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1. INTRODUCTION 

1.1. The stages of non-alcoholic fatty liver disease 

Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver 

disease worldwide (1), causing significant healthcare and socio-economic burden (2, 3). 

NAFLD is characterized by a spectrum of stages: steatosis, non-alcoholic steatohepatitis 

(NASH), cirrhosis, that eventually may progress into hepatocellular carcinoma (HCC). 

1.1.1. Steatosis 

NAFLD usually develops with a background of metabolic dysregulation such as obesity, 

type 2 diabetes, dyslipidemia, hypertension and metabolic syndrome (4), thus NAFLD is 

often referred to as hepatic manifestation of metabolic syndrome. However, certain other 

causes may also lead to steatosis such as medications (amiodarone, glucocorticoids, 

estrogens, tamoxifen, rifampicin, antiretroviral drugs), chronic alcohol consumption, 

toxin exposure (e.g. ochratoxin A), or viral infections (e.g. hepatitis viruses, human 

immunodeficiency virus). In the past two-decades the global welfare substantially 

increased, leading to unhealthy lifestyle changes (western diet, sedentary lifestyle). 

Epidemiological studies show that the prevalence of NAFLD is increased in parallel with 

the prevalence of obesity (5). Steatosis is a reflection of misbalance of hepatic energy 

metabolism. Excess energy, in form of fats and carbohydrates, is delivered to the liver, 

while hepatocytes are unable to oxidize and/or export it, leading to storage of the excess 

energy as fats. Overconsumption of processed food and soft drinks, often called western 

diet, with high-level of carbohydrates, fats, while low intake of dietary choline promotes 

NAFLD (6-9). Sugars, cholesterol and other lipids promote lipid accumulation in 

hepatocytes (for further detail see reviews [(9, 10)], while choline is essential in very-

low-density lipoprotein (VLDL) export and mitochondrial β-oxidation. Steatosis is 

further aggravated by insulin resistance. Insulin resistance in skeletal muscles and white 

adipose tissue funnels glucose and fatty acids (FAs) into the liver, respectively (11, 12). 

Meanwhile, hepatic insulin resistance impairs glycogenesis and induces de novo 

lipogenesis (Figure 1) (13, 14). Triglycerides are not considered directly toxic; however, 

indirectly they may induce endoplasmic reticulum stress (15) and their products of 

metabolism (e.g. ceramides) may interfere with insulin signaling and induce cell injury 

(16), thus promoting a vicious cycle. 
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Hepatosteatosis is reversible. If the unhealthy lifestyle is ceased, then steatosis may 

reverse over time. Otherwise, if the unhealthy lifestyle is maintained for a prolonged time, 

then it is estimated that over 25% of patients with NAFLD may progress into the second 

stage, called non-alcoholic steatohepatitis (NASH) (5, 17). 

Figure 1 – Contributing factors of hepatic lipid accumulation – steatosis. 

Unhealthy food and soft drink consumption increases the intake of carbohydrates in form of 

glucose, fructose and sucrose, and increases the intake of fats. Decades of noxious lifestyle may 

lead to the development of metabolic syndrome: dyslipidemia, insulin resistance, obesity. 

Muscular insulin resistance will prevent the uptake of glucose in to myocytes and glycogenesis 

will be greatly hindered. Hepatic insulin resistance and increase fructose consumption may 

promote de novo lipogenesis. Acetate derived from fructose metabolism will provide ample 

substrate for cholesterol and fatty acid synthesis. Consumption of food with insufficient choline 

may hinder the molecular processes needed for VLDL secretion and mitochondrial β-oxidation. 

Increased fat consumption and white adipose tissue (WAT) insulin resistance may funnel the liver 

with lipid excess. All these mechanisms promote the development of hepatosteatosis. (Summary 

figure has been made in accordance to references cited in the main text.) 
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1.1.2. Non-alcoholic steatohepatitis 

It is widely accepted that NAFLD is a progressive disease, where the liver pathology 

progresses consecutively through different stages. According to the classical two-hit 

theory of NAFLD (18), steatosis is considered to be the first hit. However, as previously 

stated, NAFLD patients are often affected by co-morbidities such as type 2 diabetes, 

hypertension, dyslipidemia, obesity or the constellation of these diseases, called 

metabolic syndrome. All of these pathologies and the advanced age of patients contribute 

to significant systemic inflammation. Concomitant presence of systemic inflammation 

may further burden the steatotic liver (for example by contributing to hepatic insulin 

resistance). Thus in this scenario steatosis and systemic inflammation afflict liver damage 

at the same time, formulating the “multiple-hit” theory (19). However, some studies even 

suggest that inflammation may precede steatosis and is the main driver of progression to 

NASH (20, 21). However, it is generally accepted that hepatic inflammation occurs after 

cellular damage due to steatosis. Disease progression and/or development is not fully 

understood, and these aspects further proves the complexity of NAFLD. Whatever the 

case might be, inflammation is a major factor for both NAFLD and NASH. 

During NASH a myriad of events occur. First, we are going to detail the intrahepatic 

factors: 

1.1.2.1. Intrahepatic factors of NASH 

1.1.2.1.1. Hepatocytes 

Damaged fat-laden hepatocytes may undergo apoptosis, necrosis and/or pyroptosis (22) 

releasing damage-associated molecular patterns (DAMPs). Additionally, liver cells 

release hepatokines (e.g. fetuin A, FGF-21, selenoprotein P, angiopoietin like 4) and 

extracellular vesicles (EVs). All these secreted molecules, apoptotic bodies and cellular 

debris act on several types of cells (e.g. macrophages, monocytes, neutrophils, dendritic 

cells, hepatic stellate cells) through pattern-recognition receptors (PRRs) and cytokine 

receptors and promote steatosis (23, 24), insulin resistance (25), cell death (26), 

inflammation and fibrosis (Figure 2). 
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1.1.2.1.2. Macrophages 

One of the most relevant cells in response to hepatocellular damage are resident 

macrophages, aka. Kupffer cells. The aforementioned factors polarize Kupffer cells into 

M1 phenotype and activate them to release reactive oxygen species (ROS), pro-

inflammatory cytokines (e.g. IL-1β, IL-6, IL-18, TNFα, etc.) and chemokines (e.g. CCL2, 

CCL5, CXCL10 etc.). Macrophage polarization changes over time, thus after a certain 

period (or maybe depending on whether the insult is still present or not) macrophages 

tend to polarize into the M2 phenotype (27). M2 macrophages secrete anti-inflammatory 

cytokines (e.g. IL-10) and they are even able to induce apoptosis in pro-inflammatory M1 

macrophages (28), thus they may introduce a balance to the inflammatory processes or 

even suppress it. However, M2 macrophages also secrete pro-fibrotic cytokines such as 

TGF-β and by doing so, they might participate in tissue repair and remodeling resulting 

“wound healing”. However, M2 macrophages increases the risk of overt fibrosis and 

deterioration of NASH (29). Kupffer cells recruit monocytes, neutrophils further 

aggravating the tissue damage and inflammation (Figure 2). For more detail see ref (30).  

1.1.2.1.3. Monocytes 

Infiltration of monocyte to the liver is mostly regulated by the CCR2-CCL2 axis (31). 

CCL2 is secreted by a wide variety of cells (e.g. resident macrophages, hepatocytes, 

endothelial cells, etc.), while CCR2 is highly expressed on circulating monocytes. 

Recruited monocytes differentiate into distinctive macrophage subpopulation with pro-

inflammatory, pro-fibrotic and pro-angiogenetic attributes (32).  

1.1.2.1.4. Neutrophils 

Hepatic neutrophils infiltration occurs in the early phases of NASH, where they contribute 

with several mechanisms to NASH pathophysiology: promotion of inflammation by 

secreting pro-inflammatory cytokines, ROS, myeloperoxidase (MPO) and neutrophil 

extracellular traps (NETs,) promotion of fibrogenesis by stimulating hepatic stellate cells 

(HSC) to differentiate, to proliferate and to release proteases. Initially, it was presumed 

that neutrophils contribute to anti-inflammatory processes simply by undergoing 

apoptosis. However, similarly to macrophages, neutrophils also have a distinctive “pro-
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resolution” subpopulation that inhibit the production of inflammatory molecules and/or 

enzymatically degrade them (33) or deliver EVs laden with anti-inflammatory miR-223 

to hepatocytes (34) and/or macrophages (35) (Figure 2). For more detail see review (36). 

