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1. INTRODUCTION 

 

 Cardiovascular diseases (CVD) are the leading cause of death world-wide 

including a wide variety of related pathologies (both atherosclerotic and non-

atherosclerotic). However, ischemic heart disease (IHD) and stroke are the two most 

common diseases among all CVDs which make the use of this term very practical, as 

risk factors and preventive approaches for these two pathologies overlap [1]. 

Approximately 85% of strokes are ischemic in origin [2]. Therefore, the majority of 

mortality today is due to atherosclerosis-related events [3]. Although using the term CVD 

indeed has practical utility, being an umbrella term, it also causes difficulties in 

determining the specific pathomechanisms or pathological entities observed in the 

extensively large variety of existing studies. 

 

1.1. Ischemic heart disease - the most common cause of death 

Ischemic heart disease is globally the leading cause of mortality for almost two 

decades, which manifests clinically as myocardial infarction (MI) or ischemic 

cardiomyopathy. Estimated prevalence was 1.655/100,000 world-wide in 2017 [4]. 

Myocardial ischemia is defined as cardiac function disorder due to insufficient blood 

flow towards the cardiomyocytes which may be due to the narrowing of coronary 

arteries, thrombotic events leading to obstruction, or less commonly diffuse narrowing 

of arterioles and other smaller vessels [5]. Acute coronary syndrome (ACS) clinically 

represents an episode of ischemia which has longer duration than a transient anginal 

episode and may lead to MI [6]. Entities covered by ACS are traditionally ST-elevation 

myocardial infarction (STEMI), non-ST-elevation MI (NSTEMI) and unstable angina. 

However, lately - with the widespread use of the biomarker high-sensitivity Troponin T 

– most cases of unstable angina would be converted to NSTEMI [7]. Another 

classification of MI events include Type I. MI caused by the rupture of an atherosclerotic 

plaque, thrombus formation and stenosis of the coronary lumen. Type II. MI represents 

other causes than coronary plaque rupture that cause imbalance between myocardial 

oxygen supply and demand, such as: hypotension, reduced coronary perfusion pressure, 

systemic hypoxia, anemia, high afterload or tachyarrhythmias [8]. 
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 Although Gupta et al. found similar prevalence for both types of MI (however 

type II MI patients more commonly died due to non-cardiac causes) and several 

pathomechanisms other than acute atherothrombotic events might cause cardiovascular 

death [8] – including worsening heart failure (HF) e.g. due to ischemic cardiomyopathy 

– the exact proportion of these mechanisms is currently not profoundly investigated. 

Autopsy data suggest that ischaemia might be the most prominent cause of mortality 

among patients with heart failure, increasing the risk of arrhythmias, worsening HF and 

sudden death. However, the role, causativity, exact associations and contributions of 

myocardial stunning and hibernation to mortality remain difficult to ascertain [9]. 

Another epidemiological study investigating major ischemic heart disease events in 

hospitalized and non-hospitalized patients found that acute MI was the most common 

cause of death in both groups. Any other causes were rare in the hospitalized patients, 

while in the non-hospitalized group, unspecified chronic IHD and atherosclerosis of the 

native coronary arteries were the other two most common causes. About 60% of IHD 

deaths occurred pre-hospitally and 60% of these patients have never been hospitalized 

before because of IHD [10].  

In summary, although neither ‘cardiovascular’, nor ‘ischaemic heart diseases’ by 

definition doesn’t explain the most common pathomechanism of mortality, currently 

there is no evidence against the widely accepted concept that acute ischemic event from 

atherosclerotic origin is the most common cause of death.  

 

1.2. Our current understandings of ischemic heart disease pathophysiology 

In order to understand the complex pathophysiology of ischemic heart disease it is 

essential to review the peculiarities of the myocardium’s blood supply. The heart is a 

special organ because of several reasons: myocardial oxygen extraction rate is 

permanently close to maximal (70-80% under resting conditions), therefore increasing 

coronary blood flow is the only way to ameliorate oxygen consumption when the demand 

is higher. Coronary autoregulation normally allows a wide range of coronary perfusion 

pressure (CPP) between 60 and 180 Hgmm with corresponding changes in vascular 

resistance to suffice myocardial oxygen demand.  

Coronary perfusion originates from the aortic root. These epicardial arteries will 

further branch in the myocardium and finally reach the endocardium where they form 
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plexuses. Physiologically endocardial blood flow is higher than epicardial blood flow 

(1.2:1) because higher wall stress requires more nutrients. Systolic myocardial 

contraction impedes left ventricular perfusion by compressing the traversing arterial 

branches, therefore left ventricular perfusion occurs mainly in diastole. The right 

ventricle doesn’t generate such high pressure – it is perfused predominantly during 

systole and to a lesser extent during diastole [11,12]. 

Also, the regular “vascular waterfall” model (blood flows from highest towards 

lowest pressure) doesn’t explain myocardial blood flow. A computer analysis rather 

suggests that forward flow consists of a proximal “pushing” forward and a distal 

“suction” backwards wave – later being the more prominent during diastole.  Epicardial 

coronary arteries in this model might serve as reservoirs, where blood is stored until 

relaxation occurs [13].  In healthy individuals, epicardial arteries mean bare resistance to 

coronary blood flow (CBF). Smaller pre-arterioles (100-500 μm) are resistive vessels 

which can dilate or contract adjusting CBF in response to arterial pressure changes 

(coronary autoregulation) or myocardial nutrient demands (metabolic adaptation). In the 

intramural microvasculature (<100 μm) there is a significant pressure drop, allowing the 

oxygen and nutrient uptake of cardiomyocytes [14].   

CPP of the left ventricle is calculated as the difference between aortic diastolic and 

left ventricular end-diastolic pressure (LVEDP) as majority of perfusion occurs during 

diastole. Reduction of CPP occurs both in coronary artery disease and heart failure 

making these patients more prone to myocardial ischaemia. Compensatory mechanisms 

through increased sympathetic drive in systolic heart failure increase aortic diastolic 

pressure to counterforce the elevated LVEDP as result of decreased ejection fraction. 

However, increases in systemic blood pressure also increase afterload, promoting cardiac 

remodeling and leading to the vitious circle of increasing myocardial oxygen demand. 

Tachycardia also worsens coronary blood flow as it shortens duration of diastole [11,12].   

Atherosclerotic coronary artery disease (CAD) not only causes increasing resistance 

in the epicardial arteries but also worsens microvascular function due to endothelial 

dysfunction. Although many complications of coronary reperfusion are attributable to 

distal embolization in smaller arteries and microvascular dysfunction, currently there is 

a limited understanding of the later’s role in adverse outcomes. Therefore, in vivo 

quantification methods of CBF and microvascular resistance should gain more 
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importance [14]. As Severino et al. highlight ischemic heart disease pathophysiology is 

more complex than the conventional conception of atherosclerotic plaque complication 

limiting CBF. In case of atherosclerotic lesions causing a significant stenosis, proximal 

resistance increases and distal CPP descreases. Autoregulation may be able to maintain 

normal CBF at rest, but the dilator reserve is compromised and lack of capacity to adjust 

higher metabolic demands may result in ischemia due to insufficient blood flow [15].  

Chronic coronary artery atherosclerosis can also cause arteriolar remodeling and 

rarefaction with diminished vasodilator and exaggerated vasoconstrictor (e.g. due to 

reduced CPP) responses leading to CBF reserve reduction and microvascular dysfunction 

– a common cause of type II myocardial infarction. Microvascular dysfunction is 

commonly related to cardiovascular (CV) risk factors such as smoking, hypertension 

(HT), hyperlipidaemia, diabetes mellitus (DM) or insulin resistance (IR). Increased shear 

stress due to HT and higher blood flow velocity contribute to impaired endothelium-

dependent dilation (or endothelial dysfunction) which was found to be the underlying 

cause in ~30% of women with IHD in the absence of epicardial coronary artery disease. 

Furthermore, in some patients, microvascular dysfunction seems to be attributable to 

impaired myocardial oxygen extraction rather than reduction of myocardial blood flow 

– a phenomenon which might be explained by reductions in capillary transit time 

heterogeneity [15,16]. 

 Coronary spasm with or without atherosclerotic lesions, age-related ‘hydraulic 

modifications’ in coronary arteries – such as loss of endothelial layer integrity, intimal 

thickening, increasing collagen/elastin ratio leading to arterial stiffness and reduced 

vascular adaptability can further contribute to reduced CBF and the pathogenesis of IHD 

[15].  

In conclusion, understanding physiological coronary blood flow is essential in 

understanding how deterioration of coronary perfusion is of key importance in the 

development of ischemic heart disease – at all levels of the coronary arterial vasculature.  

 

1.3. The conflicting relationship between atherosclerosis, arterial stiffness, 

hypertension and vascular aging 

The pathophysiology of atherosclerosis is complex and its definition consists of both 

thickening and loss of elasticity of the walls of arteries (which solely is called 
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arteriosclerosis), and atherosclerotic plaque formation within the arterial intima [17], 

which aspects are frequently used in a confusing manner. By using the term 

atherosclerosis, most authors don’t specify if they mean it in this broader sense or narrow 

sense (only referring to atherosclerotic plaque formation) and some authors use this term 

defining atherosclerosis as atherosclerotic plaque formation in the arterial wall. 

However, carotid intima-media thickness (CIMT, thickening of the carotid arterial wall) 

is also commonly used as a surrogate marker for ‘atherosclerosis’ [18,19]. Reduced 

distensibility of the arterial wall – also called arterial stiffness – however is rather treated 

as a distinct entity highlighting the functional changes caused by structural changes in 

the arterial wall (mainly affecting the elastin/collagen ratio in the extracellular matrix). 

The illustration of the overlapping definitions is given in Figure 1.  

It is hypothesized that arterial stiffness may have a causative role in the development 

of ‘atherosclerosis’ by endothelial and vascular smooth muscular cells (VSCMs) sensing 

the hemodynamic changes involved in arterial stiffness and promoting atherosclerotic 

plaque formation [20,21]. However, many other ideas were suggested: presence of 

‘atherosclerosis’ leads to arterial stiffness, ‘atherosclerosis’ is both the consequence and 

- in later phase - the cause of stiffness, or these two aspects co-occur frequently without 

any causative association. It is also likely that the pathological changes of the arterial 

wall in the atherosclerotic process - in this sense not narrowed to plaque formation - 

might cause increased arterial stiffness [20,22,23]. Although separating arterial stiffness 

from atherosclerosis by definition doesn’t seem to be a question worth investigating – 

understanding the relationship between atheroma formation, arterial stiffening occurring 

due to atherosclerosis and due to early or ‘normal’ vascular aging still remains 

challenging [24]. Hypercholesterolaemia might induce arterial stiffness through higher 

levels of circulating CD31+/CD42- microparticles and lower levels of endothelial 

progenitors [25]. Oxidative stress and atherosclerotic plaque calcification are also 

thought to contribute to arterial stiffness in atherosclerosis [24]. 

The relationship of elevated blood pressure with arterial stiffness is also conflicting 

- it was a question of debate for a long time whether HT is a cause or a consequence of 

arterial stiffness. Breaking down HT to two different types helps understanding their 

associations: systolic/diastolic HT in midlife due to increased total peripheral resistance 

(TPR) is alone a cause of increased arterial stiffness without any obligatory changes in 
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the arterial wall. As intraluminal pressure is higher both during systole and diastole, it 

results in an increased stress to strain ratio on the viscoelastic aorta which determines its 

stiffness value. On the other hand, hypertension in the elderly (>70 years) is mainly 

systolic, while diastolic blood pressure remains normal or low, resulting in elevated pulse 

pressure. In this case, degenerative changes of the structure and mechanical properties 

of the arterial wall are the cause of systolic HT. In the stiff aorta both the forward and 

‘reflected’ wave travel faster – and later one would superimpose the blood pressure curve 

resulting in elevated systolic pressure [26].      

