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1. Introduction 

1.1. Cancer 

Cancer is one of the leading causes of death worldwide. According to the World Health 

Organization, in 2019, it was the first or second leading cause of death in 112 of 183 

countries for people under the age of 70. [1] In 2020, there were an estimated 19.3 million 

new cases and 10 million cancer-related deaths worldwide. [2] There is a multitude of 

different cancers; they are usually named after the body part of origin (e.g., prostate 

cancer). 

The diagnosis of cancer is different for the distinct cancer types; however, it always 

involves histological grading and pathological staging. Grading is based on the 

appearance of cancer cells under the microscope, according to their level of 

differentiation: Grade 1 (low grade, well differentiated), Grade 2 (intermediate grade, 

moderate differentiation), Grade 3 (high grade, poor differentiation). Staging is based on 

several factors that describe the severity of the disease. The most commonly used system, 

the TNM system reports on: T—the size of the primary tumor, N—whether it has spread 

to nearby lymph nodes, and M—whether it has metastasized. [3–5] 

1.1.1. Prostate Cancer 

Prostate cancer (PCa) has the second highest incidence (14.1% of cases) and the fifth 

highest mortality (6.8% of cancer-related deaths) out of the different cancer types in males 

worldwide. [2] As these numbers indicate, PCa has a relatively low mortality compared 

to other types of cancer: the five-year survival of patients with early-stage PCa is almost 

100%. On the other hand, for advanced cases—which usually metastasized to the bones, 

liver, or lungs—it is 30%. [6] The risk assessment of PCa considers multiple factors, e.g., 

grading, staging, age, etc.  

Grading is performed by a pathologist, and can be based on different kinds of features: 

histological grading is based on levels of cell differentiation, ranging from 1–3 (see 1.1 

Cancer); Gleason grading considers not only cell appearances but tissue architecture as 

well, and considers both the least and second least differentiated patterns, ranges from  

1–5; ISUP (International Society of Urological Pathology) grading is a slightly modified, 

updated Gleason system, also ranging from 1–5; while the CAPRA (Cancer of the 

Prostate Risk Assessment), and D’Amico (developed by Anthony V. D’Amico, MD, 
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PhD) systems combine Gleason grades with other clinical parameters, designed for more 

accurate PCa risk prediction. [7–10] 

PCa screening is based on measuring the levels of prostate-specific antigen (PSA) in 

blood, and digital rectal examination (DRE). [11–13] Further diagnosis is usually made 

using targeted biopsies. [14,15] Therapy options in PCa include active surveillance or 

observation for patients with low-risk PCa; surgery or radiation therapy for localized PCa; 

hormone therapy; chemotherapy; immunotherapy or immune checkpoint inhibitors; 

targeted therapy for patients with known mutations (e.g., poly(ADP)-ribose polymerase 

(PARP) inhibitors); and therapies specific to bone metastasis (e.g., bisphosphonates, 

corticosteroids, external radiation therapy, or radiopharmaceuticals). [16] 

1.1.2. Lung Cancer 

Lung cancer (LC) has the second highest incidence (11.4% of new diagnoses) and the 

highest mortality (18.0% of deaths) out of all cancer types worldwide. [2] The large 

numeric difference between these two metrics is due to the very low five-year survival 

rate of the disease (10-20% in most countries), [2] which is mostly because a large part 

of cases is already metastatic at the time of diagnosis. [17,18] In publications focused on 

global LC incidence and mortality, Hungary is usually reported with the highest numbers; 

however, this is reportedly an artifact due to differences in data collection methodologies. 

In reality, they are not higher than the average of other Central European countries. [19] 

Lung cancer is a highly heterogeneous disease. It is classified into two main types: small 

cell lung cancer (SCLC, 15% of cases) and non-small cell lung cancer (NSCLC, 85% 

of cases) based on their appearance under the microscope. NSCLC can further be 

classified into three major subtypes based on histology: adenocarcinoma (AC, 45% of 

cases), squamous cell carcinoma (SqCC, 25% of cases), and large cell carcinoma 

(LCC, 15% of cases). [20] 

The classification of LC is a very important part of establishing a diagnosis, as depending 

on the type or subtype, the available treatment options and prognosis might be different. 

SCLC is generally considered more aggressive than NSCLC due to the rapid growth of 

cancer cells and its high tendency to metastasize to other parts of the body, which also 

rules out the possibility of surgery in most cases. [21] Treatment options for SCLC 

generally only include chemotherapy and radiation therapy, while for NSCLC, surgery, 

and—depending on the subtype and certain genetic and protein markers—targeted 
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therapies and immunotherapy are also available. [22] These key differences between the 

two types of LC are reflected in their respective five-year survival rates, which is much 

higher for patients with NSCLC in all metastatic stages of the disease. 

1.2. Proteomics 

The definition of proteomics has changed significantly over the last decades, as many 

new technologies and methodologies emerged expanding possibilities. It is the study of 

the proteome—the proteins expressed by a cell or organism, their quantity, structure, 

function, post-translational modifications, and interactions. [23–25] 

1.2.1. Proteins and N-Glycosylation 

Proteins are large macromolecules that consist of amino acid residues (21 different 

proteinogenic amino acids for humans). Their biosynthesis is template-driven and can be 

separated into two phases: transcription and translation. During transcription the 

information encoded in a gene is transferred to messenger RNA (mRNA) with the help 

of RNA polymerases in the nucleus of the cell. The mRNA is then transported to the 

cytosol, where translation is carried out by ribosomes based on the information provided 

by the mRNA in the presence of transfer RNA (tRNA) that carry the necessary amino 

acid building blocks. After translation, many proteins undergo chemical modifications 

called post-translational modification (PTM). Glycosylation—the addition of 

polysaccharide unit(s) (glycans) to the protein—is considered the most common PTM, 

which happens in the endoplasmic reticulum (ER) and the Golgi apparatus. The two most 

common types are O- and N-linked glycosylation. [26] 

In the case of N-glycosylation the glycan can be attached to the amide nitrogen of the 

asparagine residue in a Ser/Thr-X-Asn sequence (where X is any amino acid except for 

proline) called a glycosylation site (also referred to as glycosite), which is usually 

referred to by an “N” (for asparagine) followed by the number in sequence (e.g., N294). 

The process starts in the ER, where a dolichol-phosphate-linked precursor is transferred 

to the Asn with the help of an oligosaccharyltransferase. The next step is the processing 

and maturation of the glycan in the Golgi. Here, large part of the polysaccharide is 

removed with the help of glycosidases, then new sugar residues are added by 

glycosyltransferases resulting in three types of mature glycan structures: high-mannose 

(or oligomannose), hybrid, and complex. All of them have a common, conserved core 

structure and can only contain a select number of different monosaccharides (Figure 1). 
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[26] Other, less common glycans include bisecting, paucimannose, and LacdiNAc 

structures. 

 

Figure 1: N-glycan types common in humans. (A) The three glycan types from left to right: 

complex, high-mannose, and hybrid. (B) Monosaccharides common in human N-glycans. Figure 

made by the author using Microsoft PowerPoint. 

A glycoprotein can have multiple glycosylation sites, and usually present several different 

glycan structures simultaneously—they have several different glycoforms. Glycosylation 

can be characterized by two types of heterogeneity, macroheterogeneity refers to 

glycosite occupancy, while microheterogeneity refers to the collection of different 

glycoforms. Glycosylation can alter the structure and subsequently the function of a 

protein by a large degree, therefore has various important biological functions, most 

notably, glycoproteins are heavily involved in cell-cell communication. Glycans 

presented on the cell surface affect signal transduction, molecular recognition, [27] and 

the entry of viruses into the cell—for example the SARS-CoV-2 virus uses its heavily 

glycosylated spike proteins to bind to angiotensin-converting enzyme 2 (an 

N-glycoprotein) cell surface receptors to facilitate cell entry. [28] Aberrant glycosylation 

has been repeatedly shown to be of diagnostic value for multiple diseases, while 
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monoclonal antibodies used for the treatment of several diseases, e.g., cancer are also 

glycosylated. [29,30] 

1.2.2. Approaches in Proteomics 

In proteomics, there are currently two major methodologies used for the analysis of 

proteins. In the bottom-up methodology (often called shotgun proteomics), samples are 

first subjected to proteolysis by proteases (most frequently trypsin) that cleave proteins at 

specific amino acid residues resulting in peptides. These are then predominantly analyzed 

using mass spectrometry following chromatographic separation, and proteins are 

identified and quantified through their respective peptides. [25,31–34] Contrary, in the 

top-down methodology proteins are analyzed in their intact form. Additionally, to the 

two approaches mentioned above, middle-down technique is also used in specific cases 

(e.g., the analysis of PTMs on monoclonal antibodies), where proteins are only partially 

digested. [35–37] 

The two major methodologies have different applications. The main difference is that 

bottom-up proteomics is an older, well-established approach, that allows for the high-

throughput analysis (identification and quantitation) of a very large number of proteins in 

parallel; while top-down proteomics is a more recent technology, that enables the 

investigation of different proteoforms for less complex samples and requires more 

expensive instrumentation and expertise, also the analysis of proteins with large 

molecular weights is problematic. Although there have been significant improvements in 

top-down methodologies in recent years—making its breadth of applications wider, [38] 

bottom-up proteomics remains the most often used approach, and the cornerstone of 

proteomics. 

1.2.3. Approaches in N-Glycoproteomics 

The analysis of N-glycoproteins often requires different, or modified methodologies than 

proteins. This is due to the previously described (1.2.1. Proteins and N-glycosylation) 

glycan structure that has very different molecular characteristics than the peptide 

backbone and has a highly variable structure, thus increasing sample complexity. 

Currently, N-glycoproteomics is mostly based on two well-established approaches, 

released glycan analysis and intact glycopeptide analysis. 

In released glycan analysis, the peptides (or less frequently proteins) are subjected to an 

N-glycosidase enzyme—usually peptide-N-glycosidase F (PNGaseF)—that cleaves the 
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glycan from the peptide backbone, which allows for the separate analysis of the two types 

of molecular sets. After de-glycosylation, they are usually separated based on the 

difference in their hydrophobicity/hydrophilicity, charge, size, or affinity to specific 

molecules (e.g., lectins). The advantages of this method are that different methods can be 

used for the analysis of glycans and peptide backbones; the sample complexity is much 

smaller; more detailed structure elucidation is possible; sensitivity is less of an issue 

(usually with help of derivatization), as glycans from different glycosylation sites are 

detected together. The disadvantage of this method is that it only provides averaged 

information on the different glycosylation sites (and subsequently glycoproteins) studied, 

while site-specific information is lost. [39–41] 

Intact glycopeptide analysis—as the name suggests, is the direct analysis of glycopeptides 

after enzymatic digestion. Contrary to released glycan analysis, site-specific information 

is retained; however, it comes with a number of disadvantages. Sample complexity is 

much higher, and signals can be much smaller, as every glycan-peptide combination is a 

separate species (with a great dynamic range) opposed to released glycan analysis. 

Furthermore, glycosylation decreases the ionization efficiency of peptides [42] which can 

also lead to the suppression of glycopeptides in the ion source (ion suppression) by 

unmodified peptides. [43] To address these problems the enrichment of glycopeptides 

is paramount, with several different approaches currently being used. 

The two main approaches for glycopeptide enrichment are precipitation-based and 

chromatography-based methods. Precipitation-based methods make use of the different 

solubility of the two types of molecular sets in the mix of water and a polar organic 

solvent, e.g., in acetone or ethanol. Chromatography-based methods are usually used in a 

solid phase extraction (SPE) framework, where the stationary phase is packed in a 

cartridge or a pipette tip. Several different stationary phases are used, most commonly: 

hydrophilic interaction liquid chromatography (HILIC), porous graphitic carbon (PGC), 

or lectin-based affinity sorbents. [44–48] 

1.3. Mass Spectrometry-Based Proteomics 

As complex organisms can express a vast number of different proteins—for human cells 

an estimated 100 000, which is further diversified by different proteoforms—with great 

dynamic range in their abundance, great differences in molecular size and chemical 

properties; there is a multitude of different analytical techniques used in proteomics (e.g., 
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gel-based methods, western blotting, enzyme-linked immunosorbent assays (ELISA), 

etc.). Currently, however, mass spectrometry-based approaches are the most widely used. 