1.1.2.1.5. Hepatic stellate cells (HSCs) 

Quiescent HSCs are stimulated by both DAMPs, pathogen-associated molecular patterns 

(PAMPs) (see later) and pro-inflammatory cytokines. HSCs are capable to phagocytize 

hepatocytes and leukocytes (37). Both molecular triggers and phagocytic activities results 

in differentiation of HSCs into myofibroblasts and, subsequently, to produce collagen, to 

rearrange the extracellular matrix by secreting matrix metalloproteinases (MMPs) and 

tissue inhibitors of metalloproteinases (TIMPs), to secrete pro-inflammatory and pro-

fibrotic cytokines (38). Loss of hepatocytes also trigger the release of growth factors such 

as CTGF, PDGF and TGF-β, thus inducing myofibroblast proliferation, further sustaining 

pro-fibrotic events (Figure 2). For further detail see review (39). 

1.1.2.2. Extrahepatic factors of NASH (inflamm-aging, adipose tissue dysfunction, 

loss of intestinal barrier) 

As for extrahepatic factors, systemic inflammation and insulin resistance were already 

mentioned above. In addition, inflamm-aging, a systemic, chronic, low-grade 

inflammation associated with advanced age, is linked to multiple organ malfunction, 

including the liver’s (40-43). 

Adipose tissue dysfunction characterized by infiltrating macrophages, where they initiate 

phagocytosis (forming crown-like structures) and release of cytokines and chemokines, 

further contributing to chronic systemic inflammation and insulin resistance (44). 

Additionally, adipocytes secrete a wide variety of adipokines (e.g. adiponectin, leptin, IL-

6, TNF) that promote NASH.  

Loss of intestinal permeability might contribute to leaking gut microbiota-derived 

products into the portal system showering the liver with PAMPs facilitating hepatic and 

systemic inflammation (45).  
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Figure 2 – Cellular contributors of NASH progression. 

Prolonged accumulation of lipids in hepatocytes will ultimately cause cellular damage. Stressed 

and/or damaged hepatocytes will release hepatokines and EVs, while dying cells will bud off 

apoptotic bodies and DAMPs, thus resulting the activation of macrophages, monocytes, 

neutrophils and hepatic stellate cells. Activated Kupffer cells will proceed to engulf cells that go 

through apoptosis and simultaneously start releasing pro-inflammatory -, pro-fibrotic cytokines 

and various growth factors. HSCs will initiate differentiation to myofibroblasts that will, 

subsequently, rearrange the extracellular matrix (ECM). Infiltrating monocytes and neutrophils 

will further contribute to inflammation, fibrosis and oxidative stress. (Summary figure has been 

made in accordance to references cited in the main text.)  
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1.1.3. Advanced fibrosis and cirrhosis  

Fibrosis is the end-stage of chronic liver diseases (Figure 3). The cellular and molecular 

microenvironment of NASH (e.g. sustained loss of hepatocytes, release of pro-

inflammatory and pro-fibrotic cytokines, polarization of hepatic epithelial and immune 

cells to a pro-inflammatory and pro-fibrotic phenotype) is profoundly characterized with 

initiation of fibrosis and its maintenance, out of which chronic activation of HSCs is the 

main driver of liver fibrosis (46, 47). Fibrogenesis is characterized by accumulation of 

fibrotic proteins within the space of Disse, resulting loss of capillarization and microvilli 

of hepatocytes. Battle between ECM deposition and degradation determines whether scar 

formation or scar healing would unfold. During NASH, HSCs differentiate into 

myofibroblasts, which continuously release components of ECM and, in parallel, regulate 

the ratio of released MMPs and TIMPs. MMPs degrade the proteins of ECM, while 

TIMPs inhibit MMPs. During transition from NASH to advanced fibrosis and/or 

cirrhosis, the ratio of MMPs/TIMPs is low, resulting accumulation of fibrotic proteins, 

thus the liver eventually loses its architecture and function (48). It is estimated that 40% 

of patients with NASH progress 1 fibrosis stage per decade (5). Fibrosis is the most 

relevant predictive factor for long-term outcomes of NASH, including hepatocellular 

carcinoma (49).  

1.1.4. Hepatocellular carcinoma 

Live cancer is the fifth most common cancer and is the second leading cause of cancer-

related death (50). An American population-based study concluded that NAFLD or 

NASH has become the most important risk factor for HCC, 59% of HCC patients has 

NASH as the primary etiologic factor for HCC development (51). While a study from 

Northern England revealed that NAFLD is the main cause of 35% of HCC cases (52). 

The number of patients with NASH-associated HCC increases with 2.6% every year (53).  

The mechanism of NASH-to-HCC transition is not fully understood. Several coinciding 

events may contribute to the development of HCC with a steatohepatitic background. 

These events can be classified as: 

• metabolic: altered metabolic program (54), accumulation of oncometabolites 

(e.g. fumarate, succinate, 2-hydroxyglutarate, lactate, polyamines) (55) 
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• intracellular: DNA damage (56) and the subsequent response to it (57), 

dysregulation of autophagy (58), ER stress (59) 

• immunologic: hepatic infiltration of immunosuppressive and/or cytotoxic 

leukocytes, upregulation of anti-inflammatory immune checkpoints and 

cytokines (60)  

• other: compensatory hepatocellular proliferation (22), ROS derived from 

metabolic and immunologic events (61, 62). 

For more comprehensive review see ref (63). 

Figure 3 – Stages of non-alcoholic fatty liver disease. 

NAFLD is a progressive disease, starting with benign and reversible steatosis. If this state is not 

alleviated within a reasonably time period, then hepatocyte may succumb due to the prolonged 

stress, thus progressing to steatohepatitis. This stage is also considered reversible, but hepatic 

inflammatory and fibrotic events manifests itself. The continuous loss of hepatic architecture will 

lead to advanced fibrosis and cirrhosis. At this stage, the damage is beyond resolution and the risk 

of hepatocellular carcinoma or end-stage liver failure is substantially increased. (The figure has 

been made in accordance to references cited in the main text.) 
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1.2. Sex and age-dependent differences in NASH 

Modern healthcare community’s interest grew in personalized therapeutics over the past 

decade (64, 65). The goal of precision medicine is to improve diagnostics, prevention, 

treatment and cure by using genetic, molecular and environmental measurements to 

account for every possible contributing factor. As such, biological sex and advanced age 

are important factors (66, 67). Several diseases show sex-dependent differences, and 

NAFLD is no exception. Epidemiologic studies reported that the prevalence of NAFLD 

is higher in males (68-70). Although premenopausal women have lower incidence of 

NAFLD than age-matched men, this disparity is lost following menopause (71). 

1.2.1. Sex differences of NASH 

1.2.1.1. Sex differences in NASH-related co-morbidities 

Lonardo A. et Trande P. reported for the first time that glycaemia and central fat 

distribution predicts fatty liver in women, thus suggesting, for the first time, that co-

morbidities of NASH may impact differently both sexes (72).  

Postmenopausal women and men have higher risk to develop metabolic syndrome 

(Figure 4), than premenopausal women (73). Similarly, premature ovarian insufficiency 

increases the risk for both metabolic syndrome and insulin resistance (74).  

Regarding hypertension, it was shown that higher proportion of men have hypertension 

(75); however, estradiol is necessary to maintain basal renin level (76). The depressor 

effect of AT2R in females is lost with age (77), but it may be restored with hormone 

replacement therapy (78).  

Although obesity is more prevalent in women (79), premenstrual women are relatively 

protected from the potential cardiometabolic consequences, meanwhile men are not 

(Figure 4). In the 2010s, it was suggested that one possible reason for this disparity is 

that estrogens modulate the expression cortisol activating enzymes in the liver and in 

adipose tissue resulting hypercortisolism, which may contribute to NAFLD development 

in males, but not in females (80-82). 