 

Figure 1. Relationship of frequently used terms in cardiovascular research. 

Vascular aging might include all pathologies, atherosclerosis is part of arteriosclerosis – 

definitions and pathomechanisms show overlap, however they also differ.  

 

Normal aging of the vasculature involves structural and morphological changes of 

the arterial wall, which changes depend on the localization and type of the vessel. Large 

elastic arteries such as the aorta and carotid arteries tend to increase in diameter, length, 

intima-media thickness and stiffness. Peripheral arteries, which are more muscular have 

normally higher stiffness values and show less progression with aging. Pulsatile wall 

stress alone during a lifetime can cause fatigue and elastin fragmentation. Furthermore, 

the activity of specific types of matrix metalloprotease (MMP) enzymes increases with 

aging, which contributes to elastin degradation. The decreased bioavailability of 

desmosine and isodesmosine – which form crosslinks with elastin – also contributes to 

the deterioration of elastin functionality [24]. On the other hand, in the tunica media the 

number of VSMCs decrease and collagen takes place causing medial fibrosis. Collagen 

https://doi.org/10.3389/fphys.2021.762437
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I and III deposition also occurs in the adventitia layer. Collagen crosslinking by non-

enzymatic glycation end products increases arterial stiffness further (also the main 

mechanism observed in diabetic patients). As a result, the elastin-collagen ratio of the 

extracellular matrix decreases, they become disorganized and the artery loses its 

distensibility. Calcium deposition and endothelial dysfunction are also known to increase 

stiffness with aging. Decreased bioavailability of nitrogen-monoxide (NO) results in 

impaired vasodilation, dysregulated vascular tone and increased arterial stiffness [21,24].  

The concept of early vascular aging (EVA) is based on the finding that arterial 

stiffening is accelerated in people at higher cardiovascular risk and vice versa: people 

with increased arterial stiffness (for their age and gender) are at higher risk for CV 

disease, progression or complications. It is widely accepted that large arterial stiffness 

shows the actual state of cumulative effects of an individual’s previous exposure to 

arterial damages and CV risk factors, thus arterial stiffness might be a ‘tissue’ biomarker 

[27,28]. It was also shown that determination of vascular or cardiometabolic age can 

improve patient compliance rather than CV risk assessment alone, which numerically 

might sound too low even in high-risk patients [29].  

In summary, much huddle in the literature comes from the inconsistent use of 

definitions. Furthermore, overlaps in definitions, possible overlaps in pathomechanisms 

and other confounding factors commonly involved in cardiovascular risk (eg, diabetes 

or aging) seem to further complicate the understanding of arterial stiffness – which is an 

aspect of both arteriosclerosis and atherosclerosis as well as ‘healthy’ and early vascular 

aging. In essential hypertension of middle-aged patients, arterial stiffness can also be 

increased without morphological changes in the aortic wall.       

 

1.4. Functional and morphological traits of atherosclerosis with emphasis on aortic 

stiffness, coronary artery calcification and their relation to coronary blood flow 

 

Aortic pulse wave velocity (PWV) and augmentation index (AIx) are two indices for 

arterial stiffness, both being independent predictors of future CV events [30,31]. Van 

Popele et al. found strong association between aortic PWV and ‘atherosclerosis’ at 

different arterial sites suggesting that aortic PWV could be an indicator of generalized 

atherosclerosis [22].   
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Being the largest elastic artery, aorta also contributes to the vascular-ventricular 

coupling (VVC) effect thus physiologically it dampens pulse pressure oscillation 

resulting in a more steady-state flow as blood arrives to the smaller peripheral arteries 

[32]. Reduced distensibility of the aorta implies higher afterload and hypertrophy of the 

left ventricle, accelerated PWV, increased shear-wall stress and reduction of coronary 

perfusion thus worsening symptoms of myocardial ischemia in a manner of a vitious 

circle [33]. 

Decrease in coronary perfusion is due to the concept of the ‘reflected wave’ which is 

produced by altered impedances of the vasculature e.g. at the level of branches or the 

distal part of the aorta where the wall structure is already of more muscular type. The 

geometry, number and vasoconstrictive state of arterioles and the microvascular 

architecture also influence the reflected wave. This reflected wave normally arrives back 

to the aortic root in late systole-early diastole superimposing the ongoing pressure wave 

(physiological amplification) and allowing ideal coronary flow. Stiff arteries on the other 

hand return this wave earlier resulting in higher peak systolic pressure (also causing 

systolic hypertension) and less optimal coronary blood flow (due to pressure 

augmentation) [34]. 

Indeed, multiple studies showed that increased aortic stiffness is associated with a 

decrease in coronary blood flow (mainly affecting subendocardial flow) during increased 

left ventricular contraction, in the presence or absence of coronary stenosis and reduced 

coronary flow reserve after successful revascularisation [35-37]. In contrary, a 

distensible aorta was associated with higher increase in coronary blood flow after 

successful percutaneous intervention therapy [38]. In a hydraulic model with the most 

stiffened aorta coronary blood flow was only 1% of the output of the ‘ventricular’ pump, 

while with a more distensible aorta coronary blood flow could be increased up to 18% - 

although this model lacks the effect of many other in vivo physiological factors, e.g. 

coronary autoregulation [39].   

The relationship between PWV and distensibility can be expressed by the Bramwell-

Hill equation:  

co = √V × dP ρ × dV⁄                                        (1.1) 

where co is speed of blood flow, dP is change in pressure causing the change in 

volume, dV is change in volume and ρ is density of the fluid. Therefore, blood velocity 
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is inversely related to distensibility (dV/VxdP). The Moens-Korteweg equation, from 

which the previous was derived describes the relation with another stiffness parameter, 

the Young’s elastic modulus (E) – which expresses the ratio of wall stress and strain. 

co = √Eh 2Rρ⁄                                                   (1.2) 

Here, h is wall thickness and R is radius of vessel lumen. As we can see speed is 

positively associated with the elastic modulus (therefore positively associated with 

stiffness and negatively associated with strain or elasticity) [40]. Thus, aortic PWV is 

considered a direct a measurement of arterial stiffness, representing the arterial wall’s 

mechanical properties. 

The gold standard method of measuring aortic stiffness is the non-invasive carotid-

femoral pulse-wave velocity (cf-PWV) assessment – which is also recommended to use 

(Class I; Level of Evidence A). Although, many other measurement methods exist, it is 

recommended that they should be validated non-invasively, or if this is not possible, they 

should be validated against a non-invasive device that has been used in prospective trials 

showing an independent prognostic value of PWV [41]. 

The importance of pressure augmentation is expressed by the AIx which denotes the 

proportion of this augmented pressure wave to the magnitude of central pulse pressure 

(PP). However, AIx is not considered an intrinsic marker of arterial stiffness as it is also 

influenced by heart rate (HR), PWV and the amplitude of the reflected wave [34]. Given 

the latest component, AIx is thought to rather represent the vasomotor tone in the 

peripheral, smaller arteries as contributors to wave reflection. The increased AIx was 

also shown to reduce coronary flow reserve in revascularized patients [35].   

Coronary artery calcification (CAC) assessed by cardiac CT is nonspecific regarding 

which type of arterial calcification is visualized, however it most commonly represents 

atherosclerotic ‘intimal’ calcification. CAC represents the extent of CAD, in general it 

correlates with the total plaque burden of the coronary arteries. The gold standard method 

to measure CAC is the Agatson-score, which sums lesions’ total calcified area and 

maximum density of calcification because of its simplicity [42]. Although other methods 

also exist and additive information such as type, location, extent and volumes of the 

plaques would be beneficial for describing plaque vulnerability or stability – the Ca 

(calcium) score is still useful for the CV risk prediciton probably due to its correlation 

with the extent of underlying disease. Furthermore, it is known that histologically 
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fibrocalcic plaque type is most heavily calcified, which involves lumen narrowing and 

patients with very high CAC scores have a high probability for experiencing stress-

induced ischaemia. Also, a study found that patients with acute MI had higher 

calcification area and more coronary segments involved than the control group [42]. 

Indeed, CAC was found in association with impaired myocardial perfusion and lower 

myocardial blood flow under stress [43,44].  

The exact pathomechanism of vascular calcification is not yet fully understood and 

is still extensively researched. The original theory that calcification might be a passive 

degenerative process seems to be overwritten by recent evidence that suggest that it is an 

active process. It is known that macrocalcification builds up from microcalcification 

which is facilitated in an elastin-poor environment [45].  

Chronic inflammation might induce microcalcification by the apoptosis and necrosis 

of macrophages together with the compromised clearance of apoptotic bodies which 

would allow Ca and inorganic phosphate (Pi) to precipitate. Microcalcification in turn 

promotes further inflammation in a manner of a vicious cycle. In addition, extracellular 

vesicles produced by macrophages may serve as calcification foci. VSMCs can 

differentiate to osteochondrocyte-like cells and induce bone formation – however this 

process is more less frequent in humans [46, 47].  

In conclusion, both aortic stiffness and CAC score are independent cardiovascular 

predictors and both can contribute pathophysiologically to reduced coronary blood flow 

through the above mentioned mechanisms. Aortic stiffness might also be suggestive of 

concomitant coronary stiffness causing further impairment of coronary flow reserve and 

myocardial perfusion. Both methods are acquired non-invasively, giving information 

indirectly about coronary flow and CV risk, however coronary CT (computed 

tomography) involves radiation exposure.  

 

1.5. Cardiovascular risk prediction - recommendations and the concept of 

atherosclerosis burden 

It is currently known that CV risk calculation based on the traditional risk factors 

alone has limitations. Also, patients tend to adhere to lifestyle changes and accept 

medication more if they are confronted by their vascular or cardiometabolic age, 

compared to other people in their age and gender group [29].  



16 

 

The term atherosclerotic burden (ATB) is used to describe an individual’s overall 

affection by atherosclerosis considering that it might be generalized and is supposed to 

express the individual risk of future CV events in a more direct way than traditional risk 

factors indirectly do. Although measurement of ATB in one single arterial bed is easy to 

obtain, there is no general consensus on which parameter represents global burden the 

best [48]. Measurement of carotid IMT for example was recommended, but later 

removed from the American Heart Association/American College of Cardiology 

(AHAA/ACC) guidelines possibly because of conflicting study results regarding its 

additive value to classic risk prediction models [49].   

Arterial stiffness is a predictor of CV events and all-cause mortality, also in 

asymptomatic individuals – therefore it has been proposed to be an early indicator of CV 

risk [50]. In a scientific statement from the American Heart Association, it is 

recommended Class II a (reasonable) to determine arterial stiffness in order to provide 

incremental information beyond standard CVD risk factors in the prediction of future 

CV events – at evidence level A [41]. However, latest review about current guidelines 

lists a limited current role of arterial stiffness in the CV risk prediction. Chinese, Korean 

and Japanese hypertension guidelines recommend the measurement of PWV mainly as 

indicator of target organ damage. The 2016 European Guidelines on Cardiovascular 

Disease Prevention in Clinical Practice, 2018 ESC/ECH (European Society of 

Cardiology, European Society of Hypertension) Guidelines for the Management of 

Arterial Hypertension and the 2020 International Society of Hypertension Global 

Hypertension Practice Guidelines acknowledge arterial stiffness as additive information 

to improve cardiovascular risk, however they do not recommend its routine or systematic 

use, other guidelines do not mention the measurement of stiffness [51]. 