Since the development of soft ionization techniques, such as electrospray ionization 

(ESI) and matrix-assisted laser desorption ionization (MALDI) by Fenn, [49,50] and 

Hillenkamp and Karas [51] respectively (a similar technique was applied to proteins by 

Tanaka [52]), mass spectrometry (MS) has become an indispensable tool for the analysis 

of proteins. The importance of these techniques is highlighted by the fact that in 2002 

Fenn and Tanaka shared half of the Nobel Prize in Chemistry for their work. MS is at the 

center of proteomics research as it is a versatile tool that allows the high-throughput and 

sensitive analysis of thousands of proteins in parallel. Most of the time, it is used not as a 

standalone technique, but in combination with separation methods such as liquid 

chromatography [32] or less frequently capillary electrophoresis. [53] In further sections 

of the Introduction, when proteomics (and glycoproteomics) methods are discussed, only 

bottom-up applications are considered. 

Mass spectrometry is an analytical technique based on the measurement of the mass to 

charge ratio (m/z) of ionized molecules. An MS instrument is comprised of three main 

parts: the ion source—where analyte ions are formed, the mass analyzer—where the ions 

are separated based on their m/z, and the detector. The ions are transported between these 

segments by electrostatic fields called ion optics. During analysis a mass spectrum is 

produced that contains the m/z of ions on the x axis, and their intensity (the signal 

produced in the detector) on the y axis. 

State of the art mass spectrometers currently used in proteomics employ different 

technologies and have different layouts. This involves the use of various ion sources and 

mass analyzers, or specific additional parts. 

1.3.1. Ion Sources Used in Proteomics 

As previously mentioned, the development of soft ionization techniques was central for 

the application of MS to the analysis of proteins. Hard ionization techniques can cause 

the analyte molecule to fragment, which can be detrimental to the analysis of proteins or 

peptides, as no molecule ion is formed. Furthermore, producing gas-phase ions of large 

biomolecules was previously not possible, which is why John B. Fenn’s Nobel Lecture 

was titled “Electrospray Wings for Molecular Elephants”. [54] 
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MALDI is a so called “energy-sudden” method, [54] that involves the use of a laser beam 

to evaporate molecules from the sample surface with the help of a matrix that has a high 

absorptivity at the laser’s wavelength (e.g., 2,5-dihydroxy benzoic acid). [55] During 

MALDI mainly singly charged ions are formed. [51,52,56,57] Advantages of the 

technique include its ability to ionize molecules with very high molecular weights 

(> 200 000 Da), its high sensitivity (up to 10-21 mol), its high tolerance for the presence 

of salts, and the ability to study mixtures directly. The main disadvantages are the 

difficulty of quantitation and its inability to be connected on-line to a chromatographic 

system. A MALDI source is usually connected to a time-of-flight-based system. 

In ESI the analytes are in liquid form. The samples are solubilized in water mixed with a 

volatile organic solvent (e.g., acetonitrile, or methanol) in the presence of an acid or base 

(e.g., formic acid in positive, ammonia in negative modes), then passed through a 

capillary that is under high voltage. An aerosol of charged droplets is formed with the 

help of high temperatures and a nebulizer gas. Subsequently, through solvent evaporation 

Coulomb fission occurs repeatedly. [49,50,54,58,59] The three widely accepted theories 

explaining the final part of the ionization process—where gas-phase ions are formed from 

the droplets—are, for smaller molecules the ion evaporation, for larger biomolecules the 

charge residue model, and the chain ejection model. [60] During ESI multiply charged 

molecular ions can be produced, which makes the analysis of large biomolecules possible 

with mass analyzers operating in lower mass ranges as well. For proteomics, it is usually 

combined with a quadrupole time-of-flight, or an Orbitrap-based system. The main 

advantage of the ESI source is the possibility of coupling with liquid chromatography. 

[61] It is also highly sensitive (up to 10-18 mol) and suitable for quantitation. 

Disadvantages include its low tolerance towards non-volatile buffers and high salt 

concentrations, and its relatively high maintenance. [62] 

1.3.2. Mass Analyzers Used in Proteomics 

Mass analyzers are capable of separating ions based on their m/z values. The most 

frequently used mass analyzers in proteomics are the quadrupole (Q), the time-of-flight 

(TOF), the ion trap, the Orbitrap, and the Fourier-transform ion cyclotron resonance 

(FT-ICR).  

The quadrupole is comprised of four cylindrical metal rods. The opposing rod-pairs are 

connected to each other electrically, and a radio frequency alternating current is applied 
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to them, with a direct current offset voltage between them. Only ions with a certain m/z 

can pass through the rods when the voltages are chosen correctly. As the quadrupole has 

a relatively small mass range (up to 3000 Da) and mass resolution (up to 2000) it is only 

used in proteomics with a combination of other analyzers. [63] 

The TOF mass analyzer is based on the principle, that if ions with the same charge are 

accelerated by an electric field, they gain the same amount of kinetic energy. Their 

velocity is then determined by their mass, and subsequently so is the time it takes them 

to reach the detector. TOF analyzers work in a pulsed manner, where the accelerating 

field is perpendicular to the direction the ions are coming from. Based on flight times and 

the known parameters, a mass spectrum can be generated. The TOF analyzer has a 

virtually infinite mass range, high resolution (up to 105), and good mass accuracy, 

furthermore a very low scan time. In proteomics, it is usually used in combination with a 

quadrupole and an ESI source, or another TOF analyzer and a MALDI source. [64,65] 

The ion trap analyzer comprises of two electrodes facing each other and a third ring 

electrode between them, creating a space where ions are trapped by static and oscillating 

electric fields. The FT-ICR is similar, but an additional uniform magnetic field is involved 

leading to the oscillation of ions. In an Orbitrap analyzer, ions are trapped oscillating 

between an outer (barrel) and an inner (spindle) electrode. Ion trap analyzers have a low 

mass range and resolution, but very high sensitivity; they are usually combined with an 

Orbitrap. The FT-ICR has the highest mass resolution, however, as it requires the use of 

superconductive magnets, its operation is very expensive. Orbitrap analyzers have very 

high resolution (>106), mass accuracy, and are capable of multistage fragmentation. They 

are widely used for proteomics applications combined with ion trap and quadrupole 

analyzers. [66–68] 

1.3.3. Tandem Mass Spectrometry and Fragmentation Methods 

Mass analyzers are either used by themselves (e.g., TOF-MS or FT-ICR-MS), or more 

frequently in tandem with each other (MS/MS), for example in a quadrupole time-of-

flight setup (Figure 2). 



16 

 

 

Figure 2: Schematic layout of a quadrupole time-of-flight (Q-TOF) mass spectrometer. The flight 

tube is shown in a reflectron arrangement—where the flight path is elongated with the use of ion 

optics—with an orthogonal accelerator and a detector. Figure made by the author using Microsoft 

PowerPoint. 

Tandem MS can combine the strengths of two mass analyzers—tandem in space—or can 

be accomplished by a single ion trap analyzer—tandem in time; and allows the controlled 

fragmentation of ions inside the instrument. This enables the collection of more detailed 

information on the analytes based on their fragmentation characteristics. In proteomics, 

the main techniques are collision-induced dissociation (CID), and electron transfer 

dissociation (ETD). [69,70] 

In CID, the precursor ions are accelerated to a certain energy, then allowed to collide with 

a neutral gas in the fragmentation cell. Inelastic collision occurs, when part of the ion’s 

kinetic energy is converted into internal vibrational energy, which subsequently results in 

bond cleavage via the lowest energy pathways. Based on the acceleration energy, the 

precursor ion can undergo one, or multiple sequential fragmentation steps, which can be 

modulated based on the fragments of interest. Here, it is important to mention higher-

energy collision dissociation (HCD), which is essentially the application of the CID 

method to Orbitrap instruments. [71–74] 

The ETD method can be used to fragment multiply charged protonated molecular ions. It 

is based on ion-ion reactions, where a radical anion transfers an electron to the precursor 

cation subsequently forming an unstable radical, which undergoes fragmentation along 

the peptide backbone. The radical anions are generated from fluoranthene using chemical 

collision gas

collision cell uadrupole SI source

li uid sample

flight tube

high vacuum
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ionization, then mixed with the precursor ions, usually in an ion trap type instrument. As 

opposed to CID (and HCD), in ETD the weaker bonds, e.g., PTMs do not undergo 

fragmentation, and especially large peptides, or even proteins can be dissociated as well. 

[71,73,75] 

1.3.3.1. Fragmentation of Peptides and N-Glycopeptides 

Fragmentation characteristics primarily depend on molecular attributes, the type of mass 

spectrometer (the dissociation method) used, and experimental conditions. Peptides and 

N-glycopeptides have inherently different molecular characteristics, which subsequently 

leads to different fragmentation behavior as well. Fragment ions derived from peptides 

and glycopeptides have their own nomenclature introduced by Roepstorff, and Domon-

Costello (for carbohydrates in general), respectively (Figure 3). 

 

Figure 3: Fragmentation nomenclature for (A) peptides introduced by Roepstorff, and (B) for 

carbohydrates introduced by Domon-Costello. Figure made by the author using Microsoft 

PowerPoint. 

The dissociation method used determines which fragment ions are produced. In CID (and 

HCD), peptides primarily produce b and y type ions, while in ETD c and z ions are 

produced. As in CID (and HCD) the weaker bonds fragment first, glycopeptides usually 
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fragment by their glycosidic bonds, while the peptide backbone remains intact. This only 

yields information on the glycan structure in the form of B and Y type ions, which usually 

means the peptide sequence cannot be determined with high confidence. In ETD on the 

other hand, the peptide backbone will undergo fragmentation, which leads to fragments 

informative of the peptide sequence as well, however, the glycan structure usually 

remains intact. As for glycopeptides HCD and ETD yield complementary information, 

there are applications in Orbitrap MS where they are combined. The most prevalent 

technique is called EThcD, where glycopeptides first undergo ETD, then secondary HCD, 

which leads to more informative mass spectra. [76,77] 

Experimental conditions can highly affect fragmentation as well. In CID, fragmentation 

energy is routinely modulated based on the m/z of the precursor for optimal 

fragmentation. At higher energies multi-step fragmentations can occur, where 

glycopeptides first lose their glycan then the peptide backbone undergoes fragmentation 

as well (this is preferred for peptides). At lower energies, however, single-step reactions 

dominate, which are more informative of the glycan structure. These two energies can be 

combined—fragmentation time is split up between them—which results in a mixed-

energy spectrum that contains informative fragments of both the glycan structure and 

the peptide backbone. [78] 

1.3.4. Liquid Chromatography Coupled Mass Spectrometry 

In proteomics, mass spectrometry is usually coupled to high performance liquid 

chromatography (HPLC) with the help of an ESI ion source, which makes the analysis 

of highly complex biological samples possible. The separation of complex mixtures 

before MS/MS analysis is beneficial for several reasons, e.g., it lowers ion suppression as 

fewer analytes compete for charge in the ESI source increasing sensitivity and dynamic 

range; makes high-throughput identification and quantitation possible; and reduces the 

number of problematic “chimeric” mass spectra—MS/MS spectra with fragments from 

multiple precursor ions. [79,80] 

For proteomics applications HPLC is usually used in the nanoflow range (nanoUHPLC), 

as it provides improved sensitivity compared to higher flow rates (and larger column 

diameters). The columns used for peptide separation are still packed columns primarily; 

however, monolithic columns, open-tubular, and 3D printed pillar array columns have 

emerged recently as alternatives. [81] As proteomics is a diverse field (including the 
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analysis of multiple PTMs and other specific applications) several stationary phases are 

routinely used. For peptides, reversed-phase (RP) columns (e.g., the most frequently used 

octadecyl carbon chain (C18)-bonded silica) are the most common, which separate 

peptides based on their hydrophobicity. [82,83] For glycopeptides, apart from RP 

columns, normal phase, HILIC, PGC, and ion-exchange (predominantly weak anion 

exchange) columns are also routinely used, as they offer different selectivity. [84,85] 

1.3.5. Mass Spectrometry Data Acquisition 

In tandem MS, there are multiple options for data acquisition strategies depending on the 

task at hand. When the analysis is focused on known analytes, targeted approaches are 

employed, e.g., selected or multiple reaction monitoring, [86] and parallel reaction 

monitoring. [87] These methods, however, are seldom used in proteomics. On the other 

hand, when there is no prior knowledge available of the sample (in the majority of cases), 

discovery or untargeted approaches are used, usually data dependent (DDA) or data 

independent (DIA) acquisition. 

