank tests depending on
data normality (assessed by Lilliefors test).

ii.  The sum of cross-spectral exponents f,, for each channel were contrasted using
the same statistical principles. Note that this measure is resemblant of the ‘node
degree’ commonly used in functional connectivity analyses (106).

iii.  Cross-spectral exponents were also compared in a connection-to-connection
manner.

iv.  Percentage of fractal power was also contrasted between WG and BL in a node

degree and connection-to-connection fashion.

The level of significance was defined as p<0.05, and for each level i.-iv. the outcomes

were adjusted for multiple comparisons using the Bonferroni method.
3.3 Investigating fractal connectivity and cognition in healthy aging

After successfully validating MRCSA both in silico and in vivo, we applied this method
in our follow up publication Czoch et al. (107), of which I am the first author. In this
study, we investigated fractal connectivity in healthy aging using MRCSA, and addressed
its plausible relationships with cognitive performance. Our study involved two cohorts: a
healthy young (HY) group, defined as aged between 18-35 years and a healthy elderly
(HE) group consisting of individuals over the age of 60 years. In both groups, we only
enrolled healthy participants, i.e., those without any documented neuropsychiatric or
general medical condition (including medication) that might affect central nervous system
or cognition in particular. The study had two key aspects: resting-state neural activity as
recorded by EEG, and cognitive performance as assessed by a comprehensive, automated
test battery consisting of tasks indicative in age-related cognitive decline or early

dementia. Study details are presented in the following.
3.3.1 Participants of the comparative study

A group of 47 volunteers, consisting of 25 young adults (18-35 years old, with a mean
age of 25.7 and 12 females) and 22 elderly individuals (over 60 years old, with a mean
age of 66.2 and 8 females), participated in this research. The study was conducted in
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accordance with the Declaration of Helsinki and received approval from the Semmelweis
University Regional and Institutional Committee of Science and Research Ethics
(approval no. 2020/6). Prior to the measurement, written informed consent was obtained
from all participants. Volunteers were instructed to abstain from substances that might
affect cognitive function (e.g., caffeine) for at least 3 hours prior to measurement and
have at least 6 hours of sleep the previous night. Individuals who had neuropsychological
or psychiatric illnesses, a history of brain damage, were on medication that affects the
central nervous system or severe cardiovascular pathologies were excluded from the
study. Pregnancy was also an exclusion criterion. All individuals successfully completed
the measurement protocol; however, one young and three elderly participants had to be
later excluded from further analysis due to excessive head movement and/or inadequate
signal quality. Consequently, the final sample size included 24 young (age: 25.37 + 3.20
years) and 19 elderly (age: 66.39 + 6.09 years) participants, totalling to 43 participants.

3.3.2 Measurement protocol

The EEG recordings were conducted in the Department of Physiology at Semmelweis
University, in a quiet, dimly lit room. The participants sat in a comfortable chair and faced
a 24-inch computer screen, which was approximately at 0.8-meter distance throughout
the measurement. They were instructed to avoid any movements or facial expressions to
reduce signal artefacts. The measurement and ensuing analysis protocol were created and
executed using MATLAB. (Mathworks, Natick, MA, United States). The session
commenced with a 3-minute eyes-closed resting-state interval, succeeded by an eyes-
open resting-state period of equal duration. Please be aware that following the initial
recording session, three distinct cognitive paradigms (visual pattern recognition, n-back,
maze paradigm) were undertaken for about an hour. Nevertheless, in the present study,
our analyses were confined to the EEG data obtained during the eyes-closed resting-state

only.
3.3.3 Data acquisition and pre-processing

The EEG data were captured using a wireless Emotive Epoc+ device along with the
associated EmotivPRO software (Emotiv Systems Inc., San Francisco, CA, United
States). The initiation of data collection began only after maximal contact quality was

affirmed, as indicated by the EmotivPRO software (i.e., electrode impedances were kept
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under 5 kOhm). The device featured an internal sampling rate of 2048 Hz, with an
effective bandwidth between 0.2 to 45 Hz. This is facilitated through the use of a 5™ order
Sinc filter, with additional notch filters at 50 and 60 Hz. After internally down-sampling
the raw data to 256 Hz, it was sent wirelessly to a desktop computer. With the device set
up, we could monitor neural activity of 14 brain regions, according to 10-10 standard
montage locations, including AF3, AF4, F3, F4, F7, F8, FC5, FCe6, T7, T8, P7, P8, Ol,
and O2. Reference and ground electrodes were positioned at P3 and P4, employing CMS
and DRL.

After the application of a further 4™ order, zero-phase Butterworth-filter with cut-off
frequencies of 0.5 and 45 Hz, the EEG recordings were visually assessed, and epochs
uninterrupted by artefacts were selected by two separate investigators for the next stage
of analysis. Only those segments that were found to be artefact-free by both investigators
independently were included in further analyses. The final epoch length was defined as
72 seconds, being the longest available interval from all recordings. For 4 participants (1
young, 3 elderly) no such segment could be identified, thus we had to exclude them from
further processing. Then, the adjusted segments underwent Independent Component
Analysis (ICA), for which we used the EEGLAB toolbox (103). Artefacts related to eye
movements, skeletal muscle activity or other sources of noise were discerned and
eliminated by manually scrutinizing the independent components. Note that the
previously utilized, automated MARA tool could not be employed here, as its reliability
in terms of artefact detection drops substantially for a low channel number of 14 (104,
105). Independent components associated with artefactual signal constituents were
identified based on the characteristics as utilized by MARA, outlined in the work of
Gabard-Durnam and colleagues (108). After removing artefact components, we
performed reverse ICA, and finally, the data was re-referenced to the common-average

electrode.

3.3.4 Cognitive testing: Cambridge Neuropsychological Test Automated
Battery (CANTAB)

After concluding the EEG recording session, a baseline assessment of cognitive
performance was conducted using seven cognitive tests from the Cambridge

Neuropsychological Test Automated Battery (CANTAB). CANTAB, initially created by
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the University of Cambridge, functions as a precise, standardized and validated
assessment tool for various facets of cognition. CANTAB tests include tasks involving
working, visual, and spatial memory, as well as learning and executive function, reaction
time, information processing, and numerous other cognitive domains, among others.
Additionally, they offer insights into the conditions under which a specific test could be
the most suggestive. From the range of options, we have chosen seven activities linked to
the decline in cognitive function related to ageing and dementia, as outlined by Csipo et
al (109). These included the Motor Screening Task (MOT), Delayed Match to Sample
(DMS), Paired Associates Learning (PAL), immediate and delayed Pattern Recognition
Memory (PRM), Reaction Time (RTI), Rapid Visual Processing (RVP), and Spatial
Working Memory (SWM) tasks. Table 1 provides a short description of each task, while
for more detailed explanations and video demonstrations the reader is referred to the

official CANTAB website (https://www.cambridgecognition.com/cantab/).

