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1. Introduction 

1.1 Spatial hearing 

Detection of events in space is essential for any creature. Interestingly, the notion of space 

cannot be encoded without using an additional dimension: time (Boring Edwin G., 1942; 

Jeffress, 1948; Wallach, 1940). In the avian and mammalian brain, localization of sound 

direction is based on the added dimension time. The location of a sound source is inferred 

by the brain using the differences in the neuronal signals transmitted from the two ears 

upon sensation of a sound. The arrival time of sound in the inner ear depends on the 

horizontal location of the sound source related to the ears. If a sound source is not exactly 

in front or behind the animal, sound will reach on of the two ears with a time delay. The 

temporal evolution of such time-of-arrival differences can be used to localize the sound 

source.  

The first model for the neuronal  mechanism of detecting interaural time differences 

(ITDs) was proposed by Jeffress in 1948 (Jeffress, 1948). The Jeffress model proposes an 

architecture consisting of four main elements in the auditory nervous system. First, the 

architecture takes temporally coded neural signals as input. These neural signals are 

generated in the cochlea and cochlear nuclei. The spikes generated by these structures are 

time-locked to the waveform of the acoustic stimulus. According to the Jeffress model, 

the time difference is detected by a series of neurons in the brainstem that receive 

excitatory input from both ears. These neurons fire action potentials, when the excitation 

from the two ears coincides on that neuron. Each neuron receives input from both ears 

but the lengths of the axons making synapse on the neuron are different. The different 

axonal lengths are distributed in a way that action potentials arriving from the two ears 

coincide when there is a difference between the arrival time of sound in the two ears. By 

having different lengths of the innervating axons on each neuron, the system is capable 

of detecting the sound arrival time delays experienced by the animal. With this structure, 

a series of neurons would sit in the brainstem enabling the detection of all possible time 

differences (Figure 1.1 A).  
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Figure 1.1. The original and the modified Jeffress model for detecting time delays in two 

ears. A: The Jeffress model for detecting time delays in the two ears. The arrangement of 

delay lines allows for a range of available relative delays from the two monoaural input 

lines that are mapped to particular places in the coincidence detector array. B: The 

modified Jeffress model with inhibition from ipsilateral ear. Gray lines: excitation, black 

lines: inhibition. (Cariani, 2011; Palmer & Kuwada, 2005) 

Later, the model was extended with inhibitory inputs (Palmer & Kuwada, 2005) by 

finding that while contralateral inputs excite the coincidence detecting neurons, ipsilateral 

inputs inhibit them. Coinciding excitation and inhibition prevent the neuron from firing. 

Additionally, maximal neuronal firing is still enabled by the differences in the input 

axonal lengths from the two ears to the coincidence detectors in the brainstem (Figure 1.1 

B). Anatomical evidence for the modified Jeffress model has been shown in birds (Carr 

& Konishi, 1990; McAlpine & Grothe, 2003) but has not yet been fully established in 

mammals. Also, the original and the modified Jeffress models do not account for the 

frequency dependence of the interaural time difference selectivity of the auditory nervous 

system. According to McAlpine and colleagues (McAlpine et al., 2001), neurons with 

lower best frequencies prefer longer interaural delays, while higher best frequency 

neurons prefer shorter interaural delays. 

Arrival time is not the only feature of the sound that can differ in the two ears. The head 

size of the animal limits the detectable time delays. That is, the head size determines the 

upper frequency limit for detectable ITDs in a way that the smaller the head of the animal 

A B 
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is, the higher frequency ITDs are still detectable. For example, for humans the highest 

frequency, where ITDs are detectable, is around 1400 Hz (Brughera et al., 2013; 

Hartmann & Macaulay, 2014; Zwislocki & Feldman, 1956), while it is around 2800 Hz 

for chinchillas (Hartmann & Macaulay, 2014; Heffner et al., 1994). For frequency ranges, 

where ITDs are not available, interaural level differences (ILD) can be used. In addition, 

spectral content of the sound stimulus can also help in sound source localization. Most of 

the animals use all three strategies for sound source localization depending on stimulus 

features (Palmer & Kuwada, 2005). This gives rise to the interesting question of how the 

coding of ITD and ILD changes in the brainstem for single neurons and also for neuronal 

populations by changing time difference or level difference. The interesting aspect of this 

question is how the two-types of sound source information channels influence the coding 

precision on the level of neurons: do the changes of the two clues have the same effect on 

neuronal coding or do they change different aspects of neuronal response? The 

importance of this question is that it can shed light on the strategies the central nervous 

system uses to keep sound information encoding robust in the face of changing sound 

features, for example when the position of the animal related to the sound source is 

changing.  

To address this question, I performed single and multiunit recordings in the inferior 

colliculus of anesthetized gerbils. The animals received acoustic stimuli with different 

time and level differences in the two ears. Responses of single neurons were then decoded 

using distance metrics (Victor & Purpura, 1996) Analysis of the data revealed that 

changing time and level difference have different effect on neuronal coding. While 

changes in sound intensity evoked changes in spectrotemporal filtering that influenced 

the overall timing of spike events but preserved their precision across trials such that the 

decoding of single neuron responses was not affected. In contrast, changes in interaural 

time difference did not trigger changes in spectrotemporal filtering but did have strong 

effects on the precision of spike events and, consequently, on decoder performance. 

However, changes in ITD had opposing effects in the two brain hemispheres and, thus, 

canceled out at the population level. These results were similar with and without the 

addition of background noise (Horvath & Lesica, 2011). 
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For the study about the effects of changes in interaural time and level differences on single 

neuronal coding, decoding methods were used (Victor & Purpura, 1996). When more 

single neuronal responses are recorded from the same population, population response 

can be characterized by the population coding performance. To obtain this measure, 

population decoding should be used. Thus, the next question is which the optimal 

decoding strategy for population responses is. The other published paper included in this 

thesis is about population decoder optimization.  

Finding the coding performance of each individual neuron in the population is first needed 

for the decoder optimization. Then, for population-level decoder optimization, each 

neuron has to be assigned a weight that determines their contribution to the decoder. 

However, finding the optimal weight for each neuron is not trivial. I contributed to the 

development of a genetic optimization method for decoding neuronal population 

responses. I carried out single and multiunit recordings in the inferior colliculus of gerbils 

and took part in the decoding analysis. This method was also applied for data obtained 

from two-photon recordings in the mouse visual cortex. It was shown in both cases that 

genetic optimization is able to provide a superior distance metrics decoder performance 

to neuronal weight optimization using randomly assigned weights or weights obtained 

decoding each neuron individually. (Hofer et al., 2010) 

In this thesis, I first summarize the anatomical and physiological properties of the inferior 

colliculus. Then, in the following sections, I describe my methods and results first about 

genetic optimization of a decoder using distance metrics, then about the time and level 

difference coding in the inferior colliculus. The methods and results were published in 

two papers. 

1.2. The ascending auditory pathway 

1.2.1 Auditory nuclei in the brainstem 

The ascending auditory pathway originates from the cochlea and terminates in the 

auditory cortex, transmitting auditory information from the ear through several 

subcortical nuclei to the cerebral cortex. Cranial nerve VIII connects the output of 

cochlear hair cells to the first central auditory nucleus called cochlear nucleus. The 

cochlear nucleus consists of three subdivisions all having tonotopic organization, but their 

structure and function differ. (Figure 1.2.1). 
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Figure 1.2.1. Sagittal section of the cat cochlear nucleus. DCN: dorsal cochlear nucleus, 

AVCN: anteroventral cochlear nucleus, PVCN: posteroventral cochlear nucleus. (Osen, 

1969; Pickles, 2015) 

 

Different cell types, that are morphologically different from each other, give rise to the 

different functions of cochlear nucleus subdivisions. Most of these cell types shows 

specific spiking responses to sound stimulation with a typical tuning curve (Winer & 

Schreiner, 2005). The different response types make up the variety of information streams 

emerging from the cochlear nucleus supporting parallel processing in higher order 

auditory nuclei, such as the superior olivary complex, the lateral lemniscal nuclei and the 

inferior colliculus.  
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Figure 1.2.2. Major connections of the ascending auditory pathway. DCN: dorsal 

cochlear nucleus, AVCN: anteroventral cochlear nucleus, PVCN: posteroventral 

cochlear nucleus, LSO: lateral superior olive, MSO: medial superior olive, MNTB: 

medial nucleus of the trapezoid body, SOC: superior olivary complex, including LSO, 

MSO and MNTB, DNLL: dorsal nucleus of the lateral lemniscus, VNLL: ventral nucleus 

of the lateral lemniscus, IC: inferior colliculus, MGB: medial geniculate body. (Pickles, 

2012, 2015) 

 

The superior olivary complex is involved in binaural information extraction and 

integration. It comprises several nuclei that are all associated with different aspects of 

binaural processing. The lateral superior olive integrates monaural information from both 

cochlear nuclei by extracting intensity-difference sensitivity information from high 

frequencies and sends this information to the higher order nuclei lateral lemniscal nuclei 

and inferior colliculus. The precision of this binaural information extraction is determined 

by the inhibitory input from the medial nucleus of the trapezoid body. The medial superior 

olive, however, is involved in encoding delay sensitivity for low frequencies from the two 

ears. Neurons in the superior olive, as well as their inputs from other areas, are connected 
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in a highly precise manner which may reflect the precision needed for the detection of 

changes in stimulus features, such as interaural time and level differences and spectral 

information. In addition to its projections to nuclei along the ascending pathway, the 

superior olive sends an efferent pathway to the cochlea, supposedly modulating the 

electrochemical properties of outer hair cells, thus controlling the gain produced by outer 

hair cells in the cochlea (Liberman & Brown, 1986; Warr, 1992). Strikingly, such efferent 

projection to the periphery is missing in the visual or somatosensory systems. The lateral 

lemniscus incorporates three nuclei. These nuclei, in contrast to, for example, the IC, 

process purely auditory information but they are bypassed by many of the afferent 

pathways from the superior olive to the inferior colliculus. The dorsal nucleus of the 

lateral lemniscus is supposed to play an important role in binaural sound source detection 

in reverberant acoustic environments (Burger & Pollak, 2001; Meffin & Grothe, 2009; 

Pecka et al., 2007). This nucleus contains GABAergic neurons that provide a long-lasting 

persistent inhibition to the contralateral dorsal nucleus of the lateral lemniscus, as well as 

to the ICC (Faingold et al., 1993; Yang & Pollak, 1994). This feature is proposed to enable 

the IC to detect echoes in the binaural stimuli. Thus, the output of the dorsal nucleus of 

the lateral lemniscus might contribute to the perceptual phenomenon called precedence 

effect, when the listener’s ability to localize echoes is suppressed (Blauert, 1997; Litovsky 

et al., 1999; Zurek, 1987). In contrast to the dorsal nucleus, the ventral and intermediate 

nuclei of the lateral lemniscus receive monoaural input from the contralateral ear 

(Merchán et al., 1997). Both contain mostly GABAergic and glycinergic cells, which 

project to the ICC. These neurons have very low spontaneous activity but have onset type 

response to auditory stimulation with precise spike timing (Covey, 1993). This suggests 

that neurons in the ventral and intermediate nuclei of the lateral lemniscus may transfer 

precise temporal information about the stimulus to the ICC (Merchán et al., 1997). 

Conclusively, the lateral lemniscal nuclei are additional places for the processing of 

different auditory information streams.  

1.2.2 The auditory midbrain 

The lateral lemniscal nuclei project to the next station along the ascending auditory 

pathway: the inferior colliculus. This nucleus is rich in diverse connections with stations 

along the auditory pathway, the auditory cortex and with areas associated to other sensory 

modalities. The IC receives inputs from all cochlear nuclei, the SO, the LLN and also 
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from every auditory cortical area. Besides the auditory innervations, IC also receives 

inputs from somatosensory nuclei located in the medulla and the pons. Most of its 

brainstem connections are bidirectional: the IC innervates most of the brainstem nuclei 

that it receives input from; and also sends ascending connections to both medial 

geniculate bodies (MGB). The two ICs are also highly connected with each other through 

commissural projections. The IC is composed of three principal divisions: central 

nucleus, external cortex (or lateral nucleus) and dorsal cortex. Central nucleus (ICC) is 

the most extensive of the three and it receives purely auditory innervation. Its neurons are 

organized in tonotopic layers, the so called isofrequency laminae. This division has a 

central role in normal hearing, as it integrates monaural inputs from ICC and binaural 

signals from SO and LLN. Rostrally to the ICC lies the so-called nucleus of the rostral 

pole of the IC. In contrast to the ICC, there is no clear topographic mapping of sound 

frequencies in the rostral pole, although it gets its subcortical inputs from tonotopic 

structures LSO and MSO. The rostral pole is also innervated by several auditory cortical 

areas. Main output region of the rostral pole is the superior colliculus (SC). External 

cortex of the IC is multisensory receiving not only auditory but also somatosensory input 

from the brainstem. Tonotopy has not been observed in this division. Dorsal cortex is 

mostly innervated by auditory cortical areas, especially the primary auditory cortex but 

other auditory areas such as the two other IC divisions, the MGB and brainstem auditory 

nuclei project to the dorsal cortex too. Although tonotopy has not yet been revealed by 

electrophysiological measurements in the dorsal cortex, recent 2-photon imaging results 

suggest the presence of a coarse gradient of characteristic frequencies. Neurons in the 

dorsal cortex are organized in layers but, as there is still no evidence for a tonotopic 

arrangement, the function of these layers is still unknown. However, stimulus specific 

adaptation (SSA) not purely inherited from major input primary auditory cortex is well 

described in this division, suggesting its role in the detection of novel sounds in the noisy 

acoustic environment.  