The main differences between the two approaches are that the use of cycle times (time 

slots allocated for MS measurements during acquisition), and isolation widths (the mass 

range selected for fragmentation) are different. In DDA, first an MS spectrum is acquired, 

then based on this, a set maximum number of specific ions are selected for fragmentation 

(precursor ions). [88] Contrary, in DIA MS/MS spectra are acquired systematically, not 

based on information from precursor spectra and the entirety of a wider mass range is 

fragmented parallel. [33,89,90] There are several DIA methodologies available, including 

sequential window acquisition of all theoretical mass spectra (SWATH), [91] scanning 

quadrupole DIA (SONAR), [92] and parallel accumulation-serial fragmentation 

combined with data independent acquisition (diaPASEF). [93] 

The strength of DDA is the relatively easy interpretation of mass spectra, as (ideally) an 

MS/MS spectrum contains fragments from only one precursor. On the other hand, due to 

the semi-stochastic nature of the DDA algorithm, the reproducibility of measurements is 

rather low, and less abundant ions are often overlooked. Compared to DDA, DIA methods 

provide more precise and reproducible quantitation, and more protein identifications. On 

the other hand, mass spectra generated are highly complex and hard to interpret, which 

can pose challenges especially for the analysis of PTMs. [34,94]  
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1.3.6. Protein and Glycoprotein Identification 

The identification of proteins—in data-dependent bottom-up methodology—is an 

automated multi-step process called database search, that can be performed by several 

software employing different algorithms. The main steps are usually i) the generation of 

peptides and peptide spectra in silico from an appropriate protein database ii) an 

automatized search of all MS/MS spectra against the previously generated database 

resulting in peptide-spectrum matches (PSMs) iii) identification of proteins or protein 

groups (sequence homology-related ambiguity is a common feature) based on their 

corresponding peptides. Software settings can have a great impact on the results, the most 

important (and cross-platform) ones are the instrument parameters (fragmentation type, 

mass accuracy), the chemical modifications introduced at sample preparation, the protein 

database used, and the false discovery rate (FDR). [95–97] 

For N-glycoproteins, software solutions and methodologies are not as well established as 

for proteins. There are a lot of options available, however, there are some key questions 

not completely resolved yet, e.g., methods for calculating glycopeptide FDR. [98,99] 

Search engines use similar methods as for proteins but with the different fragmentation 

characteristics of glycopeptides considered. Furthermore, some of them employ 

glycopeptide-specific approaches as well, e.g., pre-filtering mass spectra for glycopeptide 

specific fragment ions, or accounting for the estimated retention time differences between 

glycoforms. [85,100,101] 

1.3.7. Quantitation in Proteomics 

There are several methods suitable for quantitation in proteomics, but it is usually based 

on the measurement of chromatographic peak areas. This metric can be affected by 

several factors apart from analyte concentrations, e.g., instrument parameters, matrix 

effects, and differences in analyte ionization efficiencies. Because of these, quantitation 

is not straightforward; there are two fundamental approaches in high-throughput 

proteomics, relative and absolute quantitation. In relative quantitation, samples are 

compared to each other, and the results will only reflect the ratio of the analyte for these 

samples (it is not, or rarely comparable with other separate experiments). This can either 

be achieved with the use of stable isotope labeling (chemical, proteolytic, or metabolic 

labeling) or without it (label-free quantitation). Contrary, in absolute quantitation exact 

protein amounts (e.g., the concentration of a target protein in a cell lysate) can be 
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determined for individual samples with the help of stable isotope labeled internal 

standards. Labeling-based strategies are more accurate and reproducible than label-free 

quantitation (LFQ), but are more expensive, labor-intensive, and not applicable in all 

circumstances (e.g., for the analysis of human tissue samples). [102–104] 

1.4. Proteomics in Cancer Research 

Proteomics in cancer research in general aims at the better understanding of molecular 

changes with tumorigenesis and progression, and subsequently the discovery of clinically 

relevant molecules, e.g., diagnostic and prognostic markers, or therapeutic targets. The 

focus, however, can be very different for specific cancers, as they all have different 

incidence, mortality, methods for screening, diagnosis, and therapeutic options, creating 

unique problems and challenges to be solved. 

1.4.1. Prostate Cancer Proteomics 

Prostate cancer research—including proteomics—is currently focused on two main 

topics: finding novel diagnostic markers to replace the PSA blood test, and prognostic 

markers that accurately predict aggressive PCa. 

Replacing, or improving the accuracy of the PSA blood test has been long on the forefront 

of PCa proteomics research, as it has low specificity towards PCa causing overdiagnosis 

and overtreatment. For this reason, there is significant effort directed towards finding 

novel biomarkers to replace the PSA blood test. Usually, blood, prostate tissue, urine, 

seminal plasma, and prostate-specific exosomes are analyzed using shotgun or targeted 

proteomics. In recent years, the focus shifted from finding a single marker to a panel for 

increased accuracy. There are several promising putative markers—including several 

different protein panels—currently under investigation [105], however, none of them 

have been implemented into clinical practice in a widespread manner yet. [106–111] 

PSA N-glycosylation-specific changes have also been extensively investigated as a 

potential PCa marker. [112,113] There are significant challenges in determining PCa 

aggressiveness: tumor heterogeneity, biopsy-sampling error, and possible variation in 

biopsy interpretation, which contribute to significant overtreatment of patients with low-

risk PCa. This makes the discovery of novel prognostic markers especially important. 

[108] The methodologies and sample types analyzed are the same as for diagnostic 

markers, and—although not as many—several protein panels are currently under different 

stages of investigation.  [105,110,111] 
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Although not as central a research field as the two mentioned above, improving 

therapeutic options for advanced PCa (the treatment of low-risk PCa is relatively well-

established) along with drug resistance and therapeutic response markers is an important 

and significant part of PCa research as well. [114,115] 

1.4.2. Lung Cancer Proteomics 

Currently, lung cancer (LC) proteomics studies are mostly focused on discovering novel 

diagnostic, prognostic, and predictive molecular markers [116,117]; and potential 

therapeutic targets [118–120] to improve upon currently available options. The analyzed 

sample types include cell lines, body fluids (blood, urine, saliva etc.,), and fresh frozen 

(FF) or formalin-fixed paraffin embedded (FFPE) tissue. [116] 

There is an abundance of cell lines established from SCLC and NSCLC cells, and they 

are widely used by the proteomics community for LC research. The main advantages of 

their use are the easy availability, unlimited sample amounts, and wide selection (more 

than for other epithelial cancers). On the other hand, there are serious disadvantages: 

genetic instability along with selective growth of subpopulations during long term 

passage, the absence of interactions with non-tumor components, and inherently the lack 

of biological replicates. [121] For these reasons the use of cell lines is usually limited to 

basic research. 

The study of biofluids in LC proteomics is focused on two clinically relevant areas: early 

cancer diagnosis; and prognostic, and predictive biomarkers. LC screening is primarily 

done by imaging techniques (chest radiography, or low-dose computed tomography), 

however, the results of these tests can be inconclusive because of the presence of 

indeterminate pulmonary nodules, where biopsy might not be an option. [116] In these 

cases, early cancer markers, such as proteins or specific proteoforms in biofluids could 

aid the diagnostic process. There is a number of early-cancer protein markers (protein 

panels) currently in the clinical validation phase. [116] After LC is confirmed, it needs to 

be classified, staged, and therapeutic decisions need to be made. Here, the main benefit 

of using biofluid markers is the option for constant monitoring, as opposed to biopsies 

they are minimally invasive, and can be more frequently taken. [122] Currently, the 

primary sample types studied are blood, sputum, bronchial lavage or aspirate samples, 

urine, and saliva. [116] 
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The proteomic analysis of tissue samples is central to understanding LC biology, as it 

enables the selective study of certain subtypes of the disease in an in vivo setting, and 

also intratumoral heterogeneity. [123] Furthermore, there are multiple tissue-based 

markers currently in clinical use, several of them proteins: immunohistochemical markers 

(e.g., thyroid transcription factor 1, napsin A, for AC; p40, and cytokeratin 5/6 for SqCC), 

genomic markers (e.g., epidermal growth factor receptor (EGFR), anaplastic lymphoma 

kinase (ALK), or Kirsten rat sarcoma viral oncogene homolog (KRAS)), and 

immunotherapy markers (e.g., cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), 

and programmed death-ligand 1 receptor (PD-1)). [124] 

1.5. Special Considerations in the Analysis of FFPE Tissue Samples 

In proteomics, there is a wide variety of sample matrices that require special treatment 

before analysis, e.g., depletion of plasma samples. For FFPE tissue samples this is no 

different. FFPE tissue samples are most frequently analyzed in the form of thin slices 

mounted to microscopy slides. There are two major aspects to consider before proteomics 

analysis. First, the removal of paraffin, and second, breaking the protein cross-links that 

are formed during formalin fixation—called antigen retrieval. [125,126] 

Deparaffinization is most frequently achieved by washing the tissue with xylene; 

however, alternative xylene-free methods have been proposed as well. [127,128] 

Antigen-retrieval (AR) is a heat-induced process, that requires submerging the slides in a 

heated buffer solution for an extended period of time, while the rehydration of the tissue 

also happens. There are several buffer solutions used, e.g., Tris-EDTA, or sodium citrate. 

[129,130] As the deparaffinization and AR is usually a mechanically intensive process, 

tissue slides are usually baked at medium-high temperatures beforehand to ensure proper 

fixation to the microscope slide. 

FFPE tissue blocks can be stored for extended periods of time; however, there has been 

concern about the effect of formalin fixation on the analysis of proteins. There have been 

several comparisons between FFPE and fresh-frozen tissue, and although there are 

differences, e.g., there are fewer lysin residues in FFPE tissue, there is mounting evidence, 

that FFPE tissue is a feasible alternative to fresh-frozen tissue in retrospective and 

prospective studies. Additionally, for the comparability of FFPE tissue specimens a 

crucial aspect to consider is that the protocol (especially the time) of formalin fixation 

needs to be standardized. [131,132]  
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2. Objectives 

In this thesis two separate research projects are summarized: the proteomic and 

N-glycoproteomic analysis of cancerous and healthy prostate tissue microarray (TMA) 

samples; and the proteomic analysis of different types of lung cancer tissue. Although 

cancer is at the center of both, their focus is very different—which is in line with current 

cancer-specific clinical demands and challenges. 

The first project—the characterization of prostate TMA samples [133]—was part of the 

“Mass spectrometry based identification of prostate cancer biomarkers from tissue 

microarrays” project funded by the National Research, Development and Innovation 

Office (OTKA PD 121187). The aim was the integration of previous research and method 

development, and its application to the analysis of prostate TMAs to identify molecular 

alterations with potential diagnostic value. The most important prerequisites were the 

successful application of on-surface tryptic digestion to prostate TMAs that contain very 

limited sample amounts (approximately 1 µg in total) in a proteomic pilot study 

comparing healthy and cancerous samples [134], and the optimization and application of 

a glycopeptide enrichment method—acetone precipitation—to similar sample 

amounts. [135] The key objectives of the project were: successful combination of on-

surface digestion and acetone precipitation to obtain proteomic and N-glycoproteomic 

information in parallel from the same TMA sample, and the investigation of different 

grades of PCa for a better understanding of disease progression. 

The second project—the proteomic analysis of lung tissue sections [136]—was part of 

the “Identification of predictive biomarkers for the prognosis of targeted biological 

therapy in lung cancer” project funded by the National Research, Development and 

Innovation Office (OTKA FK 131603). Here, the objective was to identify dysregulated 

biological processes by analyzing and comparing the four main types of LC (small cell 

lung cancer, adenocarcinoma, squamous cell carcinoma, and large cell carcinoma) with 

their adjacent normal regions and each other by proteomics using on-surface tryptic 

digestion of FFPE tissue, enabling a more precise diagnosis and classification of lung 

cancer.  
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3. Methods 

3.1. Materials 

All chemicals used were HPLC-MS grade except for acetone (HPLC grade). Acetonitrile 

(ACN), water, acetone, formic acid (FA), ammonium-bicarbonate, citric acid, trisodium 

citrate, and heptafluorobutyric acid (HFBA) were purchased from Merck. Trifluoroacetic 

acid (TFA), dithiothreitol, and iodoacetamide were obtained from Thermo Scientific. 

Methanol was purchased from VWR International, RapiGest surfactant was obtained 

from Waters, trypsin and LysC-trypsin were purchased from Promega. 