Table 1. Employed cognitive tests. MOT: Motor Screening Task; DMS: Delayed
Matching to Sample; PAL: Paired Associates Learning; PRM: Pattern Recognition
Memory; RTI: Reaction Time; RVP: Rapid Visual Information Processing, SWM:
Spatial Working Memory (modified after Czoch et al. (107))
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Name | Description (time in minutes) Assessed functions Outcome
Colored crosses appear on random locations | Sensorimotor skills Reaction time,
MOT | on the screen and the participant must tap precision
on them as fast as possible. (2)
The participant must choose from 4 visual | Short-term visual | Response
patterns the one presented before a brief | recognition memory | latency,

DMS | delay (0, 4 or 12 seconds) (7) and matching ability number of
correct
choices

Boxes are shown on the screen, one or more | Visual memory and [ Number  of
contains a visual pattern. After opening | learning errors and

PAL every box, the patterns are presented one by attempts, First

one and the participant must choose which attempt
box they came from. (8) memory score
A series of visually intricate, verbally | Visual pattern | Number and
indescribable patterns are shown to the | recognition memory percentage of
participant. First, they view two patterns, correct

PRM | one familiar and one new, selecting the responses,

previously seen pattern. The task is repeated response

after a 20-minute delay. (4 and 4) latency

The participant must hold down a button at | Motor- and mental | Reaction time,

the bottom of the screen. One or five buttons | response accuracy, | movement

are presented on the top of the screen, after | latency and speed time, number
RTI a random delay one of them turns yellow of errors

and the participant must release the starting-

and tap the new button as quickly as

possible. (3)

A series of digits ranging from 2 to 9 are | Sustained attention Response

shown in a pseudorandom sequence (100 latency,

digits/minute). The participant must correct

identify a specific target sequence (e.g., 3- responses,

RVP 5-7) and respond by quickly tapping a probability of

button.  Difficulty  increases = when false alarms,
participants are required to watch for sensitivity
multiple target sequences simultaneously.

()

The participant must search for a token in [ Working memory, | Between
boxes presented on the screen. After | strategy in problem | errors, within
selecting one box, it closes again, and | solving, manipulation | errors, total

SWM | remains on the screen. The difficulty | of visuospatial | errors,

depends on the number of boxes (4, 6, 8 or | information strategy

12 boxes).(4)
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Each task within the battery started with an instructional introduction session,
customizable to the user's native language (either Hungarian or English in this study).
Participants were required to complete the training before proceeding to the actual test,
ensuring a solid grasp of the forthcoming task. To reduce the likelihood of any influence
or bias from investigators, participants undertook the CANTAB assessment in isolation
within a separate room, which typically lasted 40 to 50 minutes. Subjects engaged in the
CANTAB session using a 10.2" iPad tablet computer, for which the tasks were

standardized.

3.3.5 Estimating fractal connectivity with Multiple Resampling Cross-
Spectral Analysis

In this study, the activity of the brain in resting state was recorded by EEG, a method
considered to be non-stationary on longer time scales (110). Accordingly, the previously
selected, pre-processed, 72-second-long segments were cut into non-overlapping epochs
of 8 seconds, resulting in 9 epochs for each participant. These shorter epochs provided
the grounds for fractal connectivity analysis, which we completed on all epochs
separately. To perform MRCSA certain parameters had to be specified: the computation
of spectral power occurred within the frequency range of 2 and 22.5 Hz with the
frequency resolution set to 0.128 Hz. As mentioned above and in line with Wen and Liu
(86), 17 different pairs of resampling factors h and their reciprocals 1/h were applied,
starting from 1.1 in increments of 0.05 to 1.9. The effective frequency range was
determined between 2 and 22.5 Hz, as the effect of any previously used filter persists
even after the resampling process, effectively reducing the range for analysis (65). The
analysis and the following spectral slope estimation was performed in this frequency
range. To procure the estimates of spectral slope 5, and the cross-spectral slope By, least
squares regression was utilized with log cross-spectral power fitted on log frequency,
resulting in 14-by-14 matrices for S, for every epoch. Additionally, by summing the
power between the broadband frequency range’s boundaries (2-22.5 Hz) the integrated
spectral power was computed, yielding a 14-by-14 matrix per type of spectrum (fractal,
oscillatory, mixed) for every epoch. Finally, by averaging matching matrices over the

initial 9 epochs we obtained robust estimates for every measure considered in the analysis.
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3.3.6 Statistical analysis

Comparisons between the CANTAB scores of the young and elderly cohorts were made
using two-sample, unpaired tests. Specifically, Lilliefors test was used to verify the
normal distribution of the data. If normality was confirmed, a two-sample t test followed,
otherwise a Mann-Whitney U test was performed. Since multiple CANTAB output
measures retrieve primarily the same information regarding performance (e.g. number of
attempts vs number of errors, median vs mean) the number of comparisons was
unnecessarily large (ncanyrag = 154). To address this issue, the false discovery rate
method (FDR) of Benjamini and Hochberg (111) was employed to adjust the statistical

test outcomes.

Fractal connectivity estimates were scrutinized on a connection-by-connection basis
using two-sample tests to compare the two groups. This process followed the same
statistical principles as outlined with the CANTAB scores. To seek more distinctive
differences, the results were subjected to adjustment for multiple comparisons using
Bonferroni's method, applied individually for every connectivity measure (N pnn, =

(14 -13)/2 = 91).