Fat distribution also differs between sexes. Men tend to accumulate fat in the visceral 

adipose tissue (VAT) causing an “apple shape” form of obesity (Figure 4), which is 

associated with higher level of postprandial insulin and lipid levels. Meanwhile women 
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predominantly have more subcutaneous adipose tissue (SAT) and it is distributed mostly 

into the gluteal-femoral region resulting in a “pear shape” form of obesity, which is 

considered to have lower risk for metabolic diseases (83, 84). Additionally, SAT and 

VAT differ in their rate of lipolysis. VAT has a higher rate of lipolysis releasing free FA 

into the portal system and has a more pro-inflammatory profile, consequently it burdens 

the liver more (85). Estradiol itself further contributes to alleviate the burden of the liver 

by decreasing the rate of lipolysis and by improving insulin sensitivity in adipose tissue 

(86, 87). 

Oophorectomy in young women due to ovarian cancer is associated with the development 

of type 2 diabetes and hypercholesterolemia and greatly increases the risk of NAFLD 

(88).  

1.2.1.2. Sex differences in hepatic inflammation and fibrosis 

Postmenopausal women and men possess higher risk for advanced fibrosis and NASH 

(89, 90), in women it is independent of metabolic risk factors (91). Additionally, 

premature menopause and long-standing estrogen deficiency increases the risk for 

NAFLD and severe liver fibrosis (92-94).  

As detailed above, lack of estradiol in women has deleterious consequences on liver 

health, but these effects are mitigated and/or reversed by hormone replacement therapy 

(HRT) (95). However, reproductive young women and consumers of oral contraceptives 

are not completely free of NAFLD development and, indeed, they dispose more severe 

hepatocellular injury and lobular inflammation than postmenopausal women or men (96) 

(Figure 4). Several immune cells are known to express sex hormone receptors, 

consequently sex hormones influence immune functions as well (97). It was suggested 

that not estrogens, but rather progesterone is responsible for the aforementioned pro-

inflammatory effects (96). 

1.2.1.3. Sex differences in lipid metabolism 

Dietary choline is necessary for VLDL release (as it is the precursor of 

phosphatidylcholine, a component of VLDL) and mitochondrial β-oxidation (8). Choline 

deficiency hinders these processes resulting hepatic steatosis. Young women require less 

dietary choline (98), but after menopause, the decline of estrogen levels entails a 
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decreased supply of endogenous choline prompting increased dietary choline demand. 

Accordingly, men and postmenopausal woman are more susceptible to develop NAFLD 

due to choline deficiency than premenopausal woman (99). 

Regarding lipid homeostasis, women have lower VLDL and LDL plasma concentration, 

due to lower hepatic FA influx (see above) and increased muscular clearance (100). 

Intramuscular buildup of lipids, nevertheless, is not associated with muscle insulin 

resistance in woman, but it is in men (101). Woman have triglyceride-richer VLDLs 

(102), while men produce apoB-richer VLDL particles (103). For more details, see 

reviews (102, 104). 

PCSK9 is an important regulator of serum level of LDL particles. Circulating PCSK9 

level is higher in women (105), independently of age (106). Postmenopausal women, 

however, have even higher PCSK9 concentrations, compared to premenopausal women 

(107) (Figure 4). It was observed that PCSK9 level changes with the menstrual cycle, 

and showing an inverse relationship: PCSK9 level is lowest at ovulation (108). Besides 

cardiovascular disease risk, PCSK9 was also associated with steatosis severity in NAFLD 

patients (109). Data about sex differences of PCSK9 in NASH is scarce, further studies 

are required to elucidate whether there is a sexual difference, and if there is, then how it 

will impact our knowledge of NASH pathophysiology and treatment strategies. 

1.2.1.4. Sex differences in disease outcome and mortality 

The main causes of death of NAFLD/NASH are cirrhosis, cardiovascular, non-hepatic 

cancer and HCC. Significantly more men die due to NASH-related HCC, than women 

(90). Women have lower risk for cardiovascular disease irrespectively of estrogen level 

(in contrary to NAFLD development) (110). Mortality of women with NAFLD steeply 

increased in a survey between 2007-2016 (90).  

Cardiovascular risk modifying co-morbidities (hypertension, hyperlipidemia, obesity 

etc.) are usually present in patients with NAFLD, thus it is no wonder that these patients 

have worse cardiovascular outcome. As such, a question arises: “Does NAFLD and/or 

NASH independently contribute to cardiovascular mortality?” In 2015 VanWagner L. B. 

et al. published a population-based study, where they have associated NAFLD with 

subclinical myocardial remodeling and dysfunction (111). In this study, patients with 

NAFLD had increased heart weight, elevated LVEDV and E/e’ suggesting increased left 
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ventricular filling pressure. Interestingly, ejection fraction was normal. These data might 

suggest that NAFLD might contribute to development of heart failure with preserved 

ejection fraction. For further information about this topic see ref (112). As of yet, there is 

no information that sex affects the relationship of the liver and the heart. 

 

Figure 4. Major sex differences of NASH and its main risk factors. 

The most important risk factors of NASH (obesity, hypertension, metabolic syndrome) and 

NASH itself show sexual disparity: premenopausal women are more protected than men and 

postmenopausal woman. Young females, in general, have stronger immune response, thus hepatic 

inflammation might be more severe is this population. Daily dietary need of choline inversely 

proportion of serum estrogen level. In general, PCSK9 level is lower in men, while in women 

PCSK9 level increases with age. Green plus sign means protection, red minus sign means less 

protection, NA abbreviates not available. (Summary figure has been made in accordance to 

references cited in the main text.) 
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1.3. Therapeutics of NASH 

Despite the substantial healthcare and socio-economic burden of NAFLD and subsequent 

NASH (113), no effective treatment is approved by the FDA nor the EMA. Vitamin E 

and pioglitazone have shown mild efficacy in NASH (114). The use of both agents in 

NASH became controversial, preventing the widespread use for this indication. For 

vitamin E, risk of stroke and prostate cancer was raised (115, 116). Long-term use of 

pioglitazone, a PPAR-γ agonist, might increase the risk of bladder cancer (117). 

Drug candidates for NASH can be categorized by their targets in to two main groups 

(118): targeting lipid and/or carbohydrate metabolism, targeting inflammation and 

fibrosis. 

The major clinical trials conducted for NASH to date and their outcome are summarized 

in Table 1-2 and Figure 5. 
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Figure 5 – Summary of major drug candidates for NASH. 

Summary of clinical trials that targeted key enzymes of DNL, nuclear receptors that regulate 

metabolism and caspases that promote inflammation and inflammatory cell death, pyroptosis. 

(Summary figure has been made in accordance to references cited in Table 1 and 2.) 
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Table 1 – Lipid and/or glucose metabolism targeting clinical trials for NASH  

Drug classes Drug 

candidates 

Main results Ref 

ACC inhibitors 

firsocostat,  

PF-05221304,  

MK-4074 

Improvement of hepatic steatosis and insulin 

sensitivity, but hypertriglyceridemia occurred 
(119-121) 

FAS inhibitors 

TVB-2640 Reduced DNL, steatosis, ALT (122, 123) 

FT-4101 

Reduced DNL, steatosis 

Hepatic, glucose-lipid metabolism markers did not 

change 

(124) 

orlistat Mild improvements (125) 

SCD1 inhibitor aramchol 

Dose-dependently decreases hepatic fat content (126) 

Primary end-points were not met, while secondary 

end-point promising improvements 
(127) 

DGAT2 inhibitors 

IONIS-

DGAT2Rx 

Reduced steatosis 

No hypertriglyceridemia 
(128) 

PF-06865571 Reduced steatosis (129) 

HMG-CoA 

reductase inhibitor 
atorvastatin 

Metabolic parameters improved, but glucose 

parameters did not change 

AGE decreased 

(130) 

FXR agonists 

ursodeoxycholic 

acid 

Reduced hepatic steatosis 

Decreased level of LDL, TG, TC 

Amelioration of inflammation 

(131, 132) 

obeticholic acid 

Fibrosis regression 

Reduced hepatic steatosis 

Improved insulin sensitivity 

(133-135) 

EDP-305, 

cilofexor, 

tropifexor, 

MET409 

Reduced ALT and steatosis (136-139) 