Frequently expressed as Agatston score, the coronary artery calcification score 

(CACS) is a very promising, robust CV risk predictor and it is currently recommended 

to screen among patients with borderline-intermediate 10-year CV risk (5-20%), or in 

uncertain cases of indicating statin therapy [52]. CACS is also representative of 

atherosclerosis burden of the coronary arteries, therefore it is promising ATB marker 

[48]. The absence of CAC was associated with an excellent 10-year survival rate [53], 

however, moderate and severe CAC increased the adjusted risk of coronary events by a 

factor of 7.73 and 9.67, respectively. Prediction of coronary events was also better when 
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CACS was added to traditional Framingham risk scores, than traditional risk factors 

alone [54]. The Multi-Ethnic Study of Atherosclerosis (MESA) found CAC to be 

predictive of broader CV outcomes too, including stroke [55]. Although CAC screening 

was found to be a cost-effective screening strategy, there are concerns about the right 

scoring method and radiation exposure also limits its wide-spread use [56]. 

Although coronary arteries are currently not possible to visualize in a non-harmful 

non-invasive way, there is overall limited data about the multi-vessel approach to 

atherosclerosis and its relation to CV risk. However, there is growing interest in 

screening extracoronal arteries and determining their value in CV risk assessment [57-

60]. Based on the International Atherosclerosis Project (IAP) from the ‘60s, a commonly 

taught approach is that within individuals, the severity of atherosclerosis in one artery 

does not predict the severity in another artery in autopsy specimens [61]. However, 

multiple studies ever since found inter-bed correlations between different arterial 

segments [62-63], moreover, the extension or generalized state of atherosclerotic disease 

has also been investigated e.g. in the PESA (Progression of Early Subclinical 

Atherosclerosis) study and found that CAC is seldom present as a monovascular disease 

[64]. 

 In summary, the concept of atherosclerosis burden theoretically would select one 

atherosclerotic trait which could give direct evidence of increased CV risk outside the 

indirect role of traditional risk factors. However, choosing one trait is still a question of 

debate. Also, current guidelines are careful with recommending screening of 

atherosclerosis on a population level possibly because of lack of convincing amount of 

evidence. Aortic PWV and coronary calcification score has some limited role in current 

guidelines. Aortic stiffness was also proposed to be a marker of generalized 

atherosclerosis and coronary calcification score is known to reflect the atherosclerotic 

burden of coronary arteries.  

 

1.6. What is known and unknown about the genetic background of atherosclerosis? 

The role of twin studies 

Despite great advances and expansive knowledge, being a complex disease, 

atherosclerosis is still not fully understood. Different stages of the disease include 

initiation, progression, rupture and calcification of atherosclerotic plaque. In a nutshell, 
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endothelial dysfunction - especially in the environment of disturbed blood flow - 

predispose the vessel wall to lipid infiltration, which together with the oxidation of 

captured low-density lipoprotein (LDL) particles induce a plethora of inflammatory and 

‘adaptive’ response mechanisms including endothelial activation, leukocyte adhesion, 

macrophage activation, VSMC activation (both forming foam cells), VSMC migration 

and phenotypic alteration forming a fibrous cap, programmed apoptosis and 

efferocytosis (clearance of dead macrophage and VSMC cells). A sustained 

microinflammatory environment together with the imbalance of accumulating oxidized 

LDL and cholesterol versus their phagocytosis, also the imbalance between cell death 

versus their clearance can lead to plaque progression. Sustained inflammation can also 

weaken the fibrous cap by cytokines that inhibit collagen production of VSMCs. If the 

thrombogenic necrotic core is exposed to the blood in the lumen, coagulation process is 

initialized and thrombus formation occurs which can further increase the size of the 

plaque, obstruct the vessel or cause distal embolization [65].     

Although atherosclerosis is conventionally thought to be a modern disease, 

multiple evidence shows that ancient people already had atherosclerosis – including 

hunter-gatherers [66-68]. Outside the Mendelian monogenic heredity of familial 

hypercholesterolemia (FH) (and other rare forms such as: Tangier disease, 

sitosterolaemia, Hutchinson-Gilford progeria sy. and other laminopathies, or familial 

defective apolipoprotein B) most cases evolve because of polygenic effect summing 

from multiple frequent single nucleotide polymorphisms (SNP). These SNPs one-by-one 

are thought to have only subtle effect on disease phenotypes making it difficult to clarify 

significant genetic pathways. Although there is also difficulty in replicating the results 

of atherosclerosis genetic studies, assessment of individual polygenic risk score as the 

earliest moment for assessing future CV risk and introducing preventing strategies might 

be already on the horizon waiting for standardization [69]. 

Although up- and downregulation of some specific genes as part of some specific 

pathways in the development and progression of atherosclerosis were described [70-74], 

the full image is still not well understood - there are still missing dots connecting 

discovered genes through pathophysiological pathways to phenotypic variance of 

atherosclerosis traits. Notably, carotid IMT as ‘surrogate for atherosclerosis’ was used 

in a lot of genetic studies raising the question of which atherosclerosis phenotype would 
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be the best to investigate. Carotid endarterectomy specimens and genetic analysis of 

plaque cellular components is a more direct way, but the availability of these specimens 

is limited, many times failing to reach favorable population size. Also, plaque 

phenotypes might differ regarding their advanced or non-advanced stage, in this regard 

genetic studies could further refine whether they concentrate on the initial or later stage 

of any disease e.g. calcification [75]. The question of genetic contribution to the 

longitudinal changes is also of major importance because it is suggested that any 

systematic or regional inflammation far from the plaque itself could provoke rapid 

changes in plaque progression, therefore atherosclerosis might not progress continuously 

but rather in phases [76].     

Even fewer studies concentrate on the genetic background of multivessel or 

generalized atherosclerosis failing to see the involvement of one vessel as part of a 

possibly larger picture and the potential importance of atherosclerotic plaque location. It 

is known that despite the systemic effect of risk factors plaque localization is not random. 

However, the role of differing haemodinamics and the role of differing ability of the 

endothelium to express atheroprotective genes are still not confirmed [77]. Although it 

is quite well-established, that plaques are frequently located near the bifurcations and 

also some studies have found overlapping and differing genes regarding plaque locations 

[78-81] - the aspect of plaque location is often overlooked.  

Twin studies can have a major role in answering these questions. Classical twin 

study design is a form of quantitative genetics, where the effect of unobserved genes on 

the phenotypical population variance can be quantified by using known genetic 

relationships. Therefore, without knowing the exact genes involved or conducting 

expensive research methods we can estimate the magnitude of the sum of genetic effects 

on the expression of given trait, also by using less participants [82-83]. By comparing 

monozygotic (MZ) to dizygotic (DZ) twins, based on their intra-pair similarities and 

differences we can estimate the magnitude of contributing genetic vs. common or unique 

environmental effects on the development of given trait. Twin siblings represent a unique 

(age-, genome-, upbringing- and major lifestyle-matched) control group – this study 

model infers less stochastic effects than any other study population. In a classical 

univariate twin study model we can decompose the total phenotypic variance into 

variances of genetic versus environmental origin - based on the expected versus observed 
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within-pair covariance values in the MZ and DZ twins. Model fitting methods are used 

to find the best explanation to our observations. As a result, heritability estimate of the 

trait will give the percentage of phenotypic variance attributed to the genotypic variance 

on the population level [84].  

Furthermore, bivariate and multivariate twin models can be used to examine more 

than one phenotypic trait. In bivariate models, the within-pair covariance and the cross-

trait within-person covariance can add valuable information and increase power 

compared to univariate models, making it possible to calculate both heritability and 

bivariate heritability (proportion of covariance between two traits explained by genetic 

factors). Genetic covariance and genetic correlation between traits can provide results 

comparable to molecular genetic studies, giving reliable estimates about the overlap in 

sets of genes contributing to associated complex traits [83]. These twin models can help 

discover and understand the possible common genetic origin of different traits.  

Bivariate and multivariate twin models can also be used on longitudinal data 

giving valuable information e.g. on the age-relatedness of diseases, longitudinal genetic 

stability of given traits, or also examine developmental starting points and trajectories 

which are influenced by genetic factors. Moreover, genome-wide association studies 

(GWAS), epigenetic, gene-environment and longitudinal studies -among others - offer 

new insights in disease pathways and promise the discovery of novel disease reversal 

options – all these studies in the ‘omics’ era can also profit from the benefits of twin 

study subjects [85].  

 In summary, evidence shows that atherosclerosis is not merely a modern disease. 

Due to its complex polygenic background we face difficulties in finding significant, 

replicable genetic pathways. Specification of atherosclerotic traits in regard of location 

or disease progression state could help establishing common or differing genetic 

contributors and better understanding of underlying pathomechanisms. Twin studies 

offer the possibility to investigate the genetic background of given traits on a population 

level with less stochastic effects than any other study population. 
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2. OBJECTIVES 

 

Currently three robust and promising CV risk predictor traits were at the center 

of our research (which are also potentional ATB markers): aortic PWV, aortic AIx and 

CACS. We were looking for a correlation between CACS and aortic stiffness , however 

we found higher correlation with the in house developed 4-segment scores of uni-

/bilaterality of carotid/femoral atherosclerotic plaques. Our aim was to better understand 

the underlying genetic factors’ contributions to these atherosclerotic phenotypes in 

multinational and national twin study populations (Figure 2). 

 

Figure 2. Rationale of our research. We aimed to examine the genetic 

predisposition to traits contributing to reduced coronary perfusion and increased 

cardiovascular risk. We examined both the genetic relationship between coronary and 

extracoronary atherosclerosis and also the longitudinal genetic predisposition to arterial 

stiffness parameters. Abbreviations: PWV: pulse wave velocity; AIx: augmentation 

index; CV: cardiovascular. (Own image). 

     

Specific Aim 1: To determine the magnitude of genetic vs environmental contributors 

to aortic PWV and aortic AIx on the longitudinal run. 

Hypothesis: Aortic stiffness as a marker of vascular ‘aging’ progression with time 

might be primarily influenced by genetic factors.  
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Approach: One hundred and eighty-four twin pairs from the Hungarian [86] and Italian 

Twin Registry [87] were followed up during a time period of 4.4 years. Within-

individual/cross-wave, cross-twin/within wave and cross-twin/cross-wave correlations 

were calculated, bivariate Cholesky models were fitted to calculate additive genetic (A), 

shared environmental (C) and unique environmental (E) components. 

 
 

Specific Aim  2:  To assess phenotypical and possible genetic correlation between CAC 

and severity score of carotid/femoral atherosclerosis. 

Hypothesis: We hypothesized that an ultrasound-derived trait investigating the carotid 

and femoral arteries could well represent the severity of extracoronal atherosclerosis, 

and this trait would correlate with the severity of coronary atherosclerosis as expressed 

by Agatston score. 

Approach: Our in house developed 4-segment score assessing uni/bilaterality of 

carotid/femoral atherosclerosis correlated best with CACS when hyperechoic 

(calcified) or mixed plaque score was calculated (4s_mixed/hyper). Age and sex-

adjusted bivariate ACE modeling (correlated factors model) was used for the genetic 

(rA) vs. environmental (rC) decomposition of phenotypic similarity between CACS and 

4S_hyper (four-segment score of hyperechoic plaques on carotid-femoral ultrasound) 

using a liability-threshold structural equation model. 