Lastly, to explore potential relations, a preliminary analysis was conducted to
evaluate if those CANTAB measures that suggested differences in the cognitive
performance between young and elderly had any relationship with those connections that
showed differences in fractal connectivity between the two groups. To achieve this, we
examined the groups individually and calculated the Spearman cross-correlation
coefficient between the CANTAB scores and connectivity measures. Note, that the
quantity of the comparisons was large (n omp = 2 - 17 - 54 = 1836) in contrast with the
sample size, thus the results obtained here were not adjusted for multiple comparisons
(that would lead to most results being statistically insignificant). Therefore, caution is

required when interpreting these results and they should be considered as exploratory.
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4 Results
4.1 Effect of increased cognitive load on fractal connectivity

Group-level results regarding S, and percentage fractal power are shown on Figures 3.
and 4., respectively. In Figure 3. it can be observed that word generation resulted in a
ubiquitous increase in cross-spectral slope (BL: left panel, WG: middle panel), most
prominently in connections involving the frontal and prefrontal cortices. The right panel
shows the statistically significant differences (p<0.05, Bonferroni-adjusted), with white
cells indicating the connections where By, was significantly different in WG compared
to BL. In total, the cross-spectral slope was increased in WG for 143 out of 378

connections. Similar results were obtained for node degree-level analysis (not shown).

Significant
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Figure 3. Cross-spectral slopes of functional connections. In comparison to the baseline
condition (left), the cross-spectral slope prominently increases across most connections
in word generation (middle). Connections that showed significant differences are
highlighted in white on the right panel BL: baseline; WG: word generation (88).

Percentage of fractal power exhibited a similar pattern (Figure 4.); however, most
differences were rendered non-significant by multiple comparisons adjustment. In detail,
this measure was only significantly different in case of FC1-CP6 connection (p=0,0329),
while percentage fractal power was higher over regions FC6 (p=0,0478) and C4
(»p=0,0134) in WG compared to BL. Node degree analysis proved to be more sensitive,
indicating increased percentage of fractal power in connections of C4, CP6 and P4 regions

(»p=0,0235, 0,0122 and 0,0478, respectively) in WG when contrasted to BL.
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Figure 4. Ratio of fractal power of functional connections. Generally, the proportion of
fractal cross-spectral power appears lower during baseline (left) compared to word
generation (middle) condition. Channels indicating a significant increase are highlighted
in white on the right panel. Following Bonferroni-adjustment only the connection
between FC1 and CP6 showed significant difference. Additionally, higher percentages of
fractal auto-spectral power were observed at regions FC6 and C4, as denoted by the two
white cells along the main diagonal (88).

In summary, in this study we demonstrated for the first time that increased mental
workload results in a reorganization of fractal brain networks. These results indicated that
neural signatures identified with MRCSA analysis capture information that is relevant for
cognitive functioning. Therefore, in our subsequent study, our goal was to better
understand this phenomenon in a condition that is broadly relevant both in a medical and

a socio-economic sense: healthy aging.
4.2 Effects of aging on fractal connectivity and cognition
4.2.1 Behavioral results

In this section, I will present the results of our follow-up study, in which we utilized
MRCSA to analyse EEG recordings of healthy young and elderly participants and
employed CANTAB to evaluate the cognitive performances. In general, the elderly group

had worse performance in generally all cognitive domains investigated (see below). As a
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reminder, Figure 5. provides a schematic illustration of the CANTAB tasks.

MOT
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Figure 5. Schematic illustrations of the CANTAB tasks. MOT: Motor Screening Task;
DMS: Delayed Matching to Sample; PAL: Paired Associates Learning, PRM: Pattern

N/

Recognition Memory, RTI: Reaction Time; RVP: Rapid Visual Information Processing;,
SWM: Spatial Working Memory. (Figure made by Zalan Kaposzta)

First, to confirm that the differences in the results were not likely to be caused by the
lack of sensorimotor skills, we examined the scores of the MOT task. Here, no significant
differences were found, supporting the notion that the participants’ sensorimotor skills
sufficed to solve the remaining tasks and the emerging differences were not confounded
by it. Regarding the other cognitive tests, significant differences were found in 54 cases
between the young and elderly group’s CANTAB scores after the FDR adjustment. More
elaborately, in 10 metrics for DMS, 16 for PAL, 4 for PRM, 4 for RTI, 8 for RVP and 12
for the SWM task.

In the DMS task the participants were shown a visual pattern, then they had to select
the previously presented pattern among a set of new ones. These new sets were shown to

the participants after predetermined latencies. We found that elderly individuals
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responded slower compared to those in the young group when the original pattern and the
new set were shown simultaneously (median correct latency, simultaneous, young:
2.2525s, elderly: 3.2389s, p=0.0010) or with the different delays (mean correct latency,
all delays, young: 2.4870s, elderly: 3.9567s, p=0.0184). Moreover, the standard deviation
of response times increased in the elderly, but only in the 4-s delay variation (p=0.0427).
Interestingly, the two groups’ performance did not differ significantly, meaning the

proportion of correct/erroneous answers were similar.

The most significant contrast between the groups occurred in the PAL task (16
metrics), a test assessing the visuo-spatial memory skills, since the participants had to
remember the exact locations of patterns. The results of the elderly group exhibit a
universal drop in performance in all task scenarios (recalling the locations of 4, 6, 8 and
12 patterns), however with increasing the difficulty these differences become less distinct.
Precisely, the general first attempt memory score (PALFAM2S, “The number of times a
subject chose the correct box on their first attempt when recalling the pattern locations.
Calculated across assessed trials, omitting 12 box level”) averaged to 16.5417 in the
young and 11.9474 in the elderly group (p=0.0004). The number of errors and
consequently the number of attempts were found increased in the elderly group in the
scenario with 4 (errors: p=0.0251, attempts: p=0.0241), 6 (errors: p=0.0012, attempts:
p=0.0013) and 8 (errors: p=0.0314) patterns. In general, the elderly group displayed
reduced performance which was more distinct in the easier scenarios with 4 and 6

patterns, but less for the more difficult ones of 8 and 12 patterns.

Third, the PRM task tested the pattern recognition memory. We observed that even
though the response time of the elderly were higher in both the immediate (median correct
latency, young: 1.2803s, elderly: 1.7440s, p=0.0015) and in the delayed recognition
scenarios (median correct latency, young: 1.5310s, elderly: 1.9278s, p=0.0033), the

proportion of correct answers did not differ between the groups.