1.2.3 The auditory thalamus 

The thalamic structure involved in acoustic information processing is the MGB. It is 

innervated by subcortical auditory nuclei, mainly the IC, as well as by the auditory cortex. 

Its projections are almost exclusively ascending but do not only target the auditory cortex. 

MGB has significant projections to subcortical limbic structures, such as the amygdala 
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and caudate nucleus, proposing that the role of MGB is more than purely auditory. 

Another important feature of the MGB projections is that almost all of them are ipsilateral. 

The MGB comprises three divisions, namely the ventral, the dorsal and the medial 

division. The main sensory nucleus of the MGB is the ventral division. This nucleus 

receives input from the central nucleus of the IC. Structure of the ventral division 

resembles the IC central nucleus, as ventral division neurons with the same characteristic 

frequency are also arranged in tonotopic layers, except for the rostral pole in gerbils which 

is found to be non-tonotopic and projecting to non-primary AC areas. The rest of the 

ventral division sends ascending connections to primary tonotopic AC areas such as the 

primary auditory cortex (AI) and the anterior auditory field (AAF). Most of the neurons 

in the ventral division respond to binaural sound stimuli. The dorsal division is mainly 

innervated by the dorsal cortex of the IC but also receives input from the lateral tegmental 

area located near the IC. Its neurons have a wide tuning curve and long response latency, 

while no clear tonotopic arrangement of them is observable, just like in the dorsal cortex 

of the IC. Dorsal division is unique among the MGB divisions in the sense that its neurons 

show oscillating slow-wave activity. Projections originating from the dorsal division end 

in many different brain areas, including non-auditory brain structures such as the 

amygdala. The pattern of dorsal division projections suggests that it is involved in various 

computations, such as recognition of temporal patterns, spatial hearing and emotional 

auditory processing. The medial division is innervated by not only an auditory structure, 

the external cortex of the IC, but also by non-auditory brain areas such as the vestibular 

system. Although no clear tonotopy is found in this division, neurons are arranged along 

a coarse gradient of characteristic frequencies. The medial division projects to a great 

variety of cortical as well as non-cortical areas; it innervates all auditory cortical areas 

but also some non-auditory cortices and the amygdala too. This latter projection is unique 

among the sensory systems and it is essential for learning based on auditory cues. While 

the ventral division projections target layers III and IV in the cortex, medial division 

projections mainly end in layers I and VI, implicating that information from the MGB 

divisions reaches the cortex in segregated streams. The two MGBs, unlike the ICs, are 

not connected at all with each other; however, their auditory cortical targets are indeed 

connected by commissural pathways with each other.  
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1.2.4 The auditory cortex 

The auditory cortex (AC) has several areas, with the exact number varying across species. 

Anyway, the AC region receiving primary sensory input from the MGB ventral division 

is the primary auditory cortex. Its neurons, in addition to the typical cortical organization 

of six layers, are arranged along two main orthogonal axes, a tonotopical and a series of 

bands with alternating binaural sensitivity. Auditory cortical areas, similarly to other parts 

of the cortex, are characterized by extensive local connections as well as by ipsilateral 

corticocortical and interhemispheric commissural pathways. The auditory cortex is not 

only innervated by various subcortical regions and densely connected with several 

cortical regions, but it is also the origin of pathways targeting subcortical structures. Most 

of these are modulating the activity of the nuclei along the ascending auditory pathway 

but some innervate non-auditory structures such as the striatum or the amygdala. To sum 

up, precise connectivity of the ascending auditory system enables fine extraction of the 

several aspects of auditory information that is available from the acoustic environment. 

However, the nuclei and pathways described in this section are only the main processing 

stations and connections of the ascending auditory pathway. Precise mapping of all the 

connections in this system would be enabled by genetic targeting of single neuronal types 

in each nucleus. Optogenetic targeting and neural activity control has recently been 

established in the gerbil (Keplinger et al., 2018), which carries the opportunity for more 

precise, single cell type-resolution connectivity mapping of the gerbil auditory system. 
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1.3. The central nucleus of the inferior colliculus 

1.3.1 Neuronal organization of the central nucleus 

 

Figure 1.3.1:  Drawing of the inferior colliculus based on Golgi-stained sections. The 

laminae are visible in the central nucleus. ICC: central nucleus, LD: lateral division of 

the ICC, ICDC: dorsal cortex, ICX: external cortex. I-IV: layers of the dorsal cortex. 

(Morest and Oliver 1984) 

In the two studies I present in this thesis, I measured and analyzed the binaural coding 

properties of single neurons in the central nucleus of the inferior colliculus (ICC). To find 

the appropriate neurons for recordings, to appropriately design the experiments and to 

better understand the results, it is essential to have a good understanding of the anatomy 

and function of the ICC. The central nucleus is the most extensive division of the IC and 

it is covered by the other two IC divisions, the external and dorsal cortices (Oliver, 2005). 

The ICC is characterized by disc-shaped neurons with highly oriented dendritic fields. 

These neurons are densely packed in rows while their dendritic fields are organized 

parallel to each other forming the characteristic laminae of the central nucleus (Figure 

1.3.1) (Morest & Oliver, 1984; Oliver, 1984, 2005).  

The other characteristic cell type of the central nucleus is the stellate cell. Its dendrites 

radiate to all directions, forming a spherical dendritic field. These dendrites often extend 
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beyond a single lamina formed by the disc-shaped cell dendrites into the adjacent laminae 

(Figure 1.3.2). (Oliver, 1984, 2005) 

 

Figure 1.3.2: Afferent and efferent connections of the inferior colliculus central nucleus. 

D: disc-shaped neurons that align the form laminae in the central nucleus. Their axons 

are parallel to each other and to the afferent inputs from the brainstem tot he laminae. S: 

stellate cells with axons that often extend beyond a single lamina. (Oliver, 1984, 2005) 

The broad distribution of their dendrites puts stellate cells in a good position to sample 

the input of many lemniscal axons to the inferior colliculus, whereas disc-shaped cells get 

a more restricted lemniscal input. Dendrites in the ICC receive input from at least seven 

lower level auditory nuclei. Most of the synapses ending in the central nucleus from these 

regions are excitatory, most of them originating from the medial superior olive, the 

contralateral lateral superior olive, and the dorsal and anteroventral cochlear nuclei. There 

is also significant inhibitory innervation provided by the dorsal and ventral nuclei of the 

lateral lemniscus and the ipsilateral lateral superior olive. Axons innervating the central 

nucleus mostly run parallel with the dendritic fields of disc-shaped neurons in the ICC 

laminae. In addition, axons of local cells also run in the laminae, parallel with the 

ascending axons (Figure 1.3.2). These local collaterals have a similar distribution as the 

dendrites of their parent cells. Axons of disc-shaped cells do not leave their lamina but 

axons originating from stellate cells also give collaterals to neighboring laminae. The two 
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ICs are interconnected with each other through commissural fibers that also end in 

laminae formed by the disc-shaped cell dendrites. (Oliver, 2005) 

In the experiments presented in this thesis, we targeted the low frequency part of the ICC 

to record from interaural time difference (ITD) sensitive neurons. The ICC is an ideal 

target for recordings from neurons taking part in sound source localization because of its 

relatively close location to the brain surface. ITDs are perceived only for low frequency 

sounds, so binaural neurons in the low frequency part of the ICC play an important role 

in sound localization. In the following section, I shortly describe the tonotopic 

organization of the ICC. Knowledge about the precise tonotopic structure of the ICC was 

essential for me in planning and executing the recording experiments. 

1.3.2 Tonotopic organization of the central nucleus 

The tonotopic organization of ICC is related to the laminar structure; measured by 

electrophysiological recordings and protein expression studies, neurons in a lamina 

respond to a single frequency or, more precisely, to a small range of neighboring 

frequencies. Neurons in adjacent laminae can distinguish between frequencies as close as 

0.28 octaves in the cat (Schreiner & Langner, 1997). Along the tonotopic axis, lowest 

frequencies are represented dorsolaterally, while highest frequencies are represented 

ventromedially. However, the existence of synaptic domains allows for the differentiation 

of ICC neurons not only by their characteristic frequency but also by their binaural 

response properties. Each excitatory innervation from an auditory brainstem nucleus to 

the ICC provides a different monaural or binaural input, thus enabling neurons in the 

laminae to code for different binaural properties, such as interaural time difference (ITD) 

or interaural level difference (ILD). There are three main types of ITD response of single 

neurons in the ICC that were described by Rose and colleagues (Rose et al., 1966) and 

their response characteristics were quantified by Yin and Kuwada (Yin & Kuwada, 1983). 

Shortly, to characterize the ITD sensitivity of a single neuron, its responses are measured 

and plotted for different ITDs and stimulus frequencies. The resulting curves are plotted 

on the same graph and the response type is determined based on these (Figure 1.3.3). For 

peak-type neurons, the response curves align at or near a particular frequency (Figure 

1.3.3A), for trough-type neurons (Figure 1.3.3B), the response curves align at or near the 

trough of the curve and for intermediate-type neurons, the response curve align between 

the peak and the trough (Figure 1.3.3C).  
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Figure 1.3.3.: ITD response types (Palmer & Kuwada, 2005; Yin & Kuwada, 1983) 

 

In a single lamina, neurons receiving input from the medial superior olive are both ITD 

sensitive and show peak-type responses, whereas neurons innervated by the contralateral 

lateral superior olive are ITD sensitive but have a trough-type response. However, a large 

proportion of ICC neurons shows intermediate-type ITD sensitivity, indicating the 

integration of medial and lateral superior olive inputs on the same cell. Moreover, 

synaptic domains with monaural neurons can be also found in the ICC. These monaural 

inputs likely originate from the cochlear nucleus (Palmer & Kuwada, 2005).  
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1.3.3 Functional properties of central nucleus neurons 

Neurons in the ICC are in a position to integrate inputs from several auditory brainstem 

nuclei such as the CN, SOC and lateral lemniscal nuclei. In addition, ICC neurons are 

innervated by descending axons from the AC and also by commissural axons from the 

contralateral IC. However, the final output of the neurons depends also on their intrinsic 

electrical properties. (Oliver, 2005; Sivaramakrishnan & Oliver, 2001) 

 

Figure 1.3.4. Intracellularly recorded firing patterns of ICC neurons. (Sivaramakrishnan 

& Oliver, 2001) 
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The intrinsic electrical properties of these cells can be described by intracellular recording 

techniques. ICC neurons in brain slices respond to depolarizing and hyperpolarizing 

current injections with various discharge patterns, which are determined by the different 

combinations of K+ channels in the cell membranes. The so-called sustained-regular 

firing neurons (Figure 1.3.4 A) respond to a depolarizing current injection with sustained 

firing containing spikes with constant inter-spike intervals (Sivaramakrishnan & Oliver, 

2001). Magnitude of K+ currents sensitive to K+ channel blockers, such as 4-

aminopyridine (4-AP) and tetraethylammonium (TEA) alongside firing frequency 

increase similarly in response to membrane depolarization, suggesting an important role 

of 4-AP- and TEA-sensitive K+ currents in sustained-regular firing (Sivaramakrishnan & 

Oliver, 2001). The linearity of rate-current function of this type of firing makes these cells 

good candidates in vivo for encoding of sound duration and intensity information. A 

population of ICC neurons shows rebound firing after hyperpolarizing current injections, 

that is, membrane hyperpolarization of these cells is followed by a period of 

depolarization that can eventually exceed action potential threshold and cause firing. The 

rebound depends on extracellular Ca2+ concentration, since reducing the Ca2+ 

concentration extracellularly eliminates the depolarization after hyperpolarizing current 

injection (Sivaramakrishnan & Oliver, 2001). Rebound cells can respond to 

depolarization in various ways (Figure 1.3.4 D, E and F). Some of them show regular 

firing (Figure 1.3.4 D), and, similarly to sustained-regular firing cells, delayed rectifying 

K+ channels play an important role in this firing pattern. Based on their firing pattern 

similarity to sustained-regular firing neurons, rebound-regular cells may also contribute 

to sound intensity encoding. Another type of rebound cells, the rebound-adapting neurons 

(Figure 1.3.4 E), fire action potentials with non-uniform inter-spike intervals in response 

to membrane depolarization, with spikes initially close to each other and becoming more 

separate during the depolarization. Finally, rebound-transient cells (Figure 1.3.4 F) fire 

transiently in response to a depolarizing current injection, which is likely to be caused by 

K+ channel blocker charybdotoxin (K+ channel blocker)-sensitive Ca2+-activated K+ 

currents (Oliver, 2005; Sivaramakrishnan & Oliver, 2001). The depolarizing rebound 

occurring after membrane hyperpolarization may underlie several coding mechanisms 

observed in the ICC. Rebound mechanism, for example, can be responsible for the so 

called OFF response of IC cells to acoustic stimulation, that is, neurons fire after the offset 
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of stimulus. This response type may enable the coding of ongoing complex sounds such 

as amplitude-modulated tones, as well as the emergence of sound duration tuning. The 

onset firing cells (Figure 1.3.4 B) fire a single action potential in response to a 

depolarizing current injection at its onset, which may be caused by the low threshold K+ 

current measured in this type of neurons (Sivaramakrishnan & Oliver, 2001). Finally, 

buildup-pause neurons (Figure 1.3.4 C) respond to membrane depolarization that follows 

a hyperpolarizing current step with delay in the onset of sustained firing or with a pause 

between the first and the following spikes. The fast transient and rapidly inactivating A-

type K+ current may underlie this firing pattern (Sivaramakrishnan & Oliver, 2001). Due 

to their special response to the combination of membrane hyperpolarization and 

depolarization, buildup-pause neurons may encode pairs of inhibitory and excitatory 

stimuli or even successive excitatory stimuli. Most of the cells in the ICC were found to 

be sustained firing and a rebound after membrane hyperpolarization was found in more 

than half of them (Sivaramakrishnan & Oliver, 2001). The different firing patterns of ICC 

neurons were found to be not correlated with the morphology of the cells, so the two main 

types of ICC cells, disc-shaped and stellate cells can have any of the listed firing patterns 

(Bal et al., 2002; Peruzzi et al., 2000).  