11β-HSD1 inhibitor RO5093151 Reduced steatosis, body weight, ALT (140) 

THR-β agonists 

resmetirom 

(MGL-3196), 

VK2809 

Reduced NASH 

Acceleration of NASH 

Decreased LDL, TG 

(141-143) 

FGF19 analog aldafermin 

Reduced steatosis 

Improvement in fibrosis and NASH, but LDL 

increased 

(144, 145) 

FGF21 analogs 
pegbelfermin, 

efruxifermin 

Reduced steatosis 

Improved glucose and lipid levels 

Improved histology 

(146, 147) 

PPARα agonist pemafibrate Did not achieve its primary end-point (148) 

PPARδ agonists 
endurobol, 

seladelpar 
Improved lipid levels (149, 150) 

PPARα/δ agonist elafibranor 
Improved liver fibrosis, inflammation, enzymes, 

lipids and glucose profile 
(151, 152) 
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PPARα/γ agonist saroglitazar 
Improved insulin resistance, fibrosis, lipid and 

glucose 
(153, 154) 

PPARγ agonist pioglitazone 

Reduced steatosis and inflammation 

Improved fasting glucose level 

Greater resolution of NASH 

Concern of weight gain, bladder cancer 

(155, 156) 

PPARα/δ/γ agonist lanifribranor 

Reduced steatosis, fibrosis, inflammation, liver 

enzymes 

Adverse effects limit their further use (collectively 

true for all PPAR agonists) 

(157) 

GLP agonists 

exenatide, 

liraglutide, 

semaglutide 

Reduced steatosis, liver enzymes 

Improved blood pressure, glycemia, inflammation 

Decreased body weight 

(158-167) 

GIP/GLP dual 

agonist 
tirzepatide 

Decreased level of ALT, AST, K-18, Pro-C3 

Increased adiponectin level 
(168, 169) 

Glucagon/GLP 

agonist 
cotadutide 

Reduced steatosis, body weight and ALT/AST 

levels 

Improved fibrosis 

(170) 

DPP-4 inhibitors 

sitagliptin, 

linagliptin, 

saxagliptin, 

alogliptin 

Improvement of HbA1C, did not improve key 

feature of NASH 
(171-173) 

SGLT2 inhibitors 

empagliflozin, 

dapagliflozin, 

canagliflozin, 

ipragliflozin 

Reduced steatosis, body weight, liver enzymes, 

fibrosis 

Improved glycemic control, blood pressure 

Increased adiponectin level 

(174-184) 

MPC inhibitor MSDC-0602K 

Reduced steatosis, liver enzymes 

Improvement in parameters of glycemia (insulin 

sensitivity) 

Did not meet the primary endpoint 

(185) 

Ketohexokinase 

inhibitor 
PF-06835919 

Reduced steatosis 

No effect on insulin sensitivity 
(186) 
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 Table 2 – Inflammation and fibrosis targeting clinical trials for NASH 

  

Drug classes Drug candidates Main results Ref 

Caspase inhibitor emricasan 
No obvious benefit was observed, and may even 

worsened fibrosis 
(187-191) 

Galectin 3 inhibitor belapectin No improvement, did not meet the endpoints (192, 193) 

CCR2/CCR5 

inhibitor 
cenicriviroc 

Improvement in fibrosis 

Decreased level of inflammatory biomarkers 

No improvement in key NASH features, program 

terminated 

(194, 195) 

ASK1 inhibitor selonsertib 
Primary end-points were not met, program 

terminated 
(196, 197) 

LOXL2 inhibitor simtuzumab 
Improvement in fibrosis 

Trial terminated due to lack of efficacy 
(198) 

TNFα inhibitor pentoxyfylline Contradictory effects in NASH (199, 200) 
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2. OBJECTIVES 

Most clinical trials tested drug candidates that interfere with lipid and/or glucose 

homeostasis, while clinical investigations that directly target inflammatory processes are 

relatively few in numbers. Numerous preclinical studies attempted to evaluate potential 

anti-inflammatory medications, but with little-to-no success. Additionally, clinical data 

suggest a sex- and age-dependent variation in major NASH risk factors, metabolism, 

outcome and, most importantly, NASH pathophysiology as well. However, description 

of molecular sex differences in NASH is still lacking. As the global trend of unhealthy 

lifestyles is increasing, the burden of NASH increases in parallel, thus studies that fill the 

gaps of knowledge about NASH pathophysiology and effective treatment is urgently 

needed. 

Therefore, in this work we set the following aims: 

1. To investigate the cardiac and hepatic effects of an Interleukin-1β binding 

monoclonal antibody in an aged mouse model of NASH 

2. To assess sex-specific expression of genes-related to cholesterol metabolism, 

inflammation and fibrosis in a middle-aged mouse model of NASH 
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3. METHODS 

3.1. Experimental animals, diets, treatments and ethical approval 

All experimental animals were purchased from Oncological Research Center, Department 

of Experimental Pharmacology, Budapest, Hungary. Mice were maintained under 12–12 

light–dark cycle under controlled environment (20–24°C and 35–75% relative humidity) 

in individually ventilated cages, holding 2–4 mice per cage. Standard chow diet and tap 

water were available ad libitum. 

Control diet (CON, E 15668–04) and choline deficient L-amino acid defined diet (CDAA, 

E15666–94) was purchased from SSNIFF GmbH (Soest, Germany).  

Anti-IL-1β monoclonal antibody (BE0246) and the corresponding isotype control 

(BE0091) were purchased from BioXCell, USA. 

All experimental procedures were done in accordance with the Guide for Care and Use 

of Laboratory Animals published by US National Institutes of Health (NIH publication 

No. 85–23, revised 1996), with the EU Directive (2010/63/EU), and in compliance with 

the ARRIVE guidelines, and was approved by the National Scientific Ethical Committee 

on Animal Experimentation (PE/EA/1912–7/2017, Budapest, Hungary).  

3.2. Non-alcoholic steatohepatitis model 

This work constitutes of two subprojects: 

In the first, we used 24 months old male C57Bl/6J mice. Mice were randomized by body 

weight and assigned to CON diet-fed group (n = 10) or CDAA diet-fed group (n = 10) and 

were treated with anti-IL-1β Mab (n = 9) or isotype control (n = 10) for 8 weeks. The 

reason why aged male mice were used is that older males show a higher susceptibility to 

frailty and inflamm-aging-derived cardiac decline (201). The animals were treated two 

times per week with a dose of 50 µg/mouse (202). Before termination, echocardiographic 

evaluation was done to assess cardiac function. 

In the second subprojects, 10 months old female and male C57Bl/6J mice were randomly 

assigned to the CON diet-fed group (n = 10) or CDAA diet-fed group (n=10).  

In both projects, the mice were sacrificed after 8 weeks of diet, tissue and blood samples 

were collected for analyses. 
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3.3. Echocardiography and strain analysis with 2D speckle-tracking 

Mice were anesthetized with isoflurane (5% for induction, 2% for maintenance), cardiac 

functions were assessed with the Vevo 3100 high-resolution in vivo imaging system 

(Fujifilm VisualSonics, Toronto, Canada) with a MX400 transducer. The obtained images 

were used for both conventional echocardiographic measurements and strain analysis 

with speckle-tracking. For specific details see (203). 

3.4. Histology 

Liver and heart samples were fixed in neutral buffered formalin for 24 h, then dehydrated 

and embedded in paraffin. Five µm thick sections were cut with a microtome and used 

later on. All staining was visualized and captured with Leica LMD6 microscope (Wetzlar, 

Germany). In case of liver samples, the specimens’ entire area was scanned and analyzed 

with 6.3 × magnification, while, in case of heart samples, 5 microphotographs were 

captured from endocardial regions. 

3.4.1. Hematoxylin and eosin staining 

Paraffin embedded liver sections were deparaffinized, hydrated, and stained with 

hematoxylin and counterstained with eosin. H&E staining was used to assess 

morphologic changes, the area of lipid droplets and inflammatory clusters using ImageJ 

software. 