In the RTI task the participants’ response time and accuracy were tested with one or
five potential targets. Overall, elderly participants were less accurate in their responses
(p=0.0244). Additionally, the mean (young: 0.3415s, elderly: 0.3915, p=0.0022) and
standard deviation (young: 0.0365s, elderly: 0.0469s, p=0.0228) of response times were

found to be greater in the elderly compared to the young group.
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Testing sustained attention and working memory, the RVP task results demonstrated
greater response times (median latency, young: 0.4115s, elderly: 0.5280s, p=0.0002) and
worse performance, calculated regardless of latency from all hits/misses, in the elderly

(young: 0.9398, elderly: 0.8971, p=0.0143).

The most elaborate and complex test included in our set was the SWM task. This test
assessed spatial working memory skills and task solving strategy. There were 3 different
types of mistakes a participant could make: 1) between errors, in this case the participant
re-checked a box where a token was already found, ii) within errors, where a box that
already-proven-empty was re-checked, and iii) total errors, the combination of the two
above, meaning they re-checked a box which certainly did not contain a token. We found
that in all levels of complexity the elderly performed worse than the young group,
manifesting in the increased number of between and total errors (SWMBE468, between
errors for 4-6-8 boxes, young: 5, elderly: 19, p=0.0181; SWMBE12 young: 14, elderly:
35, p=0.0082; SWMTE468 total errors for 4-6-8 boxes, young: 6.375, elderly: 15.7895,
p=0.0086; SWMTEI2 young: 14, elderly: 35, p=0.0113). Moreover, the strategies
employed by the elderly in searching for the tokens proved less effective compared to the

young participants’ (p=0.0241).

In general, the elderly group could be described with greater response time and worse
performance compared to the young group. Specifically, no differences emerged in the
MOT task, in two tests (RTI and RVP) the increased response latency was associated with
reduced performance; on the other hand, with once again two tests (DMS and PRM) the
greater response times were accompanied by similar performances when comparing the
elderly to the young group. In four tests (DMS, PRM, RTI, and RVP), higher response
times were observed, while in another four tests (PAL, RTI, RVP, and SWM), we found

that the elderly group underperformed.
4.2.2 Age-related differences in fractal connectivity

In this section I present the results regarding fractal connectivity. We observed 17
connections where the cross-spectral slope proved to be diminished in the elderly group
(Figure 6.) and seven additional locations where the auto-spectral exponent was reduced,
compared to the young group. Overall, the young group could be characterized with

higher auto- and cross-spectral slopes (Figure 6. left panel) over the whole cortex, but
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the significantly different connections were associated mainly with the right temporal and
frontal areas. Relatedly, the differences in auto-spectral slopes emerged over the bilateral

frontal and temporal areas, and also in the left occipital region (Figure 6. right panel).

No differences were found in auto- or cross-spectral power in the fractal,
oscillatory or mixed spectra when comparing the two groups.
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Figure 6. Auto- and cross-spectral slopes in the young and elderly cohorts. In the left and
middle panels, black and red squares indicate the locations or connections where
significant differences in the spectral exponent were observed between the two groups.
The right panel illustrates the cortical topology of the significant connections and
locations. Orange lines shows the connections and circles the locations (107).

4.2.3 Correlations of fractal connectivity and cognitive function

Finally, our objective was to identify markers linking natural changes in cognition to
neurophysiological processes in aging, therefore we narrowed down our analysis to those
CANTAB measures and brain connections/areas that were found to be different between

the cohorts. The correlation analyses were performed separately on the two groups.

Interestingly, the young group showed only occasional relationships between
cognition and fractal connectivity (in the selected subset of features). In more detail, we
found the cross-spectral slope By, in one connection (O1-FC6, r=0.4363, p=0.0330)
correlated to the PAL mean error metric and in three connections (O1-AF4, r=0.4070, p=
0.0495; FC6-AF4, r=0.4470, p= 0.0297; F4-AF4, r=0.4200, p=0.0421) with the standard
deviation of response latency in the DMS task. Furthermore, the auto-spectral slope S,

of AF4 was found to be correlating with two metrics, namely mean and standard deviation
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of latency in DMS (7=0.4409, p=0.0322 and r=0.4861, p=0.0171, respectively), and that
of T7 with the standard deviation of five-choice RTI latency (+=-0.4217, p=0.0412).

In contrast, the elderly group showed significant correlations between cross- and
auto-spectral slopes and CANTAB metrics. Precisely, in 59 cases with cross-spectral and
26 cases with auto-spectral slopes. After streamlining redundant measures and
considering their impact, the bulk of these connections emerged with regards to the RVP

performance and PAL performance for 6 patterns.

Figure 7. (left) showcases the connection topology of cross-spectral slope correlation
with the RVPA (“The signal detection measure of a subject's sensitivity to the target
sequence (string of three numbers), regardless of response tendency”) metric (7
instances), while rings indicate the regions of the cortex where the auto-spectral slope
showed correlations (4 regions). On the right side of Figure 7., blue and yellow scatter-
plots demonstrate the correlations found with cross- and auto-spectral slope, respectively.
The inverse relationship indicates that a lower spectral slope could be associated with

better performance in the RVP task.

A notable outlier is shown on the scatterplots, potentially influencing the results. To
investigate its impact, we excluded that participant and repeated the analysis. We found
no significant differences in the results (more details can be found in the supplementary
material of the original publication (107)). Therefore, the outlier did not account for the

observed correlations.
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Figure 7. Significant correlations between spectral slopes and Rapid Visual Processing
scores (RVPA). On the left panel, the cortical topology of the significant locations
(circles) and connections (lines) are shown, where By or By, expressed significant
correlation with RVPA scores. The right panel displays individual scatterplots for all
relationships (yellow: By vs. RVPA, blue: By, vs. RVPA) (107).

Figure 8. depicts the relation of the total number of attempts in the 6 pattern PAL

task with spectral slopes, in a similar manner as previously. Once again, a greater spectral

slope (4 connections and 1 location) was accompanied by more attempts, i.e., worse

performance.
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Figure 8. Significant correlations between spectral slopes and Paired Associates
Learning Total Errors in case of 6 patterns (PALTAG6). On the left panel are the locations
(circles) and connections (orange lines) where By or Py, expressed significant

correlation with PALTAG scores. The right panel displays individual scatterplots for all
relationships (yellow: B, vs. PALTAG, blue: By, vs. PALTAG6) (107).