We further decomposed the genetic correlation to investigate underlying co-

occurrences in coronary-carotid and coronary-femoral atherosclerosis by concordant 

and discordant twin pairs showing overlapping or differing patterns. 
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3. METHODS 

3.1 Basic principles of twin statistical methods  

 

This chapter was written based on several different sources [82-83,88-90]. In 

classic twin studies we use the known genetic relationships to estimate the magnitude of 

the effect of unknown genes (quantitative genetic study). The sources of phenotypical 

variance (P) in our study population can be described as the sum of additive (A) and 

dominant (D) genetic effects, common (C) and unique environmental (E) effects: 

P = A + D + C + E                                              (3.1.) 

Additive genetic variance represents the sum of all the alleles that affect the 

phenotype, while D denotes interactions between alleles that cannot be explained by a 

lienar model (dominance – if alleles are at the same locus, or epistasis if they are at 

different loci). The magnitude of C and D usually cannot be calculated in the same model 

(unless it is extended to a family study design). When dominance is present, the 

monozygotic intraclass correlation coefficient (rMZ) would be more than twice the 

dizygotic correlation coefficient (rDZ) – in this case, an ADE model is appropriate. 

The simplest form of calculating heritability (h2) is the Falconer formula, 

h2 = 2(rMZ − rDZ)                                               (3.2) 

which is purely derived from the difference between the intrapair correlation of 

MZ and DZ twins. The higher the resemblance between MZ twins (compared to DZ 

twins), the higher the heritability of given trait. In this case, the estimation of common 

environmental effects is as follows: 

c2 = rMZ − h
2                                                      (3.3) 

The magnitude of unique environmental factors can be calculated as follows: 

e2 = 1 − h2 + c2                                                 (3.4) 

However, this simple method has many limitations, such as the lack of ability to 

test for sex differences, inadequacy for testing multivariate data and the lack of obtaining 

confidence intervals, thus the result is merely a rough point-estimation.   

Therefore, a more advanced method gained ground in twin studies, which is 

based on model fitting according to the expected and observed covariances in MZ and 

DZ twins. The expected and observed correlations and covariances can be visualized on 

a path diagram (Figure 3), which is a convenient non-algebraic way to demonstrate a 
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priori the causal relations of the latent factors (A,C,E or A,D,E) to the observed 

phenotypic variation – and furthermore can be translated into structural equations. 

 

Figure 3. Pathway diagram in univariate twin ACE model: ‘A’ stands for additive genetic 

factors, ‘C’ common environmental factors, ‘E’ unique environmental factors, ‘a’ ‘c’ and 

‘e’ depict the effect (regression coefficients) of these latent variables on the observed 

trait. The variances of the latent factors A, C and E are fixed at ‘1’, as they are unknown 

and unmeasurable. This model is also called ‘path coefficients model’. An equivalent 

would be the so called ‘variance components model’, where the regression coefficients 

would be fixed at a unit value, and the variances of A, C and E would be calculated (own 

image).     

Path diagrams can be translated into structural equations, which can further be 

converted into covariance matrices which allows further matrix algebraic operations. 

Later is useful in the process of model fitting. Prior to model fitting, naturally we need 

to build models on a hypothetic basis, which in our case are the following: 

1) Full ACE model: Latent additive genetic (A), common environmental (C) and 

unique environmental (E) factors all substantially contribute to the observed 

phenotypical variance (Vp) 

2) AE model: only latent additive genetic (A) and unique environmental factors 

(E) explain majority of Vp (the influence of common environmental factors 

is negligible) 
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3) CE model: only common environmental (C) and unique environmental 

factors (E) explain majority of Vp (the influence of additive genetic factors 

is negligible)  

4) E model: only unique environmental factors (E) explain Vp (the influence of 

additive genetic and common environmental factors do not contribute 

substantially to Vp, they are negligible) 

  

In the ACE path analysis, following path tracing rules we can derive the 

following tracing routes connecting the two members of a twin pair: 

For MZ twins: 

1) P1
c
← C1

1
↔ C2

c
→ P2 

2) P1
a
← A1

1
↔A2

a
→ P2 

Thus, the expected covariance between MZ twins can be expressed as the 

following equation: 

covMZ=a2A1A2+c2C1C2= a21x1+c21x1=a2+c2 

For the DZ twins we have the following routes: 

1) P1
c
← C1

1
↔ C2

c
→ P2 

2) P1
a
← A1

0.5
↔ A2

a
→ P2 

This will lead us to the following equation: 

covDZ= 0.5a2A1A2+c2C1C2= 0.5a21x1+c21x1=0.5a2+c2 

For the variance of a given trait P1 we can trace back the following routes to itself: 

1) P1
a
← A1

a
→ P1 

2) P1
c
← C1

c
→ P1 

3) P1
e
← E1

e
→ P1 

Therefore, the expected variance of trait P1 (or P2) will be: 

VP=a2+c2+e2                                                         (3.5) 

For the following calculations we imply covariance matrices. We can form the 

covariance matrix of the observed trait in MZ and DZ twins separately from their original 

data matrix A, where column 1 is Twin 1, column 2 is Twin 2, and phenotypic values 

from all twin pairs (N) are listed in the raws. For each ai,j element (where i is the number 
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of raw, j is the number of column) of the matrix we can calculate its deviance from the 

parameter mean value. If we replace all aij data with zij=aij-μij (where μj is the mean value 

of the jth parameter), we get the matrix Z. Phenotypical covariance matrix then is easy to 

obtain by multiplying matrix Z by its transpose Z’, multiplied by 1/N-1, e.g. for the sake 

of simplicity if we would have only 3 twin pairs: 

1

N − 1
𝐙′𝐙 =

1

2
(
z11 z21 z31
z12 z22 z32

) (
z11 z12
z21 z22
z31 z32

) =

=  
1

2
(

(z11)2 + (z21)2 + (z31)2 (z11)(z12) + (z21)(z22) + (z31)(z32)

(z11)(z12) + (z21)(z22) + (z31)(z32) (z12)2 + (z22)2 + (z32)2
) 

= (
Szi1
2 Szi1∗zi2

Szi1∗zi2 Szi2
2 )                                            (3.6) 

Which is then finally the symmetric phenotypical covariance matrix, e.g. S, 

where the diagonal elements represent the trait’s variance among Twin1 of twin pairs 

(Szi1
2 ) and Twin2 of the twin pairs (Szi2

2 ), while the elements under and above the diagonal 

are identical and represent the covariance of the trait in-between the twin pairs. 

Therefore, we might also write the observed covariance matrices of MZ and DZ 

twins in other form: 

𝐒MZ = (
var(PMZ1)

cov(PMZ1, PMZ2) var(PMZ2)
) 

and 

𝐒DZ = (
var(PDZ1)

cov (PDZ1, PDZ2) var(PDZ2)
) 

 

The expected variances and covariances are then decomposed by the results of 

the latent variables (ACE) following the above detailed path tracings: covariance due to 

additive genetic effects will be the result of the paths linking trait values via A (for MZ 

twins: a*1*a=a2, for DZ twins: a*0.5*a=0.5a2). The covariance due to C can be derived 

in similar ways (c2 for MZ twins and c2 for DZ twins). Variances would contain all three 

elements (a2+c2+e2). Let us name the expected covariance matrices Σ, which has then 

the following forms:  

𝚺MZ = (
a2 + c2 + e2

a2 + c2 a2 + c2 + e2
)                                  (3.7) 

and 
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𝚺DZ = (
a2 + c2 + e2
1

2
a2 + c2 a2 + c2 + e2

)                                  (3.8) 

 

Naturally, in the reduced AE, CE or E model the value of either c2 or a2, or both 

c2 and a2 would be fixed at zero, respectively.  

The next step is to fit our expected covariance matrices (𝚺MZ, 𝚺DZ) to the 

observed phenotypical covariances matrices (SMZ, SDZ). This requires multiple iterative 

processes, where the latent variables are estimated and optimized at each step until the 

best fit is reached (multiple methods exist, but the most commonly used is the maximum 

likelihood method). SEM (Structural Equation Modeling) programs can analyse data 

from several different familial relationships, provide measurement errors, and enables to 

compare the fit of different models. Akaike’s extended method enables us to assess 

model parsimony at the same time (choosing the model with the least number of latent 

variables without significant loss of fit).   

When parameter estimates reach the maximum likelihood, technically, we obtain 

the least possible misalignment between predicted model and observed data (covariance 

matrices). Assuming normally distributed data, the maximum likelihood function is 

defined as: 

F(ML) = (s − σ)
′𝐖(ML)

−1 (s − σ)                                      (3.9) 

where s is the vector of the observed covariance matrix S and σ is the vector of 

model matrix Σ, W(ML)
−1  is a matrix created by the inverted variances and covariances 

among the elements in matrix Σ. While computing each iteration, Σ should be inverted 

each time – it is this value which will define F (ML) and the aim is to create the least 

discrepancies between s and σ. The vector s is a data set obtained by the diagonal and 

lower half elements of matrix S, rearranged in the form of only one column. The same 

stands for vector σ, which contains the non-duplicate elements of matrix Σ: 

s = (

varPMZ1
covPMZ1,2
varPMZ2

)                   σ = (
a2 + c2 + e2

a2 + c2

a2 + c2 + e2
) 

Technically, as there are two different twin groups (MZ and DZ twins), we use 

the multi-sample analysis of model fitting in the following form: 

F = ∑ (Ng/N)Fg(𝐒
(g)𝚺(g)𝐖(g))G

g=1                              (3.10) 
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Where G is the number groups. Therefore, when two groups of twins are 

investigated, the number of groups G=2, where g1 refers to the MZ twins and g2 refers 

to DZ twins. Ng/N is the number of MZ or DZ twin pairs compared to the whole 

population, Fg the fit function of the given group, while S(g) is the covariance matrix of 

the observed phenotypes, Σ(g) is the covariance matrix of the expected model and W(g) 

is the weight matrix for group G. Naturally in this case we sum the functions of the two 

groups.  

An example of the iterative minimization method is the so-called Newton-

Raphson method. Here we want to assess the unknown parameters (converging to their 

‘real’ value) by starting with a certain chosen value of the latent factors (let us call vector 

Θ(1)). Using these estimates we get the F(ᶿ1): the function value of the first iteration 

process. From the above equation we can calculate the gradient (m dimensional vector 

g, where m is the number of the latent variables), which is the first order derivative and 

the Hessian matrix (H), which is the second order partial derivates’ matrix. From the 

gradient and the Hessian matrix we get the direction vector d, which will orient to the 

next estimation of the unknown parameters (which will give a closer approximation): 

Θ2 = Θ(1) − d(1)                                            (3.11) 

where 

d = 𝐇−1g 

We can continue the iterations until reaching parameter estimation Θ(k), where 

the difference between Θ(k) and Θ(k-1) or the difference between their F value is negligibly 

small, so the parameter estimates are close enough to their ‘real’ value. 

After parameter optimization (getting close enough the ‘real’ value of a, c and e), 

we can calculate the goodness-of-fit of the model by calculating the ꭓ2 measure of fit as 

follows: 

ꭓ2 = (N − 1)Fk                                             (3.12) 

where Fk is the minimal value of the fit function (last iteration). 

 If the sample is large enough we might be able to compare it to a perfectly fitting 

(‘saturated’) model using likelihood ratio ꭓ2 statistics. Alternatively, comparison of the 

submodels can be made against the full (ACE) model. When calculating maximum 

likelihood estimates one parameter is progressively moved away resulting in different 

models (e.g. removing C from the ACE model will give the AE model). When the ꭓ2 
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value of the given model is non-significant (p>0.05), the model is consistent with the 

data. However, when the ꭓ2 value is significant, the model fits the data poorly - therefore 

it should be rejected.  

