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Introduction 

Detection of events in space is essential for any creature. 

Interestingly, the notion of space cannot be encoded without 

using an additional dimension: time. In the avian and mammalian 

brain, localization of sound direction is based on the added 

dimension time. The location of a sound source is inferred by the 

brain using the differences in the neuronal signals transmitted 

from the two ears upon sensation of a sound. The arrival time of 

sound in the inner ear depends on the horizontal location of the 

sound source related to the ears. If a sound source is not exactly 

in front or behind the animal, sound will reach on of the two ears 

with a time delay. The temporal evolution of such time-of-arrival 

differences can be used to localize the sound source. In my thesis 

work, I investigated the strategies applied by auditory midbrain 

neurons to maintain the robustness of information coding when 

facing changes in interaural time difference (ITD) and sound 

intensity. 

1. Objectives 

Thorough investigation of the problem outlined in the previous section 

requires the application of effective quantitative methods that can 

capture the coding properties of the recorded single neurons and 

neuronal populations.  
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My first objective was to prove the effectiveness of genetic algorithm 

in the optimization of neuronal population decoding. When decoding 

the responses of neuronal population, it is essential to find optimal 

weights for each neuron in the population to maximize decoder 

performance. I show in my thesis that genetic algorithm can be used to 

find the optimal set of weights for decoder performance maximization.  

My second objective was to reveal the effects of interaural time 

difference and sound intensity on the coding of low frequency sounds 

in the auditory midbrain of the Mongolian gerbil.  In my thesis, I carried 

out careful analyses to reveal if changes in intensity and ITD affect 

neural responses in different ways. As a result, I show that at least 

at moderate intensities, the auditory system employs different 

strategies at the single neuron and population levels 

simultaneously to ensure that the coding of sounds is robust to 

changes in other stimulus features.  

2. Methods 

To fulfil my first objective, distance metrics was applied on neuronal 

spike trains for decoding. Distance metrics is a cost-based metric 

introduced by Victor and Purpura in 1996. In cost-based metrics, the 

distance of two spike trains is the minimal cost of transforming 

one spike train to the other. In the most widely used type of this 

metric, inserting, or deleting a single spike has a cost of 1. The 

other rule of spike time metrics states that the cost of moving a 

spike in time (shifting the spike) is proportional to the amount of 
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time that it is moved. By applying these rules, the distance 

between two spike trains will be the minimum total cost of the 

above defined steps transforming one spike train into the other. 

This distance metrics provide an intuitive method for decoding 

neural responses, as responses to the same stimulus should be 

closer to each other, while responses to different stimuli should 

be farer.  

The advent of multiple channel recordings, advanced spike 

sorting methods and high computational power computers 

enables researchers to study the influence of multiple identified 

neurons on decoder performance. After decoding the spike trains 

for every trial of every stimulus as described above, we measure 

overall performance as the percent of spike trains that were 

correctly decoded and denote this quantity as PCp for a single cell 

p, and PCP(w) for the population P with weights w. The standard 

approach to finding the optimal set of weights, i.e. the set of 

weights that maximize PCP(w), is to calculate the gradient 

dPCP(w)/dw and use it as a guide toward a local, and hopefully 

global, maximum. However, for the problem considered here, 

analytical specification of the gradient was not possible and 

algorithms that calculated the gradient numerically performed 

very poorly. Fortunately, there is another class of algorithms 

known as ‘evolutionary’ that do not require knowledge of the 
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gradient. These algorithms operate iteratively, choosing the best 

of several candidate solutions on each iteration until performance 

saturates. Out of the many evolutionary algorithms that may be 

suitable for this problem, I implemented genetic and particle 

swarm algorithms. The performance of these two algorithms was 

similar but genetic algorithm required less computational time 

and it was easily implemented using the Matlab Genetic 

Algorithm and Direct Search Toolbox with the following 

parameters: y = 25 initial vectors, e = 2 elite vectors, x = 18 

crossover vectors, u = 5 mutation vectors, V = 100 maximal 

number of generations, and less than ε = 10−5 change in best 

weights in the past G=25 generations. To prevent overfitting, it is 

important to exclude the responses to be decoded when 

optimizing the weights. For all optimizations, we split the 

responses into successive training sets (95% of responses) and 

testing sets (5% of responses) such that all responses were 

included in the testing set exactly once. 

For my second objective, I recorded the activity of single neurons in the 

inferior colliculus of anesthetized Mongolian gerbils. The neural 

responses were evoked by acoustic noise snippets presented with 

different ITDs and intensities. A total of 5 different ITDs and 3 different 

intensities were presented, resulting in 15 different stimulus conditions. 

The same sound stimuli were presented without and with the addition 

of background noise. Spike train decoding was also performed on the 
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neural activity recorded in these experiments to determine the tuning 

significance of the recorded neurons to the different stimulus 

conditions. To characterize decoder performance between the different 

stimulus conditions and between the without and with background 

noise conditions, I applied statistical tests on the recorded data. 

 

3. Results 

By applying a genetic algorithm to find optimal decoder weights 

for the decoding of neural spike trains, I found that genetic 

algorithm outperforms other methods, such as assigning equal 

weights to every neuron, determining weights by the response 

error correlations of the neurons, and applying particle swarm 

algorithm. This finding was true without and with the addition of 

background noise, as shown on Figure 1 and Figure 2.  