Conforming to expectations, we discovered nearly identical results with regards to
the probability of hits in RVP (RVPPH). And similarly with the percentile-transformed
and z-scored RVPA values. The other task’s CANTAB scores showed only the occasional
correlation with fractal connectivity and those results did not present a comprehensible
trend or pattern. Table 2. shows CANTAB output measures that were found to be
different between the groups. All p-values reported in Table 2.Hiba! A hivatkozasi
forras nem talalhatd. are adjusted using False Discovery Rate correction of Benjamini

and Hochberg (111).

Table 2. Significant differences in CANTAB scores between young and elderly groups.
DMS: Delayed Matching to Sample; PAL: Paired Associates Learning; PRM: Pattern
Recognition Memory; RTI: Reaction Time; RVP: Rapid Visual Information Processing;,
SWM: Spatial Working Memory, SD: standard deviation; CL: correct latency. (modified
after the supplementary table of Czoch et al. (107))
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Task Measure Definition Young | Elderly | p-value | Task Measure Definition Young | Elderly | p-value
DMSL4SD Correct latency SD 827.6 | 14567 | 0.0427 PRMMCLD Mean ‘zloefy"; dlatency 1667.1 | 2082.1 | 0.0123
DMSMDL Median correct latency 2284 3459 0.0122 = PRMMCLI Mean CL immediate 15164 | 1900.7 | 0.0142

i a2

pMmsMmpLi2 | Median colrrze“ latency | 55133 | 3869 | 0.0097 | & | PRMMDCLD | Median CL delayed 1531 | 1927.8 | 0.0033
DMSMDLAD | Median cortect latency | 55878 | 3586 | 0.0241 PRMMDCLI | Median CL immediate | 1280.3 | 1744 | 0.0015

2 Simultaneous . L 334.354 | 383.789
E DMSMDLS DMSMDL 22525 | 32389 | 0.0010 RTIFMDRT Median reaction time 5 5 5 0.0022
DMSML Mean correct latency 28204 | 3677.5 | 0.0270 E RTIFMRT Mean reaction time 5 3414505 391;46 0.0022
DMSMLI12 Mean correct latency 12 | 2846.1 4322 0.0189 RTIFRTSD Reaction time 5 SD 36.5422 46.9 0.0228
DMSMLA4 Mean correct latency 4 | 2475.7 | 3634.2 | 0.0218 RVPA RVP A prime measure 0.9398 | 0.89871 | 0.0143
DMSMLAD Mean correct latency all 2487 3956.7 | 0.0184 RVPA% RVPA percentile 59.9583 | 36.2632 | 0.0126
DMSMLS Simultaneous DMSML | 2403.7 | 3276.6 | 0.0033 RVPAZ RVPA Z-score 0.3454 | -0.4242 | 0.0186
PALFAMS28 | Tt a“esré‘é’rtememory 164517 | 119474 | 0.0004 | & RVPMDL | Median response latency | 411.5 | 528 | 0.0002
PALFAMS28% | PALFAMS28 percentile 66.5 44.0526 | 0.0197 ~ RVPML Mean response latency | 466.620 568 0.0010
PALFAMS28Z PALFAMS28 Z-score 0.6242 | -0.1684 | 0.0178 RVPPH Probability of hit 0.7431 0.6140 | 0.0423
PALMETS28 Mean errors to success 1 2 0.0013 RVPTH Total hits 40.1250 | 33.1579 | 0.0415
PALTA28 Total attempts all 6 8 0.0032 RVPTM Total misses 13.8750 | 20.8421 | 0.0407
PALTA6 Total attempts 6 1 2 0.0013 SWMBEI12 Between errors 12 14 35 0.0082
E PALTE28 Total errors all 5 13.1579 | 0.0014 SWMBE4 Between errors 4 0 2 0.0192
PALTE6 Total errors 6 0 3 0.0012 SWMBE468 | Between errors 4-6-8 5 19 0.0181
PALTES Total errors 8 4.0417 8.1579 | 0.0314 s SWMBE6 Between errors 6 0 6 0.0277
PALTEAI12 Adjusted PALTE 12 5.5 12 0.0185 E SWMS Strategy score 6-8 6.7083 | 8.9474 | 0.0302
PALTEA28 Adjusted PALTE all 5 13.1579 | 0.0013 SWMS6 Strategy score 6 3 4 0.0139
PALTEAG6 Adjusted PALTE 6 0 3 0.0010 SWMSX Strategy score 6-12 11.375 15'; 26 0.0241
PALTEAS Adjusted PALTE 8 4.0417 | 8.1579 | 0.0308 SWMTEI12 Total errors 12 14 35 0.0113




5 Discussion
5.1 Fractal connectivity characteristics of different mental states

Our first validation of the MRCSA method on physiological data revealed an increase in
cross-spectral exponents of brain networks in response to increased mental workload (as
evoked by generating words). Even though this analysis was the first to demonstrate this
pattern using this specific methodology, similar results have been observed before: in one
of our previous studies (62) we showed that the bivariate Hurst exponent — another
measure capturing bivariate fractality of coupled processes — increases when performing
a visual pattern recognition task, in accordance with our findings. Even though MRCSA
operates in the frequency domain, the bivariate fractal scaling exponent can be obtained
equivalently in the frequency- and time domains (57). However, while time domain
methods such as detrended cross-correlation analysis (56) cannot account for the biasing
effect for oscillatory signal components, MRCSA can ameliorate this issue and thus
MRCSA estimates of the bivariate scaling exponent should be considered more precise
and robust than those obtained with other techniques. In this regard, our current results
(88) confirmed our previous ones (62) in terms of the effect of mental workload on fractal
connectivity in the brain. These findings align with theoretical insights into fractal
networks, such as those described by Zakar-Polyak et al (112). Their analysis of fractal
network models highlights how structural characteristics contribute to fractality. These
properties may parallel neural network adaptations under cognitive load, where increased
fractal connectivity could reflect a reorganization aimed at optimizing processing
efficiency. Their findings suggest that neural networks might transiently adopt more
fractal-like configurations during demanding tasks. This perspective provides a robust
framework for interpreting our MRCSA-derived measures and underscores the

physiological relevance of FrC as a marker for cognitive functioning.