The degrees of freedom (df) denotes the number of observed variables (typically 

sample variances and covariances) minus the number of parameters estimated in the 

given model. When computing the Akaike’s Information Criterion (AIC) we take df 

(therefore number of parameters) also into account: 

AIC = ꭓ2 − 2df                                             (3.13) 

This method serves to choose the most parsimonious model, meaning that if a 

simpler model with less parameter doesn’t provide significantly worse fit, it should be 

chosen over the more complex model, because it is preferred that the least latent variables 

which can explain the population variation should be chosen. The model with the lowest 

AIC value will correspond to the most parsimonious model. For example, when we 

compare the AE model to the ACE model, we test whether component C’s path 

coefficient c2 value is significantly higher than 0 or not – or in other words, we test 

whether AE model is significantly worse than ACE model or not. When C can be left 

out, the simpler AE model should be chosen. 

The above methods can easily be extended to multiple variables, so it is also 

possible to analyze multiple traits in the form of looking for genetic and environmental 

covariance or correlation between two or more traits or e.g. looking for longitudinal 

genetic origin of stability of one given trait (with multiple measurements). These are 

called bivariate or multivariate genetic models. The corresponding matrix algebraic 

representation is similar to that in a univariate model- however, the dimensions are no 

longer 1 x 1, but n x n (where n is the number of variables). 

Figure 4. shows Cholesky model where the within-individual factor loadings 

(which are equivalent to path coefficients, one-way arrows), are hypothesized to have an 

overlapping effect on both phenotypical traits. It is important to note, that only one latent 

factor is hypothesized to have an influence on both traits, however this is not true for the 

second latent factor. This model fits e.g. longitudinal data well. Additionally, intrapair 

correlations (or covariations) of the latent variables (= latent factors) in the form of two-

way arrows are also demonstrated, which differ among MZ and DZ twins. 
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Figure 4. Bivariate Cholesky twin model. Solid lines represent that the covariance 

between the shared environmental variance components is fixed at 1 for all types of 

twins. Dashed lines represent a correlation regarding additive genetic effects fixed at 1 

for MZ twins and 0.5 for DZ twins. Latent variables have a causative effect on the 

observed phenotype presuming that variables can partly have an effect both at the first 

and the second observed phenotype. A: additive genetic effects, C: common 

environmental effects, E: unique environmental effects (own image). 

The Cholesky method is based on the knowledge that any positive definite matrix 

can be decomposed into a triangular matrix multiplied by its transpose. The aim is to 

decompose total population phenotypic covariance (matrix) into genetic and 

environmental components by using the genetically informative data from MZ and DZ 

twins: 

𝐂P = 𝐀 + 𝐂                                                    (3.14) 

where A is the additive genetic covariance matrix, C is the common 

environmental covariance matrix. Assumed that A is a positive definite matrix, we can 

decompose it to the triangular matrices: 

𝐀 = 𝐓𝐓′                                                         (3.15) 

where  

𝐀 = (
a11
2 a11a21

a11a21 a21
2 + a22

2 ) 
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from which we can get the value of the factor loadings one by one using the 

Cholesky method: 

𝐓 = (
a11 0
a21 a22

)  and  𝐓′ = (
a11 a21
0 a22

) 

If the elements under the diagonal of A equal 0, there is no genetic covariance 

between the two traits - as only diagonal elements would be present, which define the 

genetic variances of trait 1 and trait 2. 

The expected model is very similar to that in the prior univariate model (see 3.7. 

and 3.8.), however, now we have matrices within the matrices. Eg, the expected model 

matrices for MZ and DZ covariance between trait 1 and trait 2 are: 

𝚺MZ1,2 = (
𝐀 + 𝐂 + 𝐄
𝐀 + 𝐂 𝐀 + 𝐂 + 𝐄

)                           (3.16) 

𝚺DZ1,2 = (
𝐀 + 𝐂 + 𝐄
0.5%x%𝐀 + 𝐂 𝐀 + 𝐂 + 𝐄

)                        (3.17) 

Where %x% denotes the Kronecker product. 

The observed phenotypical matrices are also similar to the univariate model, 

however now we have covariance matrices among the diagonal elements too: 

𝐒MZ1,2 = (
𝐂P12T1
𝐂P12T12 𝐂P12T2

)                                   (3.18) 

  𝐒DZ1,2 = (
𝐂P12T1
𝐂P12T12 𝐂P12T2

)                                   (3.19) 

Where CP12T1 is the within-twin covariance matrix of Phenotype 1 and Phenotype 

2 in Twin 1, CP12T2 is the within-twin covariance matrix of Phenotype 1 and Phenotype 

2 in Twin2 and CP12T12 is the cross-twin covariance matrix of Phenotype 1 and Phenotype 

2 in Twin 1 and Twin 2. The observed phenotypes can also be shown in the following 

forms (Table 1-2.):  

Table 1. Covariance matrices of two observed traits in twin pairs. 

 Twin 1 Twin 2 

p1 p2 p1 p2 

Twin 1 p1 Within-twin covariance 

matrix (Twin 1) 

Cross-twin covariance 

matrix (Twin 1 and 2) p2 

Twin 2 p1 Cross-twin covariance 

matrix (Twin 1 and 2) 

Within-twin covariance 

matrix (Twin 2) p2 
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Table 2. Covariance matrices of two observed traits in twin pairs. 

 Twin 1 Twin 2 

p1 p2 p1 p2 

Twin 1 p1 VarP1T1    

p2 CovP12T1 VarP2T1   

Twin 2 p1 CovP1T12  VarP1T2  

p2 CovP12T12 CovP2T12 CovP2T12 VarP2T2 

 

The process of model fitting, parameter optimization and model comparison to 

choose the most parsimonious one is then similar to the procedures used in univariate 

models described above.  

Additionally, we might calculate genetic (rg) and environmental correlation. Per 

definition, correlation between two traits can be obtained by their variances and 

covariances, e.g.: 

rg =
a11a21

√a11
2 (a21

2 +a22
2 )

                                            (3.20) 

So far we have discussed the methodologies concerning continuous normally 

distributed phenotypical data. However, frequently we have to deal with non-continuous 

e.g. discrete, ordinary, binary or ordered categorical data. In these cases the phenotypical 

data can usually be presented as frequencies in mxm contingency tables, where m is the 

number of categories, e.g. as shown in Table 3: 

 

Table 3. Contingency table of one (ordered) categorical trait in twins. The 

contingency table shows the frequencies/proportions (or number) of twin pairs, e.g. f11 

is the frequency of twin pairs where both twins fall into category 1 (Cat 1). 

 Twin 1 

Cat 1 Cat 2 Cat 3 

Twin 2 Cat 1 f11 f21 f31 

Cat 2 f12 f22 f32 

Cat 3 f13 f23 f33 

In the case of these data we can make the assumption that an underlying 

continuous, normally distributed but unmeasured variable exist, which is called liability. 
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Another assumption is that our measurements are imprecise measurements of the 

underlying liability, therefore the different m categories represent distinct parts of the 

liability distribution curve divided by m-1 thresholds. In other words, liability is the 

hypothetical distribution of a hypothetical underlying factor, which will define e.g. 

whether a disease will be present or not. 

If we look at only Twin 1, we can take a vector g containing the frequencies of 

m=3 categories: 

g = (
f11 + f12 + f13
f21 + f22 + f23
f31 + f32 + f33

) = (

g1
g2
g3
) 

The underlying liability of g is assumed to have the mean value fixed as 0, 

variance 1, then the threshold can be placed at given z values, which would partition the 

liability distribution so that it would match our observed frequencies, e.g. let g be: 

g = (
20
35
12
) 

The expected proportion in category i can be calculated by finding the definite 

integral between the two thresholds (ti and ti-1) (or between the first threshold and minus 

infinite/last threshold and positive infinite): 

∫ ∅(x)dx
ti

ti−1
                                                   (3.21) 

where ϕ(x) denotes the probability density function defined as: 

∅(x) =
e−.5x

2

√2π
                                                 (3.22) 

where e is Euler’s number (approximately equals 2.71828) and π is the 

Ludolphian number approximating (3.14159). In our example, if we take 

∫ = 1
∞

−∞

 

Then logically, the sum of the elements in g should equal 1. Therefore we can 

transform the numbers to keep reflecting the same partitions as follows: 

g =

(

 
 

20
67⁄

35
67⁄

12
67⁄ )

 
 
= (

0.29851
0.52239
0.17910

) 

Therefore, from the equation 3.21. and 3.22. 
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∫
e−.5x

2

√2π
dx = 0.29851

t1

−∞

 

we can get  

erf (
t1

√2
) + 1

2
= 0.29851 

where erf refers to error function. From this equation we get: 

erf (
t1

√2
) = −0.40298 

Which allows to calculate the z value of the first threshold, t1= -0.52869. 

Following with similar methods, the z value of the second threshold will be t2= 0.91880. 

Finally we can demonstrate and check the correctness of these results as follows: 

 

Figure 5. Hypothetical liability distribution. Here t1 and t2 denote the two thresholds 

between categories.  
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The curve in Figure 5. shows the liability distribution of the ordered categorical 

measurements in Twin1 (vector g contains the frequency of twins in each category), 

where the first threshold (t1) refers to      

-0.528969 z score and the second threshold (t2) equals 0.91880 (the x axis shows the z 

score values). The area under curve marked with color green can be calculated by the 

integral between t1 and t2, which equals 0.52293, corresponding to 35/67, the second 

element of vector g. Therefore, the frequencies in Cat1-3 (elements of vector g) match 

the areas under curve of the normal distributed liability curve, where t1 and t2 represent 

the margins between the three categories. 

Next, if we get back to the contingency table where the frequencies of Twin1 and 

Twin2 are merged (Table 3.), we must continue with the assumption that bivariate 

normal liability underlies our observations. The correlation between the two twins is yet 

unknown, however, with this model, we can compute the expected proportions of each 

cell and the contrary is also true: the observed proprotions in the cells can be used to 

estimate both thresholds and the correlation. This is called polychoric correlation (or 

tetrachoric correlation, when the contingency table is of 2x2 dimensions), which can be 

calculated both in MZ and DZ twins (Figure 6). 

 

Figure 6. Polychoric correlation between twins. On the left side we see an example of 

high polychoric correlation where the area of given cell divided by the given part of the 

ellipse represents the relative proportion of the frequency to the correlation between the 

two twins. On the right side we see an example of lower polychoric correlation. In both 

cases there are two underlying normal distributions with given thresholds (t1 and t2). 

Logically, the higher the frequency in the diagonal elements relative to the other cells, 

the higher the correlation between the two twins will be. 
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As Figure 6. shows, the polychoric correlation can be estimated knowing the 

threshold values and the frequencies of the given cells. Let h denote the vector containing 

the observed frequencies in Cat1-3 of Twin 2: 

h = (
f11 + f21 + f31
f12 + f22 + f32
f13 + f23 + f33

) = (
h1
h2
h3
) 

In the next step let Y1 denote the liability underlying g and Y2 denote the liability 

underlying h. The polychoric correlation coefficient between Y1 and Y2 then can be 

obtained by path tracing, where the latent variable B has the same effect on both vectors: 

Y1
b
← B

b
→ Y2 and  r∗ = b2 

where r* represents the polychoric correlation coefficient. Numerical integration 

processes can be used to compute the value of r with programs such as Mx.  

After calculating r*
MZ and r*

DZ it is also possible to fit models (ACE, AE, CE, 

E) to the liabilities of the data and choose the most parsimonious one similarly to the 

previous methods, however df will be much less. The fit function is based on the 

observed frequency data and the expected proportions of each cells. E.g. the expected 

proportion of liability in cell f33 is: 

∫ ∫ Φ(L1, L2; 0, Σ)dL1dL2
∞

t2

∞

t2
                             (3.23) 

where Φ is the multinormal probability density function, L1 is the liability of 

twin1 L2 is the liability of twin 2, 0 is the mean value and Σ is the expected correlation 

matrix of the two liabilities based on ACE path tracings. 