3.2. Patient and Sample Information – Prostate Tissue 

Four different TMA slides were purchased from US Biomax (Derwood, MD, USA): 

BNS19011, PR481, PR483c, PR633. All of them contained FFPE cores with a diameter 

of 1.5 mm and a thickness of 5 μm. The specification sheets are available at US Biomax’s 

website with information about each core including age, pathological Grade, Stage, and 

Gleason Score. Each TMA core contains on average approximately 1 µg protein. 

3.3. Patient and Sample Information – Lung Tissue 

Formalin-fixed paraffin embedded AC, SqCC, LCC, SCLC (n = 10, 9, 10, 9 respectively) 

and tumor-adjacent normal tissue sections (n = 8, 8, 8, 9 respectively) were analyzed. The 

work was approved by the Medical Research Council (TUKEB permit number: IV/2567-

4/2020/EKU). 

Inclusion criteria for patients were the following: fresh LC cases with resection 

specimens, while also keeping in mind that histological groups should have similar sizes 

(the aim was 10 patients in each group). FFPE tissue sections with a thickness of 10 µm 

were obtained from the departmental archive of the Department of Pathology, University 

of Pécs, Hungary. Summarized information on the samples is provided in Table 1. 
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Table 1: Summary of patient and sample information for FFPE lung tissue specimens. 

Sample characteristics 
No. of 

Patients 

No. of Tumor 

Samples 

No. of Tumor Adjacent 

Samples 

Total No. 40 38 33 

Age 66 (54–79)   

Gender    

    Male 22 21 19 

    Female 18 17 14 

Histology    

   Adenocarcinoma 10 10 8 

   Large cell carcinoma 7 (10) 7 (10) 5 (8) 

   Large cell neuroendocrine 

carcinoma 
3 3 3 

   Small cell lung carcinoma 10 9 9 

   Squamous cell carcinoma 10 9 8 

3.4. Sample Preparation 

3.4.1. On-Surface Digestion 

Tissue sections were baked at 60 °C for 2 h to prevent tissue detachment. Next, 

deparaffinization was carried out by sequentially incubating the slides in xylene for 2 × 3 

min, in ethanol for 2 × 5 min, in 90:10 v/v% ethanol:water for 3 min, in 70:30 v/v% 

ethanol:water for 3 min, in 10 mM NH4HCO3 (ABC) for 5 min, and, finally, in water for 

1 min. After dewaxing, heat-induced antigen retrieval was performed (for prostate TMAs: 

20 mM Tris–HCl, pH = 9.0 for 30 min at 90 °C; for lung tissue samples: 95 mM trisodium 

citrate + 21 mM citric acid in water, pH = 6 for 30 min at 80–85 °C). 

Following the preparation steps, digestion was carried out: for prostate TMAs the whole 

surface area, for lung tissue samples on specific tissue regions based on characterization 

by a pathologist. Each digestion step involved pipetting the reagents on the designated 

surface—for prostate TMAs 1 µL, for lung tissue 3 µL. The proteins were reduced using 

0.1% RapiGest and 5 mM dithiothreitol in 20% glycerol for 20 min at 55 °C, then 

alkylated using 10 mM iodoacetamide in 25 mM ABC buffer and 20% glycerol for 20 

min at room temperature in the dark. The digestion was performed cyclically, each one 

lasting for 40 min at 37 °C in a humidified box with 5 cycles in total. In the first two 

cycles, LysC-trypsin mixture was added in ca. 1:25 ratio in 50 mM ABC and 20% 

glycerol. Subsequently, in the last three cycles, trypsin was added in a 1:5 ratio in 50 mM 

ABC, and 20% glycerol. After digestion, the extraction of the protein digest was carried 

out by pipetting 10% acetic acid extraction solvent (1 µL for TMAs and 3 µL for lung 
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tissue) five times on the digested spots. Peptide extracts were then dried down and stored 

at −20 °C until further usage. 

3.4.2. Reversed-Phase Purification 

C18 spin columns were used for desalting and clean-up. After the column was 

conditioned, washed, and equilibrated, the sample was loaded onto the column in 0.1% 

FA for TMA samples, and 0.1% HFBA for lung tissue samples. The elution was 

performed with 30:70 v/v% water:ACN. After the elution, the samples were dried down 

and stored at −20 °C until further usage. 

3.4.3. Glycopeptide Enrichment for Prostate TMAs 

After purification samples were reconstituted in 15 µL 1% FA and 150 µL ice-cold 

acetone was added and the solution was stored at −20 °C overnight. Then the samples 

were centrifuged at 13,000 g for 10 min, then the supernatants were removed, dried down, 

and stored at −20 °C. The pellet fractions were also dried down, then resuspended in 10 

µL of injection solvent and subsequently stored in the autosampler unit until analysis. 

3.5. nanoUHPLC-MS(MS) Analysis 

Samples were analyzed using a Maxis II QTOF instrument equipped with a CaptiveSpray 

nanoBooster ion source coupled to a Dionex UltiMate 3000 RSLCnano system. Peptides 

were separated on an Acquity M-Class B H130 C18 analytical column (1.7 μm, 75 

μm × 250 mm) using gradient elution (isocratic hold at 4% for 11 min, then elevating B 

solvent content to 25% in 75 min, and to 40% in 15 min) following trapping on an 

Acclaim PepMap100 C18 (5 μm, 100 μm × 20 mm) trap column. Solvent A consisted of 

0.1% FA in water, Solvent B was 0.1% FA in ACN, sample loading buffer was 0.1% 

TFA for prostate TMA samples, and 0.1% TFA + 0.01% HFBA for lung tissue samples. 

For proteomics MS analysis, DDA measurements were performed. The cycle time was 

set at 2.5 s, with a dynamic MS/MS exclusion of the same precursor ion for 2 min, or if 

its intensity was at least 3 times larger than before. Preferred charge states were set 

between +2 and +5. MS spectra were acquired at 3 Hz in the 150–2200 m/z range, while 

MS/MS spectra were at 4 or 16 Hz, depending on the intensity of the precursor. Internal 

calibration was performed by infusing sodium formate and raw data was recalibrated 

using the Compass DataAnalysis software 4.3. For glycoproteomics MS/MS 

measurements, the experimental settings were similar, except for collision energies. 

Mixed energy spectra were collected at 100% collision energy for 80% of the cycle time 
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and 50% collision energy for 20% of the cycle time. For single-stage MS measurements, 

spectra were recorded over the mass range of 300–3000 m/z at 1 Hz. 

3.6. Software Used 

Software used for PCa proteomics and glycoproteomics: MASCOT, [137] MaxQuant 

1.6.17, [138] Perseus 1.6.5.0, [139] R 3.6.1., [140] RStudio 1.2.5001, [141] Byonic 3.8, 

GlycoPattern 4.7_b30, [142] STRING web-application. [143] 

Software used for LC proteomics: Byonic 3.8, MaxQuant 1.6.17, R 3.6.1, 

RStudio 1.2.5001, GSEA 4.2.3, [144] Cytoscape 3.9.1. [145] 

3.7. Data Analysis 

3.7.1. Prostate Cancer Proteomics and Glycoproteomics 

Protein quantitation was performed by MaxQuant on a focused Homo Sapiens database 

made by combining MASCOT search results from all MS/MS analyses. The MaxQuant 

output was then loaded into Perseus, where proteins found in less than 60% of each 

sample group were removed. Subsequently, missing values were imputed from a normal 

distribution with the default settings for the whole matrix (down shift of 1.8 and width of 

0.3). Statistical analysis was then performed, using two-sample tests (Student’s t-test), 

multiple-sample tests (ANOVA), and post-hoc tests (Tukey’s HSD). Data visualizations 

were done in RStudio using the ggplot2 library. In the glycoproteomics analysis, 

glycosites were identified from the HPLC–MS/MS analysis of pooled pellet samples 

using Byonic with a |LogProb| value of at least 2. The same HPLC–MS/MS experiments 

were used to identify the composition of various glycans at these glycosylation sites. 

GlycoPattern was then used to quantify the glycopeptides based on single-stage 

nanoUHPLC-MS corresponding to the linear combinations of the glycosites and glycans 

previously identified. The software identified the glycopeptides according to their exact 

mass, retention time, and isotope cluster distribution, then performed label-free 

quantitation. Pre-processing and statistical analysis were then carried out using R in 

RStudio. The data were first submitted to outlier filtering, where identifications with a 

retention time outside of the first quartile−1.5 IQR (inter-quartile range) to the third 

quartile+1.5 IQR range were thrown out. Then, through sequential filtering steps, any 

data points with an area under curve (AUC) less than 1000, glycopeptides identified in 

less than 5 samples, and samples with less than 10 glycopeptides identified were removed. 

Subsequently, the data were normalized using Quotient Total Area Normalization 
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followed by log transformation. The degree of fucosylation and sialylation were then 

calculated for every glycosite. Statistical analysis was carried out in Perseus similarly to 

the proteomics dataset. Functional Enrichment of proteins was performed in STRING for 

Gene Ontology (GO) Terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Pathways. The minimum required interaction score was set to the highest confidence 

(0.900). 

3.7.2. Lung Cancer Proteomics 

Protein quantitation was performed in MaxQuant on a focused Homo Sapiens database, 

made from merging Byonic search results from all MS/MS analyses. Subsequent data 

analysis steps were performed in R using RStudio. After quantitation, the data was filtered 

based on the number of missing values in each of the eight sample groups: only proteins 

found in at least 2/3 of all samples in at least one sample group were kept for further 

analysis. Missing values were then imputed in a group-wise manner according to the 

following: if the protein in question was found in less than 2/3 of all samples in the group, 

it was imputed with the sample 5-percentile, while if it was found in at least 2/3 of all 

samples in the group, it was imputed according to the kNN algorithm (VIM package, k = 

15, similarity based on Euclidean distances, default settings used). Following imputation, 

statistical analysis was carried out. For the different comparisons (multiple and two-group 

comparisons) within a group, normality and equality of variances were tested 

(Shapiro-Wilk tests and Levene tests, respectively). For multiple group comparisons 

ANOVA, Welch-ANOVA, and Kruskal-Wallis tests, for two-group comparisons, 

Student’s t-tests, Welch t-tests, and Wilcoxon rank sum tests were performed based on 

the outcome of the normality and variance equality tests. FDRs were controlled for all 

two-group and all multiple-group comparisons separately using the Benjamini-Hochberg 

method at 5%. Plots were made using the ggplot2, ggpattern, gplots, and nVennR 

packages. The principal component analysis (PCA) was performed using the prcomp 

function (using variable scaling and default settings), hierarchical clustering was 

performed using the heatmap.2 function (using Ward’s clustering method “ward.D2” 

from the hclust function). The identification of enriched gene sets was performed with 

the GS A software using the GS APreranked function based on effect sizes (Cohen’s d) 

calculated for the four types of LC separately (adjacent vs. tumorous tissue). For gene 

sets, the Hallmark, KEGG, and GO databases available in GSEA were used.  
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4. Results 

The Results section is divided into two parts based on the tissue type—and subsequently 

cancer type—studied. This explicit separation is not only necessary to prevent confusion 

of similar but unrelated results from the two separate projects, but also helps avoid their 

direct comparison, which is undesirable (see 5. Discussion for details). 

4.1. Prostate Cancer Proteomics and N-Glycosylation 

During the project aiming at the proteomic and N-glycoproteomic characterization of 

cancerous and normal prostate tissue, 95 TMA biopsy samples were analyzed. Among 

these, there were 9 Grade 1 (G1), 16 Grade 2 (G2), 24 Grade 3 (G3), and 46 normal (N). 

The sample preparation consisted of on-surface tryptic digestion followed by C18 SPE 

cleanup and acetone precipitation for glycopeptide enrichment. After precipitation, the 

glycopeptide-enriched pellet fraction and the supernatant fraction containing non-

glycosylated peptides were analyzed separately (see Methods for experimental details). 

This section is divided into three major parts: i) the molecular differences between healthy 

and cancerous prostate tissue; ii) the molecular changes with PCa grade progression, and 

differences between distinct grades and healthy tissue; iii) and the biological processes 

altered in PCa. While the first two sections are based on data from both the proteomics 

and glycoproteomics datasets, the third one is based on proteomics data only. Before 

describing the results of the three sections, a general characterization of the two datasets 

(proteomics and glycoproteomics) is provided. 