In vivo firing characteristics of ICC neurons are similar to discharge patterns observed in 

slices. Primary-like neurons, much like the auditory nerve fibers, sustain their firing 

during the presentation of sound, with some adaptation occurring at the beginning of the 

response.  

 

Figure 1.3.5 Typical response patterns of neurons in the ICC in vivo. (Syka et al., 2000) 

 

Pauser firing pattern (Figure 1.3.5) is very similar to primary-like patterns, except that in 

pauser neurons after the response onset an abrupt and variable in length pause of silence 
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in firing occurs before the sustained firing during stimulus presentation (Syka et al., 

2000). The two components of the pauser response can also be observed separately as 

responses to acoustic stimulation. Pure onset firing occurs only at stimulation onset, while 

late response has a delay from stimulation onset, but it is sustained during the whole 

stimulus duration. Some neurons in the ICC respond to sounds with ON-OFF firing, 

which means firing only at the onset and offset of stimulation. In addition, sound can not 

only excite ICC neurons, as some neurons are inhibited by stimulation (Figure 1.3.5 last 

panel) (Syka et al., 2000). The various response patterns of ICC neurons reflect the firing 

patterns of cells innervating them but are also shaped by the intrinsic properties of ICC 

cells. Neurons often can show more of the listed firing patterns in response to sounds with 

different frequencies and intensities (Le Beau et al., 1996). For example, sustained 

responses can be observed in response to best frequency stimulation, while stimuli away 

from the best frequency of the neuron or low-amplitude best frequency stimuli evoke only 

onset responses. Intensity change of the stimulating sound can also evoke a firing pattern 

change in itself, as a primary-like response to near-threshold sound turns into a pauser 

pattern with increasing sound intensity. In addition, tones away from the best frequency 

can even evoke inhibitory responses (Ehret & Schreiner, 2005).  

Neuronal responses in the ICC to changes of stimulus features can vary depending on 

neuron type and their afferent connections. For example, when stimulus intensity 

increases, the number of cochlear nerve fiber action potentials increases proportionally 

until reaching a plateau, showing a monotonic intensity-spike count function. However, 

in the IC, only half of the neurons has a monotonic intensity-spike count function, while 

the other half responds non-monotonically, that is, the spike count drops after a peak when 

sound intensity is increased further. This non-monotonic response may be shaped by the 

interconnection of excitatory and inhibitory neurons tuned to the same tone frequency. 

Such circuits exist both in the ICC and in the CN, and it is assumed that both monotonic 

and non-monotonic response of ICC neurons are transmitted from their CN inputs (Ehret 

& Schreiner, 2005).  

 

A neuron’s response to sounds with different frequencies is described by its tuning curve, 

which indicates the firing threshold intensities of the neuron for various sound 
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frequencies. The frequency or frequencies evoking firing at lowest intensity are called 

characteristic frequency (CF). Most neurons in the ICC have sharp tuning curves with 

well-defined CFs and show sustained firing in response to CF stimulation. These neurons 

are organized according to their CFs and form the isofrequency laminae described earlier. 

Conclusively, the tuning curve is an important measure to characterize neural response to 

sound frequency changes, however, it is not able to describe neuronal firing in response 

to suprathreshold intensity stimulation with different frequencies. The measure frequency 

response area (FRA) overcomes this limitation, and it is therefore especially useful for 

characterizing non-monotonic responses. Based on these measures, it is most likely that 

information obtained by frequency discrimination is encoded by neurons with monotonic 

responses in the ICC (Ehret & Schreiner, 2005).  

1.3.4 Neural coding in the central nucleus 

As described previously, ICC neurons have to encode information retrieved by sound 

pitch discrimination. Their frequency coding properties are described by their response 

to different frequency pure tones, which is characterized by the tuning curve. 

 

Figure 1.3.6 Typical tuning curves in the central nucleus of the inferior colliculus. 

(Egorova et al., 2001; Ehret & Schreiner, 2005) 
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ICC tuning curves differ from auditory nerve tuning curves in the more important role of 

inhibition in the ICC shaped by the various intrinsic and innervating inhibitory 

connections in this nucleus. From the interaction of excitation and inhibition in response 

to pure tone stimulation emerge four major classes of tuning curves of ICC neurons. Class 

I neurons (Figure 1.3.6) have tuning curves that are very similar to auditory nerve tuning 

curves. These are strongly asymmetric with steep high frequency and shallow low 

frequency slopes, have asymmetric inhibitory areas below and above CF with higher 

inhibitory threshold below CF and the inhibitory areas only partially overlap with the 

excitatory receptive field. In contrast, Class II is dominated by inhibition, as the inhibitory 

areas are symmetrical, the inhibitory thresholds below and above CF are similar and the 

inhibitory areas always overlap, often completely, with the excitatory receptive field. Still 

shaped by inhibition, excitatory tuning curves of class II neurons can be either 

symmetrical, skewed toward the low or high frequency side or even closed, this latter 

meaning an upper response threshold. Class III is characterized by weaker inhibition that 

makes excitatory tuning curves symmetric and shallow, as well as inhibitory areas small. 

Finally, Class IV neurons have complex tuning curves and can have several excitatory 

receptive fields or even multiple CFs. The proportion of the four classes is similar in 

mammal species, with about one-fourth of ICC neurons belonging to Class II, less than 

10 % belonging to Class IV and low-inhibition classes I and III sharing the rest of the 

neurons. These four classes cover the whole population of ICC neurons, as virtually all 

of them are frequency tuned, with their sharpness of tuning differing from that of auditory 

nerve fibers (Egorova et al., 2001; Ehret & Schreiner, 2005). 

Neurons in the ICC are organized tonotopically along two frequency gradients. The first 

gradient spans from dorsal and dorsolateral to ventromedial ICC with lower frequencies 

represented dorsolaterally and higher frequencies represented ventromedially. This 

gradient is orthogonal to the cellular laminae described before, as well as to their afferent 

inputs. The previously described isofrequency laminae emerge from this frequency 

gradient (Figure 1.3.7 A). The second gradient spans within the isofrequency laminae, 

with low frequencies represented dorsomedially and high frequencies represented 

ventrolaterally. The two gradients together form so called frequency-band laminae that 
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are larger than the synaptic domains formed by the anatomical organization of ICC 

neurons (Figure 1.3.7 B).  

 

 

Figure 1.3.7 Schematics illustrating the tonotopic organization in the central nucleus. A: 

The main tonotopic gradient of the central nucleus and the isofrequency laminae. (Lyzwa 

& Wörgötter, 2016) B: Isofrequency-band laminae in the central nucleus. Thick lines: 

gradient of frquency increase from medial to lateral within a lamina. (Schreiner & 

Langner, 1997; Ehret & Schreiner, 2005) 

Sound intensity coding in ICC neurons, as already described, depends on the rate level 

function of neurons. About half of them have monotonic rate level functions, often with 

a plateau above a certain intensity, while the other half have non-monotonic rate level 

functions. Receptive fields and rate level functions of ICC neurons are likely shaped by 

the same factors, such as the interaction and combination of excitatory, inhibitory and 

facilitating inputs to the ICC, since receptive fields often have intensity dependent 

components (Ehret & Schreiner, 2005). In addition, ICC cells also encode other sound 

features such as periodicity and are organized in a periodotopic map that is orthogonal to 

the main tonotopic axis of the ICC (Langner & Schreiner, 1988). According to recent 

studies, periodotopy emerges first in the IC in the auditory system, which then also 

appears in other higher order auditory brain areas such as the primary auditory cortex. 
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This feature adds another important aspect to the role of the IC in the ascending auditory 

pathway. (Rees & Langner, 2005) 

1.3.5 Coding of binaural sounds and spatial location in the central nucleus 

The inferior colliculus and especially the central nucleus lie in a perfect position to 

process binaural inputs, as the main brainstem binaural nuclei, the medial and lateral 

superior olive send their axons here (Figure 1.3.8) (Schofield, 2005). Additionally, the 

inferior colliculus receives monaural inputs from the cochlear nuclei, thus extending the 

processing capabilities of this nucleus (Cant, 2005).  

 

Figure 1.3.8. Binaural inputs to the inferior colliculus. (Schofield, 2005) 

Neurons in the central nucleus are therefore sensitive to binaural cues, such as ITD, ILD 

or spectral cues. As previously described, the ITD function of central nucleus cells is 

shaped by their afferent inputs, as well as by intrinsic connections in the central nucleus. 

Most central nucleus neurons prefer contralateral ITDs, that is the sound arrives first in 

the contralateral ear and then in the ipsilateral one (Palmer & Kuwada, 2005). However, 

this ITD preference is frequency dependent, namely neurons with high characteristic 
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frequency prefer low or even 0 ITDs while cells with low characteristic frequency tend 

to pick higher ITDs. The central nucleus ITD functions’ peak often lies outside the 

physiological range of the animal but the steepest slope of the ITD function matches the 

preferred ITDs of the cells, allowing for the rapid detection of ITD change (Palmer & 

Kuwada, 2005). There are more possibilities for the anatomic arrangement of the ITD 

detection system. According to the classical model proposed by Jeffress (Jeffress, 

1948), ITD sensitive neurons are arranged along their preferred ITD and act as so called 

coincidence detectors, which means that they receive input from the two ears by axons 

of different lengths according to the preferred delay of each cell and fire when input 

arrives from the two ears coincidentally. Such a structure was confirmed in birds, 

however, in mammals there is still no clear evidence for the existence of these 

coincidence detectors (McAlpine & Grothe, 2003). In contrast, studies suggest another 

method for ITD detection in mammals that is shaped by the interaction of excitation and 

inhibition in the brainstem nuclei lateral and medial superior olive and the medial 

nucleus of the trapezoid body. It is most likely that in rodents this later mechanism is 

responsible for ITD detection and the ITD sensitivity in the central nucleus is formed by 

the afferent connections from the above-mentioned brainstem nuclei (McAlpine & 

Grothe, 2003). As it is seen from the summary above, ITD sensitivity to static sounds is 

formed already in the SO, where neurons are insensitive to motion. Meanwhile, ICC 

neurons are clearly sensitive to moving sound sources, so this stage of the auditory 

pathway adds an important aspect to sound source detection. Sensitivity to the ITD of 

high frequency sounds is limited by the size of the head, but ITDs of higher frequency 

sounds can also be detected in the case when the ITD of the envelope of amplitude 

modulated high frequency sounds is detected (Leakey et al., 1958; Palmer & Kuwada, 

2005). However, the main mechanism for detecting interaural differences of high 

frequency sounds is the interaural level difference (ILD) detection. ILD sensitivity in 

the ICC is determined by input from the LSO, the nucleus in the brainstem where ILD 

sensitivity first develops in the brain (Palmer & Kuwada, 2005). ILD sensitive neurons 

in the LSO receive excitation from the ipsilateral ear and are inhibited by input from the 

contralateral ear. This pattern is reversed in the ICC because the input from high 

frequency LSO to ICC is crossed. As all ICC neurons are excited and inhibited similarly 

by input from the two ears, it is postulated that ILD is encoded by a population code, 
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that is, more and more ICC neurons get in excitation as a sound source moves from the 

ipsilateral to the contralateral hemisphere (Schofield, 2005).  

1.3.6 Spectral and temporal filtering in the central nucleus 

In the early auditory pathway, spike patterns generally reflect the fine structure of the 

sound waveform (for neurons with low preferred frequencies) and/or its amplitude 

envelope (for neurons with high preferred frequencies). The overall spike rate of auditory 

neurons, adaptive adjustments in dynamic range notwithstanding (Dean et al., 2005; Wen 

et al., 2009), typically increases with increasing mean intensity, though it may saturate or 

decrease at high intensities. In addition to modulating spike rate, changes in intensity can 

also have an indirect effect on the timing of spike patterns by evoking changes in the way 

in which sounds are filtered. For example, temporal filtering for high-frequency sounds 

is adapted to changes in intensity such that the system is always optimized for the current 

operating regime; for soft sounds, temporal filtering is low-pass so that resources are 

focused on low modulation frequencies where the signal-to-noise ratio (SNR) in natural 

sounds is typically highest, whereas for loud sounds, temporal filtering is bandpass, so 

that the redundancy in natural sounds at low modulation frequencies can be reduced 

(Lesica & Grothe, 2008b; Nagel & Doupe, 2006; Rees & Møller, 1987). Such changes in 

spectral and/or temporal filtering can help ensure that the flow of information in the 

periphery is robust to changes in intensity and may provide a substrate for invariant 

responses in the cortex (Billimoria et al., 2008; Sadagopan & Wang, 2008). Space is not 

represented topographically within the brain areas of the early auditory pathway, but is 

instead encoded directly in neuronal responses such that the spike rate evoked by a given 

sound is dependent not only on its intensity, but also on its spatial location. In the inferior 

colliculus (IC), for binaural neurons with low preferred frequencies, spike rate varies with 

the interaural time difference (ITD), typically as a monotonic function within the range 

of ITDs corresponding to realizable azimuthal angles (Groh et al., 2003; Hancock & 

Delgutte, 2004; Lesica et al., 2010; McAlpine et al., 2001). It is unknown whether, as 

described above for intensity, ITD-dependent changes in spike rate are accompanied by 

changes in spectral and/or temporal filtering that help to maintain the flow of information. 