3.4.2. Immunohistochemistry 

Liver sections underwent antigen retrieval (citrate buffer pH = 6 or Tris buffer pH = 9) for 

15 min. Endogenous peroxidase was blocked by 3% H2O2 in PBS. Afterwards, sections 

were blocked with 2.5% goat or horse serum and 2% milk powder or bovine serum 

albumin. Primary antibodies – Iba1, marker of macrophages (019–19741, Wako Pure 

Chemical Industries, Japan); Clec4/Clecsf13 for Kupffer cells (MAB2784, R&D 

Systems, Minneapolis, MN, United States); MPO, marker of neutrophils (AF3667, R&D 

Systems, USA); CD3e for T cells (D7A6E, Cell Signaling Technology, Danvers, MA, 

United States); E-cadherin, marker of epithelial-mesenchymal transition (610181, BD 

Biosciences, USA); PCNA, marker of proliferation (13110S, Cell Signaling Technology, 
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USA – were diluted (1:2000, 1:200, 1:200, 1:2000, 1:200, 1:4000, respectively) in goat 

or horse serum and were incubated overnight at 4°C. Sections were washed three times 

with PBS, then the specimens were incubated with the following secondary antibodies: 

anti-rabbit IgG HRP (8114S, Cell Signaling Technology, USA), anti-goat IgG HRP (MP-

7405, Vector Laboratories, USA), anti-mouse HRP (MP-2400, Vector Laboratories, 

USA), then were washed and signals were developed with diaminobenzidine (ImmPact 

DAB EqV Peroxidase (HRP) Subrate, Vector Laboratories, Burlingame, CA, United 

States). 

3.4.3. Lectin histochemistry 

Wheat germ agglutinin (WGA-FITC – marker of cell membrane, 1:50, Sigma Aldrich, 

L4895) and with isolectin B4 (ILB4-DyLight 594 – marker of cardiac endothelial cells, 

1:50, Invitrogen, L32473) were used to assess cardiomyocyte cross-sectional area and 

capillary density. 

3.5. qRT-PCR 

Total RNA was isolated from liver, heart, kidney, small intestine, and adrenal samples 

with the isopropanol/chloroform precipitation method. Results were calculated with the 

2–ΔΔCp evaluation method. For more detail see (203, 204). 

3.6. Western blot 

Frozen liver samples were homogenized in RIPA lysis buffer. Twelve μg of protein was 

loaded onto 4–20% polyacrylamide gel. After gel electrophoresis, proteins were 

transferred onto PVDF membranes (BioRad, Hercules, CA, United States). The 

membranes were blocked with bovine serum albumin, then primary antibodies against 

IL-1β (ab9722, Abcam, Cambridge, MA, United Kingdom, 1:1000), NLRC4 (D5Y8E, 

Cell Signaling Technology, Danvers, MA, United States, 1:2500 dilution), and NLRP3 

(D4D8T, Cell Signaling Technology, Danvers, MA, United States, 1:2500 dilution) were 

incubated overnight at 4°C. After washing, secondary antibodies (horseradish peroxidase-

conjugated goat anti-rabbit, 7074, Cell Signaling Technology, Danvers, MA, United 

States, 1:5000 dilution) were incubated at room temperature. Band intensity was 
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evaluated using the Image Lab Software (BioRad, Hercules, CA, United States). For more 

detail see (204). 

3.7. ELISA 

Serum protein concentration of PCSK9 was measured according to the manufacturer’s 

instructions. For more details see (204). 

3.8. Serum triglyceride and cholesterol level measurement 

Triglyceride and total cholesterol content were measured from serum using a colorimetric 

method (Diagnosticum, Budapest, Hungary) according to the manufacturer’s instructions 

(204).  

3.9. Data and statistical analysis 

All values are presented as mean ± standard error of mean (SEM). In the first subproject, 

we two-way ANOVA followed by Fisher’s LSD post hoc test, while in the second 

subproject two-way ANOVA followed by Tukey’s post hoc test. Contingency analysis 

was evaluated by Fisher’s exact test. The statistical analyses were performed with the 

GraphPad Prism software. *P < 0.05 was considered significant. 
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4. RESULTS 

4.1. Targeting inflammation in NASH 

Interleukin-1β is a major pro-inflammatory cytokine with key importance in the 

pathophysiology of NASH. Both hepatic and immune cells are capable to secrete IL-1β, 

which may exert its effect locally (by promoting steatosis, hepatic insulin resistance, 

fibrosis) and systemically (by promoting neutrophil infiltration or by interfering with 

other organs’ function). Circulating low levels of IL-1β derived from chronic systemic 

inflammation may contribute to deterioration of cardiac function and it is well known 

factor in several cardiometabolic disorders (e.g. chronic and acute heart failure, 

atherosclerosis). 

As its importance is hard to overestimate, affecting this cytokine might prove to be an 

adequate target in NASH and inflammation-driven cardiovascular diseases as well.  

4.1.1. Interleukin-1β inhibition improves cardiac diastolic function  

To assess cardiac function, to attain volumetric, diametric and geometric analysis of the 

chambers, we performed conventional echocardiography. Mitral inflow velocity and 

annular velocity was measured to obtain data for diastolic function. Furthermore, we 

performed 2D speckle tracking echocardiography, a more sensitive measurement of 

cardiac muscle fiber torsion (FIGURE 6A). 

In our aged model of NASH, systolic function did not change in the group that was fed 

with a choline deficient diet (CDAA), and anti-IL-1β treatment did not show a cardiac 

deterioration nor improving effect on systolic function, as indicated by the preservation 

of ejection fraction, GLS and GCS. 

At first glance, left ventricular filling pressure was not affected by the NASH-inducing 

diet, indicated by no change in E/e’ ratio, an indirect marker of diastolic function. 

However, the ratio of early mitral inflow velocity-to-early diastolic strain rate (E/SrE) 

deteriorated upon CDAA diet, and the treatment was able to significantly improve it 

(FIGURE 6A).  

To assess cardiac remodeling, we carried out lectin histochemistry. No difference was 

observed in cross-sectional area nor in capillary density (FIGURE 6B). 
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Figure 6. Cardiac function and remodeling in an aged NASH mouse model. 

Conventional and 2D speckle tracking echocardiography (A). Cardiac lectin histochemistry (B). 

Two-way ANOVA, Fisher’s LSD post hoc test, n = 6-9/group. *P < 0.05, **P < 0.01, 

***P < 0.001 (203). 
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4.1.2. Interleukin-1β inhibitor decreases the expression of fibrotic genes, while does 

not impact overall fibrosis 

As mentioned above, fibrosis is a major determinant of NASH outcome. Eight weeks 

feeding of CDAA diet induced significant fibrosis. IL-1β neutralization decreased the 

expression of Col1a1 and Col3a1. However, the overall quantification of fibrosis did not 

change macroscopically (FIGURE 7).  

Figure 7 – Histological and molecular analysis of hepatic fibrosis. 

Microscopic evaluation of hepatic fibrosis by picrosirius-red staining, n = 6-9/group (A).  
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Quantitative RT-PCR analysis of major pro-fibrotic genes, (n = 5–6/group) (B). Quantification of 

overall hepatic fibrosis (C). Scale bar shows 100 µm. Two-way ANOVA, Fisher’s LSD post hoc 

test. *P < 0.05, **P < 0.01, ***P < 0.001 (203). 

4.1.3. Interleukin-1β inhibition does not improve steatosis or inflammatory cell 

infiltrations of NASH 

The choline deficient diet caused extensive hepatic steatosis and inflammatory 

infiltrations. NAFLD Activity Score is a comprehensive scoring system, which shows 

disease severity in regard of steatosis, hepatocyte ballooning and inflammation, which 

was not affected by the treatment. IL-1β inhibiting monoclonal antibody achieved to 

reduce the number of periportal infiltrations with small area (<100 µm2), while other 

features and parameters of NASH remained unaffected (FIGURE 8). 

 

Figure 8 – Investigation of hepatic inflammatory cell infiltrations and NAS. 

Macroscopic evaluation of hepatic inflammatory foci on hematoxylin-eosin stained sections (A). 