The ‘saturated model’ (meaning that the model fits the data perfectly, therefore 

predicted frequencies are equal to the observed frequencies) can be calculated as follows: 

2 lnL = 2∑ ∑ nijln (
nij

n..
)c

j=1
r
i=1                             (3.24) 

where r denotes rows, c means columns, nij is the frequency of given cell and n.. 

is the total number of cells. 

A significant ꭕ2 statistic value of the given predicted model vs. the above 

saturated model would mean a poor fit to the observed data. 

Genetic vs. environmental decomposition of comorbidity (or ordinary 

phenotypical correlation) is also possible to estimate between two or more, multivariate 

binary or ordinary variables. In this case, e.g. regarding the binary trait of having disease 

A or not and having disease B or not, a 2x2 contingency table can be written for both 
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Twin1 and Twin2 (whole twin population), where the cells represent the frequency of 

twins having both, only one or neither of the diseases (Table 4). 

Regarding the underlying liabilities LA for disease A and LB for disease B, we 

hypothesize that an individual is affected by disease A, if the liability value exceeds 

certain threshold tA, and same applies to disease B. Comorbidity is present when 

correlation between LA and LB is higher than 0. The tetrachoric correlations r*
MZ and r*

DZ 

can also be calculated separately.  

 

Table 4. Contingency table of comorbity (two diseases) in twins. The cells 

represent the frequencies of twins with neither disease (f0), only disease A (fA), only 

disease B (fB) or both diseases (fAB). 

Twin 1 and Twin 2 

 Disease A 

No Yes 

Disease B No f0 fA 

Yes fB fAB 

 

In the following step we can draw a 4x4 contingency table where both members 

of the twin pairs are represented separately (Table 5). 

 

Table 5. Contingency table of comorbidity in twin pairs. The cell fAB1AB2 

e.g. represents the frequency of twin pairs, where both members have the comorbidity of 

A and B disease.  

  Twin 1 

  01 A1 B1 AB1 

Twin 2 02 f0102 fA102 fB102 fAB102 

A2 f01A2 fA1A2 fB1A2 fAB1A2 

B2 f01B2 fA1B2 fB1B2 fAB1B2 

AB2 f01AB2 fA1AB2 fB1AB2 fAB1AB2 

 

Each cell's probability can be predicted as a quadruple integral, e.g. the predicted 

value of cell fAB1AB2 (meaning both members are comorbid): 
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∫ ∫ ∫ ∫ 𝛷(𝐿𝐴1, 𝐿𝐴2, 𝐿𝐵1, 𝐿𝐵2; 0, 𝛴)𝑑𝐿𝐴1𝑑𝐿𝐴2𝑑𝐿𝐵1𝑑𝐿𝐵2
∞

𝑡𝐵2

∞

𝑡𝐵1

∞

𝑡𝐴2

∞

𝑡𝐴1
       (3.25) 

Fitting the predicted cell values by the ACE, AE, CE and E models to the 

observed cell values and choosing the most parsimonious one is similar to the previous 

methods: the ꭕ2 value is compared to the saturated model and the model with the lowest 

AIC score is chosen. 

In summary, basic classical twin statistical methods can be understood based on 

the univariate model building (ACE, AE, CE and E) in case of one, normally distributed 

continuous phenotypic trait (because this type of data is easier to handle and univariate 

analysis is simpler) in MZ and DZ twins. Each model can be visualized by path diagrams, 

from which structural equations can be made following path tracing rules. After models 

are created, we estimate the parameters of each model (either latent variables’ variances 

are fixed at 1 so we calculate path coefficients, or path coefficients are fixed at 1 and we 

calculate latent factor variances), where each unknown variables are approximated 

iteratively using maximum likelihood functions until the discrepancies between the 

observed covariance matrices and the expected covariance matrices show least 

discrepancies. Afterwards, generally the ꭕ2 value of each model are assessed, and they 

are compared to each other (either starting with the full ACE model or a ‘saturated’ 

perfectly fitting model). Models which fit the data poorly (e.g. show significant 

difference in their ꭕ2 value) are rejected and the most parsimonious one is selected based 

on the lowest AIC value.  

The similar logic can be extended to more than one phenotypical trait, however 

both the observed and the expected covariance matrices will contain other covariance 

matrices in their elements. The Cholesky method can be used to decompose genetic and 

environmental covariance matrices to find the corresponding path coefficients.  

In case of non-continuous data, contingency tables depicting frequencies in each 

cell can be used, where the elements of both the columns and rows are regarded as two 

imprecise measurement of two latent, normally distributed liabilities. Separate MZ and 

DZ tetrachoric or polychoric correlations can be computed by numerical integration 

processes. Model building and fitting can also be used by fitting the expected frequencies 

of cells to the observed frequencies. With similar logic the model can be extended to 

multiple variables, where polychoric correlation, model building and model fitting are 
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also possible to conduct. In the following sections we refer back to the twin methods 

described above.   

 

3.2. SPECIFIC AIM 1 

3.2.1. Study participants and measurements 

  

Our first international study participants were twin pairs from Hungary, Italy and 

the United States. Baseline measurements were conducted between 2009 and 2010 

among 760 randomly selected adult twins. Measurements took place in Budapest, 

Agfalva and Szigethalom (Hungarian Twin Registry), Rome, Padua and Perugia (Italian 

Twin Registry) and Twins Day Festival in Twinsburg, Ohio, United States. Zigosity was 

assessed based on self-reported questionnaire [91,92]. Non-white or pregnant 

participants, twins with arrhythmia were excluded.  

 

Figure 7. Study flowchart. A total of 394 twin pairs were lost for follow-up. One 

hundred and forty-eight Hungarian and two hundred and twenty Italian twins 

participated in the second wave of measurements; therefore, our longitudinal 

examinations were performed on these 368 twins from which 214 were MZ and 154 

were DZ twins. 

 All participants were invited to a follow-up examination except for the American 

twins (due to financial reasons). The second wave of visits was organized between 2013 

and 2014 with a 4.4 years average follow-up time. Average response rate was 55.6%. In 



40 
 

the final longitudinal analysis 368 twins were included (214 MZ and 154 DZ twins, 148 

twin from Hungary and 220 twins from Italy) (Figure 7). Measurements of arterial 

stiffness and blood pressure were performed by the same two operators (A.D.T., D.L.T.) 

in both waves. Study protocol was approved by the Ethics Committee of the Instituto 

Superiore de Sanitá. Informed consent was given by all participants and the research was 

implemented according to the principles of the Declaration of Helsinki. 

 Participants were asked to fill a self-reported questionnaire about smoking and 

alcohol drinking habits, chronic diseases, medications and additional clinically relevant 

conditions. Prior to anthropometric and hemodynamic measurements, all subjects were 

restricted from smoking for 3 hours, from eating for 1 hour and from drinking alcohol or 

coffee for 10 hours. Weight measurements were implemented by a validated body 

consistency monitor (Omron Healthcare Ltd., Kyoto, Japan). For the calculation of BMI 

(body mass index) we used the following formula:  

BMI =
weight (kg)

height(m2)
                                              (3.26) 

  

 Measurement of brachial and aortic AIx, aortic PWV, brachial and aortic blood 

pressure (BP), pulse pressures (PP) and mean arterial pressure (MAP) were conducted 

using a non-invasive, occlusive, oscillometric device (Tensiomed Arteriograph, 

Medexpert Ltd, Budapest, Hungary). The principle of the device is demonstrated in 

Figure 8. 

A brachial cuff inflated at least 35 mmHg above the systolic pressure is used both 

as a means to create a stop-wave environment and as a sensor to detect central pressure 

changes (early systolic, late systolic/reflected and diastolic waves) at the upper edge of 

the cuff - therefore small suprasystolic pressure changes can be recorded and analyzed. 

Aortic Aix is calculated by the following formula:  

Aix(%) =
P2−P1

PP
x100                                           (3.27)  

where P1 represents the amplitude of the first (direct) systolic wave and P2 is the 

amplitude of the late (reflected) wave (see also: Figure 9). 
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Figure 8. Basic principles of the Arteriograph and measurement method of pulse 

wave velocity (PWV). Abbreviations: Δx: distance between the jugulum and the 

symphysis; ΔT: time interval between first and reflected peak systolic values (own 

image). 

 

 

Figure 9. Calculation of the augmentation index (AIx). Abbreviations: SBP: systolic 

blood pressure; DBP: diastolic blood pressure; AP: augmented pressure wave; PP: pulse 

pressure (own image). 

Central systolic blood pressure (SBP) is calculated using a validated algorithm 

based on the late systolic wave amplitude and the relationship between brachial and 

central SBP. Calculation of aortic PWV is based on the physiological wave reflection at 

the level of the aortic bifurcation (mostly) – therefore the device measures time interval 
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between first and reflected peak systolic values (return time; RT). Additionally, jugulum-

symphysis distance (Jug-Sy) should be measured free-hand as a proxy to aortic length. 

From these values we get the following equation [93]:  

aPWV(
m

s
) =

Jug−Sy(m)

RT/2(s)
                                       (3.28)  

 In order to avoid overestimation, we did not measure the jugulum-symphysis 

distance on the body surface, but parallel to it. Best-fitting brachial cuff size (small, 

medium or large) was chosen for each individual on their non-dominant arms. All 

participants were asked to have at least 10 minutes of rest before the measurement and 

not to talk or move during the measurements. Quality control was obtained visually 

(exclusion of signs of improper cuff size or tightness, arrhythmia, tremor or mechanical 

vibration). At least two measurements were taken from all participants and averaged. If 

the standard deviation of aortic PWV was >1 m/s we performed an additional third 

measurement and their median value was used later.  

 

3.2.2. Statistics  

 For the descriptive statistics we used Intercooled STATA for Windows (version 

11.2; StataCorp, College Station, Texas, USA). Arithmetic means and percentage 

distributions of variables were calculated in different groups of zygosity, country and 

time of measurements (waves). We compared groups using Student’s t-test in case of 

continuous variables and using Chi-square test in case of frequencies.  

 For calculating Pearson’s correlations on the longitudinal data from the two 

waves we used bivariate saturated models in the software Mx [94]. For each trait, the 

following correlations were determined: within-individual/cross wave correlations, 

cross-twin/within-wave correlations and cross-twin/cross-wave correlation. Within 

individual correlation between waves is informative about the phenotypical stability over 

time at the study population’s level. A high correlation e.g. would mean similar patterns 

of changes among the participants rather than no change at all over time. Cross-twin 

correlations were obtained at wave 1 and wave 2 in MZ and DZ groups. A higher MZ 

correlation would imply a stronger genetic effect on the given trait at the given time 

point. With cross twin/cross wave correlations we compared twin 1 at wave 1 to twin 2 

at wave 2 and vice versa both in MZ and DZ twins separately. A higher correlation in 

MZ twins would be suggestive of partly shared genetic factors contributing to phenotypic 
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expression at wave 1 and wave 2. In case of aortic PWV calculations we adjusted for 

age, sex, country, changes in MAP and BMI between waves, aortic AIx calculations were 

adjusted for age, sex, country, changes in heart rate and BMI between waves. 