Furthermore, although changes in intensity and ITD may have similar effects on the spike 

rate of a given neuron, they are certain to have different effects on spike rates across the 

entire population. A change in intensity will cause, on average, the same change in spike 
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rate in both hemispheres of the brain, whereas a change in ITD will have opposing effects 

on the two hemispheres, which, in terms of ITD sensitivity, are mirror images of each 

other.  

1.4. Decoding of neural responses 

Neural responses can be analyzed in several ways. In sensory experiments, neural 

responses are evoked by sensory stimulation and should be analyzed regarding the 

stimulus. With the advent of precise recording and fast analysis techniques, decoding of 

the responses of neurons to sensory stimuli became one of the most frequently used 

methods for analysis (Brown et al., 2004; Pouget et al., 2000). Decoding means for each 

single trial the prediction of which stimulus evokes the particular neural response (Quian 

Quiroga & Panzeri, 2009). Several different decoding approaches have been developed 

in the past years. Most of them divide the trials in two groups: training set and validation 

set. Training set is used to optimize the decoder, while validation set is used to validate 

the performance of the decoder. It is important to exclude trials in the training set from 

the validation set because using the test trials for validation can lead to overfitting and 

provide artificially high values of decoder performance (Aljadeff et al., 2016). To achieve 

this separation of training and test sets, a widely used method is the so called ‘leave-one-

out’ method when each trial is predicted based on all the other trials. The different 

decoding algorithms use various mathematical methods to decode the neural responses, 

such as Bayesian approach, nearest-neighbor estimation or support vector machines. In 

all cases, performance of the decoder has to be quantified which is achieved by computing 

the relative number of correctly decoded trials (Quian Quiroga & Panzeri, 2009). Based 

on this, each prediction can be regarded as a Bernoulli variable (having two values, 

correct or incorrect). Consequently, the probability that a sequence of trials was decoded 

correctly follows the Binomial distribution, which enables computing the statistical 

significance of decoder performance in the following way. The probability of getting k 

hits by chance from n trials based on the Binomial distribution is  

𝑃(𝑘) = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 
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where p=1/K is the chance of getting a hit by chance and K is the number of stimuli. Then, 

the p-value for statistical significance can be computed by adding up the probabilities of 

getting k or more hits by chance from the n trials:  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑ 𝑃(𝑗)

𝑛

𝑗=𝑘

 

This quantification enables researchers to use decoding as a powerful tool for neuronal 

signal analysis. The power of decoding neural signals lies in its capability of predicting 

the stimulus that caused the single-trial neural response. However, the amount of 

information extracted by decoding will always be less than the information available in 

the neural responses (Quian Quiroga & Panzeri, 2009). Another issue that has to be 

considered when using decoding of neural responses is the dimensionality problem. This 

means that explicit estimation of the probability distribution described above may be 

difficult due to the limited amount of data and high dimensional responses (Quian 

Quiroga & Panzeri, 2009). Experiments recording simultaneously a high number of cells 

yield such data: a high number of single units for which the relevant feature of firing is 

spike timing and not just the number of spikes. One of the successful methods to 

overcome this dimensionality problem is the application of distance metrics for decoding.  

1.4.1 Distance metrics of spike trains  

The variability of neural responses has to be quantified in order to be able to 

mathematically compare two single trials. A useful tool for this quantification is the 

application of distance metrics (Victor, 2005). A recording of neural activity can be 

conceptualized as a sequence of discrete events in continuous time, the neural spikes that 

are action potentials fired by single neurons. Such a structure of events is called a point 

process (Perkel et al., 1967) and various distance metrics can be constructed for it (Victor, 

2005). By definition, a metric is a function that associates a real nonnegative number 

analogous to distance with each pair of elements in a set such that the number is zero only 

if the two elements are identical, the number is the same regardless of the order in which 

the two elements are taken, and the number associated with one pair of elements plus that 

associated with one member of the pair and a third element is equal to or greater than the 

number associated with the other member of the pair and the third element (Rolewicz, 

1987). This definition is applicable for the construction of distance metrics for spike trains 
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too. The most straightforward way to construct a metric for spike trains is to define a cost-

based metric, that is, the distance of two spike trains is the minimal cost of transforming 

one spike train to the other (Victor, 2005). For this, the costs of transformation steps have 

to be defined, which is done by applying simple rules to the basic operations of inserting, 

deleting and shifting a spike in a spike train. In the most widely used type of spike train 

metrics, the so-called spike time metrics (Figure 1.4.1), inserting or deleting a single spike 

has a cost of 1. The other rule of spike time metrics states that the cost of moving a spike 

in time (shifting the spike) is proportional to the amount of time that it is moved. By 

applying these rules, the distance between two spike trains will be the minimum total cost 

of the above defined steps transforming one spike train into the other (Victor, 2005).  

 

Figure 1.4.1. Distance metrics of spike trains. Red: deleting a spike. Green: inserting a 

spike. Blue arrows: shifting a spike. (Victor, 2005) 
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1.4.2 Decoding of neural population responses with distance metrics 

The introduced distance metrics provide an intuitive method for decoding neural 

responses, as responses to the same stimulus should be closer to each other, while 

responses to different stimuli should be farer (Hofer et al., 2010). In addition, it can also 

be related to the classical approach of decoding under simplifying assumptions: If each 

response is represented as a point in multi-dimensional space and the distribution of the 

responses evoked by repetitions of the same stimulus within that space is assumed to be 

Gaussian, then the log likelihood that a response was evoked by a particular stimulus 

(assuming that all stimuli are equally likely) is proportional to the square of its distance 

from the average of all responses evoked by that stimulus. When the application of 

distance metrics for decoding began to be a routine, most studies focused on the question 

if decoding performance is influenced by cell identity, that is, whether the performance 

differs if all spikes are assumed to come from a single cell (Aronov et al., 2003; Houghton 

& Sen, 2008). However, the advent of multiple channel recordings, advanced spike 

sorting methods and high computational power computers enables researchers to study 

the influence of multiple identified neurons on decoder performance. In this section I will 

describe our study (Hofer et al., 2010) investigating how varying the influence, or weight, 

of each cell affects population decoding performance. The choice of weight for each cell 

is a complex problem and should be based not only on how informative the response of 

each cell is individually, but also on the correlations between the responses of each cell 

and the others in the population. This problem can be illustrated through a simple example 

of averaging: For a series of measurements in which the noise in each measurement is 

independent and of equal magnitude, standard averaging yields the optimal estimate of 

the underlying signal. If the magnitude of the noise varies across measurements, then 

some measurements will be more reliable than others, and a weighted average based on 

this reliability will yield the optimal estimate. However, if the noise in a fraction of the 

measurements is correlated, then averaging across those measurements will be less 

effective in reducing the noise (in the extreme of identical noise, averaging has no effect) 

and a weighted average that favors the uncorrelated measurements may provide the 

optimal estimate, even if the correlated measurements are individually more reliable. As 

with averaging, the optimal weights for population decoding with distance metrics are 

dependent on both the individual reliability of cells in the population and the correlations 

between them. In the following section, based on our study (Hofer et al., 2010), I will 
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describe an algorithm to find these optimal weights and demonstrate its utility by 

decoding experimental responses with a variety of correlation structures. 
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2. Specific aims 

2. 1 Decoding neuronal population activity with distance metrics 

In the classical approach of decoding, the probability distribution of the stimulus, 

conditioned on the observed responses, is involved to determine which stimulus was the 

most likely. However, for experiments where data are limited and the responses are high 

dimensional, the explicit estimation of the stimulus probability distribution may be 

difficult. An intuitive and practical way to overcome the dimensionality problem of 

decoding is using distance metrics (van Rossum, 2001; Victor & Purpura, 1996). Several 

studies applied distance metrics successfully for answering various sensory neuroscience 

questions (Victor, 2005), however, these used distance metrics for analyzing single 

neuronal responses. Previous attempts to apply distance metrics for decoding of neuronal 

population activity focused on the extent to which decoding performance is dependent on 

cell identity, i.e. whether performance differs if all spikes are assumed to come from a 

single neuron (Aronov et al., 2003; Houghton & Sen, 2008). Our aim was to investigate, 

how varying the influence, or the weight, of each cell affects population decoding 

performance. The motivation came from the observation that the choice of weight for 

each cell is a complex problem because it should be based not only on how informative 

the response of each cell is individually, but also on the correlations between the 

responses of each cell and the others in the population. In the chapters related to this 

study, I will describe an algorithm for finding these optimal weights and demonstrate its 

utility by decoding experimental responses with a variety of correlation structures. 

2.2 Revealing the effects of interaural time and intensity difference on the coding 

of low-frequency sounds 

The aim of this study is to describe both the single cell and the population level coding of 

low frequency sounds, while changing ITD and intensity. Spike train metrics was applied 

as a decoding method to reveal the changes in coding. This method enables the 

preservation of spike timing. A combination of 3 different sound intensity levels and 5 

ITD values were used for auditory stimulation. When decoding responses to these stimuli, 

special care must be taken to make sure that the changes in the responses are not due to 

overall spike rate changes, but they are real changes in spike timing.  Careful analysis 

was carried out to reveal if changes in intensity and ITD affect neural responses in 

different ways. Intensity changes can be studied both along the positive and negative 
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slopes of the RLF, and this part also shows the difference in the effects of changes along 

the positive and negative slopes of the RLF.  

To sum up, the aim of this part is to demonstrate that, at least at moderate intensities, the 

auditory system employs different strategies at the single neuron and population levels 

simultaneously to ensure that the coding of sounds is robust to changes in other stimulus 

features. 
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3. Materials and methods 

3.1. Experimental surgical procedures 

Data obtained from the acoustic stimulation experiments on anesthetized animals was 

used to test the performance of the decoding algorithm described in (Hofer et al., 2010) 

and to perform the analysis steps for the ITD and ILD change effects on information 

coding (Horvath & Lesica, 2011). Adult Mongolian gerbils (Meriones unguiculatus) of 

both sexes were used for anesthetized neural activity recording experiments. A total of 

24 animals were used for the two studies. All experiments were approved according to 

the German Tierschutzgesetz (AZ 211–2531– 40/01 and AZ 211–2531– 68/03). First, the 

animals were intraperitoneally injected (0.5 ml / 100 g body weight) a physiological saline 

solution containing 20% ketamine and 2% rompun (xylazine). During surgery and 

recordings, the same solution was infused continuously at a rate of ~0.1 ml/h. Constant 

body temperature of 37-39°C was maintained using a thermostatically controlled heating 

blanket. Skin and tissue covering the upper part of the skull was cut and gently pushed 

aside laterally, and a small metal rod was mounted on the frontal part of the skull using 

UV-sensitive dental-restorative composite material (Charisma, Heraeus Kulzer). The rod 

was used to secure the animal’s head in the stereotaxic frame while leaving the ear canals 

free for auditory stimulation. Earphones and probe-tube microphones were inserted into 

the ear canal and were held by custom-made earphone-holders. Then, the animal was 

transferred into a sound-attenuated chamber and mounted in a custom-made stereotaxic 

holder. A craniotomy was made over the inferior colliculus, 1.3-2.6 mm lateral from the 

midline and 0-1 mm caudal from bregma. The dura mater overlying the cortex was 

carefully removed, and either glass electrodes filled with 1 M NaCl (5-15 MOhm) were 

inserted into the central nucleus of the inferior colliculus (2-4 mm below brain surface) 

(in case of the publication (Hofer et al., 2010)) or a multielectrode microdrive (Thomas 

Recording) was used to advance seven independently moveable microelectrodes into the 

central nucleus of the inferior colliculus (in case of the publication (Horvath & Lesica, 

2011)). For this latter publication, all recordings were made in the low-frequency lamina 

of the rostrolateral quadrant of the IC, where inputs from the medial superior olive (MSO) 

are clustered (Cant & Benson, 2006) and cells are likely to be ITD sensitive. For both 

publications, extracellular action potentials were amplified and fed into a computer via 

an A/D converter (RX5, Tucker Davis Technologies). Clear isolation of single units was 

achieved using offline spike sorting in MClust software (Fraley & Raftery, 1999, 2002). 
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Only those units with an isolation distance > 10 were included in these studies (Schmitzer-

Torbert et al., 2005). Experiments typically lasted 10-14 hours. After recordings, the 

animal was killed without awakening by an injection of 0.1 ml of barbital.  