NAFLD Activity Score (NAS) (B). Quantitative and areal assessment of inflammatory 

infiltrations, n = 6-9/group (C). Two-way ANOVA, Fisher’s LSD post hoc test. *P < 0.05, 

**P < 0.01, ***P < 0.001 (203).  
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4.1.4. Interleukin-1β binding monoclonal antibody affected key inflammatory 

mediators 

Macrophages (both resident and infiltrating) and neutrophils are important cellular 

participants of initial immunologic events of NASH. Initially both cell types acquire a 

pro-inflammatory phenotype, contributing to further damage. However, as detailed above 

both of them may switch over time to a restorative phenotype. IL-1β serves as an activator 

and a chemokine for both monocytes/macrophages and neutrophils. Therefore, its 

inhibition might serve as a protector of the hepatocellular microenvironment. Iba1 

staining of macrophages showed no change due to neither the diet nor the treatment 

(Figure 9A). Surprisingly, however, by inhibiting IL-1β the number of neutrophils 

significantly increased (Figure 9B).  

Next, we analyzed key M1 and M2 markers. The most relevant chemokine’s expression 

in NASH pathophysiology, CCL2, increased due to the diet, while the treatment was able 

to decrease it, but unfortunately, not significantly. Interestingly, groups that were 

administered the IL-1β inhibitor showed a compensatory increase of Il1b in hepatocytes 

(Figure 9C). The pro-tumorigenic CD163+ macrophages were depleted in CDAA-fed 

and treated animals.  
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Figure 9 – Assessment of pro-inflammatory cells and mediators. 

Immunohistochemical evaluation of Iba1+ macrophages staining (n = 6-9/group) (A) and MPO+ 

neutrophils (n = 4-9/group) (B). Transcriptomic analysis of major M1 and M2 genes, n = 5-

6/group (C). Scale bar shows 100 µm. Two-way ANOVA, Fisher’s LSD post hoc test. *P < 0.05, 

**P < 0.01, ***P < 0.001 (203). 

4.1.5. NASH and IL-1β blockade might promote a pro-tumorigenic 

microenvironment 

Hepatocellular apoptosis, fibrosis and inflammation are main drivers of compensatory 

liver cell proliferation, which if goes uncontrolled it might give rise to malignant 

alterations. PCNA staining revealed marked hepatocellular proliferation. IL-1β 

neutralization had no effect in this regard. Next, we checked the expression of major 

oncogenes. Myc, Gpc3, Mki67 and Pcna were significantly increased in the CDAA-fed 

groups. Furthermore, the expressions of key immune checkpoints were greatly affected. 

The expression of Pd-l1 was increased by the diet, while the treatment induced the up-

regulation of Pd-1 and Ctla4 (FIGURE 10). 
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Figure 10 – Histological and molecular analysis of hepatic microenvironment. 

Representation of hepatocellular proliferation by PCNA staining (n = 6-9/group) (A) and 

quantification of PCNA positivity (B). Assessment of invasiveness by E-cadherin staining (C). 

Transcriptomic analysis of major immune checkpoints (n = 6-9/group) (D) and proto-oncogenes 

(n = 4-6/groups) (E). Scale bar shows 100 µm. Two-way ANOVA, Fisher’s LSD post hoc test. 

*P < 0.05, **P < 0.01, ***P < 0.001 (203). 
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4.2. Sex-specific differences of inflammation, fibrosis and cholesterol 

metabolism  

In order to increase the success of NASH treatment, we must consider the potential 

dissimilarities of the population that might arise from sex and age. To do so, first, we 

must understand key molecular contributors of NASH pathophysiology. As such, we 

designed a NASH model with the aforementioned CDAA diet with middle-aged animals. 

Ten months old male and female C57Bl/6J mice were used. This age in mice is considered 

perimenopausal age in females (205). 

4.2.1. Elevated cholesterol level in females with NASH 

As previously shown, CDAA diet recaptures key feature of NASH (steatosis, 

hepatomegaly). Although total cholesterol level in control animals is lower in females, 

but CDAA feeding caused elevation in cholesterol level in females, compared to males 

with NASH and healthy females alike (FIGURE 11). 
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Figure 11 – Sex-specific differences in hepatic architecture and serum lipid levels. 

Depiction of steatosis in males (A) and females (B) on heamatoxylin-eosin staining. Body weight 

of male and female mice throughout the study (C). Liver weight (D). Triglyceride and total 

cholesterol serum level (E). Scale bar indicates 100 μm. n = 10/group. Two-way ANOVA 

followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001 (204). 

4.2.2. Expression of major cholesterol level regulator differs in sex-dependent 

manner 

PCSK9 profoundly affects serum LDL level, which has been exploited to reduce LDL-

cholesterol level and, subsequently, risk of cardiovascular diseases. Hepatic expression 

of Pcsk9 is increased in control females compared to control males, while females with 

NASH had decreased expression of this gene. This finding was further supported with 

ELISA measurement, which showed a similar pattern of serum PCSK9 level. 

Interestingly, Ldlr, the main target of PCSK9, had a similar pattern of expression as 

PCSK9 itself. Expression of Cd36, the second major target of PCSK9, showed elevation 

in CDAA-fed females, compared to diet-matched males. The renal expression pattern of 

Ldlr was similar to the hepatic expression pattern, while the renal transcription level of 

Cd36 was decreased in females regardless of diet (FIGURE 12).  
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Figure 12 – Sex-dependent gene expression differences of Pcsk9 and its major targets. 

Assessment of Pcsk9, Ldlr and Cd36 gene expression in the liver (A), heart (B), small intestine 

(C), adrenal glands (D) and kidneys (E), n = 6/group. Serum level of PCSK9, n = 10/group (F). 

Two-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001 (204). 
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4.2.3. Males with NASH are characterized by profound fibrosis 

As previously mentioned, the extent of fibrosis is a dominant prognostic marker for 

disease progression. Quantification of overall fibrosis showed that males have 

substantially higher level of fibrosis after 8 weeks of CDAA feeding. The gene expression 

of CTGF also showed a sex-specific difference, significantly elevated in males with 

NASH compared to females. However, the expression of collagen types I and III did not 

differ between the sexes (FIGURE 13). 

 

 

Figure 13 – Sex differences in hepatic fibrosis. 

Depiction of hepatic fibrosis on pricrosirius-red stained sections in males (A) and (B). 

Quantification of overall fibrosis, n = 10/group (C). Transcriptomic analysis of major pro-fibrotic 

genes, n = 6/group (D). Two-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 

0.01, ***P < 0.001 (204). 
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4.2.4. The hepatic immune cell repertoire is slightly different in females 

As described in the introduction, complex inflammatory events occur during NASH, in 

which multiple type of immune cells participate. Myeloid cells are the first responders at 

the dawn of pro-inflammatory processes in NASH. Accordingly, we performed 

immunohistochemistry to evaluate the potential sex differences of these cells in NASH 

pathophysiology. First we stained for macrophages with the pan-macrophage marker, 

Iba1. We did not observe a difference between the sexes. Next, we were interested in 

resident macrophages, thus we continued with Clec4f staining, which revealed a higher 

number of Kupffer cells in CON female mice compared to males. Upon NASH, the 

number of these cells declined in females (Figure 13).  

Figure 14 – Immunohistochemical staining of macrophages. 

Iba1 (A) and Clec4f (B) immunostaining of male and female hepatic sections and its respective 

quantifications. Two-way ANOVA followed by Tukey’s post hoc test, n = 10/group. *P < 0.05, 

**P < 0.01, ***P < 0.001 (204). 
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Neutrophils (as mentioned before) and T cells are also present in the immunologic events 

of NASH (206). Following immunostaining for MPO+ neutrophils and CD3+ T cells, we 

did not observe any sex-specific disparity (FIGURE 15). 

 

Figure 15 – Immunostaining of neutrophils and T cells  

Histological and quantitative analysis of MPO+ neutrophils (A) and CD3+ T cells (B). Two-way 

ANOVA followed by Tukey’s post hoc test, n = 10/group. *P < 0.05, **P < 0.01, ***P < 0.001 

(204). 

  

A 
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4.2.5. Females are characterized with a more pro-inflammatory phenotype 

As discussed in the previous work that inflammation is also considered as a major 

participants of NASH pathomechanism and a major contributor to disease progression. 