 

 

 

 

 

Figure 1. The decoder performance PCP(w) for subpopulations of increasing size for 

four sets of weights, without background noise. 
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Figure 2. The decoder performance PCP(w) for subpopulations of increasing size for 

four sets of weights, with background noise. 

For my second objective, I first characterized the firing changes 

of the recorded neurons in response to the 15 different stimulus 

conditions.  

 

 

 

 

 

Figure 3. A schematic diagram depicting the relationship between the three stimulus 

conditions. 

As shown on Figure 3, only those cells for which the intensity 

change condition could be defined by a change in intensity along 

the positive slope of the rate-level function (RLF) were analyzed. 

To study the effects of changes in intensity and ITD beyond those 
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that result from changes in overall spike rate, I analyzed only 

responses from those neurons for which I found a decrease in 

intensity and a negative change in ITD that caused approximately 

the same decrease in spike rate relative to an arbitrary base 

condition (the base condition could be any intensity/ITD 

combination and was chosen independently for each cell) (Figure 

3.). Because the sampling of the space of possible intensity/ITD 

combinations was relatively sparse, only 19 neurons satisfied this 

criterion (the reductions in spike rate for the intensity change 

(ΔSPL) and ITD change (ΔITD) conditions relative to the base 

condition for these neurons were not significantly different; 

paired Wilcoxon test, p = 0.08; median reduction was 29% for 

ΔSPL and 30% for ΔITD). By analyzing the responses of these 

neurons, I found that, relative to the base condition, the change in 

intensity caused a change in the overall timing of events, reflected 

by the decrease in correlation coefficients (CCs) between the 

PSTHs for the base and the intensity change condition, but had 

little impact on precision of spike timing across trials (Figure 4, 

left). In contrast, the change in ITD caused a decrease in the 

precision of spike timing across trials but left the overall timing 

of spike events largely unchanged, as reflected by decrease of 

response signal-to-noise ratios (SNRs) between the base and the 

ITD change conditions, as shown on Figure 4, center. A decrease 

in spike timing precision when changing ITD is also shown by 
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comparing the decoder performance for each of the three different 

stimulus conditions. As shown in Figure 4, right, decoder 

performance is significantly reduced for the ITD change 

condition compared to the other two conditions.  

 

 

 

 

 

 

Figure 4. Left: Boxplots showing the distribution of CCs between the PSTHs 

for the base condition and each of the two change conditions for a sample of 

19 neurons. Center: Boxplots showing the distribution of response SNRs for 

each of the three stimulus conditions. Boxplots showing the distribution of 

decoder performance at the optimal timescale for each of the three stimulus 

conditions.  n.s., Not significant., ***p < 0.001 
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All these effects are the same, when background noise is added to 

the stimulus with 0 dB SNR, as shown in Figure 5. 

 

 

 

 

 

 

 

Figure5. Left: Boxplots showing the distribution of CCs between the PSTHs 

for the base condition and each of the two change conditions for a sample of 

19 neurons. Center: Boxplots showing the distribution of response SNRs for 

each of the three stimulus conditions. Boxplots showing the distribution of 

decoder performance at the optimal timescale for each of the three stimulus 

conditions.  n.s., Not significant., ***p < 0.001 

The results described above demonstrate that changes in intensity 

and ITD have different effects on the coding of low-frequency 

sounds in the responses of single neurons. However, these 

changes also have different effects on the overall spike rates of 

the entire population. In contrast, because most binaural neurons 

with low preferred frequencies (including all in this study) 

respond most strongly to sounds located on the side contralateral 

to the brain hemisphere that they are in, a change in the ITD of a 

sound will cause, on average, an increase in spike rate for neurons 
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in one hemisphere and a decrease in spike rate for neurons in the 

other hemisphere. To determine how changes in intensity and 

ITD influenced the coding of sound content at the population 

level, I decoded the responses of many different random 

subpopulations of neurons. As shown in Figure 6, when all of the 

cells in the population were taken from a single hemisphere, the 

change in ITD caused a decrease in decoder performance similar 

to that observed in single cells. However, when half of the 

population was drawn from each hemisphere, the performance of 

the decoder was independent of ITD.  

 

 

 

 

 

Figure 6. Boxplots showing the distribution of decoder performance for 50 randomly 

chosen populations of 10 cells with either all cells from the same hemisphere or half of 

the cells from each hemisphere.. n.s., Not significant. ***p < 0.001. 

These effects were the same with added background noise, as 

shown in Figure 7.  
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Figure 7. Boxplots showing the distribution of decoder performance for 50 randomly 

chosen populations of 10 cells with either all cells from the same hemisphere or half of 

the cells from each hemisphere.. n.s., Not significant. ***p < 0.001. 

 

4. Conclusions 

In my thesis, I have shown that an optimal set of weights that 

maximizes decoder performance can be found with genetic algorithm 

when decoding neural population responses with distance metrics. I 

have also shown that the change in ITD and intensity have different 

effects on spiking properties of single neurons in the IC. On the one 

hand, ITD changes do not change overall spike timing within trials, 

while intensity changes do. On the other hand, ITD changes reduce 

spike timing precision across trials, while intensity changes do not 

alter spike timing precision. As an effect on the coding performance 

of IC neurons, changes in ITD also result in a significantly reduced 

decoder performance, while intensity changes do not alter decoder 
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performance. However, these changes are not present on the 

population level, as shown by the analysis of neural activity from 

both hemispheres. I have also shown that these effects are the same 

with and without the addition of background noise to the stimulus. 
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