3.2 Acoustic stimulation 

Acoustic stimuli were generated at a 50 kHz sampling rate by TDT System III (Tucker 

Davis Technologies). The generated stimuli were converted to analog signals (RP2-1, 

TDT), attenuated (PA5, TDT) and delivered to electrostatic speakers (EC1, TDT or ER2; 

Etymotic Research) that were coupled to the tubes which were inserted in the ears along 

with microphones (ER10B; Etymotic Research). Speakers were calibrated to have a flat 

frequency response (5 dB SPL from 0.1 to 10 kHz) after coupling to the ears at the 

beginning of each experiment. For the publication (Hofer et al., 2010), stimuli were 8 

different instances of randomly generated Gaussian white noise. In total, each instance 

was played 20 times in a random order. For the publication (Horvath & Lesica, 2011), at 

each recording site, a sequence of sounds with various frequencies, intensities, and ITDs 

were presented to characterize basic response properties. First, 100 ms pure tones of 

various intensities and frequencies were presented, separated by 150 ms periods of 

silence, to determine the frequency response area (Figure 3.2.1 A). Tones were presented 

binaurally with zero ITD and had a rise/fall time of ± 5 ms. Next, eight repeated 

presentations of a 250 ms token of frozen Gaussian noise at ITDs ranging from - 2 to 2 

ms were presented, separated by 500 ms periods of silence, to compute noise delay 

functions shown in Figure 3.2.1. B. From the noise delay functions, the best ITD (the one 

evoking the highest spike rate) was extracted (Figure 3.2.1 C). The noise was filtered to 

contain only frequencies between 200 and 4000 Hz and had a rise/fall time of 5 ms. The 

intensity of the noise was 50 dB SPL. Finally, the sounds used for the main decoding 

analysis were presented: 20 repeated presentations of eight different 250 ms noise tokens 

(filtered as above) at five different ITDs (- 135, - 67.5, 0, 67.5, and 135 µs) and three 

different intensities (43, 63 and 83 dB SPL), separated by 500 ms periods of silence. The 

same tokens were then presented a second time with added broadband background noise 

(different on every trial) with a signal-to-noise ratio of 0 dB.  
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Figure 3.2.1: Response properties of IC neurons. A: frequency response area (FRA) 

from responses to tone bursts with varying frequency and intensity, for a typical neuron. 

For our population of neurons, the best frequencies (BFs) were clustered between 500 

and 2000 Hz, with a median value of 1120 Hz (see inset). B: noise delay functions 

(NDFs) of the neurons from responses to binaural noise bursts with different ITDs for a 

typical neuron (the thickness of the line indicates the standard error of the mean 

response across 8 trials). C: From the NDFs, we extracted the best ITD, i.e. the ITD 

that evoked the highest spike rate. For our population of neurons, the distribution of 

best ITDs was clustered around the edge of the physiological limit for gerbils, 

corresponding to a sound located contralateral to the recording site (135 µs; (Maki & 

Furukawa, 2005)) with a median value of 101 µs. 

 

3.3. Decoding using distance metrics 

We define the set of responses from cell p in response to I trials of S different stimuli as 

rpSI, where S = {1, 2, . . . , S} and I = {1, 2, . . . , I}. To decode the response evoked by 
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trial i of stimulus s, rpsi, we remove it from the set and infer which stimulus evoked it, 

ŝ(rpsi). Assuming we have a metric for quantifying the distance between two responses, 

d(rpsi, rps’i’), then we can determine the average distance from rpsi to the responses evoked 

by all trials of a given stimulus s’, 𝑑̅𝑠′(r
psi) = 〈𝑑(𝑟𝑝𝑠𝑖 , 𝑟𝑝𝑠′𝑖′)〉𝑖′, with trial i excluded to 

avoid overfitting when s = s’, and choose the stimulus for which this average distance is 

minimal, 𝑠̂(𝑟𝑝𝑠𝑖) = arg min 𝑑̅𝑠′s′∈S (𝑟𝑝𝑠𝑖) [note that in the equation for 𝑑̅, an exponent 

can be introduced inside the expectation to bias the result toward larger or smaller values]. 

This approach is easily extended to decode the responses 𝑟𝑷𝑺𝑰 from a population of cells 

P = {1, 2, . . . , P}. To decode the responses from the population of cells P in response to 

trial i of stimulus s, 𝑟𝑷𝑠𝑖, we choose the stimulus for which a weighted sum of the average 

distances for each cell is minimal, 𝑠̂(𝑟𝑷𝑠𝑖) = arg min ∑ 𝑤𝑝𝑑̅𝑠′(𝑟𝑝𝑠𝑖)𝑝∈𝑷𝑠′∈𝑆
. The central 

question in this section is how to choose the weights 𝑤 = [𝑤1, 𝑤2, .  .  . , 𝑤𝑃] so as to 

maximize decoding performance.  

3.4 Optimization of decoder weights 

After decoding the spike trains for every trial of every stimulus as described above, we 

measure overall performance as the percent of spike trains that were correctly decoded 

and denote this quantity as PCp for a single cell p, and PCP(w) for the population P with 

weights w. The standard approach to finding the optimal set of weights, i.e. the set of 

weights that maximize PCP(w), is to calculate the gradient dPCP(w)/dw and use it as a 

guide toward a local, and hopefully global, maximum. However, for the particular 

problem considered here, analytical specification of the gradient was not possible and 

algorithms that calculated the gradient numerically performed very poorly. Fortunately, 

there is another class of algorithms known as ‘evolutionary’ that do not require knowledge 

of the gradient. These algorithms operate iteratively, choosing the best of several 

candidate solutions on each iteration until performance saturates. While there are many 

evolutionary algorithms that may be suitable for this particular problem, we chose to 

implement two of the most common, genetic and particle swarm. As illustrated in the 

examples below, the performance of these algorithms was similar. However, the genetic 

algorithm was superior in that it required less computation time and is easily implemented 

via the Genetic Algorithm and Direct Search Toolbox in Matlab (The Mathworks, USA), 

and, thus, we describe only its implementation in detail here. Details of the particle swarm 
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algorithm can be found in (Kennedy et al., 2001). The genetic algorithm for optimization 

begins by creating a population of y random vectors of length p, drawn with uniform 

probability from the interval [0, 1], and computing PCP(w) for each vector. Next, the 

population is evolved in three steps: First, e ‘elite’ vectors, those with the highest PCP(w), 

are moved to the next generation. Next, x ‘crossover’ vectors are created by random 

recombination between two ‘parent’ vectors from the current population, with the 

probability of a particular vector being chosen as a parent proportional to its PCP(w). 

Finally, u ‘mutant’ vectors are created by adding random noise n ∼ N(0, σ) to a parent 

vector, with parent vectors chosen as above. The standard deviation of the noise σ = 1 for 

the first generation and is decreased linearly with each successive generation such that σ 

= 0 if the algorithm runs to completion. The algorithm stops after either completing V 

evolution generations or when the change in the highest PCP(w) over the past G 

generations is less than ε. The set of weights with the highest PCP(w) after the completion 

of the algorithm is denoted wgenetic. For the examples in this study, y = 25, e = 2, x = 18, 

u = 5, V = 100, G = 25, and ε = 10−5, in accordance with the suggested default parameters 

for the ga function in Matlab. As a baseline for comparison with wgenetic, we also computed 

the optimal weights wswarm via particle swarm optimization, and used two other simple 

weighting schemes: wequal = 1, where all cells are weighted equally, and wpercorr = [PC1, 

PC2, . . . , PCp], where the weights are determined by the overall performance of each 

cell when its responses are decoded individually. To prevent overfitting, it is important 

to exclude the responses to be decoded when optimizing the weights. For all 

optimizations, we split the responses into successive training sets (95% of responses) and 

testing sets (5% of responses) such that all responses were included in the testing set 

exactly once.  

3.5. Decoding spike trains for revealing the effects of ITD and ILD change on coding 

We decoded spike trains (i.e., used the spike trains to infer the sound that evoked them) 

using the metric introduced by (Victor & Purpura, 1996), which measures the distance 

between two spike trains as the overall cost of the set of operations required to transform 

one spike train into the other, with possible operations including the insertion of a spike, 

the deletion of a spike, and the time-shift of a spike (software available at http://www-

users.med.cornell.edu/~jdvicto/spkdm.html). By changing the cost of time-shifting a 

spike relative to deleting the spike at one time and inserting it at another, the metric can 
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be used to evaluate the distance between spike trains at different timescales. The 

implementation of the metric followed the one described in (Victor & Purpura, 1996). 

We also decoded spike trains using the metric of (van Rossum, 2001), but, as decoder 

performance was similar with both metrics, only results from decoding with the Victor 

and Purpura metric are shown in the Results, below. Decoding using this metric was 

performed in three steps. First, a single spike train was removed from the full set of all 

spike trains. Second, the distance between the removed spike train and each of the 

remaining spike trains in the set was computed. Third, the removed spike train was 

assigned to the sound for which its average distance to the remaining spike trains evoked 

by that sound was smallest. This process was repeated for all spike trains in the set to 

obtain an overall percentage correct. For population spike trains, the distances for 

individual neurons were summed before decoding. The sound tokens used for the 

decoding analysis were 250 ms in duration, but, in all cases, responses to the first 50 ms 

were discarded because many neurons responded strongly to the onset of all of the 

different tokens and, thus, decoding token identity based on this portion of the response 

was not possible. For testing the significance of tuning to intensity, ITD, and token 

identity in single neurons as described below, responses to the remaining 200 ms of sound 

were used. For testing the effects of changes in ITD and intensity on decoding of token 

identity in single neurons, the duration that yielded decoder performance of ~ 50% correct 

for the base condition was determined individually for each neuron, and the same duration 

was used for the ITD and SPL conditions. For testing the effects of changes in ITD and 

intensity on decoding of token identity in populations, responses from 50 to 65 ms after 

sound onset were used for the analysis without background noise and responses from 50 

to 200 ms were used for the analysis with background noise. 

3.6. Evaluating the significance of tuning 

The significance of each neuron’s tuning to sound intensity, ITD, and token identity was 

determined by comparing decoder performance on the actual responses to performance 

after randomly reassigning the stimulus value associated with each response. Decoding 

was performed on 100 different sets of randomized responses and the significance 

threshold was defined as 2 SDs above the mean percentage correct for the randomized 

sets. For evaluating the significance of ITD and intensity tuning, responses to all tokens 

for each intensity and ITD were combined and decoding was based only on spike rate. To 
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be included in the full analysis comparing the effects of changes in ITD and intensity on 

the decoding of token identity, a neuron had to be significantly tuned to changes in ITD 

at all intensities and significantly tuned to changes in intensity at all ITDs. For evaluating 

the significance of tuning to token identity, decoding was performed at a range of 

timescales as described above. To be included in the full analysis, a neuron had to be 

significantly tuned to token identity at all ITDs and intensities for at least one timescale.  

3.7. Calculating signal-to-noise ratio 

SNR of responses (in 1 ms bins) was calculated as described by (Borst & Theunissen, 

1999). First, the signal spectrum was obtained by computing the power spectrum of the 

response after averaging across all trials. Next, to obtain the noise power, the response 

from each trial was subtracted from the average response and the power spectrum of this 

difference was computed. These difference spectra were averaged over all trials to yield 

the overall noise spectrum. The SNR at each frequency was defined as the ratio of the 

power of the signal and noise spectra at that frequency and the total SNR was defined as 

the ratio of the sum of the power of the signal and noise spectra over all frequencies (i.e., 

the ratio of the variances of the signal and noise).  
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4. Results 

4.1 Decoding with distance metrics 

4.1.1 Decoding experimental spike trains 

To illustrate the utility of the optimization algorithm under experimental conditions, we 

decoded spike trains from P = 34 cells recorded in the inferior colliculus of anesthetized 

gerbils in response to the presentation of I = 20 trials of S = 8 different sounds (different 

instances of Gaussian white noise). We decoded the spike trains using the metric 

introduced by (Victor & Purpura, 1996), which measures the distance between two spike 

trains as the overall cost of the set of operations required to transform one spike train into 

the other, with possible operations including the insertion of a spike, the deletion of a 

spike, and the time-shift of a spike. By changing the cost of time-shifting a spike relative 

to deleting the spike at one time and inserting it at another, the metric can be used to 

evaluate the distance between spike trains at different timescales. The details of the 

implementation of the metric are not given here but can be found in (Aronov et al., 2003; 

Victor & Purpura, 1996). A 10 ms segment of the set of spike trains 𝑟𝑝𝑺𝑰 for a typical cell 

is shown in Figure 4.1.1 along with the decoding performance for the individual responses 

of each cell as a function of the response timescale parameter of the decoder (decoded 

responses were 100 ms in duration). The median best timescale, i.e., the timescale that 

yielded the best decoding performance, across the sample of cells was 2 ms (black arrow) 

and, for simplicity, we fixed the response timescale at this value for all decoding of these 

responses. The distribution of significant pairwise correlation coefficients for the 

population is shown in Figure 4.1.2 (P = 34 cells). Correlation coefficients were estimated 

after converting the spike trains to binary vectors with a temporal resolution of 2 ms. Only 

significant correlations (p < 0.05) are shown. The total correlation (ρtotal) was computed 

directly from the responses, the signal correlation (ρsignal) was computed from the 

responses after randomizing the trial order, and the noise correlation (ρnoise) was computed 

as the difference between ρtotal and ρsignal. The total correlation (ρtotal) was significant 

between approximately half of the cell pairs (262 of 561).  
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Figure 4.1.1. Left: raster plot showing the spike trains of a neuron in the inferior 

colliculus of an anesthetized gerbil in response to I = 20 trials of S = 8 different sounds. 

Right decoder performance (percent correct, PC) as a function of decoder response 

timescale for the responses of each individual cell. The black arrow indicates the 

population median best timescale, 2 ms. 

 

Figure 4.1.2. Histograms of the correlation coefficients between pairs of cells (P = 34). 

Correlation coefficients were estimated after converting the spike trains to binary vectors 

with a temporal resolution of 2 ms. Only significant correlations (p < 0.05) are shown. 

The total correlation (ρtotal) was computed directly from the responses, the signal 

correlation (ρsignal) was computed from the responses after randomizing the trial order, 

and the noise correlation(ρnoise) was computed as the difference between ρtotal and ρsignal. 
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Figure 4.1.3. The decoder performance PCP(w) for subpopulations of increasing size for 

four sets of weights: wequal (all weights equal), wpercorr (weights based on individual 

performance), wgenetic (weights optimized with genetic algorithm), and wswarm (weights 

optimized with particle swarm algorithm). The circles and bars indicate the mean and 

standard error of the performance for 100 different random subpopulations. 