 For further twin statistical approaches, we also used the Mx software. Heritability 

of the traits were calculated at both waves – which by definition means the proportion of 

total variance explained by genetic variance. Bivariate Cholesky decomposition allowed 

us to determine bivariate heritability (proportion of phenotypic stability attributable to 

genetic stability). Both heritability estimates use a pathway model where latent variables: 

additive genetic effects (A), common environmental effects (C) and unique 

environmental effects (E) have a causative relationship to the manifest (or phenotypical) 

variables. For explanation of Cholesky decomposition see Figure 4. Genetic modelling 

started with full ACE decomposition including all three latent variants (in univariate 

heritability analysis). Sub-models (AE, CE, E) were then compared to the full model by 

likelihood-ratio chi-square test. When the test wasn’t significant, the full model was 

rejected and the submodel was kept and final results were obtained from the best fitting 

model based on the lowest Akaike Information Criterion. In bivariate Cholesky 

modelling the same approach was used. 

 

3.3.  SPECIFIC AIM 2. 

3.3.1. Study participants and measurements 

  

In the second part of our study 202 adult Hungarian twins (Caucasian ethnic) 

were enrolled. Subjects were selected from the Hungarian Twin Registry based on their 

proper clinical history, age and gender. Zigosity was determined using a self-reported 

questionnaire [91,92]. Only same-sex DZ twins were invited to participate in this study. 

Inclusion age criteria for females was 40 to 75 years, whilst for males 35 to 75 years. 

Exclusion criteria were: contraindication of CT-angiography, previous coronary artery 

revascularization, atrial fibrillation/flutter or frequent irregular or rapid heartbeat within 

the past 3 months, pacemaker or implantable cardioverter defibrillator (ICD) 

implantation, active congestive heart failure or known nonischaemic cardiomyopathy, 

known genetic diseases of atherosclerosis, lipid or lipoprotein metabolism, pregnancy, 

regular alcohol consumption (>2 units/day), acute infection within three weeks and 
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conditions possibly lowering compliance during CT scanning. Approximately 90% of 

twins agreed to participate after notification and sending them detailed study description. 

Study measurements were carried out in Budapest, Hungary between April 2013 

and July 2014. The study was approved by the national ethics committee (institutional 

review board number: ETT TUKEB 58401/2012/EKU [828/PI/12]; Amendment-1: 

12292/2013/EKU [165/2013]). All participants gave written informed consent and the 

study was transacted according to the Helsinki Declaration. 

 All subjects were retained from smoking and eating for 3 hours, drinking coffee 

or alcohol for 10 hours prior to examinations. Obtainment of anthropometric data 

(weight, height/BMI) and self-reported questionnaire about lifestyle and medical history 

were carried out on day one together with cardiac CT. Vascular ultrasound was 

implemented on the following day by two expert radiologists (A.D.T., D.L.T). Because 

of missing radiological data we had to exclude six twin pairs resulting in a total number 

of 190 participant for our analyses. 

      

Figure 10. Three-dimensional reconstruction of coronary CT showing 

extensive calcification mainly in the left anterior descending coronary artery (own 

image). 

Cardiac non-contrast CT examination was performed using ECG 

(electrocardiogram) triggered, 256-multidetector CT (Brilliance CT, Philips HealthTech, 

Best, The Netherlands). Per os β-blocker (metoprolol, 100 mg max. dose) was given 1 
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hour prior to CT scan if any participant had a heart rate was above 65/min. Scans 

acquisition protocol included 2.0 mm slice thickness, 120 kVp tube voltage and 20-50 

mAs tube current depending on BMI. Scans were taken during a single inspiratory 

breathhold at 78% of the R-R interval (Figure 10). The CACS was assessed using 

commercially available software (Extended Brilliance Workspace; Philips Healthcare) 

and expressed in Agatston score [95]. 

Carotid and femoral ultrasound examinations were performed in B-mode 

(brightness-mode) and color Doppler mode using high frequency (5-10 MHz) linear 

transducers (Philips HD15, Philips Healthcare, Best, The Netherlands). Carotid arteries 

were scanned on both sides from the proximal common carotid arteries until the visible 

proximal 2-3 cm segments of the internal and external carotid arteries. Femoral arteries 

were visualized also bilaterally from the inguinal ligament until the bifurcation and the 

proximal 1-2 cm of the deep femoral artery and 3-4 cm of the superficial femoral artery. 

We considered ≥1.5 mm endoluminal protrusion or >50% focal thickening relative to 

adjacent intima-media layers plaques (Figure 11).  

 

 

Figure 11. B-mode ultrasound image of a hyperechoic (calcified) plaque in the left 

internal carotid bulb (own image). 

 

Each plaque was registered, measured, described and categorized based on their 

echogenicity type. We differentiated hypo-, hyper- and mixed plaque types as described 

previously [96]. These categories have been validated against histologic specimens 



46 
 

proving that increasing echogenicity correlated with the amount of calcification [97]. 

Plaque dissemination was assessed by four-segments score summing the number of 

affected arteries regarding or not regarding plaque type. 

 

3.3.2. Statistics 

Study participants demographic characteristics and phenotypic variations were 

analyzed using the SPSS statistical program (SPSS Statistics 17). Group of MZ and DZ 

pairs were compared to each other by independent sample’s t-test in case of parametric, 

Mann-Whitney U test in case of nonparametric and Chi-square test in case of binary data. 

Prevalence of distinct combinations of plaque distribution in the carotid, femoral and 

coronary arteries were shown in form a Venn diagram. We also assessed the prevalence 

of the four CAC severity scores among participants with different plaque locations and 

different plaque dissemination status. We assessed non-adjusted Pearson correlation 

between four-segment scores and CAC. In order to gain insight into the genetic basis of 

differing plaque locations we categorized MZ and DZ twins into concordant and 

discordant twin pair groups. 

We used OpenMx library of the R statistical program [98] for the twin statistics. 

Agatston score of CAC was converted to ordinary values (0: no calcification; 1: mild 

calcification, CACS 1-100; 2: moderate calcification, CACS 101-400; 3: severe 

calcification CACS >400). We used age and sex adjustment for each variable. First, we 

calculated univariate ACE models using a liability-threshold model to estimate 

heritability for each trait. Full ACE model was compared to the submodel and the most 

parsimonious solution was chosen using the Akaike Information Criterion. 

Age and sex-adjusted polychoric phenotypic correlations between CACS and 

4S_hyper were assessed in MZ, DZ and all twins. Age and sex-adjusted bivariate 

correlated factors model (ACE model) was used for the latent variable decomposition of 

phenotypic resemblance using liability-threshold structural equation model. Model 

selection was based on full and reduced model comparison similarly to the univariate 

analysis. 
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3.3.3 Additional methods 

Additionally, we calculated the phenotypical correlation between CACS and 

aortic PWV in our second (190 Hungarian twins) population. Aortic PWV measurement 

was conducted by the same device, same methodology and the same observers as we 

used in our first, international study population (Tensiomed Arteriograph, Medexpert 

Ltd, Budapest, Hungary). As CACS in non-normally distributed and cannot be 

transformed, we used Spearman correlation (SPSS Statistics 17) to assess similarity 

between the two variables.  

The second additional unpublished statistical procedure was a two-step procedure 

also in our second, Hungarian twin study population (N=190): first, logistic regression 

models were used to assess significant determinants of CAC and to test whether 

4S_hyper, 4S_mixed or PWVao should be included in the models or not. We used binary 

values of CAC (0: no coronary calicification; 1: >0 coronary calcification score). The 

algebraic equation of the logistic regression gives the equation, which can predict CAC 

based on our model: 

log (
π

1−π
) = β0 + β1X1 +⋯+ βp−1Xp−1                      (3.29) 

or in a different form: 

Logit(E(y)) = β0 + ∑ βiXi
p−1
i=1                                  (3.30) 

where β0 is the estimate of the intercept, βi are the β estimates of the independent 

variables, Xi are the actual values of the independent parameters, and y is the dependent 

parameter (e.g., CAC). In other form, eg: 

Pr(y = yes) = logit−1(β0 + ∑ βiXi
p−1
i=1 )                     (3.31) 

Then secondly, we used a machine learning method to assess the performance of 

the model for predicting CAC: binary classification was used based on the logistic model, 

the test and training set was randomly separated (ratio: 0.7:0.3) on our population (cross-

validation). The threshold for the probability was assessed based on the ROC curve, 

where the sum of sensitivity and specificity were maximal (both statistical procedures 

were conducted by R statistical software, version: 4.2.3). 

If we further dive into the hypothesis that twins might have a genetic predisposition to 

plaque colocalization (the first two affected arterial sights might be either carotid and 

coronary – phenotype 1, femoral and coronary – phenotype 2 or carotid and femoral – 
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phenotype 3) and assume that there might be some level of time delay in the 

manifestation of atherosclerosis phenotypes between the twin pairs we can enroll them 

in the following categories: 1/clear overlap 2/probable overlap 3/possible overlap 

4/contradictory localization 5/not enough information - too early or too advanced state 

(Figure 12). We chose to multiply the number of participants by a weighing number for 

each category: twin pairs with clear overlap would be multiplied by a weighing number 

3, the weighing number in category 2 is 2, and weighing number in category 3 is 1. For 

contradictory localization we used -1, and in case of category 5 we used number 0. By 

summing the weighed numbers of twins in categories 1-3 for each phenotypes we 

approximate and then compare the MZ to the DZ twin resemblance (Figure 17). 

 

Figure 12. Categorization of twins based on the hypothesis that plaque co-

localization (first two affected sites) might be genetically predisposed (own image). 

We also assumed that some extent of time delay in the manifestation of the phenotypes 

might be present between the twins. The number of twin pairs falling to each category 

were then multiplied by a weighing number in order to get intrapair resemblance among 

the monozygotic and dizygotic twins.  
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4. RESULTS 
 

4.1.  SPECIFIC AIM 1 
 

 

4.1.1. Demographic, clinical characteristics and measures 

 Final participants’ characteristics at wave 1 and wave 2 are shown below (Table 

6). The whole study population’s mean age was 51.9±12.8 years at baseline, about 1/3 

of them were males. Average time of follow-up was 4.4±0.5 years. Comparisons were 

made regarding zygosity and country groups. At baseline, Italian twins were slightly 

older, their average follow-up duration also lasted a bit longer, there was a significantly 

higher percentage of current/ex-smokers among them, however significantly fewer 

participants received anti-hypertension treatment and their mean heart rate was lower 

compared to Hungarian twins. We found no significant differences between MZ and 

DZ twin characteristics. Regarding our two main traits of interest, aortic AIx 

significantly increased during the follow-up period both in MZ (35 ± 16% at wave 2 vs. 

31 ± 15% at wave 1) and DZ (36 ± 15 % at wave 2 vs. 31 ± 15% at wave 1, p<0.01) 

twins. However, no significant changes were found in case of aortic PWV (wave 2 vs. 

wave 1, 9.3 ± 2.1 vs. 9.2 ± 2.3 m/s, p=0.33 in MZ twins; 9.0 ± 2.0 vs. 9.0 ± 2.1 m/s, 

p=0.73 in DZ twins). 

 

4.1.2. Longitudinal twin correlations, standardized genetic and environmental 

components of variances and longitudinal covariances 

The intra-individual longitudinal phenotypic correlation of arterial stiffness 

parameters showed weaker magnitude in case of aortic PWV (r=0.35, 95% confidence 

interval: CI: 0.25-0.45), but moderate strength in case of aortic AIx (r=0.60, 95% CI: 

0.52-0.67) in all participants (Table 7). Cross-twin/within wave correlations were 

significantly higher in MZ (rMZ between 0.35 and 0.6) than in DZ twins (rDZ between 

0.15 and 0.48) both at wave 1 and wave 2, indicating a strong genetic influence on the 

expression of arterial stiffness parameters. However, we can also observe that the 

difference between MZ and DZ correlations in the case of aortic AIx is not as prominent 

as in the case of aortic PWV at both waves. Cross-twin/cross-wave correlations were 

weak-moderate in MZ twins (r= 0.34 for aortic PWV and 0.32 for aortic AIx), however 

these were stronger than the correlations observed in DZ twins (r= -0.03 for aortic PWV 

and 0.23 for aortic AI
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Table 6: Demographic, clinical characteristics and measures at wave 1 and wave 2 according to zygosity or country.  