Therefore, we wished to assess whether these cytokines have a sex-dependent expression 

profile in NASH. Genes of IL-1β and IFN-γ were significantly higher expressed in the 

liver of female mice with NASH. This was further confirmed with Western Blot analysis, 

showing increased protein level of cleaved IL-1β in females with NASH. The responsible 

inflammasome for the enzymatic cleavage of IL-1β has been revealed to be NLRP3. The 

expression of Tnfa, Ccl2, Ccr1 and Cd68 were increased independently of sex, while 

Cd163 was downregulated (FIGURE 16). 

 

Figure 16 – Sex-dependent differences in hepatic inflammation. 

Gene expression analysis of major pro-inflammatory cytokines (A), n = 6/group. Western blot 

analysis of major inflammasomes and IL-1β, n = 4/group (B, C). Two-way ANOVA followed by 

Tukey’s post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001 (204). 
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5. DISCUSSION  

Non-alcoholic fatty liver disease is a major concern for global healthcare systems and is 

considered a significant socio-economic burden (2, 3). As such, it is paramount to develop 

a safe and effective medication as soon as possible. In order to achieve this challenging 

task, we need to fill in the missing details about the pathomechanism of NASH, and 

elucidation of the potential factors that might contribute to disease progression or define 

factors that might affect treatment success is crucially important.  

In this work we aimed to answer the following questions: Is directly targeting a major 

pro-inflammatory cytokine beneficial in a cardiometabolic disease like NASH? Is there 

any molecular difference between sexes during NASH? 

In our task to answer these questions, we decided to use a dietary model of NASH, where 

choline is deficient. CDAA diet is able to model key features (macroscopic and 

microscopic steatosis, inflammation, fibrosis) of NASH within 8 weeks. The 

disadvantage of this model is that it lacks essential clinical and metabolic traits of NASH, 

such as insulin resistance and, most importantly, obesity. Both obesity and insulin 

resistance are relevant drivers of meta-inflammation, a type of systemic inflammation 

derived from metabolic dysregulation, thus causing systemic burden spanning multiple 

organs, such as the heart and liver (207). We have chosen this model for precisely this 

reason. We wished to isolate the burden of these systemic factors in order to investigate 

the sex differences specifically in NASH and the effects of anti-IL-1β monoclonal 

antibody specifically in NASH.  

We planned that the subprojects of this work to run simultaneously, because the animals 

for the aged model needed to age for the desired age. According to Kane A. E. et al. (201) 

frailty is associated with maladaptive cardiac changes in aged male mice. Alterations of 

cardiac geometry in aged males were correlated with plasma concentration of several pro-

inflammatory cytokines (201). Thus, we decided to use male mice to test the cardiac and 

hepatic effects of canakinumab mimicking antibody. We choose to target Interleukin-1β, 

because of its extensive role in NASH pathomechanism (208). Additionally, 

canakinumab - a human monoclonal antibody against circulating IL-1β – has been proven 

to effectively decrease mortality in patients with history of myocardial infarction and high 

level of hs-CRP. CANTOS trial was the first to prove that targeting cardiometabolic 
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inflammation improves cardiac outcome; however, such therapy risks upper respiratory 

tract infections (209).  

In this subproject, strain analysis revealed increased in E/SrE ratio in CDAA-fed animals. 

A previously reported mouse model of HFpEF supports that strain rate analysis is a more 

sensitive method to measure subtle myocardial functional alteration (210). In our study, 

an improvement of diastolic dysfunction has been seen upon IL-1β inhibition, which was 

observable only with speckle tracking echocardiography. This finding is in line with 

studies, where it was shown that IL-1β signaling may interfere with the transduction of 

β-adrenergic receptors, causing impairment in cardiac function (211-213). 

Unfortunately, IL-1β blockade, in our study, failed to improve key features of NASH in 

aged mice. Significant hepatic fibrosis developed upon CDAA diet. Hepatic fibrosis is 

mainly driven by hepatic stellate cells, which produces collagen upon activation by IL-

1β and hepatocellular debris (47). Interestingly, IL-1β blockade decreased the 

transcription of Col1a1 and Col3a1; however, macroscopic quantification of fibrosis 

showed no overall change in anti-IL-1β monoclonal antibody treated mice. We may 

assume that IL-1β inhibition might induce pro-resolution processes at molecular level, 

but that does not manifest macroscopically within 8 weeks of treatment. During hepatic 

wound healing, fibrosis might resolve both by hepatic stellate cell apoptosis and 

degradation of fibrotic proteins, resulting in reduction of ECM deposition and degradation 

of ECM (214). Previous reports showed that upstream blockade of cleavage of IL-1β by 

inhibition of NLRP3 inflammasome or caspase-1 reduced hepatic fibrosis, proving that 

targeting mechanism that subsequently decreases IL-1β maturation in NASH may 

ameliorate pro-fibrotic events (215, 216). It is reasonable to assume, that it is likely that 

8 weeks of treatment may not be sufficient to meaningfully alter fibrosis in our model. 

Next, we investigated whether inflammatory foci are affected by IL-1β inhibition and we 

observed a possible halt of small immune cluster progression into large ones. 

Interestingly, a tendency of increase in macrophage population was seen in mice with 

NASH treated with IL-1β blocker, while transcription of Ccl2 gene was marginally 

diminished by the treatment. NF-κB, the downstream transcription factor of IL-1β, 

regulates the secretion of CCL2. In a model with an atherogenic diet, NLRP3 inhibition 

resulted significant down-regulation of Ccl2 (217). Furthermore, a trend-like increase was 

visible in the expression of IFN-γ in CDAA-fed mice treated with the IL-1β blocking 
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antibody. Hart K. et al. recognized that elevated levels of IFN-γ, a potent polarizing factor 

for M1 macrophages and a main driver for Th1 commitment, can be protective in NASH 

(29). A surprising finding was that IL-1β blockade increased the number of infiltrating 

neutrophils into the liver. This finding of ours is in contrast to previous publications, 

where NLRP3 inhibitor-treated mice with NASH showed decreased hepatic neutrophil 

count (217). A possible explanation for this contradiction might be the direct inhibition 

of inflammasomes and/or caspase-1 decreases the maturation of both IL-1β and IL-18, 

thus the unaffected IL-18, in our study, is free to act as an activating agent for neutrophils 

as reported by Leung B. P. et al. (218). 

We continued to assess hepatocyte proliferation in settings of IL-1β inhibition. We report 

no change in this regard. Compensatory proliferation of hepatocytes has the role to 

regenerate the liver’s damaged architecture in order to restore the lost parenchymal cell 

due to various forms of cell death (219). Patients with NASH have a higher rate of 

hepatocellular apoptosis (thus it is considered as a key contributor to disease progression), 

the subsequent compensatory proliferation might drive malignant transformation (220-

222). As expected, we observed marked proliferation in aged males fed with CDAA diet. 

Inflammatory cell death, pyroptosis, occurs due to caspase-1 activation resulting the 

release of IL-1β, triggering a vicious cycle of inflammatory cell death by further 

promoting positive-feedback of pyroptosis. Although clinical trials of caspase inhibitors 

did not meet their primary endpoints against NASH (189), we hypothesized that 

interference with IL-1β’s vicious cycle, then we might be able to halt further loss of liver 

cells. However, anti-IL-1β treatment, in our study, failed to meaningfully affect 

hepatocyte proliferation. NASH is a one of the possible etiology of liver cancers, such as 

hepatocellular carcinoma (223). HCC is classically considered to be a radio- and 

chemotherapy-resistant malignancy (224). Immunotherapies has emerged as potential 

treatment options for HCC. Immune checkpoint inhibitors (ICIs) are approved in 

advanced HCC (225); however, the immune microenvironment of HCC is highly relevant 

to achieve efficacy. ICIs were proven effective in viral HCC, but they did not show 

improvement in NASH-induced HCC (226). Extensive investigations are currently 

underway to develop therapeutic options for NASH-related HCC. Accordingly, we 

investigated how IL-1β blockade affects the transcription of immune checkpoints. We 

report that microenvironment of NASH is characterized by increased expression of Pd-
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l1; similarly, to the findings of Zong Z et al. who showed that IL-1β might induce PD-L1 

expression on malignant liver cells (227).  