 

 

Figure 4.1.4 The weights wgenetic resulting from 10 different optimizations with random 

initial values in the population y for a particular subpopulation of 16 cells. The lines 

indicate the weights for each individual optimization and the circles and bars indicate 

the mean and standard deviation. The dummy cell is indicated by the filled black circle. 
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Correlations between cells can have both signal and noise components: signal correlations 

arise from correlations in the stimulus itself and/or similarity in preferred stimulus 

features (frequency, orientation, etc.), while noise correlations arise from shared inputs 

that contribute to the trial-to-trial variability in responses. In this set of responses, most 

of the total correlation was due to signal correlations (in fact, because most of the cells 

were not recorded simultaneously, the population is expected to contain few noise 

correlations). The decoder performance PCP(w) for subpopulations of increasing size is 

shown in Figure 4.1.3. for four sets of weights: wequal (all weights equal), wpercorr (weights 

based on individual performance), wgenetic (weights optimized with genetic algorithm), 

and wswarm (weights optimized with particle swarm algorithm). For population decoding, 

only 10 ms segments of the responses were used in order to increase the difficulty of the 

decoding task. While the decoder performance was similar for all sets of weights for small 

population sizes, genetic and particle swarm optimization provided a performance 

increase of approximately 10% for large populations. To determine whether optimization 

produced global optima, we used the genetic algorithm to find the optimal weights for a 

given set of responses using 10 different initial populations y. In each set of responses, 

we also included a ‘dummy cell’ for which the stimulus identity associated with each 

response was randomized. As illustrated in Figure 4.1.4. for a particular subpopulation of 

P = 16 cells, the genetic algorithm converges to approximately the same set of optimal 

weights wgenetic independent of the initial values in the population y and the weights 

associated with the dummy cell (filled black circle) were always near zero. These results 

suggest that the set of weights produced by the genetic algorithm is indeed the global 

optimum and that the algorithm is successful in minimizing the contribution of 

uninformative cells. For the same cells, we also recorded responses to the same sounds in 

the presence of background noise. Because a different background noise was added on 

each trial, and this noise was the same for all cells, the background noise served to reduce 

signal correlations and introduce noise correlations. The set of spike trains 𝑟𝑝𝑺𝑰 for a 

typical cell is shown in Figure 4.1.5. along with the decoding performance for the 

individual responses of each cell as a function of the response timescale (decoded 

responses were 100 ms in duration). While the background noise resulted in considerable 

variability in the spike trains evoked by the same stimulus, the median best timescale was 

again 2 ms and we fixed the response timescale at this value for all decoding of these 
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responses. The distribution of significant pairwise correlation coefficients for the 

population is shown in Figure 4.1.6. Again, the total correlation (ρtotal) was significant 

between approximately half of the cell pairs (299 of 561), but for this set of responses, 

most of the total correlation was due to noise correlations. The decoder performance for 

the population PCP(w) for subpopulations of increasing size is shown in Figure 4.1.7. for 

wequal, wpercorr, wgenetic, and wswarm. For population decoding, only 30 ms segments of the 

responses were used in order to increase the difficulty of the decoding task. As in the 

previous example, performance was similar for all sets of weights for small population 

sizes, but optimization provided a substantial performance increase for large populations 

and, as shown in Figure 4.1.8., optimizations with different initial values in the population 

y produced similar sets of weights with values near zero for the dummy cell. Taken 

together, the results in Figures 4.1.1-8. demonstrate that the optimization algorithm was 

effective for decoding population spike trains under experimental conditions when the 

responses contained both signal and noise correlations.  

 

Figure 4.1.5. Left: raster plot showing the spike trains of a neuron in the inferior 

colliculus of an anesthetized gerbil in response to I = 20 trials of S = 8 different sounds. 

Right decoder performance (percent correct, PC) as a function of decoder response 

timescale for the responses of each individual cell. The black arrow indicates the 

population median best timescale, 2 ms. A different random background noise was added 

to each sound on each trial. 
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Figure 4.1.6. Histograms of the correlation coefficients between pairs of cells (P = 34) 

with added background noise. 

 

Figure 4.1.7. The decoder performance PCP(w) for subpopulations of increasing size for 

four sets of weights: wequal (all weights equal), wpercorr (weights based on individual 

performance), wgenetic (weights optimized with genetic algorithm), and wswarm (weights 

optimized with particle swarm algorithm). The circles and bars indicate the mean and 

standard error of the performance for 100 different random subpopulations. Background 

noise was added to each sound on each trial. 
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Figure 4.1.8. The weights wgenetic resulting from 10 different optimizations with random 

initial values in the population y for a particular subpopulation of 16 cells. The lines 

indicate the weights for each individual optimization and the circles and bars indicate 

the mean and standard deviation. The dummy cell is indicated by the filled black circle. 

Background noise was added to each sound on each trial. 

 

4.1.2. Decoding experimental calcium signals 

To further illustrate the utility of optimization under experimental conditions, calcium 

signals (relative change in indicator fluorescence) were also decoded from P = 37 cells 

recorded in the visual cortex of anesthetized mice in response to the presentation of I = 

18 trials of S = 8 different oriented sinusoidal gratings (each grating was displayed for 2 s 

at 50% contrast and drifted at a rate of 2 Hz; calcium signals were sampled at 15 Hz). 

Although I did not analyze these signals, that come from an experiment described in 

(Mrsic-Flogel et al., 2007), the following results add notable information to the decoder 

optimization. The set of calcium signals 𝑟𝑝𝑺𝑰 for a typical cell is shown in Figure 4.1.9. 

The top image gives an overview of the dynamics and reproducibility of the signals as 

the orientation of the grating changed (the order of the orientations was the same on each 

trial), while the lower plots show the signals in detail for two particular orientations. The 

distribution of significant pairwise correlation coefficients for the population (computed 

at a timescale of 66 ms) is shown in Figure 4.1.10. The total correlation (ρtotal) was 

significant between most of the cell pairs (560 of 666) and contained both signal and noise 

components (all cells were recorded simultaneously). We decoded the calcium signals 
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using the Euclidean distance metric 𝑑(𝑟𝑝𝑠𝑖, 𝑟𝑝𝑠′𝑖′
) = |𝑟𝑝𝑠𝑖 −  𝑟𝑝𝑠′𝑖′

|. The decoder 

performance PCP(w) for subpopulations of increasing size is shown in Figure 4.1.11. for 

wequal, wpercorr, and wgenetic, wswarm. As with spike trains, performance was similar for all 

sets of weights for small populations, but optimization improved performance for large 

populations and, as shown in Figure 4.1.12., optimizations with different initial values in 

the population y produced similar sets of weights with values near zero for the dummy 

cell. These results demonstrate that the optimization algorithm was effective for decoding 

not only population spike trains, but also population calcium signals with signal and noise 

correlations.  

 

Figure 4.1.9. Top: an image showing the calcium signal (relative change in indicator 

florescence) of a neuron in the visual cortex of an anesthetized mouse in response to I = 

18 trials of S = 8 different oriented gratings. Bottom: the calcium signals for the same 

neuron in response to two particular orientations. Gray lines indicate the signal for each 

trial and the black line indicates the mean.  
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Figure 4.1.10. Histograms of the correlation coefficients between pairs of cells (P = 37). 

 

 

Figure 4.1.11. Decoder performance PCP(w) for subpopulations of increasing size for 

four sets of weights: wequal, wpercorr, wgenetic, and wswarm.  
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Figure 4.1.12. The weights wgenetic resulting from 10 different optimizations with random 

initial values in the population y for a particular subpopulation of 16 cells. The lines 

indicate the weights for each individual optimization and the circles and bars indicate 

the mean and standard deviation. The dummy cell is indicated by the filled black circle.  

 

4.2. Revealing the effects of interaural time and intensity difference on the coding 

of low-frequency sounds 

To investigate the influence of intensity and ITD on the ability of auditory neurons to 

encode low-frequency sounds, we made extracellular single-unit recordings from the 

central nucleus of the IC in anesthetized gerbils using a multielectrode array. Recordings 

were made in the low-frequency lamina of the rostrolateral quadrant of the IC, where 

inputs from the MSO are clustered (Cant & Benson, 2006) and cells are likely to be ITD-

sensitive. Because these cells are sensitive only to low frequencies, ITD is the only 

available cue for azimuthal angle (Maki & Furukawa, 2005). Of our original population 

of 55 neurons, we analyzed only the 33 that were significantly tuned to changes in 

intensity, ITD, and sound token identity. All of these neurons had significant sustained 

responses to broadband binaural sounds (spike rates between 50 and 100 ms after sound 

onset were greater than spontaneous spike rates; Wilcoxon rank-sum tests, p < 0.05). The 

distributions of preferred frequencies and ITDs for the population are shown in Figure 

3.2.1. 
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4.2.1. Changes in intensity and ITD influence the precision and timing of spike events  

To determine the effects of changes in intensity and ITD on the ability of single neurons 

to encode low-frequency sounds, we analyzed responses to 20 repeated trials of eight 

different sound tokens (Gaussian noise bandpass filtered between 200 and 4000 Hz) at 

three different intensities (43, 63, and 83 dB SPL) and five different ITDs (evenly spaced 

between ±135 µs, spanning the physiological range for gerbils (Maki & Furukawa, 2005); 

positive ITDs indicate that the sound reached the ear contralateral to the recording site 

first), for a total of 15 different intensity/ITD combinations. The different tokens reliably 

evoked different spike patterns, as illustrated in the responses of a typical neuron to 

sounds presented at 63 dB SPL with 0 µs ITD shown in Figure 4.2.1.  

 

Figure 4.2.1. A raster plot showing the spike trains recorded from a typical neuron in 

response to 20 repeated presentations of eight different sound tokens presented at 63 dB 

SPL with 0 µs ITD.  

To study the effects of changes in intensity and ITD beyond those that result from changes 

in overall spike rate, we analyzed only responses from those neurons for which we found 

a decrease in intensity and a negative change in ITD that caused approximately the same 

decrease in spike rate relative to an arbitrary base condition (the base condition could be 

any intensity/ITD combination and was chosen independently for each cell) 

(Figure 4.2.2.).  
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Figure 4.2.2. A schematic diagram depicting the relationship between the three stimulus 

conditions: the base condition, the ITD change (ΔITD; a decrease in ITD) condition, and 

the intensity change (ΔSPL; a decrease in intensity) condition. Only those cells for which 

the ΔSPL condition could be defined by a change in intensity along the positive slope of 

the RLF were analyzed. 

Because our sampling of the space of possible intensity/ITD combinations was relatively 

sparse, only 19 neurons satisfied this criterion (the reductions in spike rate for the intensity 

change (ΔSPL) and ITD change (ΔITD) conditions relative to the base condition for these 

neurons were not significantly different; paired Wilcoxon test, p = 0.08; median reduction 

was 29% for ΔSPL and 30% for ΔITD). The requirement that a decrease in intensity cause 

a decrease in spike rate ensured that the analysis was restricted to the range of intensities 

corresponding to the positive slope of the rate-level function (RLF; the function relating 

sound intensity to overall spike rate) (Figure 4.2.2, inset), even for neurons with 

nonmonotonic RLFs (analysis of responses from the negative slope of the RLF are 

presented below). The responses of a typical neuron to one sound token for the base, 

ΔSPL, and ΔITD conditions are shown in Figure 4.2.3, left. The changes in intensity and 

ITD had similar effects on the spike rate, but they had different effects on the timing of 

spikes within the response. Relative to the base condition, the change in intensity caused 

a change in the overall timing of events, but had little impact on precision of spike timing 

across trials, whereas the change in ITD caused a decrease in precision of spike timing 

across trials but left the overall timing of spike events largely unchanged.  
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Figure 4.2.3. Left: Raster plots and PSTHs showing the responses of a typical neuron to 

the same sound token for the three conditions. The mean overall spike rates and response 

SNRs are shown for each condition, and the CCs between the PSTHs for the base 

condition and each of the two change conditions are shown. Different PSTHs extend 

upward and downward from the same axis for ease of visual comparison. Right: Boxplots 

showing the distribution of CCs between the PSTHs for the base condition and each of 

the two change conditions for a sample of 19 neurons. In each plot, the central mark 

indicates the median, the edges of the box indicate the 25th and 75th percentiles, and the 

error bars extend to the most extreme values. The results of paired Wilcoxon tests 

comparing the medians of the distributions are indicated. ***p < 0.001 

To quantify the effects of changes in intensity and ITD on the overall timing of events, 

we measured the correlation coefficient (CC) between the peristimulus time histograms 

(PSTHs) (in 1 ms time bins) for each of the change conditions and the base condition. As 

shown in Figure 4.2.3, right, across our sample of neurons, the CC between responses for 

the ΔITD and base conditions were significantly larger than those between responses for 

the ΔSPL and base conditions (paired Wilcoxon test, p < 0.001). To quantify the effects 

of changes in intensity and ITD on precision, we measured the SNR of the responses. 

SNR, a measure commonly used to describe the precision of spike trains in early sensory 

systems, compares the power in the part of the response that is repeatable from trial to 

trial (the PSTH) with that which is variable from trial to trial (the deviation from the 

PSTH on each trial).  
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As shown in Figure 4.2.4, across our sample of neurons, the change in ITD caused a 

significant decrease in SNR relative to the base condition, whereas the change in intensity 

had no significant effect (paired Wilcoxon tests, p < 0.001 for ITD and p = 0.18 for SPL). 

These results suggest that changes in intensity and ITD have different effects on the 

timing of spikes: a change in intensity causes a change in the overall timing of spike 

events, whereas a change in ITD causes a change in the precision of spike timing across 

trials. 