Proteins were quantified using MaxQuant, 653 proteins were quantified altogether in the 

95 supernatant samples analyzed. From these, proteins that were found in less than 60% 

of any of the sample groups were excluded. Missing values were then imputed. N-linked 

glycopeptides were quantified using the GlycoPattern software using glycan and glycosite 

libraries constructed following database searches using the Byonic software. Results were 

then filtered (see Methods for details on data analysis). Altogether 145 glycopeptides were 

quantified in 95 samples with high confidence, corresponding to 22 glycoproteins with 

29 glycosites and 53 different glycans. 

Protein glycosylation can be characterized by listing all the identified glycopeptides, but 

usually, multiple metrics are used instead. Here sialylation, fucosylation, galactosylation, 

and glycan type ratio are used. These simplify data interpretation and carry important 

biological information as well, as they are connected to various steps of N-glycan 
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biosynthesis. Sialylation and galactosylation are calculated as the proportion of glycan 

antennae containing the respective monosaccharide versus all antennae. Fucosylation is 

calculated as the ratio of fucose-containing glycans to all glycans. The glycan type ratio 

is the proportion of glycans classified as either complex, oligomannose, hybrid or 

paucimannose (uncommon, truncated glycans smaller than the core structure). 

Over 75% of the identified glycopeptides carried complex-type glycans. More than half 

of these structures were biantennary, while tri- and tetra-antennary types and unmatured 

structures were also present. The average antenna sialylation was 20.1% across all 

samples, while 28.7% of antenna containing structures held at least one sialic acid. The 

average fucosylation was 37.8% across all samples. All 29 glycosites identified carried 

several different glycans, and showed considerable diversity regarding glycan type, 

number of antennae, galactosylation, fucosylation, and sialylation. To reveal changes 

specific to the distinct glycosites, metrics were calculated for them individually as well. 

4.1.1. Differences between Normal and Cancerous Tissue 

To investigate differences between normal and cancerous tissue, t-tests were used with a 

0.05 false discovery rate. In the proteomics dataset 123 proteins were found to be 

differentially expressed, this included 72 proteins overexpressed and 51 proteins 

underexpressed in PCa. Among these, 14 showed a fold-change over 2, while 27 

displayed a fold-change under 0.5. In the glycoproteomics dataset, 7 glycopeptides were 

found with significantly different abundances between the normal and PCa groups, each 

carrying biantennary, fucosylated complex-type glycans with different levels of 

galactosylation and sialylation. In five cases, glycopeptide abundance was lower in PCa 

tissue: four glycoforms of immunoglobulin gamma-1 heavy chain (IGG1) N299, and one 

glycoform of prothrombin (THRB) N121. In the other two cases, glycopeptide abundance 

was higher in PCa: one glycoform of microfibril-associated glycoprotein 4 (MFAP4) 

N137 and one glycoform of biglycan (PGS1) N270.  Differences were also detected 

between normal and PCa tissues when comparing the levels of sialylation, fucosylation, 

and galactosylation at distinct glycosites. The differences in glycosite-specific sialylation, 

fucosylation, and galactosylation are summarized in Figure 4. 
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Figure 4: Glycosite-specific alterations in sialylation (A), fucosylation (B), and galactosylation 

(C) between healthy and PCa tissues (with standard error displayed). Figure made by the author 

with ggplot2 in R. 

All but one of the eight differentially sialylated glycosites showed decreased sialylation 

in PCa (Figure 4A). The difference was below 10% for most of these, except for periostin 

(POSTN) N599 and prostatic acid phosphatase (PPAP) N94 with a 38.6% and 15.1% 

decrease respectively, and collagen alpha-2(VI) chain (CO6A2) N785 with a 10.3% 

increase in sialylation. Although only a 4.6% difference, THRB N121 showed the greatest 

relative change with a degree of sialylation almost 3.5 times lower in PCa than in normal 

tissues. As opposed to this, all four differentially fucosylated glycosites were 

overexpressed in PCa with the biggest differences on N785 of CO6A2, POSTN N599, 

and PPAP N94 with a 27.7%, 47.6%, and 35.9% increase in fucosylation, respectively 

(Figure 4B). The differences in galactosylation levels found on five glycosites (Figure 

4C) were much smaller than changes in fucosylation or sialylation, the two major ones 
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being the increase of galactosylation at MFAP4 N137 by 10.6% and the decrease of 

galactosylation of immunoglobulin heavy constant gamma 2 (IGHG2) N176 by 8.7% in 

case of cancerous samples. Interestingly, while the directions of the changes in 

fucosylation were consistent (fucosylation increased in PCa), in the case of sialylation 

and galactosylation they were not (Figure 4A-C). 

4.1.2. Differences with Prostate Cancer Grade Progression 

To uncover molecular alterations among pathological grades and normal tissue, ANOVA 

was used with FDR controlled at 0.05. In the proteomics dataset, 75 proteins were 

identified with significant changes among the various PCa grades and normal tissue. 

Hierarchical clustering based on Spearman’s correlation revealed two distinct groups 

among these proteins: 40 proteins were mostly upregulated (Figure 5A), while 35 

downregulated (Figure 5B) with cancer progression. 

 

Figure 5: Proteins with changes among different grades of PCa and healthy tissue divided into 

two sub-groups based on hierarchical clustering: up-regulated (A) and down-regulated (B). Figure 

made by the author with ggplot2 in R. 

Afterwards, a post-hoc test was performed on the 75 ANOVA significant proteins 

(Tukey’s HSD test). This revealed that most of the proteins were differentially expressed 

between the normal and the two high-grade groups (G2 & G3), while there were only 3 

such proteins between G2 and G3, 8 proteins between G1 and G3 and 14 between normal 

and G1 groups. Furthermore, many of them (more than 85%) showed differential 

expression in not only one but multiple group comparisons. 
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In the glycoproteomics dataset, ANOVA and the following post-hoc test (Tukey’s HSD) 

revealed 4 glycopeptides with significantly different abundances among different grades 

and healthy tissue. Three of them correspond to the same glycosite N299 of IGG1 and 

carry biantennary complex-type glycans. In all three cases, the significant differences 

were between the Normal–G2 and Normal–G3 groups, and the observed trends were 

similar (average correlation coefficient of 0.98). The overall amount of IGG1 

glycopeptides did not change significantly with PCa progression. The fourth glycopeptide 

corresponds to glycosite N137 of MFAP4 and also carries a biantennary complex-type 

glycan. In this case, the significant difference is between the Normal–G1 groups. 

Furthermore, regarding glycosites, the degree of fucosylation on CO6A2 N785 was found 

to be different between the three Grade groups and Normal tissue. Interestingly, 

fucosylation shows a monotonic increase until G2 then decreases in G3 (Figure 6A). This 

tendency is very different from the changes in protein expression levels of the 3 identified 

CO6 subunits A1, A2, and A3 (Figure 6B). 

 

Figure 6: Changes in the fucosylation of CO6A2 (A) and in the protein expression of different 

CO6 subunits (B) between different Grades of PCa and healthy tissues. Figure made by the author 

with ggplot2 in R. 

4.1.3. Biological Processes Altered in Prostate Cancer 

Following the identification of proteins with statistically significant changes, functional 

enrichment analysis was performed in STRING for GO and KEGG terms, separately for 

the proteins up- and downregulated in PCa. Functional enrichment provides information 

on whether certain biological terms are overrepresented (enriched) in the list of proteins 
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provided. The most important terms from the resulting Protein–Protein Interaction (PPI) 

Networks were identified based on the Number of Genes (the number of term-associated 

genes identified), Strength (a metric that describes how large the enrichment effect is), 

and FDR values (describes the confidence in the results) and are summarized in Table 2. 

Table 2: The most important terms in the PPI Networks from the STRING analysis including 

important metrics like number of genes (proteins) involved, strength of enrichment, and FDR. 

Protein Pathways underexpressed in PCa 

Database Description 
Number 

of Genes 
Strength FDR 

KEGG Focal adhesion 12 1.39 6.62×10-12 

KEGG ECM-receptor interaction 6 1.47 2.49×10-6 

KEGG Vascular smooth muscle contraction 6 1.30 1.44×10-5 

GO BP muscle contraction 13 1.33 6.53×10-11 

GO BP actin filament-based process 14 1.05 7.47×10-9 

GO BP cell junction assembly 9 1.43 2.94×10-8 

GO BP cellular component organization 34 0.42 1.30×10-7 

GO BP actin cytoskeleton organization 12 1.06 1.30×10-7 

GO BP extracellular matrix organization 10 1.13 6.01×10-7 

GO BP cytoskeleton organization 14 0.77 7.79×10-6 

GO BP supramolecular fiber organization 9 0.97 4.79×10-5 

GO BP platelet degranulation 6 1.27 8.66×10-5 

GO BP cell adhesion 12 0.75 8.66×10-5 

GO BP regulated exocytosis 11 0.80 8.66×10-5 

  
   

Protein Pathways overexpressed in PCa 

Database Description 
Number 

of Genes 
Strength FDR 

KEGG Ribosome 8 1.22 4.25×10-6 

KEGG Spliceosome 8 1.22 4.25×10-6 

GO BP mRNA metabolic process 23 0.97 4.28×10-13 

GO BP RNA splicing, via transesterification reactions 15 1.15 2.64×10-10 

GO BP protein localization to endoplasmic reticulum 9 1.30 1.76×10-7 

GO BP metabolic process 60 0.23 1.92×10-7 

GO BP 
SRP-dependent cotranslational protein targeting 

to membrane 
8 1.37 3.02×10-7 

GO BP translational initiation 9 1.24 3.57×10-7 

GO BP protein localization 25 0.54 8.45×10-7 

GO BP negative regulation of gene expression 23 0.57 8.87×10-7 

GO BP regulation of gene expression 38 0.36 2.04×10-6 

GO BP cellular response to cytokine stimulus 17 0.69 2.08×10-6 

GO BP localization 41 0.33 2.51×10-6 

GO BP translation 11 0.92 3.63×10-6 
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Most of the underexpressed proteins were associated with cellular component 

organization (34 out of 51), while the overexpressed proteins were predominantly 

affiliated with metabolic processes (60 out of 72). 

4.2. Lung Cancer Proteomics 

To characterize the proteomic differences between the different types of lung cancer (AC, 

SqCC, LCC, SCLC), 71 samples were analyzed. These were derived from FFPE tissue 

sections taken from individuals suffering from either of the four different types of LC. 

From the tissue sections, samples were taken from both the cancerous and the cancer-

adjacent normal regions (in a few cases the latter was not available); 8–10 samples belong 

to each sample group (patient and sample information is summarized in Table 1 in 

Methods). Of the ten samples with large cell morphology, three were large cell 

neuroendocrine carcinoma (LCNEC) according to the diagnostic criteria of the latest 

WHO classification. LCNEC is part of the neuroendocrine carcinoma group (besides the 

more common small cell neuroendocrine carcinoma), but because of the small size of the 

LCNEC group, and the similarities in microscopical morphology, these three LCNECs 

were grouped with LCC samples. 

During the initial protein identification step—used for the construction of a focused 

protein database—9316 different proteins were identified altogether by Byonic software, 

on average ca. 1600 from the individual samples, as peptides from 3 µL digestion areas 

on the tissue surface were extracted and analyzed. Using the focused database, 2917 

proteins were quantified by MaxQuant using label-free quantitation, out of which 1345 

were considered for statistical analysis after initial filtering (see Methods for details on 

data analysis). Principal component analysis (PCA) showed that there are considerable 

differences between the tumorous and the tumor-adjacent regions, especially when 

considering a single LC type at a time (Figure 7). 
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Figure 7: PCA of the different samples analyzed. Triangles and circles indicate tumor and tumor-

adjacent samples, respectively. Different colors mark different LC types (red for AC, green for 

SCLC, turquoise for SqCC, and purple for LCC). Figure made by the author with ggplot2 in R. 

Following the initial assessment, the data was further investigated to identify proteins that 

are differentially expressed between i) all adjacent and all tumor tissue, ii) adjacent and 

tumor tissue in each type, and iii) the different types of tumor tissue. 

4.2.1. General Differences between Tumor and Adjacent Normal Tissue 

To identify differences between adjacent and tumor tissue (33 and 38 samples, 

respectively), two-group comparison tests were used. Based on these, 845 proteins were 

found to be differentially expressed, 356 with a fold-change (FC) of over 2, 183 under-

expressed, and 173 overexpressed in LC. For example, several components of the 

basement membrane (e.g., collagens, nidogen-1, laminin subunit 3) were downregulated 

in tumor tissue, and proteins involved in calcium-ion binding (e.g., annexin-A3, S100A4) 

showed lower expression levels in tumor tissue than in tumor-adjacent tissue. 