It is important to note that an increase in f, does not necessarily mean stronger
functional coupling, but instead it indicates that the coupling — regardless of its strength
— is maintained even for long time scales (99). This phenomenon might be understood in
terms of the WG paradigm the following way. The WG task itself requires the alignment

of multiple, higher-order cognitive functions such as short- and long-term memory,



associative skills and attention. Furthermore, the task condition was induced for 10
seconds, which might indeed be manifested in long-term coupling as co-operation of
these functions (and associated brain regions) had to be maintained throughout the trial.
With this hypothesis in mind, we could observe that connections where significant
difference was detected compared to resting-state (BL) were associated to those brain
regions that are relevant for the aforementioned cognitive domains, such as the prefrontal
cortex or constituents of the dorsal- and ventral attention networks (75, 113). However, it
must be noted that our analysis was carried out in the electrode (and not the source) space,
and therefore conclusions regarding the activity and involvement of underlying brain

regions are speculative and should be treated with caution (114).

In addition, the increase in percentage of fractal spectral power indicates a decrease
in oscillatory activity. These results might reflect a decrease in oscillatory alpha activity
— the most prominent narrow-band component in human EEG —, which suggests a
decrease in inhibitory tone and is commonly observed in conditions requiring increased

mental workload (115).

5.2 Changes in cognitive performance and response latency in healthy
aging

Recent research has increasingly focused on exploring the relationship between age-
related cognitive decline and functional connectivity during resting-state (20, 21, 25).
Additionally, it has also been described that fractal dynamics is affected by aging (116,
117). Despite the surging interest, most studies in the field focus either solely on
‘traditional’ connectivity patterns and brain networks or fractal dynamics and how these
are altered in certain conditions. We, on the other hand, aimed to combine these concepts
and find resting-state fractal connectivity patterns that could be linked to (or even
forecast) cognitive performance in the elderly. To test our hypothesis, we completed an
extensive assessment concentrating on those cognitive domains which are affected by
aging the most (118, 119). We have chosen these seven (along with the MOT task for
baseline) tests because it has been demonstrated previously that they are sensitive and
efficient in detecting cognitive impairment in aging (120). The results of Csipo and
colleagues (120) correspond strongly with our findings. During MOT, the baseline task,

the two groups were indistinguishable, verifying that all subject from both cohorts
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possessed sufficient sensorimotor skills to complete the remaining tasks. A further
similarity was in the DMS task where the response times were higher, and in the PAL,
RVP and SWM tasks where we observed the same decrease in performance in the elderly.
However, in the former, in our study no reduction of performance accompanied the
increased latency and in the latter ones our aging group achieved worse performances as
well, compared to the youth. Additionally, our aging group replied slower than the young
in the PRM task too, contrasting the outcomes of Csipo et. al (120). On the whole, three
deductions can be made from the behavioral results. One, in alignment with earlier
findings our results support that this set of cognitive tasks is sensitive, quantifiable and
can be efficiently employed in capturing age-related decline in several cognitive domains.
Perhaps not surprisingly, but even in the absence of any neuropathological condition the
elderly displayed worse performance. Two, excluding the MOT task, the response times
of the elderly subjects were typically longer than those of the young group across almost
all tasks where it was measured. In two instances, namely in the DMS and PRM tasks
which test visual pattern recognition- and short-term visual memory, the elderly displayed
comparable performance to the young group. This phenomenon implies that despite the
affection or ‘aging’ of the neural circuits needed to solve the task, elderly participants
could compensate the reduced efficiency with increased processing duration. A similar
occurrence has been observed in the elderly in error perception and response inhibition
tasks (121, 122). Three, also in line with previous results (123, 124), four tasks (PAL,
RTIL RVP and SWM, while in RTI and RVP the response latency was increased as well)
saw a significant reduction in performance when it came to the elderly. These tests
assessed a broad range of cognitive domains, except pattern recognition/matching.
Interestingly, two very similar tasks, MOT and RTI produced starkly different results.
The RTI task involved a preparatory phase and more options to select the correct one
from contrary to MOT where there was only one button to press, but only in the former
did we observe increased response time and decreased performance/accuracy in the
elderly. Once again, previous studies have found the same phenomenon, that the aging
population are more prone to error when forced to react quickly (121). Moreover, also in
line with earlier research (125, 126), it could signify that aging affects neurophysiological
processes linked to preparation and cued action (which we did not assess in our current

study). The SWM task was the most complex task applied in our study. After taking the
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redundancy of the outcome measures into account (e.g. the number of attempts increase
with the number of errors), this task proved to be most challenging for the elderly
compared to the young, as their performance was reduced across all difficulty levels (4,
6, 8 and 12 boxes). This result further backs that increasing task complexity diminishes
performance in older adults (127), possibly related to naturally occurring loss of cognitive

IeServes.
5.3 Changes in fractal connectivity in healthy aging

Overall, the most notable reveal of the fractal connectivity analysis was the reduction of
the cross- and auto-spectral slope across the whole cortex (Figure 6). Multiple previous
studies reporting changes in functional connectivity in aging agree that disconnectivity
increases with age (20), which can be linked to cognitive impairment (128). However, it
is critical to note that direct comparison of these results is not feasible because the cross-
spectral slope/exponent does not translate into the ‘strength’ of the coupling between the
signals. Rather, it indicates how the strength of the coupled processes change over various
time scales. Interestingly, comparing integrated cross-spectral density (a more
‘conventional’ measure of FC), no differences emerged between the groups, contrary to
previous findings (129). This difference could be caused by the differing analysis
strategies. Here, we only examined broadband spectral power and connection-to-
connection comparisons after FDR-adjustment, meanwhile a more comprehensive
investigation in the individual frequency ranges combined with network theoretical
methods could prove to be more discerning in revealing changes linked to aging. Another
study found that aging involves a shift from segregated to integrated functional networks,
particularly in the frontal lobe (130). This reorganization aligns with our findings that
changes in fractal connectivity (FrC) reflect disruptions in neuronal dynamics across
cortical regions. Regardless, our focus was specifically set on FrC and our results prove
that evaluating it can reveal age-related changes other, more ‘traditional’ methods could
not. Consequently, as far as we know, no studies had examined FrC in aging and how it
might be linked to cognitive performance previously. Prior to MRCSA, our group
proposed a novel, parallel approach (for a similar purpose of characterizing fractal
connectivity) called bivariate focus-based multifractal formalism (BFMF), to analyse
multifractal connectivity (61), in the time domain. In our follow-up papers, with the use