 

Figure 4.2.4. Boxplots showing the distribution of response SNRs 

for each of the three stimulus conditions. In each plot, the central 

mark indicates the median, the edges of the box indicate the 25th 

and 75th percentiles, and the error bars extend to the most extreme 

values. The results of paired Wilcoxon tests comparing the medians 

of the distributions are indicated. n.s., Not significant., ***p < 

0.001 

 

 

4.2.2. Changes in ITD, but not intensity, influence decoder performance 

To determine the impact of the observed effects of changes in intensity and ITD on 

coding, we used a decoder to infer which sound token evoked each response for each 

stimulus condition. The performance of the decoder for a given condition reflects how 

well information about token identity is encoded in the spike trains for that condition; if 

the spike trains evoked by a given token are similar to each other, but different from the 

spike trains evoked by the other tokens, then the decoder will correctly assign the spike 

trains to the tokens that evoked them (note that this approach is different from training 

the decoder for one condition and testing its performance for a different condition to 

examine the degree of invariance in how the information is encoded (Billimoria et al., 

2008)). Because the tokens were exactly the same for each condition, the difference in 

the performance of the decoder for the three stimulus conditions provides a direct measure 

of the effects of changes in intensity and ITD on coding. The decoder was based on a 
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metric that computes the distance between two spike trains at a specified timescale (Victor 

& Purpura, 1996). To decode a given spike train, the decoder measured its distance to all 

of the other spike trains evoked by each sound token and chose the token for which the 

mean distance was smallest. This decoder is not designed to mimic the function of a 

neuron in any particular downstream auditory area, but simply to serve as tool for 

assessing how well information about token identity is encoded in IC responses. The 

performance of the decoder at different timescales for a typical neuron for the base, ΔSPL, 

and ΔITD conditions is shown in Figure 4.2.5, left.  

            

Figure 4.2.5. Left: Decoder performance as a function of response timescale for a typical 

neuron under the three stimulus conditions. The stars indicate the time scale 

corresponding to the best performance. Right: Boxplots showing the distribution of 

decoder performance at the optimal timescale for each of the three stimulus conditions. 

In each plot, the central mark indicates the median, the edges of the box indicate the 25th 

and 75th percentiles, and the error bars extend to the most extreme values. The results of 

paired Wilcoxon tests comparing the medians of the distributions are indicated. Chance 

level performance was 12.5%. n.s., Not significant., ***p < 0.001 

For this neuron, the decoder performance was unaffected by the change in intensity but 

was severely degraded by the change in ITD. As shown in Figure 4.2.5, right, across the 

sample of neurons, the change in ITD caused a significant decrease in decoder 

performance (at the timescale for which performance was maximal for each neuron) 

relative to the base condition, whereas the change in intensity had no significant effect 

(paired Wilcoxon tests, p < 0.001 for ΔITD and p = 0.27 for ΔSPL). Thus, the change in 
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the precision of spike timing across trials caused by a change in ITD had a strong effect 

on the ability of IC neurons to encode low-frequency sounds, whereas the change in the 

overall timing of spike events caused by a change in intensity did not (at least for the 

restricted range of intensities corresponding to the positive slope of the RLF; see below 

for the results for intensities corresponding to the negative slope of the RLF).  

4.2.3 Changes in intensity, but not ITD, evoke a change in spectrotemporal filtering  

Previous studies have demonstrated that changes in intensity evoke a shift in spectral 

and/or temporal filtering properties that may help preserve the flow of auditory 

information in the face of changes in the SNR of incoming sounds (Lesica & Grothe, 

2008b; Nagel & Doupe, 2006; Rees & Møller, 1987). For example, as intensity is 

decreased, temporal filtering shifts toward low frequencies where the SNR in natural 

sounds is likely to be the largest (Lesica & Grothe, 2008b; Singh & Theunissen, 2003).To 

investigate whether such shifts could account for the differences in the effects of changes 

in intensity and ITD on the coding of low-frequency sounds illustrated above, we 

measured the SNR as a function of response frequency for the neurons in our sample. 

Because the sound tokens were identical for all three stimulus conditions and were 

uncorrelated (i.e., had equal power at all frequencies), the SNR at each response 

frequency is a direct reflection of the net effect of the spectrotemporal filtering properties 

of the system (note that we use the term spectrotemporal filtering because the neurons in 

our sample have low preferred frequencies and response power at a given frequency can 

reflect filtering of both envelope and fine structure). The mean SNR as a function of 

response frequency for the base, ΔSPL, and ΔITD conditions for our sample of neurons 

are shown in Figure 4.2.6, normalized such that the area under each curve is the same to 

compensate for the overall differences in SNR described above. As expected, the change 

in intensity caused a clear shift toward low response frequencies relative to the base 

condition. In contrast, the SNRs as functions of response frequency for the base and ΔITD 

conditions were nearly identical, indicating that the change in ITD did not evoke a shift 

in spectrotemporal filtering properties. Thus, the system appears to shift its 

spectrotemporal filtering properties to preserve the ability of single neurons to encode 

low-frequency sounds in response to changes in intensity, but not in response to changes 

in ITD.  
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Figure 4.2.6. The SNR as a function of response frequency 

under the three stimulus conditions, averaged across all 

cells in the sample and normalized such that the area 

under each curve is the same. The thickness of the lines 

indicates the SEM. The change in intensity caused a clear 

shift toward low response frequencies relative to the base 

condition. In contrast, the SNRs as functions of response 

frequency for the base and ΔITD conditions were nearly identical, indicating that the 

change in ITD did not evoke a shift in spectrotemporal filtering properties. Thus, the 

system appears to shift its spectrotemporal filtering properties to preserve the ability of 

single neurons to encode low-frequency sounds in response to changes in intensity, but 

not in response to changes in ITD. 

 

 

4.2.4. Coding is robust to changes in ITD at the population level 

The results described above demonstrate that changes in intensity and ITD have different 

effects on the coding of low-frequency sounds in the responses of single neurons. 

However, these changes also have different effects on the overall spike rates of the entire 

population. For example, an increase in intensity will cause, on average, an increase in 

spike rate for the whole population (except, perhaps, at very high intensities). In contrast, 

because most binaural neurons with low preferred frequencies (including all in this study) 

respond most strongly to sounds located on the side contralateral to the brain hemisphere 

that they are in (corresponding to positive ITDs in this study), a change in the ITD of a 

sound will cause, on average, an increase in spike rate for neurons in one hemisphere and 

a decrease in spike rate for neurons in the other hemisphere. To determine how changes 

in intensity and ITD influenced the coding of sound content at the population level, we 

decoded the responses of many different random subpopulations of neurons using the 

same metric as described above.  



62 
 

 

Figure 4.2.7. Boxplots showing the distribution of decoder performance for 50 randomly 

chosen populations of 10 cells with either all cells from the same hemisphere or half of 

the cells from each hemisphere. Only the distributions for responses to sounds at 83 dB 

SPL are shown, but the distributions for other intensities were similar. All neurons were 

in fact recorded in the same hemisphere, but responses to sounds at -135and +135μs ITD 

were switched for half of the neurons to simulate responses from both hemispheres. n.s., 

Not significant. ***p < 0.001. 

As shown in Figure 4.2.7, when all of the cells in the population were taken from a single 

hemisphere, the change in ITD from + 135 to - 135 µs (corresponding to a change in 

location from the contralateral side to the ipsilateral side) caused a decrease in decoder 

performance similar to that observed in single cells (Wilcoxon test, p < 0.001, n = 50 

different random subpopulations of 10 neurons). However, when half of the population 

was drawn from each hemisphere, the performance of the decoder was independent of 

ITD (Wilcoxon test, p = 0.96). These results suggest that opposing effects of a change in 

ITD in the two hemispheres offset each other; a change in ITD that degrades the coding 

of low-frequency sounds in one hemisphere enhances it in the other, such that there is no 

net change across the entire population. 

4.2.5. The effects of intensity and ITD on coding are similar with and without background 

noise 

Changes in listening conditions, such as the addition of background noise, have been 

shown to have strong effects on the processing of sound content in the IC (Kvale & 

Schreiner, 2004; Lesica & Grothe, 2008b; Rees & Palmer, 1988). To determine whether 
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the observed effects of changes in intensity and ITD on coding described above were also 

evident in the presence of background noise, we recorded responses of the same neurons 

to the same sound tokens in the presence of broadband background noise (SNR = 0 dB). 

The responses of a typical neuron to one sound with and without background noise 

presented at 63 dB SPL with 0 µs ITD are shown in Figure 4.2.8, left. Again, to study the 

effects of changes in intensity and ITD beyond those that result from changes in overall 

spike rate, we analyzed only those neurons for which we found a decrease in intensity 

and a negative change in ITD that caused approximately the same decrease in spike rate 

relative to an arbitrary base condition (n = 14). For this subset of neurons, the reductions 

in spike rate for the ΔSPL and ΔITD conditions relative to the base condition were not 

significantly different (paired Wilcoxon test, p = 0.54; median reduction was 31% for 

ΔSPL and 32% for ΔITD). 

  

Figure 4.2.8. Left: A raster plot showing the spike trains recorded from a typical neuron 

in response to 20 repeated presentations of one sound token presented at 63dB SPL with 

0 µs ITD with and without background noise at a signal-to-noise ratio of 0dB. Middle 

and right: Boxplots showing the distribution of CCs (middle) and response SNRs (right) 

between the PSTHs for the base condition and each of the two change conditions for a 

sample of 14 neurons. In each plot, the central mark indicates the median, the edges of 

the box indicate the 25th and 75th percentiles, and the error bars extend to the most 

extreme values. The results of paired Wilcoxon tests comparing the medians of the 

distributions are indicated. n.s., Not significant, **p < 0.01, ***p < 0.001 The results 

are similar as for the case without background noise (see Figures 4.2.3. and 4.2.4.). 
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The effects of changes in intensity and ITD on the timing of spike events with background 

noise were similar to those without; the CCs between responses for the ΔITD and base 

conditions were significantly larger than those between responses for the ΔSPL and base 

conditions (paired Wilcoxon test, p < 0.001) (Figure 4.2.8, middle) and the change in ITD 

caused a significant decrease in SNR relative to the base condition, whereas the change 

in intensity had no significant effect (paired Wilcoxon tests, p = 0.002 for ΔITD and p = 

0.24 for ΔSPL) (Figure 4.2.8, right). The effects of changes in intensity and ITD on coding 

with background noise were also similar to those without; a change in ITD resulted in a 

significant decrease in decoder performance for single neurons relative to the base 

condition, whereas the change in intensity had no significant effect (paired Wilcoxon 

tests, p = 0.02 for ΔITD and p = 0.61 for ΔSPL) (Figure 4.2.9, left) and the effects of a 

change in ITD were canceled out at the population level when the population contained 

neurons from both hemispheres (Wilcoxon tests, p < 0.001 for one hemisphere, p = 0.58 

for both hemispheres, n = 50 different random subpopulations of 10 cells) (Figure 4.2.9, 

right). The similarity of the results in Figures 4.2.1-4.2.9. suggest that, at least at a 

qualitative level, the effects of changes in ITD and intensity on the coding of low 

frequency sounds are independent of background noise level. 
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Figure 4.2.9. Left: Boxplots showing the distribution of decoder performance at the 

optimal timescale for each of the three stimulus conditions. In each plot, the central mark 

indicates the median, the edges of the box indicate the 25th and 75th percentiles, and the 

error bars extend to the most extreme values. The results of paired Wilcoxon tests 

comparing the medians of the distributions are indicated. Right: Boxplots showing 

decoder performance for randomly chosen populations with either all cells from the same 

hemisphere or half of the cells from each hemisphere. Chance level performance was 

12.5%. n.s., Not significant, *p < 0.05, ***p < 0.001 The results are similar as for the 

case without background noise (see Figures 4.2.5. and 4.2.7.). 
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4.2.6. Changes in intensity along the positive and negative slope of the RLF have different 

effects on coding 

Many neurons in the auditory system have RLFs that are nonmonotonic, i.e., spike rate 

increases with increasing intensity for soft sounds, but decreases with increasing intensity 

for loud sounds. To determine whether the observed effects of changes in intensity on 

coding differ depending on whether the changes are along the positive or negative slope 

of the RLF, we performed the same set of analyses on responses of those neurons (n = 

13) for which we found an increase in intensity and a negative change in ITD that caused 

approximately the same decrease in spike rate relative to an arbitrary base condition 

(Figure 4.2.10, schematic diagram). For this subset of neurons, the reductions in spike 

rate for the ΔSPL and ΔITD conditions relative to the base condition were not 

significantly different (paired Wilcoxon test, p = 0.12; median reduction was 20 % for 

ΔSPL and 21 % for ΔITD).  

 

Figure 4.2.10. A schematic diagram depicting the relationship between the three stimulus 

conditions. Only those cells for which the ΔSPL (an increase in intensity) condition could 

be defined by a change in intensity along the negative slope of the RLF were analyzed. 

As with changes in intensity along the positive slope of the RLF (Figure 4.2.3, right), 

changes in intensity along the negative slope of the RLF had a much stronger effect than 

changes in ITD on the overall timing of spike events; the CCs between responses for the 

ΔITD and base conditions were significantly larger than those between responses for the 

ΔSPL and base conditions (paired Wilcoxon test, p < 0.001) (Figure 4.2.11, left). This 

result was consistent with the shift in spectrotemporal filtering reflected in the frequency 



67 
 

content of responses for the ΔSPL condition (because the change in intensity is positive, 

the shift for the SPL condition is toward higher frequencies) (Figure 4.2.11, right).  