Additionally, many proteins related to Ribonucleoprotein biogenesis and organization 

(small- and large ribosomal subunit proteins) were overexpressed in tumor tissue. 
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4.2.2. Lung Cancer Type-Specific Differences between Tumor and Adjacent Normal 

Tissue 

Two-group comparisons were performed separately for all 4 LC types. This revealed that 

there are 78 proteins differentially expressed in all four LC types compared to adjacent 

tissue (Figure 8). The majority of alterations occurred in a group-specific manner: 61 

proteins were differentially expressed only in AC, while 201, 119, and 44 proteins only 

in SCLC, SqCC, and LCC, respectively (Figure 8). For example, proteins connected to 

the hemostasis (e.g., fibrinogens), and proteins involved in the RHO protein signal 

transduction (e.g., apolipoproteins, CO1A2) showed lower expression levels only in 

SqCC tissue compared to tumor-adjacent tissue. Furthermore, several proteins related to 

splicing (splicing factors, and heterogeneous nuclear ribonucleoproteins) were 

significantly overexpressed only in SCLC tissue, while proteins related to microtubule 

organization (e.g., tubulin beta chains like TBB4B and TBB5, microtubule associated 

proteins like MAP4 and MAP1S) were also found to be highly overexpressed only in 

SCLC tissue. 

 

Figure 8: Venn diagram displaying the proteins differentially expressed in the different LC 

types compared to adjacent tissue. Figure made by the author with nVennR in R. 

The specific groups mentioned before and highlighted in Figure 8 are particularly 

noteworthy. First, the „central” 78 proteins might be useful in detecting LC, regardless of 

type. Second, the other „LC type-specific” proteins might be used for the detection of 
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different types of LC following further validation. Six examples are presented in Figure  9 

showing examples of proteins showing distinct behavior patterns. 

 

Figure 9: Box plots of protein examples for distinct expression patterns observed. (a) Cysteine-

rich protein 2 showed under-expression in only LCC tumor tissue. (b) Tenascin-X was under-

expressed in all tumor tissue types compared to adjacent tissue. (c) Heat shock 70 kDa protein 1A 

did not show differential expression between any tissue-pairs. (d) Lamina-associated polypeptide 

2, isoform alpha was overexpressed in only SCLC tumor tissue. (e) Immunoglobulin heavy 

constant gamma 2 was overexpressed in AC tumor, while under-expressed in SCLC tumor 

compared to adjacent tissue. (f) Eukaryotic translational initiation factor 1 was overexpressed in 

AC tumor while under-expressed in all other tumor types compared to adjacent tissue. Boxes that 

represent adjacent tissue are striped, while tumor tissue are filled without pattern. Figure made by 

the author with ggplot2 in R. 

Cysteine-rich protein 2 was under-expressed in only LCC tumor compared to the tumor-

adjacent normal tissue regions and is subsequently part of the 44 proteins differentially 

expressed only in LCC tissue (Figure 8). Tenascin-X, on the other hand, was under-
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expressed in all types of LC analyzed; thus, part of the 78 proteins differentially expressed 

in all tumor types (Figure 8). Heat shock 70 kDa protein 1A did not show differential 

expression but was highly abundant in all tissue types. Lamina-associated polypeptide 2, 

isoform alpha was overexpressed only in SCLC tumor tissue and is part of 201 proteins 

differentially expressed only in SCLC (Figure 8). Finally, IGHG2 and eukaryotic 

translational initiation factors were found to be differentially expressed in more than one 

LC types, however, not in a uniform direction. 

4.2.3. Differences between the Different Types of Tumor Tissue 

Proteins differentially expressed between the cancerous tissue regions of the four types 

of LC were identified using multiple sample and two-sample comparisons (for details see 

Methods), resulting in 571 proteins with altered expression. None of the proteins showed 

altered expression in all pairwise comparisons, but 23 of them showed differences in 5 

out of 6 comparisons. There were several proteins with changes in expression in only one 

LC type, separating it from all the others (61 for AC, 99 for SCLC, 35 for SqCC, and 47 

for LCC). For example, eukaryotic translation initiation factor 1 and matrix-

metalloproteinase proteins (MMP2 and MMP19) were found to be upregulated in AC 

tissue compared to other LC types. IGHG2, and RAB10—a small GTPase related to Golgi 

vesicle transport—were significantly downregulated in SCLC tissue compared to other 

LC types. Fascin—an actin filament bundling protein—was found to be significantly 

overexpressed in SqCC tissue. 

Hierarchical clustering based on the 571 differentially expressed proteins revealed that 

the molecular profiles of the different types of LC were markedly different, and the 

clustering of samples—except for 2—was in agreement with the pathological 

classification (Figure 10). Despite the histological classification, the three LCNEC 

samples clustered closely together with the 7 LCC samples, confirming that the 

phenotype is determined by a more complex molecular profile. 
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Figure 10: Heatmap with hierarchical clustering of the 571 proteins showing differential 

expression between the tumorous regions of the 4 LC types investigated (Protein LFQ Intensity 

values are Z-scored). The histogram in the top left corner shows the correspondence between 

color hues and values. Figure made by the author with gplots in R. 

To identify the dysregulated biological processes in the tumorous regions compared to 

adjacent tissue, pre-ranked Gene Set Enrichment Analysis (GSEA) was applied. GSEA 

provides information on which biological terms are enriched based on a list of proteins 

similar to STRING (see 4.1.3. Biological Processes Altered in Prostate Cancer); 

however, here, quantitative data for all proteins is considered. This was performed 

separately for all four LC types (based on effect sizes), then the results were compared to 

reveal gene sets enriched in LC in general, and in a type-specific manner. When 

discussing and comparing GSEA results, the Normalized Enrichment Score (NES) is 

reported occasionally, which is a normalized score that represents the degree to which a 

gene set is overrepresented on the top or the bottom of the gene list. The enriched gene 

sets could be separated into several major groups of biological processes: extracellular 

matrix (ECM) organization, assembly, regulation and adhesion; signaling cascades (e.g., 
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Ca2+ dependent signaling, RHO signaling); processes involved in protein synthesis 

(transcription, translation, DNA, and RNA related processes); humoral and cell-mediated 

immune system processes; and transport processes (e.g., vesicular transport, endocytosis). 

The processes dysregulated in LC were similar in all types; however, there were several 

type-specific differences, especially between SCLC and NSCLC. This is not surprising 

based on Figure 8, which shows that SCLC has the largest number of unique dysregulated 

proteins out of all 4 types investigated. An excerpt of these pathways along with their 

NES values are summarized in Table 3. 

Table 3: Excerpt of the dysregulated biological pathways along with Normalized Enrichment 

Scores (NES). NA values stand for not applicable. 

Name AC SCLC SqCC LCC 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES −2.03 −1.98 −3.05 −1.54 

KEGG_FOCAL_ADHESION −2.51 −2.36 −2.46 −1.72 

GOCC_ACTIN_CYTOSKELETON NA −2.05 −1.44 −1.65 

GOCC_COLLAGEN_CONTAINING_EXTRACELLULAR_MATRIX −2.17 −2.5 −2.84 −1.7 

GOMF_CALCIUM_ION_BINDING NA −2.31 NA NA 

GOBP_ALTERNATIVE_MRNA_SPLICING_VIA_SPLICEOSOME NA 2.58 NA NA 

GOBP_BIOLOGICAL_ADHESION NA −2.39 −1.68 NA 

GOBP_CELLULAR_MACROMOLECULE_BIOSYNTHETIC_PROCESS 1.69 2.96 1.95 1.86 

GOBP_CYTOPLASMIC_TRANSLATION 1.73 2.4 1.87 1.91 

GOBP_ENDOCYTOSIS NA −2.39 −2.71 −1.65 

GOBP_G_PROTEIN_COUPLED_RECEPTOR_SIGNALING_PATHWAY NA −1.81 −2.22 NA 

GOBP_GENE_SILENCING_BY_RNA 1.64 2.45 1.72 1.35 

GOBP_GLYCEROLIPID_METABOLIC_PROCESS −2.15 −1.69 −1.85 NA 

GOBP_HEMOSTASIS −1.83 −1.86 −2.18 NA 

GOBP_HUMORAL_IMMUNE_RESPONSE NA −1.85 −2.44 NA 

GOBP_LYMPHOCYTE_MEDIATED_IMMUNITY NA −1.99 −2.17 NA 

GOBP_MRNA_METABOLIC_PROCESS 1.61 3.49 1.78 1.33 

GOBP_NCRNA_METABOLIC_PROCESS 1.63 2.42 1.9 2.11 

GOBP_PEPTIDE_BIOSYNTHETIC_PROCESS 1.81 2.83 1.89 1.84 

GOBP_PYRUVATE_METABOLIC_PROCESS 1.75 NA 1.55 1.43 

GOBP_REGULATION_OF_CHROMOSOME_ORGANIZATION NA 2.74 1.58 1.66 

GOBP_REGULATION_OF_VESICLE_MEDIATED_TRANSPORT NA −1.97 −2.13 NA 

GOBP_RHO_PROTEIN_SIGNAL_TRANSDUCTION NA −1.45 −2.13 NA 

GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS 1.79 2.88 2.05 1.94 
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5. Discussion 

5.1. Proteomics and N-Glycoproteomics of Different Grades of Prostate Cancer 

As the focus of this research project was on finding potential biomarkers through 

exploring alterations in the glycosylation between healthy and PCa tissues combined with 

proteomics data, only glycoproteins displaying significant changes are discussed 

individually. For these, the differences in protein expression and glycosylation are both 

reported, and they are compared to relevant previous studies on PCa or cancer in general. 

Furthermore, the most significant biological processes are also discussed. 

The PPI network analysis provides information about biological processes altered in PCa. 

The underexpressed proteins were mostly associated with cellular component 

organization (34 out of 51) and various processes connected to adhesion e.g., the KEGG 

term “Focal adhesion” and the GO term “cell adhesion”, and muscle contraction e.g., the 

K GG term “Vascular smooth muscle contraction” and the GO term “muscle 

contraction”. Focal adhesion has been confirmed to be heavily involved in cancer 

progression, [146] while smooth muscle cells have been reported to be involved in PCa 

and BPH. [147] The overexpressed proteins, on the other hand, were primarily associated 

with metabolic processes (60 out of 72) with the GO terms “localization” and “regulation 

of gene expression” involving the most proteins. While altered localization of 

macromolecules in a cell (e.g., proteins [148]) can reportedly drive tumor development 

and metastasis, aberrant gene expression is known to be the principal cause of 

cancer. [149] 

All glycoproteins with significant glycosylation changes were quantified in the 

proteomics part of the study by MaxQuant, but not all of them showed differential 

expression between normal and PCa tissues. This suggests that altered glycosylation does 

not necessarily indicate glycoprotein-wise differential expression. Furthermore, neither 

of the metrics (sialylation, fucosylation, galactosylation) used for the characterization of 

glycosylation showed significant overall changes between PCa and normal tissue. 

Regarding cellular localization, all the glycoproteins with significant glycosylation 

changes were primarily of extracellular origin, most of them were associated with the 

ECM and consequently, the tumor microenvironment (TME), which is known to heavily 

influence cancer initiation, progression, and invasion. [150] 



44 

 

There are several changes in glycosylation that are known to widely occur in cancer. 

These include increased and altered sialylation, increased glycan branching (number of 

antennae on a glycan) and altered fucosylation. [26,151] Furthermore, there have been 

many PCa glycome-specific changes reported before, [152] e.g., the expression of 

oligomannosidic glycans in the tumor region in late-stage PCa. [153] These changes, 

however, reflect only overall tendencies, they are not necessarily true for all of the 

glycosylation sites, as the results clearly demonstrate. 

In previous studies, serum sialylation has been found the be correlated with pathological 

grade and elevated sialic acid levels with PCa bone metastasis. [154] In tissues, however, 

overall sialylation levels have been reported to be constant across different grades of 

cancer. [155] The results suggest the same, the average sialylation levels were similar 

throughout the different sample groups, but there were significant individual differences 

detected on several glycosylation sites. Most of them showed a decrease in sialylation 

except for CO6A2 N785, which showed an overall increase and significant differences 

between the different pathological grade groups. Also, proteomics results revealed that 

CO6A1, CO6A2, and CO6A3 expression levels significantly changed with PCa 

progression in a similar manner. This is highlighted by the fact that CO6A1 has been 

reported to have an important role in tumor growth, and the molecular etiology of 

castration-resistant prostate cancer (CRPC). [156] 

Apart from serum, PCa cell lines have also been used before to identify diagnostic 

markers, and site-specific changes in fucosylation have been reported in PC3 and LNCap 

cell lines. [157] This aligns with the findings, as it was also found that fucosylation 

increased in PCa on multiple glycosites. Also, PPAP has been demonstrated to have a 

significant effect on PCa cell growth, [158] and it has been hypothesized to have higher 

site-specific fucosylation levels in PCa patients. [157] This is supported by the data: the 

average fucosylation level of PPAP N94 increased from 47 to 83% in PCa. 