of BFMF we demonstrated that FrC is altered in a visual pattern recognition paradigm
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(62) and also in Parkinson’s Disease and reacts to dopaminergic treatment (131). Despite
the implications of these outcomes suggesting a connection between FrC and cognitive
performance, none of these studies examined the contrast in FrC between young and
healthy elderly groups. Additionally, our goal was not to assess the plausible multifractal
nature of connectivity, but instead to obtain precise, unbiased estimates of the
(mono)fractal scaling property and thus we utilized the advanced MRCSA instead of the
BFMF method. In spite of finding differences linked to aging in FrC, the underlying
neurophysiological processes (and fractal neural dynamics in general) are yet to be
understood. Based on the neural network oscillator model, larger neuronal assemblies
produce slower fluctuations. Thus, the 1/f characteristic of neural activity emerges from
the overlay of incoming signals from neuronal populations of various sizes (80, 132).
Building upon this notion, the decreased cross-spectral slope could very well indicate that
disconnectivity emerges in the aging brain affecting neuronal populations to various
extents. An additional prevalent hypothesis associates scale-free neural activity with a
condition of self-organized criticality in the brain (133), making it capable of global
reorganization quickly in reaction to external stimuli (134, 135). As per this concept,
altered spectral exponents might indicate changes in the balance of excitatory and
inhibitory stimuli (136, 137) and the resulting regional imbalance could very well lead to
a desynchronization of various cortical areas across several frequency ranges (138),
although further research is required to confirm this theory. Most of the differences in
auto- and cross-spectral exponents were concentrated on the frontal and temporal regions
(right panel of Figure 6). This can be explained by that the univariate spectral slope can
in fact determine the bivariate scaling exponent (99). Our findings on fractal connectivity
changes in healthy aging align with recent research on functional brain network
alterations across the lifespan. A comprehensive study by Doval et al. (139) using
magnetoencephalography data from 792 healthy individuals revealed significant shifts in
functional connectivity patterns across multiple frequency bands. Notably, they observed
decreased connectivity in the elderly group, particularly in occipital regions and their
connections with hippocampal and parahippocampal areas in the delta band, and a
widespread decrease in theta connectivity. These patterns support the notion that aging
involves specific regional changes in neural dynamics. Moreover, the identified

involvement of the frontotemporal network in aging is consistent with previous research
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(140, 141), and is further supported by the findings of Doval et al. of altered connectivity
in frontal and temporal regions across various frequency bands, particularly in the alpha

and gamma ranges (139).

5.4 Associations between fractal connectivity and cognitive abilities in

older adults

The most numerous correlations of FrC and performance emerged in the RVP and PAL
tasks (Figure 7. and Figure 8.). The RVP task assessed the sustained attention skills of
the participants. The task interface is very similar to the widely favoured n-back working
memory paradigm (142). In contrast with n-back, the subjects had to identify one (or
more) previously fixed sequence, without updating it every trial. Among cognitive
domains, working memory stands out as one of the earliest to be affected by aging, as
indicated by prior research (143), thus it is not unexpected to find that a similar task
produced the most correlations with neural signatures. Moreover, studies agree that the
frontal and prefrontal areas (e.g. the dorsolateral prefrontal cortex) play an important role
in working memory and sustained attention (69, 144, 145). This is further supported by
the correlations found between regional spectral exponents of these areas and
performance in RVP. The PAL task, which assessed visual memory and learning, saw an
analogous pattern related to the number of attempts emerging. Earlier it has been shown
that the cortical regions responsible for visual memory go through a reorganization with
aging (146), however differences in performance between young and elderly have not
been scrutinized. In contrast, our findings suggest that when long term coupling occurs
between the frontal and parietal brain areas, it hinders the continuity of visual memory.
Precisely, this is indicated by the reduced auto- and cross-spectral slopes found in the
aging group. Interestingly, an inverse relationship (Figure 7.) was uncovered between
spectral slopes and RVP score (the greater, the better), and additionally, a positive
relationship (Figure 8.) between the spectral slopes and the number of attempts at PAL
(the lower slope, the better the performance). Recent findings from Jauny et al. (2024)
(147) show that lower structural-functional connectivity similarity in parietal and
temporal regions correlates with better cognitive performance in older adults. This aligns
with our observation that reduced spectral slopes may reflect compensatory mechanisms,

suggesting FrC changes represent adaptive reorganization rather than decline. As the
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young group had an overall better performance, it is somewhat remarkable that they also
exhibited higher spectral slopes, therefore one could connect the higher f, and By, values
to sharper cognitive abilities. Note that in spite of this, nearly none of the cognitive scores
showed correlations with spectral exponents in the young cohort, hence universal
associations cannot be made and the observed correlations in the elderly should not be
dismissed. Rather, the gathered data implies that there might be a (yet unknown)
compensatory mechanism in the aging brain as a response to diminished cognitive
capabilities, which manifests as a reduction in spectral exponents. Regardless, these

questions were ultimately beyond the scope of our study and require further research.
5.5 The physiological role of fractal connectivity

The exact role and meaning of fractal connectivity — and fractal neural activity — is still a
subject of debate and active research among the neuroscience community. On the one
hand, the functional relevance of fractal neural dynamics has been demonstrated in a
plethora of conditions, such as mental workload (51, 78, 148, 149), self-consciousness
(150, 151) or anxiety (152). Even though exact generating mechanisms were not
identified in most cases, the robust changes observed in spectral slope (or Hurst exponent)
indicates that processes governing fractal scaling are task relevant. Recent research
proposed that the spectral exponent might reflect the ratio of incoming excitatory and
inhibitory signalling to a given region (153), which is a similar notion to the one proposed
by Ivanov and colleagues (154) to explain the emergence of fractal dynamics in the
presence of non-linear, antagonistic feedback loops. On the other hand, the ubiquitous
nature of fractal ‘1/f’ dynamics in many natural processes provides a reason for
scepticism (155, 156), and thus many approaches consider fractal neural dynamics simply
as ‘1/f noise’(157). Nevertheless, most previous approaches considered fractal
characteristics of regional neural dynamics, while studies assessing fractal connectivity
are scarce (53, 60, 61, 70), especially those doing so in response to a cognitive task (54,
62). In my work, I provided two arguments supporting the physiological role and
relevance of fractal connectivity. First, I showed that fractal connectivity patterns change
in response to a mental workload task, and these changes appear to be aligned with task-
relevant functional brain regions. Second, I showed that not only fractal connectivity (and

regional fractal dynamics) decreases with age, but this alteration is correlated with
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cognitive performance in multiple domains. Although the exact neural mechanisms
behind these findings could not be disentangled with our experimental setup and
limitations, investigating fractal connectivity nevertheless appears as an interesting and

relevant direction for future neuroscience research.
5.6 Limitations and future perspectives