                  

Figure 4.2.11. Left: Boxplots showing the distribution of CCs between the PSTHs for the 

base condition and each of the two change conditions for a sample of 13 neurons. Right: 

The SNR as a function of response frequency under the three stimulus conditions. ***p < 

0.001. The changes in intensity along the negative slope of the RLF caused a decrease in 

SNR similar to that caused by a change in ITD. 

However, unlike changes in intensity along the positive slope of the RLF, which had no 

effect on SNR (Figure 4.2.4.), changes in intensity along the negative slope of the RLF 

caused a decrease in SNR similar to that caused by a change in ITD (paired Wilcoxon 

tests, p = 0.006 for ΔITD and p = 0.05 for ΔSPL) (Figure 4.2.12, left). As a result, the 

effects of changes in intensity along the negative slope of the RLF on coding were similar 

to those caused by a change in ITD. Both changes resulted in a significant decrease in 

decoder performance for single neurons relative to the base condition (paired Wilcoxon 

tests, p < 0.001 for ΔITD and p = 0.01 for ΔSPL) (Figure 4.2.12, right). Thus, the ability 

of single neurons to encode low-frequency sounds appears to be robust to changes in 

intensity along the positive slope of the RLF, but not to changes in intensity along the 

negative slope of the RLF. 
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Figure 4.2.12. Left: Boxplots showing the distribution of response SNRs for each of the 

three stimulus conditions. Right: Boxplots showing the distribution of decoder 

performance at the optimal timescale for each of the three stimulus conditions. Chance 

level performance was 12.5%. In each plot, the central mark indicates the median, the 

edges of the box indicate the 25th and 75th percentiles, and the error bars extend to the 

most extreme values. The results of paired Wilcoxon tests comparing the medians of the 

distributions are indicated. *p < 0.05, **p < 0.01, ***p < 0.001. These results show that 

the ability of single neurons to encode low-frequency sounds appears to be robust to 

changes in intensity along the positive slope of the RLF, but not to changes in intensity 

along the negative slope of the RLF. 
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5. Discussion and conclusions 
 

5.1. Decoding with distance metrics 

We have demonstrated that when decoding population spike trains and calcium signals 

using distance metrics, optimization of the influence of each cell on the overall result can 

provide an increase in performance relative to simple weighting schemes. The results 

demonstrate that for populations of cells in the auditory and visual systems with a variety 

of signal and noise correlations, the benefit of genetic optimization can be relatively large 

(up to 10%). The results demonstrate that the optimal weights for population decoding 

cannot be derived simply from the performance of each cell as an individual, suggesting 

that there may be a relationship between the optimal weights for decoder performance 

and the correlations between cells in the population. One interesting avenue for further 

research would be to characterize this relationship, i.e., to explicitly describe the impact 

of correlations on the optimal weighting scheme when decoding population responses. 

This relationship also suggests the potential of optimization as a tool for measuring the 

contribution of individual cells to the population code. For example, as the stimulus 

and/or correlations in the population change, the corresponding changes in the optimal 

weights for different cells or groups of cells could be used to assay the change in the 

distribution of information across the population. A study by Ince and colleagues (Ince et 

al., 2013) addressed this question by analyzing neural population responses recorded from 

the auditory cortex of awake macaques. In that paper, the authors used the information 

carried by neuronal subpopulations for optimization and showed that a small fraction of 

temporally precise cells carries most of the information. This finding assumed that a few 

neurons carry large amounts of information. It was also found that neurons having high 

firing rates and short encoding times carried the high information. These results support 

the emerging picture that a small subset of all neurons recorded during an experiment 

contribute significantly to the information coding of a larger neural population (Panzeri 

et al., 2015). Studies on the auditory system summarized by (Panzeri et al., 2015) also 

show that the neurons contributing the most to the information content of the population 

are also the ones that fire sparsely (Centanni et al., 2014; Garcia-Lazaro et al., 2013; Ince 

et al., 2013). Conclusively, finding the optimal weights for neurons in a population is 

crucial for understanding the information coding capabilities of neural populations. Our 
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method provides a solution for this problem, however, with the advent of machine 

learning methods, faster and more optimal decoding of larger neural populations became 

possible (Glaser et al., 2020).  

 

5.2. Revealing the effects of interaural time and intensity difference on the coding 

of low-frequency sounds  

 

We have demonstrated that even when changes in intensity and ITD have similar effects 

on the spike rate of a single neuron, they can have different effects on the neuron’s ability 

to encode low-frequency sounds. I found that a change in intensity along the positive 

slope of the RLF evoked a change in spectrotemporal filtering properties that changed the 

overall timing of spike events, but preserved the precision of spike timing across trials 

such that decoding of sound token identity from the responses of single neurons was not 

affected. In contrast, a change in ITD did not evoke a change in spectrotemporal filtering 

properties and, thus, had little impact on the overall timing of spike events, but had strong 

effects on the precision of spike timing across trials and, consequently, on decoding. 

However, because the two brain hemispheres are mirror images of each other in terms of 

ITD sensitivity, changes in ITD had no net effect on coding across the entire population. 

These effects were robust to the addition of background noise at both the single neuron 

and population level. 

We also found that the effects of changes in intensity along the negative slope of the RLF 

were different from those of changes along the positive slope. Changes in intensity along 

the negative slope of the RLF caused changes in both the overall timing of spike events 

and the precision of spike timing across trials, and had effects on decoding that were 

similar to those caused by a change in ITD. 

Our results show that, at least at moderate intensities, the auditory system can 

simultaneously employ fundamentally different strategies to maintain the flow of 

information in the face of changes in intensity and ITD. Because a change in intensity 

will have a similar effect on all neurons in the population, mechanisms that adjust the 

response properties of single neurons are necessary to preserve the flow of information at 

the population level. However, because a change in ITD will enhance coding in single 
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neurons in one hemisphere and degrade it in the other, its effects will balance out at the 

population level and no mechanisms that adjust the response properties of single neurons 

are necessary. The location and nature of the integration of the information about ITD 

from the two hemispheres remains a source of speculation (Porter & Groh, 2006). It seems 

clear that this integration does not take place in primary auditory cortex (Eggermont & 

Mossop, 1998; King & Campbell, 2005; Stecker et al., 2005), but there is evidence 

suggesting that it may take place in higher cortical areas (Miller & Recanzone, 2009; 

Stecker et al., 2003). However, the ITD coding strategy in the primary auditory cortex is 

already different compared to the IC. Belliveau and colleagues (Belliveau et al., 2014) 

showed that in the IC, most of the neurons responded maximally to contralateral ITDs 

close to the physiological range of the gerbil. This result corresponds well to my results 

presented in this thesis. However, Belliveau and colleagues have also found in the same 

study (Belliveau et al., 2014) that there is no such preference for ITD laterality, the 

preferred ITDs of A1 neurons were distributed evenly along the physiological range and 

there was an even number of neurons preferring contralateral and ipsilateral ITDs. These 

results suggest a fundamentally different coding strategy of the IC and A1 in gerbils. One 

possible explanation for this observation is that A1 may not be required for the 

localization of single sound sources in gerbils.  

The intensity-dependent changes in spectrotemporal filtering properties observed here, as 

well as the associated changes in the overall timing of response events, are similar to 

those that have been observed throughout the auditory system (Lesica & Grothe, 2008a; 

Møller, 1977; Nagel & Doupe, 2006). These effects are due, at least in part, to the 

nonlinear properties of the basilar membrane, but central mechanisms such as inhibition 

within the IC may also play a role (Caspary et al., 2002). The origin of the ITD-dependent 

changes in the precision of spike timing across trials is less clear. Since a change in ITD 

does not actually affect the responses in the auditory nerves, but only the timing between 

them, the ITD-dependent changes that we observe must arise centrally after binaural 

convergence. One possible source of the observed effects is the coincidence detection 

mechanism in the MSO (which, presumably, provides the primary inputs to the IC cells 

studied here), the reliability of which has long been known to vary with overall spike rate 

(Goldberg & Brown, 1969).  
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The results of this study describe the effects of intensity and ITD on the coding of low-

frequency sounds. It remains to be seen whether or not similar effects are evident for 

high-frequency sounds. The mechanisms that optimize response properties in single 

neurons in response to changes in intensity operate across a wide range of frequencies 

(Lesica & Grothe, 2008b; Nagel & Doupe, 2006; Rees & Møller, 1987), so the effects of 

changes in intensity on coding are likely to be similar for low- and high-frequency sounds. 

For high-frequency sounds, there are two important spatial cues: interaural level 

differences (ILDs) and spectral notches. Like ITDs, ILDs are computed centrally after 

binaural integration and have opposing effects on different subsets of the population, so 

no mechanism to compensate for changes in ILD at the single neuron level may be 

necessary (note the critical distinction between the changes in spectrotemporal filtering 

properties at issue here and mechanisms that adjust dynamic response range, which 

appear to operate in response to changes in both ITDs and ILDs (Dahmen et al., 2010; 

McAlpine et al., 2000; Spitzer & Semple, 1991)). Spectral notches, which are imposed 

by the pinnae, only affect a small subset of cells for a sound at any given location, so, 

again, no mechanism to adjust coding strategy may be necessary. However, because 

spectral notches are already present in the ear, it may be possible for the system to use 

some of the same machinery that compensates for changes in intensity with little 

additional overhead. 
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6. Summary 

Most of the animals use three strategies for sound source localization (Palmer & Kuwada, 

2005). Interaural time differences are used for low frequencies, while interaural level 

differences are used for higher frequencies where ITDs are not available. In addition, 

spectral content of the sound stimulus can also help in sound source localization. An 

interesting question about the sound source localization strategies of animals is how the 

coding of ITD and ILD changes in the brainstem for single neurons and for neuronal 

populations by changing time difference or level difference. This question can be 

formulated this way: do the changes of the two clues have the same effect on neuronal 

coding or do they change different aspects of the neuronal response? The importance of 

this question is that it can elucidate the strategies the central nervous system uses to keep 

sound information encoding robust in the face of changing sound features, for example 

when the position of the animal related to the sound source is changing.  

We showed that changes in sound intensity evoked changes in spectrotemporal filtering 

that influenced the overall timing of spike events but preserved their precision across 

trials such that the decoding of single neuron responses was not affected. In contrast, 

changes in interaural time difference did not trigger changes in spectrotemporal filtering 

but did have strong effects on the precision of spike events and, consequently, on decoder 

performance. However, changes in ITD had opposing effects in the two brain 

hemispheres and, thus, canceled out at the population level. These results were similar 

with and without the addition of background noise (Horvath & Lesica, 2011). 

For the study about the effects of changes in interaural time and level differences on single 

neuronal coding, decoding methods were used (Victor & Purpura, 1996). When more 

single neuronal responses are recorded from the same population, population response 

can be characterized by the population coding performance. The other published paper 

included in this thesis is about population decoder optimization. I contributed to the 

development of a genetic optimization method for decoding neuronal population 

responses. It was shown that genetic optimization is able to provide a superior distance 

metrics decoder performance to neuronal weight optimization using randomly assigned 

weights or weights obtained decoding each neuron individually. (Hofer et al., 2010) 
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7. Összefoglalás 

Az állatvilágban háromféle stratégia figyelhető meg a hallott hang forrásának 

lokalizációjára. Az alacsony frekvenciás hangok esetében a fülközi időkülönbség 

(interaural time difference, ITD) hordozza a térbeli információt, míg a magasabb 

frekvenciák esetén, ahol az ITD már nem áll rendelkezésre, a fülközi hangerő különbséget 

(interaural level difference, ILD) felhasználva detektálható a hangforrás térbeli 

elhelyezkedése. Ezeken túl pedig a hanginger spektrális összetétele is hozzájárul a 

hangforrás lokalizációjához. Az ITD-t és az ILD-t vizsgálva felmerül az érdekes kérdés, 

hogy a két információforrás hatása azonos-e az idegi kódolásra, vagy pedig mindkettő az 

idegrendszeri válasz más aspektusait befolyásolja. A kérdés fontosságát az adja, hogy a 

válasz fény deríthet arra, milyen módon éri el az idegrendszer a hanginformáció robusztus 

kódolását, miközben a hanginger tulajdonságai folyamatosan változnak. 

A disszertációban bemutatott tanulmányban kimutattuk, hogy a hangerő változása 

megváltoztatta a spektrotemporális szűrést a colliculus inferiorban. Ez befolyással volt az 

idegsejt tüzelések időzítésére, de az ismétlések között a tüzelések pontossága nem, ezen 

keresztül pedig az egyes idegsejtek válaszának dekódolása nem változott. Ezzel szemben, 

bár az ITD változások nem változtatták meg a spektrotemporális szűrést, az idegsejt 

tüzelések pontosságát jelentősen befolyásolták, ezen keresztül pedig a dekódolás 

pontosságára is hatással voltak. Az ITD változások a két agyféltekében ellentétes irányú 

változásokat indukáltak, így populációs szinten kioltották egymást. Az eredményeink 

ehhez hasonlóak voltak akkor is, ha a hangingerhez háttérzajt is kevertünk (Horvath & 

Lesica, 2011). 

A fenti eredmények megállapításához dekódolási stratégiákat alkalmaztunk (Victor & 

Purpura, 1996). A disszertációban ismertetett másik publikáció egy sejtpopulációs 

aktivitás dekódolásának optimalizálásra használt genetikus algoritmus fejlesztését és 

használatát mutatja be. Megmutattuk, hogy a genetikai algoritmus alapú populációs 

dekódolás jobb dekóder teljesítményt eredményez a véletlenszerű súlyozáshoz vagy az 

egyes idegsejtek egyenkénti válaszának dekódolásához képest (Hofer et al., 2010)  
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