POSTN has been reported to be upregulated in aggressive PCa, [159] but significant 

changes in glycosylation have not been reported yet. The proteomics results reaffirmed, 

that POSTN is overexpressed in PCa, and significant changes were also detected in both 

fucosylation and sialylation on POSTN N599, an increase from 24 to 72% and a decrease 

from 83 to 44% respectively, highlighting their possible importance. 
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Prostate tissue is known to be a rich reservoir of prothrombin, [160] the precursor of 

thrombin, which has been reported to promote prostate tumor growth, increase tumor cell 

seeding, and stimulate angiogenesis. [161,162] It was found that the sialylation of THRB 

N121 was downregulated significantly in PCa, moreover, with the largest relative 

difference. 

Alterations of serum IgG glycosylation has been reported in many diseases, including 

PCa, [163] and IgG1 has been suggested as a potential target for PCa treatment. [164] It 

was found that both IGG1 N299 and IGHG2 N176 show decreased overall 

galactosylation by 6.3% and 8.7% respectively. This is in line with previous studies, 

where one of the major differences reported was the decrease of terminal galactosylation 

in PCa compared to either healthy or benign prostatic disease patients. [165] The data 

also shows reduced sialylation on both IGG1 N299 and IGHG2 N176 by 2.1% 

(corresponding to a relative change of 21.3% and 26.8% respectively), which is also in 

agreement with literature as reduced sialylation has been described as a major alteration 

in PCa compared to healthy individuals. [166] 

Another glycoprotein with significant site-specific glycosylation changes was MFAP4, 

which has been reported to be involved in several cancers and may function as a tumor 

suppressor in PCa. [167] MFAP4 has been documented to have altered glycosylation in 

pancreatic adenocarcinoma, [168] however, not in PCa. The results revealed that both 

sites of MFAP4 showed modified glycosylation in PCa: decreased sialylation on N87 and 

increased expression of the glycan N4H5S1F1 on N137. The latter glycoform might be a 

useful indicator in detecting PCa at an early stage, as this increased expression was 

detected between normal and G1 samples. 

Most of the glycoproteins discussed above can be found in the Human Protein Atlas [169] 

(apart from IGG1 and IGHG2) and are categorized in the Pathology Atlas based on 

Prognostic summary and Cancer specificity. Apart from PPAP, which is a protein specific 

to PCa, all of them are unfavorable prognostic markers in certain types of cancer (in most 

cases renal cancer) which suggests that these glycoproteins are heavily involved in cancer 

progression. 

It is also important to note, that these glycoproteins have been detected in biofluids 

previously. All glycoproteins discussed above with the exception of POSTN have been 

detected in urine, [170] while POSTN has been detected in serum samples [171] of PCa 
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patients. This suggests their potential usefulness as a clinical marker. Whether the 

alterations in the glycosylation of these proteins are PCa specific or not, needs further 

investigation, especially in the context of their biomarker status. 

5.2. Proteomics of the Four Lung Cancer Types 

The four most common types of lung cancer (AC, SCLC, SqCC, and LCC) have been 

investigated through MS-based proteomic analysis of FFPE tissue sections following on-

surface digestion. Based on a thorough literature search, this was the first pilot study 

comparing these four types of LC in the same cohort. On-surface digestion has the 

advantage that small tissue areas corresponding to cancerous, and cancer adjacent regions 

can be investigated from the same FFPE material. However, there is a compromise, as 

analyzing small tissue areas results in fewer proteins identified compared to bulk tissue 

analysis. Previous experiences indicate that this approach can be successfully used for 

FFPE tissues and biopsies. [133] The results were compared to a study specifically 

focused on lung AC, and several of the 78 “central” proteins altered in all LC types were 

detected in both studies and the direction of changes were in agreement. [172] 

Furthermore, two of them (annexin A3 and tenascin-X) were previously reported with 

altered blood levels between LC patients and healthy controls. [173] 

The grouping of samples was based on histological appearance. Three LCC samples were 

LCNEC based on classification, as they expressed at least one out of several 

neuroendocrine markers. The phenotype of LCNEC cells, however, is influenced by their 

entire molecular profile, not just the expression of specific markers, therefore they were 

grouped with LCC samples. Furthermore, based on hierarchical clustering (Figure 10), 

these three LCNEC samples clustered with the LCC samples, confirming the validity of 

the grouping based on large cell morphology. 

Proteins with altered expression levels—comparing any of the types or adjacent 

samples—will be discussed in the context of the results of the gene set enrichment 

analysis which was performed to identify altered biological processes. The biological 

pathways discussed and the direction of their dysregulation are summarized in Table 3. 

Considering that the cancerous and tumor-adjacent normal regions of these tissues were 

analyzed, some proteins and biological processes which are otherwise dysregulated in 

cancerous tissue compared to healthy controls may not have been revealed. The main 

biological processes identified as disrupted—and discussed further in detail—in any of 
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the types of LC analyzed include extracellular matrix remodeling, altered adhesion, 

signaling cascades, immune response, coagulation, protein biosynthetic processes, 

metabolic processes, and vesicular transport. 

ECM remodeling processes are prevalent in cancer, creating a microenvironment that 

promotes tumorigenesis and metastasis. [174] It has been identified through GSEA 

analysis that the gene ontology cellular compartment (GOCC) gene set “Collagen 

containing ECM” was significantly and heavily suppressed in all four LC types 

investigated (with an average NES value of over 2). This—in the most part—is due to the 

altered expression of major ECM constituent protein families: collagens, laminins, 

nidogens, proteoglycans, and matrix metalloproteinases. 

Altogether 17 collagen proteins were identified. None of them showed altered expression 

between the four cancer tissue types, but most of them were downregulated in cancerous 

tissue in general, compared to adjacent tissue. Several types of collagens play a complex 

role in tumor proliferation, invasion, angiogenesis, and metastasis. [175,176] Elevated 

levels of CO1A1 have been reported to be associated with chemoresistance and poor 

progression-free survival in metastatic lung cancer. [177] Nidogen-1 (NID1) was 

downregulated in all tumor types, while NID2 was downregulated only in SCLC, 

compared to adjacent tissue. It has been previously reported that in serum samples, the 

degradation of NID1 is associated with NSCLC. It was also reported that NID1 enhances 

cell proliferation, migration, invasion, and promotes lung metastasis of breast cancer and 

melanoma. [178] 

Seven subunits of laminin have been identified. Subunit gamma-1 (LAMC1) was 

downregulated in all four cancer types, while all other subunits showed lower expression 

levels in SCLC; LAMC2, LAMA5, LAMB2 in LCC; and LAMA5, LAMB2, LAMA3 in 

AC as well. Additionally, LAMB1 was under-expressed in SCLC and LCC but 

overexpressed in SqCC, and it also showed significant differences between SqCC and all 

other tumor tissues. It has been suggested that LAMC2 promotes metastasis in AC [179], 

while another study demonstrated the significance of circulating LAMC2 as a prognostic 

marker in SCLC, especially for early-stage cancer. [180] 

Out of the nine proteoglycans identified, versican was overexpressed in AC, while 

perlecan, decorin, prolargin, and mimecan were all under-expressed in SCLC and LCC. 

Agrin and lumican were downregulated in SCLC: biglycan showed lower expression 
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levels in AC, SCLC, and SqCC. The versatility of changes in proteoglycan expression 

levels in the different types of LC is in line with previous studies, which report that their 

role in cancer is highly context dependent. [181,182] 

Five different matrix metalloproteinases (MMPs) have been identified. MMP-2 was 

upregulated in AC compared to both other cancer types and adjacent tissue, making it a 

promising target for future studies. MMP-12 was significantly overexpressed in SCLC 

and LCC, MMP-19 was overexpressed in AC but under-expressed in SCLC. Based on 

previous studies, the overexpression of MMP2 is associated with tumor differentiation, 

invasion, angiogenesis, and metastasis. [183] 

GSEA analysis revealed that many gene sets involved in adhesion and cytoskeleton 

remodeling were dysregulated. [184–186] The gene ontology biological process (GOBP) 

gene set “Regulation of cell adhesion” (and related terms such as cell-matrix, and cell-

substrate adhesion) was suppressed in SCLC and SqCC; the gene ontology molecular 

function (GOMF) gene sets “Actin binding” in SCLC, SqCC and LCC; and “Collagen, 

and Integrin binding” in AC, SCLC, and SqCC. The GOCC gene sets involved in 

cytoskeleton formation were also suppressed, e.g., “Actin cytoskeleton” in SCLC, SqCC, 

and LCC, and “Microtubule cytoskeleton” in SCLC. Finally, the KEGG gene set “Focal 

adhesion”—a well-known process involved in cancer metastasis [187]—was found to be 

heavily suppressed in all types of LC. These changes are due to the altered expression 

(mostly under-expression) of proteins involved in cytoskeleton formation and cell 

adhesion, e.g., actins, tubulins, microtubule-associated proteins, spectrins, and galectins. 

Actin, cytoplasmic 2 (ACTG) and actin, alpha cardiac muscle 1 (ACTC) were found to 

be significantly under-expressed in SCLC and LCC. Furthermore, most of the identified 

actin-related proteins, such as myosins and filamins, were heavily downregulated in 

SCLC tissue. On the other hand, fascin (FSCN1)—an actin filament bundling protein—

was significantly overexpressed in SqCC tissue compared to the other cancer types. The 

overexpression of FSCN1 in NSCLC has been previously reported to be associated with 

tumor growth, migration, invasion, and metastasis. [188,189] 

All of the five identified tubulins showed altered expression in the different types of LC 

compared to adjacent tissue. Changes in the expression of microtubule-associated 

proteins (MAPs) were also identified. Microtubule-associated protein 1B (MAP1B) was 

significantly upregulated in SCLC tissue compared to the different types of NSCLC and 
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adjacent tissue. In addition to MAP1B, other dysregulated microtubule-associated 

proteins were also found, MAP1S and MAP4. MAPs have been previously reported to be 

commonly overexpressed in cancer. [184,185] 

Spectrins were also found to be altered in LC, although there was a big difference between 

SCLC and NSCLC in this regard. All of them showed under-expression in SCLC while 

only 1 in each of the other NSCLC types. Furthermore, spectrin beta chain (SPTB) also 

showed differential expression between SCLC and all other cancer tissue. Ankyrin-1 

(ANK1)—a protein that regulates cell shape and membrane integrity together with 

spectrins—was also found to be downregulated in all LC types. It has been previously 

reported that ANK1 and spectrins—such as SPTB and SPTA1—were under-expressed in 

AC compared to paired non-malignant tissue. [190] 

Two galectins (LEGs) were identified, and it has been found that LEG1 was significantly 

under-expressed in SCLC compared to SCLC adjacent tissue. Expression levels of LEG3 

in SCLC and LCC tumor were significantly lower than in AC, SqCC, and adjacent tissue. 