Despite the fact that MRCSA can effectively separate the fractal constituent from the
cross-power spectrum, some prior assumptions must be made at its application, as
mentioned above. Regardless, future theoretical and technical advancements could
potentially address or expand upon certain limitations of the method presented here. Also,
MRCSA might be extendable to the bimodal domain, based on the works of Nagy et al.
(158) and Mukli et al. (68). Moreover, fractal processes in nature can rarely be
characterized with one scaling exponent since the scaling property itself can change over
time. To provide a solution, Benzi et al. (159) and Mandelbrot (160) proposed a
phenomenon termed multifractality, that instead of one, a set of exponents should be
estimated in these cases. Various processes in physiology exhibit multifractality such as
heart rate variability (161) or cerebral hemodynamics (162). More importantly, functional
connectivity has been shown to exhibit multifractal dynamics in terms of the topological
properties of the overall network (71, 76) and also in individual connections (61, 62, 72).
The MRCSA method as presented here is only able to describe the global monofractal
character of functional coupling, however a sliding window approach could prove useful
in obtaining a distribution of local cross-spectral exponents over time, then the degree of
multifractality could be computed from the distribution width. Finally, MRCSA could be
an effective tool in other fields than neuroscience, as well. In financial data analysis,
assessing long-term coupling is gaining traction (56, 163), as these time series express
long-range auto- and cross-correlations, interspersed with periodic peaks (monthly/yearly
periods or cycles). MRCSA effectively eliminates the interference of multiple periodic
elements simultaneously, thus it has the potential to serve as a valuable tool in financial

data analysis as well.

Furthermore, MRCSA is computationally very costly method, thus online
applications are not feasible. If one intends to monitor cognitive states in real-time, the

newly proposed real-time detrended cross-correlation analysis (164) provides an
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alternative solution. Lastly, in my work the focus was on identifying biomarkers which
are connected to changes in brain networks in healthy aging. Consequently, a significant
challenge lies in distinguishing between the natural changes that accompany aging and
those that are typical in certain pathological conditions — like mild cognitive impairment
or Alzheimer’s Disease — is a challenge for the future, albeit an equally important one.
Therefore, among our future objectives, we aim to explore the relationship between

cognition and FrC in pertinent clinical conditions.
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6 Conclusions

During my work, we proposed and developed the bivariate extension of IRASA, called
MRCSA, for isolating the fractal component of a cross-spectra of long-term coupled
signals. We demonstrated that MRCSA 1is a potent method to eliminate oscillatory or
narrow-band peaks from the cross-power spectrum. We showcased the relevancy of
MRCSA on real-world EEG recordings and how the obtained cross-spectral slopes could
be employed in differentiating between resting state and increased mental workload.
Moreover, MRCSA could prove useful in other disciplines where periodic patterns pose
a similar difficulty as narrow-band oscillations in neurophysiological signals, for instance

in financial data analysis.

After validating the method, I set out to investigate resting-state fractal connectivity
in healthy elderly and young participants and scrutinized its connections with cognitive
performance and compared the results of the two groups. The cognitive evaluation
showed an increase in response time and decreased performance in the elderly in several
tasks, concurrent with an overall reduction in local and cross-regional spectral exponents.
Analyzing the correlations, it was found that performance showed an inverse relationship
with fractal connectivity dynamics in the elderly. Such reduction in FrC is likely the
manifestation of compensating for decreased cognitive abilities. These results are the first
to uncover alterations in fractal connectivity connected to aging and their associations to
cognitive functioning, and thus will lay the groundwork for future studies focused on

employing these markers for monitoring, screening or potential intervention.
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7 Summary

I investigated the relationship between fractal connectivity and cognitive functions within
the context of healthy aging. My primary objective was to uncover how age-related
alterations in brain connectivity patterns influenced cognitive abilities. Firstly, I delved
into fractal connectivity (FrC), which represents the self-similar patterns of brain activity
crucial for cognitive performance. To estimate and analyze FrC our lab developed a
method termed Multiple-Resampling Cross-Spectral Analysis (MRCSA), the bivariate
extension of Irregular-Resampling Auto-Spectral Analysis (IRASA). This technique
allowed for an unbiased estimation of the spectral slope, which characterizes fractal
connectivity. Secondly, to test cognitive performance I utilized tasks from the Cambridge
Neuropsychological Test Automated Battery (CANTAB) to assess various cognitive
domains. These tests provided comprehensive insights into visual memory, attention,
reaction time, and problem-solving abilities. The impact of aging on fractal connectivity
and cognitive performance formed the third focal area of my study. I investigated age-
related differences in connectivity patterns and their correlations with cognitive test
outcomes. The results revealed that healthy aging was associated with distinct changes in
fractal connectivity, which might be the underlying cause for the observed decline in
specific cognitive capabilities. To ensure statistical robustness, the False Discovery Rate
(FDR) method was employed to adjust the number of comparisons in the case of
CANTAB and Bonferroni’s method of multiple comparisons with the connectivity
metrics. The results of my study indicated that increased cognitive load affected FrC
differently in younger and older adults. Healthy elderly individuals displayed distinct
connectivity patterns compared to younger participants, and these patterns correlated with
their cognitive performance. I identified significant age-related differences in fractal
connectivity linked to specific cognitive domains, highlighting the potential of FrC as a
biomarker for cognitive aging. It must be stressed that further research is needed to
explore potential therapeutic interventions that could mitigate age-related cognitive
decline. In conclusion, my dissertation established that FrC plays a crucial role in
cognitive functioning, and its alteration with age might contribute to cognitive decline.
By understanding the neural mechanisms underlying age-related cognitive changes, we

could develop more effective strategies to support cognitive longevity.
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