Although IL-1β is a pro-inflammatory cytokine, increased levels IL-1β may possess a 

crucial immunosuppressive role in different tumors, thus its inhibition might prove to be 

legitimate (209, 228-230). However, we observed that IL-1β blockade increased the 

expression of Ctla4 and Pd-1, which may suggest a microenvironment with 

immunosuppressive attributes. This was observed in clinical studies, where patients 

diagnosed with liver cancer had poor prognosis, if their pro-inflammatory cytokine profile 

was suppressed, including of IL-1β (231). 

Interestingly our model is characterized by immunosuppressive molecular pattern; 

however, analysis of major macrophage markers shows a clear M1 polarization, which 

are generally thought to worsen disease outcome during NASH by promoting steatosis 

and inflammation (232), but monocytes/macrophages that infiltrate into tumor 

microenvironment and differentiate into M1 phenotype have anti-tumor potential. Simply 

put: M1 macrophages during NASH contribute to disease progression, while during 

hepatic malignant events they might prove to be beneficial. Similarly, M2 macrophages 

are also blessed with dual role in NASH. First, M2 macrophages may initiate apoptosis 

of M1 macrophages (28), thus contributing to disease resolution. Meanwhile Cd163+ M2 

macrophages are considered pro-tumorigenic, in contrast to anti-tumorigenic Siglec1+ 

cells (233). In our project, we report that Cd163 expression is down-regulated, and 

Siglec1 expression, although not significantly, is increased in mice with NASH. All in 

all, we can say that our model is characterized by an anti-tumorigenic niche at cellular 

level, while immunosuppressive microenvironment is visible at molecular level. 

As mentioned before IL-1β has a wide variety of effects. The literature describes 

significant contribution to cancer-promoting inflammation in a wide variety of 

malignancies (234). Adversely, IL-1β may also possess anti-tumorigenic attributes. 

Consequently, interference with IL-1β may negatively impact diverse cancers. IL-1β 

activate Th9 cells, which previously showed propensity to effectively target melanoma 

cells (235). Thus, interruption of IL-1β signaling in patients with melanoma might prove 

deleterious for disease progression, would be a sound argument. It was shown that IL-R1 

deficiency on neutrophils drive CRC progression, further proving that IL-1β inhibition is 

not optimal (229). Nasopharyngeal carcinoma releases IL-1β which may act upon tumor-
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associated neutrophils resulting a tumorlytic effect, thus IL-1β blockade might prevent 

this beneficial effect of neutrophils (236).  

It is clear that IL-1β has a wide range of effects in different cancers and cardiometabolic 

diseases as well, thus future treatments with IL-1β blockers should take into consideration 

the aforementioned adverse possibilities. 

Beside local microenvironment and age-related systemic inflammation, sex is also a 

determining factor that should be considered for future treatments of NASH. In our 

second subproject, we highlighted major molecular and cellular differences between male 

and female mice in the aforementioned CDAA diet-based NASH model, however, in this 

case we used middle-aged (10 months old) animals. The reason for this, firstly, is that this 

age is considered perimenopausal for female mice (205). Secondly, the younger age 

(compared to our first subproject) may decrease the burden of age-related systemic 

inflammation, so we are able to describe NASH at a time point where major hormonal 

changes occur without the impact of inflamm-aging. 

As detailed above, major sex-dependent differences have been described in the clinical 

cardiometabolic field, but key molecular differences are still missing, that would help 

understand the sex-dependent pathomechanisms of NASH or molecular entities that 

might eventually prove to be a potential therapeutic target against NASH.  

Prevalence of NAFLD, as mentioned before, differ with sexual status between women, 

and between men and women. In premenopausal women, sex hormones not only govern 

hepatic metabolism to meet the demands of reproduction (237), but also modulate 

immune responses augmented by genes coded on X chromosomes. Consequently, women 

tend to develop a stronger immune response to antigens, which results in more effective 

pathogen clearance, but this may lead to increased immune-related pathologies, such as 

autoimmune or inflammatory diseases (238). Inflammation is a major driver of steatosis-

to-steatohepatitis progression, fibrosis, and even hepatocellular carcinoma (208).  

After the discovery of PCSK9, it has become a molecular entity with huge interest, 

especially in cardiometabolic diseases. Targeting PCSK9 proved to be a powerful tool to 

reduce LDL-cholesterol level. Some evidence might suggest that PCSK9 has a role in 

NASH pathophysiology (239).  
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With the facts above in mind, we aimed in our second subproject to evaluate PCSK9- and 

inflammation-related sex-differences.  

We showed that middle-aged female mice with NASH display reduced hepatic Pcsk9 

gene expression and reduced serum protein level. This might seem contradictory, when 

considering the beneficial effects of PCSK9 inhibition. Nonetheless, Lai et al. published 

similar results, where they proposed that the transcription factor E2F1, which is a key 

regulator of hepatic PCSK9 expression, might induce downregulation of PCSK9 in order 

to prevent excessive cholesterol accumulation in hepatocytes (240). PCSK9 knock-out 

mice fed with high-fat diet resulted in more severe steatohepatitis (241).   

The literature and our data suggest that PCSK9 deficiency could promote steatosis, 

especially in female mice. This could be a real concern of pharmacological inhibitors of 

PCSK9, which was not investigated in NASH patients. Additionally, new cholesterol 

lowering drugs, such as mipomersen and lomitapide, showed propensity to cause 

hepatosteatosis (242, 243). Postmenopausal women and men have higher risk for severe 

fibrosis (89), but in our model with perimenopausal mice revealed pronounced fibrosis in 

males. 

Altogether, we might say that females would benefit more of anti-steatotic and/or anti-

inflammatory treatment, while males with anti-fibrotic strategy.  
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6. CONCLUSIONS 

In this work we showed that, although interleukin-1β is a major contributor to systemic 

inflammation, to cardiovascular diseases (e.g. myocardial infarction, heart failure) and to 

metabolic diseases, such as non-alcoholic steatohepatitis, targeting this pro-inflammatory 

cytokine is not a viable option to treat NASH. Anti-interleukin-1β monoclonal antibody 

improved diastolic dysfunction of mice with NASH; however, it failed to beneficially 

alter key features of NASH and even promoted the formation of an immunosuppressive 

microenvironment that might, subsequently, give rise to non-benign alterations.  

Our work demonstrated that middle-aged males develop profound fibrosis, while females 

suffered a more intensive hepatic inflammation. 

In conclusion we might say that interleukin-1β is not a viable target in treating NASH. 

Additionally, it is likely that males would benefit more of anti-fibrotic treatment, while 

females may require anti-inflammatory treatment to achieve higher success rate.  
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7. SUMMARY 

Non-alcoholic fatty liver disease and subsequent steatohepatitis is global healthcare 

concern with no effective treatment on the market. This cardiometabolic disease, which 

is in fact the hepatic manifestation of metabolic syndrome, shows relevant sex-dependent 

differences in humans; however, data about key molecular perpetrators in this regards are 

still missing.  

Therefore, we aimed in this work to investigate the cardiac and hepatic effects of anti-

interleukin-1β monoclonal antibody and to investigate sex-specific molecular differences 

in fibrosis, inflammation and cholesterol metabolism.  

In a choline deficient diet-based aged model, we showed mild diastolic dysfunction in 

animals with NASH, which improved upon the treatment. At molecular level, the 

monoclonal antibody was able to ameliorate hepatic fibrosis, but overall fibrosis 

assessment did not change. NAFLD Activity Score, consist of grading inflammation, 

steatosis and hepatocyte ballooning, revealed no improvement by the treatment. Hepatic 

microenvironment showed signs of immunosuppression and potential pre-malignant 

alterations. 

Similar model was used to investigated molecular differences in NASH, but with middle 

aged male and female mice. Female mice with NASH were characterized by higher serum 

cholesterol level than males. Serum level and hepatic expression level of PCSK9 is 

reduced in females fed with CDAA diet. Males with NASH had higher overall fibrosis 

level, while females showed elevated expression of hepatic Il1b and higher rate of IL-1β 

maturation level. 
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