LEG1 promotes tumor cells invasion and migration; it is also a potential prognostic 

marker in early-stage NSCLC [191] and is feasible for the promotion of chemoresistance 

in AC. [192] Furthermore, LEG1 and LEG3 are associated with LC and correlated with 

tumor invasion, migration, metastasis, and progression. [192] 

Many signaling pathways have been identified as dysregulated in LC tissue. The 

“Mammalian target of Rapamycin 1 (MTORC1) signaling pathway”—represented by the 

hallmark gene set—was found to be elevated in all four types of LC. The MTORC1 

pathway plays an important role in regulating fatty acid (FA) metabolism, and, 

subsequently, the production of ATP. Furthermore, it was found that ATP-citrate synthase 

(ACLY)—a key enzyme involved in acetyl-CoA synthesis regulated by MTORC1—is 

significantly overexpressed in AC. The overexpression of ACLY has been observed in 

multiple tumor types before. [193] It has also been shown that targeting ACLY 

significantly reduces the growth of lung and prostate tumor xenografts. [194] 

The GOBP gene set “RHO protein signal transduction” was found to be significantly 

suppressed in SqCC. From the gene set, three corresponding proteins were found to be 

highly under-expressed in SqCC compared to adjacent tissue: apolipoprotein A-I 

(APOA1), apolipoprotein E (APOE), and collagen alpha-2(I) chain (CO1A2). APOA1 

has been previously reported to be under-expressed in NSCLC serum and associated with 
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metastasis and poor prognosis. [195] APOE is an important marker of cancer, its 

overexpression in NSCLC has been reported before. Downregulation of CO1A2 has also 

been reported previously in NSCLC. [196] 

The GOMF gene set “Calcium ion binding” was found to be significantly and highly 

suppressed in SCLC. This is, in a large part, due to the changes detected in the expression 

levels of annexins—a large family of Ca2+-binding proteins involved in signaling 

processes. Seven different Annexins were identified with highly diverse expression 

profiles between the different types of LC. Annexin A3 (ANXA3) was found to be under-

expressed compared to adjacent tissue in all types of LC. Aberrant expression of ANXA3 

has been previously reported to promote tumor cell proliferation, invasion, metastasis, 

angiogenesis, and therapy resistance. [197] ANXA4 was under-expressed in all types 

except for AC. Previous studies suggest that ANXA4 enhances tumor invasion and 

promotes anti-tumor drug resistance. [198] The data also shows that ANXA2 was under-

expressed in SCLC and LCC. Out of the seven annexins quantified, five showed 

differential expression in SCC, three in LCC, two in SqCC, and only one in AC. Protein 

S100-A4—another Ca2+-binding protein—was found to be under-expressed in all types 

of tumor tissue. It was previously reported to be downregulated in tumor cells compared 

to stromal non-tumor cells, confirming the results. [199] 

Immune system processes are often deregulated in cancer. It has also been demonstrated 

that inflammatory immune cells are essential players in cancer-related 

inflammation. [200] Multiple processes involved in both humoral and cell-mediated 

immune responses were identified as altered in the different LC types analyzed. The 

KEGG gene set “Complement and coagulation cascade” was found to be suppressed in 

all four types of LC tumor tissue. On the other hand, humoral immune response and 

biological processes under cell-mediated immune response—"Leukocyte mediated 

immunity”, “Lymphocyte mediated immunity”, “B cell mediated immunity”, and 

“Phagocytosis”—were suppressed only in SCLC and SqCC. These LC type-specific 

differences were highlighted by the differences in the expression of the 12 lgG proteins 

identified. Nine of them were differentially expressed in SCLC, while only three in AC, 

four in SqCC, and two in LCC. Furthermore, there were substantial differences in the 

direction of these changes. Previous studies have also reported differences in IgG 

expression and subclass distribution in LC patients. [201,202] 
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Pathophysiological changes in the body can affect the hemostatic system. Specifically, 

LC has been reported as one of the cancers with the most risk of developing venous 

thromboembolism. [203] The GOBP gene sets, “Hemostasis” and “Regulation of 

coagulation” were suppressed in AC, SCLC, and SqCC, however, in SqCC, with an 

especially high NES (2.2 and 2.8, respectively). This is primarily due to the differences 

in fibrinogen expression levels. Three fibrinogens were identified: fibrinogen alpha chain 

(FIBA), fibrinogen beta chain (FIBB), and fibrinogen gamma chain (FIBG). In SqCC, all 

of them were under-expressed, while none of them in the other types of LC. The 

importance of fibrinogens in cancer is highlighted by the fact that plasma fibrinogen 

levels have been previously suggested as prognostic markers in NSCLC, combined with 

the neutrophil-to-lymphocyte ratio. [204,205] 

Increased protein synthesis and subsequent rapid cell growth is one of the hallmarks of 

cancer, which can be activated through the dysregulation of various biological 

processes. [206] Several of these were identified connected to four major umbrella terms: 

translation, mRNA, ribonucleoprotein, and chromosome-related processes. 

The GOBP gene set “Cytoplasmic translation” was found to be activated in all four types; 

on the other hand, “Translational initiation” was elevated only in AC, SCLC, and SqCC. 

This is explained by the differences in the expression levels of the 16 initiation factors 

(IFs) identified. The number of IFs differentially expressed was the lowest in LCC 

compared to other types of LC, with significantly lower effect sizes. Three initiation 

factors showed differential expression in all four types: eukaryotic initiation factor 4A-I 

(IF4A1) and eukaryotic translation initiation factor 6 (IF6) showed overexpression in all 

four; however, eukaryotic translation initiation factor 1 (EIF1) was under-expressed in 

SCC, SqCC and LCC, but overexpressed in AC. EIF1 also showed a difference in 

expression between AC and all other types of LC. Dysregulation, specifically the 

overexpression of the initiation factors has been reported previously to occur frequently 

in cancer. [207] 

Multiple GOBP gene sets involved in mRNA processing have been identified—elevated 

in all four types: “mRNA and ncRNA processes”, “mRNA and ncRNA metabolic 

processes”, and “Gene silencing by RNA”. However, gene sets related to splicing: 

“Alternative mRNA splicing”, and “Regulation of mRNA splicing via spliceosome”, were 

elevated only in SCLC. This can be explained by looking at the expression levels of 
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splicing factors (SFs), and heterogeneous nuclear ribonucleoproteins (hnRNPs). Out of 

the 16 SFs identified overexpression was detected in 13 in SCLC, while for NSCLC 

subtypes, this number was much lower. Regarding the 15 hnRNPs, 13 showed significant 

overexpression in SCLC, while—similarly to SFs—this number was much lower in the 

NSCLC subtypes. mRNA-related processes are potential therapeutic targets for cancer, 

as it has been reported that alterations in mRNA can contribute to the initiation and 

progression of cancer. [208] The activation of GOBP gene sets “Ribonucleoprotein 

biogenesis” and “Ribonucleoprotein subunit organization” was detected in all four types 

of LC. 18 small ribosomal subunits (40S) and 27 large ribosomal subunits (60S) were 

identified, with many of them overexpressed in all four types of LC. The altered 

expression of Ribosomal proteins has been linked to multiple LC-related processes, e.g., 

the downregulation of 60S ribosomal protein L3 (uL3) to drug resistance in LC cells, and 

40S ribosomal protein S6 (eS6) was found to be overexpressed in NSCLC. [209,210] 

Other important processes connected to protein biosynthesis found was the activation of 

“Regulation of chromosome organization” (in SCLC, SqCC, and LCC), “Chromatin 

organization” (in SCLC), “Positive regulation of DNA metabolic process”, and 

“Positive regulation of DNA repair” (in SCLC, SqCC, and LCC). It has been previously 

reported that chromosome loop structures can be altered in cancer and contribute to 

oncogene dysregulation. [211] Furthermore, it has been suggested that DNA repair 

pathways could be used as therapeutic targets in both SCLC and NSCLC. [212] 

Metabolic remodeling is necessary for all stages of tumor development. [206] Several 

dysregulated GOBP gene sets involved in metabolic processes have been identified by 

GSEA. “Glycerolipid metabolic process” was elevated in AC, SCLC, and SqCC; 

“Pyruvate metabolic process” in AC, SqCC, and LCC; and “Cellular carbohydrate 

metabolic process” in AC and SqCC. This suggests that further investigation of the 

differences in metabolism between the different types of LC is reasonable, which is 

further highlighted by previous studies reporting that abnormal glycolysis and lipid 

metabolism have a significant role in the development of LC. [213] 

Vesicle related GOCC and GOBP gene sets (e.g., “Endocytic vesicle”, “Regulation of 

vesicle mediated transport”, “Endocytosis”) were suppressed in SCLC and SqCC. It has 

been previously reported that LC-derived extracellular vesicles mediate epithelial-

mesenchymal transition by the transfer of vimentin—which was also found to be 
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differentially expressed in SCLC and SqCC—and regulate angiogenesis, activate cancer-

associated fibroblasts, and mediate metastasis. [214,215] “Golgi vesicle transport” was 

also elevated in SqCC tissue but suppressed in SCLC. RAB10—a small GTPase of the 

Ras superfamily—is a key component of this process, which was found to be upregulated 

in SqCC and downregulated in SCLC. Rab GTPase proteins have been previously 

reported to have diverse roles in cancer progression as both oncoproteins and tumor 

suppressors. [216] 
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6. Conclusions 

6.1. Proteomics and N-Glycoproteomics of Different Grades of Prostate Cancer 

In conclusion, the results of the proteomic and N-glycoproteomic analysis of prostate 

TMAs indicate that alterations between PCa and Normal tissue glycosylation occur 

primarily at the glycosite level, while overall glycosylation may remain unaffected. 

Furthermore, altered glycosylation does not necessarily indicate a change in protein 

expression. The glycoproteins with altered N-glycosylation were all secreted either into 

the bloodstream or the ECM, and most of them are characterized as an unfavorable 

prognostic cancer marker by the Pathology Atlas. As altered protein glycosylation in 

cancer has been proven to be nonrandom, this suggests that further investigation—

especially regarding cancer specificity—of these potential prognostic markers and 

identification of their exact roles is reasonable and could lead to further advancement in 

understanding the function of N-glycosylation in cancer development, and PCa prognosis. 

6.2. Proteomics of the Four Lung Cancer Types 

In conclusion, the proteomic analysis of FFPE tissue from four different types of lung 

cancer resulted in the identification of several disrupted biological processes in all 

investigated cancer types, such as the degradation of the basement membrane and 

suppression of the complement and coagulation cascade, as well as the activation of the 

MTORC1 signaling pathway. Furthermore, the differences between SCLC and NSCLC 

samples were larger than between the three distinct NSCLC subtypes. Dysregulated 

pathways differentiating SCLC from NSCLCs include suppressed regulation of cell 

adhesion, actin filament-based processes, and calcium ion binding. Overexpression of 

splicing factors and heterogeneous nuclear ribonucleoproteins suggest that biological 

processes related to splicing are more affected in SCLC. Additionally, the expression of 

several proteins showed changes only in one LC type, such as the overexpression of 

FSCN1 in SqCC or the downregulation of NID2 in SCLC. These results correlated well 

with previous studies analyzing individual NSCLC types and tumor adjacent tissue, even 

though the tissue areas available were smaller. The specific molecular signatures 

connected to LC in general and to specific LC types described in detail might be attractive 

targets for further in-depth investigations may have potential diagnostic and prognostic 

value.  
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7. Summary 

Two projects are summarized in this thesis: the proteomic and N-glycoproteomic analysis 

of cancerous and healthy prostate tissue microarray samples; and the proteomic analysis 

of different types of lung cancer tissue. Although in several ways similar, their focus was 

different—in line with current cancer-specific clinical demands and challenges. 

The primary aim of the proteomic and N-glycoproteomic analysis of prostate TMAs was 

the integration and application of previous research for the identification of molecular 

alterations between PCa and Normal tissue with potential diagnostic value. The 

combination of results from proteomics and N-glycoproteomics indicate that alterations 

in glycosylation occur primarily at the glycosite level—while overall glycosylation may 

remain unaffected—often without a change in protein expression. Several glycoproteins 

were identified with altered glycosylation; the changes in fucosylation on CO6A2 N785 

were especially noteworthy with regards to potential early cancer detection. This suggests 

that the investigation of these potential prognostic markers, and the identification of their 

exact roles is reasonable and could lead to further advancement in understanding the 

function of N-glycosylation in cancer development and PCa diagnosis. 

The main objective of the proteomic analysis of different types of lung cancer tissue was 

to identify dysregulated biological processes by analyzing and comparing the protein 

expression of the four main types of LC (small cell lung cancer, adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma) with their adjacent normal regions 

and each other. Several such processes were identified, the majority of them dysregulated 

in all four LC types. There were, however, LC type-specific differences as well; 

differences were larger between SCLC and NSCLC than between the three distinct 

NSCLC subtypes. Dysregulated pathways differentiating SCLC from NSCLCs include 

the suppressed regulation of cell adhesion, actin filament-based processes, and calcium 

ion binding. Additionally, the expression of several proteins showed changes in only one 

LC type, such as the overexpression of FSCN1 in SqCC, or the downregulation of NID2 

in SCLC. These results correlated well with previous studies analyzing individual 

NSCLC types and tumor adjacent tissue. The specific molecular signatures connected to 

LC in general and to specific LC types described in detail might be attractive targets for 

further in-depth investigations and may have potential diagnostic and prognostic value. 
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