 Wave 1 Wave 2 

MZ 

twins 

DZ 

twins 
Hungary Italy MZ twins DZ twins Hungary Italy 

Participants, N 214 154 148 220 214 154 148 220 

Age (years) 
51.4 

(13.3) 

52.5 

(12.2) 
48.6 (12.9) 

54.1 (12.3) 

* 
56.1 (13.4) 

57.1 

(12.3) 
52.7 (12.8) 59.1 (12.4) * 

Male sex (%) 35.5 % 33.8% 27.7% 39.5% - - - - 

FU duration 

(years) 
4.4 (0.5) 4.3 (0.6) 4.1 (0.6) 4.6 (0.3) * - - - - 

BMI (kg/m2) 
26.2 

(4.5) 

26.9 

(4.6) 
26.6 (5.1) 26.4 (4.1) 26.6 (4.5) 27.1 (4.9) 27.2 (5.3) 26.4 (4.1) 

Obesity (%) 19.6% 19.0% 21.6% 17.8% 20.2% 23.4% 27.9% 17.3%* 

Ex smoker-

current smoker 

(%) 

40.3% 50.0% 29.5% 54.4% * 40.5% 48.3% 28.8% 52.1%* 

Hypertension 

treatment (%) 
31.3% 29.8% 37.7% 25.9% * 34.8% 31.5% 44.9% 26.9% * 
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 Wave 1 Wave 2 

MZ 

twins 

DZ 

twins 
Hungary Italy MZ twins DZ twins Hungary Italy 

Cardiovascular 

disease (%) 
7.6% 8.6% 7.5% 8.3% 9.5% 10.6% 9.3% 10.3% 

SBP (mmHg) 129 (17) 127 (17) 128 (16) 128 (18) 126 (17) 127 (17) 123 (13) 129 (19) 

DBP (mmHg) 77 (11) 76 (10) 77 (12) 77 (10.2) 77 (10) 77 (12) 76 (10) 77 (11) 

Heart rate 

(bpm) 
70 (11) 69 (10) 72 (10) 68 (11) * 67 (10) 65 (9) 66 (10) 67 (9) 

Mean arterial 

pressure 

(mmHg) 

94.2 

(12.5) 

93.0 

(12.2) 
93.7 (12.4) 93.7 (12.4) 93.1 (11.5) 

93.5 

(13.1) 
91.7 (11) 94.4 (13.0) 

Aortic PWV 

(m/s) 
9.2 (2.3) 9.0 (2.1) 9.3 (2.6) 9.0 (2.0) 9.3 (2.1) 9.0 (2.0) 8.7 (1.9) 9.5 (2.1) 

Aortic AIx (%) 31 (16) 31 (15) 28 (15) 33 (15) 35 (16) 36 (15) 34 (15) 36 (16) 

Abbreviations: MZ, monozygotic; DZ, dizygotic; AIx, augmentation index; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; 

FU, follow-up; PWV, pulse wave velocity. Data are expressed as mean (standard deviation) or percentage. *p<0.05 (between-country comparison)
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Table 7. Longitudinal correlations by zygosity.  

 Correlations 

 All twins Monozygotic Dizygotic 

Aortic PWVa 

Within-

individual/cross 

wave correlations 

0.35 (0.25-0.45)  

Cross twin/within 

wave 1 

correlations 

 0.51 (0.36-0.62) 0.21 (-0.04 to 0.42) 

Cross twin/within 

wave 2 

correlations 

 0.50 (0.34-0.62) 0.15 (-0.10 to 0.37) 

Cross twin/Cross 

wave correlations 
 0.34 (0.22 – 0.45) -0.03 (-0.20 to 0.15) 

Aortic AIxb 

Within-

individual/cross 

wave correlations 

0.60 (0.52-0.67)  

Cross twin/within 

wave 1 

correlations 

 0.56 (0.42-0.67) 0.48 (0.27-0.63) 

Cross twin/within 

wave 2 

correlations 

 0.35 (0.17-0.50) 0.28 (0.06-0.47) 

Cross twin/Cross 

wave correlations 
 0.32 (0.18-0.44) 0.23 (0.05-0.39) 

Abbreviations: PWV, pulse wave velocity; AIx, augmentation index. Values in parentheses indicate 95% 

confidence intervals. aAdjusted by age, sex, country, between-waves changes for MAP and BMI. 

bAdjusted by age, sex, country, between-waves changes for HR and BMI. 
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Bivariate Cholesky decomposition were fitted to our longitudinal data thus 

allowing us to determine the contribution of additive genetic (A), common 

environmental (C) and unique environmental (E) factors to the variances and 

covariances of aortic PWV and aortic AIx at wave 1 and wave 2 (Table 8). A model 

including only additive genetic and unique environmental factors (AE model) was the 

best-fitting for both traits. In case of aortic PWV, heritable and unshared environmental 

factors’ contribution to variation proved to be substantially time-independent (h2=0.51, 

95% CI 0.36-0.63 at wave 1; h2=0.49, 95% CI 0,34-0.62 at wave 2). However, in case 

of aortic AIx genetic effect decreased whereas environmental contributions increased 

with time (h2= 0.57, 95% CI 0.45-0.67 at wave 1; h2=0.37, 95% CI 0.21-0.51 at wave 

2).  

Genetic factors contributed in a high percentage (genetic covariance: covg=0.88, 

95%CI: 0.61-1.00) to the longitudinal covariance of aortic PWV. In turn, genetic factors 

explained only a lesser proportion of longitudinal covariance of aortic AIx (covg=0.55, 

95% CI 0.35-0.70). Environmental covariation and correlation also appeared as a 

contributors of intermediate importance (cove= 0.45, 95% CI 0.30-0.65; re= 0.52, 95% 

CI 0.38-0.64). However, genetic correlations were moderate-substantial in both cases 

(rg=0.64, 95% CI 0.42-0.85 for aPWW and rg=0.70, 95% CI 0.52-0.87). We also 

calculated that after removing covariates, genetic covariance changed from 0.55 to 0.82 

in case of aortic AIx, whereas in case of aortic PWV it changed from 0.88 to 0.98 – thus 

covariates (age, sex, country, between-waves changes for HR and BMI in case of AIx; 

age, sex, country, between-waves changes for MAP and BMI) had a greater influence 

on longitudinal covariance in case of aortic AIx, than aortic PWV (result not showed in 

table).  
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Table 8. Standardized genetic and environmental components of variance and longitudinal covariance of aortic pulse wave velocity 

and aortic augmentation index, as estimated from best fitting models.  

 Standardized variance/covariance components Model fit indicesa 

 A E ꭓ2 ΔDF P AIC 

Aortic PWVb  

    Aortic PWV wave 1 0.51 (0.36-0.63) 0.49 (0.37-0.64) 

Aortic PWV wave 2 0.49 (0.34-0.62) 0.51 (0.38-0.66) 

Aortic wave PWV wave 1/ wave 2 0.88 (0.61-1.00) 0.12 (0.00-0.39) 1.92 3 0.59 -4.09 

 
Genetic correlation,  

rg 0.64 (0.42-.85) 

Environmental correlation, 

 re 0.08 (0.00-0.26) 
 

Aortic AIxc  

    Aortic AIx wave 1 0.57 (0.45-0.67) 0.43 (0.33-0.55) 

Aortic AIx wave 2 0.37 (0.21-0.51) 0.63 (0.49-0.79) 

Aortic AIx wave 1/wave 2 0.55 (0.35-0.70) 0.45 (0.30-0.65) 5.23 3 0.16 -0.77 

 
Genetic correlation, 

rg 0.70 (0.52-0.87) 

Environmental correlation, 

re 0.52 (0.38-0.64) 
 

Values given in parentheses indicate 95% confidence intervals. Abbreviations: A, additive genetic variance; E, unshared environmental variance; AIx, augmentation 

index; PWV, pulse wave velocity; ꭓ2 = (-2log-likelihood sub-model)- (-2log-likelihood full model); ΔDF = (DF sub-model) - (DF full model); AIC: Akaike Information 

Criterion = ꭓ2-2 ΔDF. aFull model was ACE. bAdjusted by age, sex, country, between-waves changes for mean arterial pressure (MAP) and BMI. cAdjusted by age, 

sex, country, between-waves changes for heart rate (HR) and BMI.
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To further investigate aortic AIx heritability, augmented pressure (AP) and 

pulse pressure (PP) were analyzed separately (Table 9). Our results showed that genetic 

effect influencing both AP and PP decreased with time (0.30 at wave 2 and 0.48 at wave 

1 for AP and 0.39 at wave 2 and 0.42 for PP), with AP showing a slightly greater 

diminishment and being more influenced by environmental factors in the longitudinal 

run. However, the genetic vs environmental covariances between waves were still rather 

similar in the case of AP (covg=0.45, 95% CI 0.23-0.64; cove=0.55, 95% CI 0.36-0.77), 

while the longitudinal covariance of PP was mainly due to bivariate heritability 

(covg=0.68, 95% CI 0.42-0.92; cove=0.32, 95% CI 0.08-0.58).  

 

Table 9. Standardized genetic and environmental components of variance and 

longitudinal covariance of augmented pressure and pulse.  

 Standardized variance/covariance components 

 A E 

Augmented pressure 

(AP) 

 

AP wave 1 0.48 (0.34-0.60) 0.52 (0.40-0.66) 

AP wave 2 0.30 (0.13-0.46) 0.70 (0.54-0.87) 

AP wave 1/wave 2 0.45 (0.23-0.64) 0.55 (0.36-0.77) 

 Genetic correlation  

rg 0.65 (0.40-0.89) 

Environmental correlation 

 re 0.51 (0.36-0.63) 

Pulse pressure (PP)  

PP wave 1 0.42 (0.27-0.54) 0.58 (0.46-0.73) 

PP wave 2 0.39 (0.23-0.52) 0.61 (0.48-0.77) 

PP wave 1/wave 2 0.68 (0.42-0.92) 0.32 (0.08-0.58) 

 Genetic correlation  

rg 0,69 (0.44-0.95) 

Environmental correlation 

 re 0.22 (0.05-0.38) 

Values given in parentheses indicate 95% confidence intervals. Adjusted by age, sex, country, between-

waves changes for heart rate (HR) ad BMI. 
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4.2.  SPECIFIC AIM 2 
 

4.2.1. Descriptive statistics and phenotypic analyses 

 

Second part of this thesis was conducted among 190 asymptomatic twin adults 

from the Hungarian twin registry (Table 10).  

Table 10. Characteristics of the twin participants.  

 Total MZ DZ P 

Zygosity 190 120 70  

Male (n,%) 72 (37.89) 48 (40) 24 (34.29) .43 

Age (mean, SD) 56.84±9.33 55.46±9.75 59.16±8.11 .01 

BMI (kg/m2) (mean, SD) 27.57±4.65 27.85±4.46 27.08±4.95 .27 

Hypertension (n,%) 79 (41.58) 50 (41.67) 29 (41.43) .96 

 

Diabetes (n,%) 
14 (7.37) 10 (8.33) 4 (5.71) .52 

Dyslipidaemia (n,%) 83 (43.68) 49 (40.83) 34 (48.57) .26 

Smoking (n,%) 70 (36.84) 44 (36.67) 26 (37.14) .89 

Coronary plaque 

occurrence (CACS>0) (n,%) 
74 (38.95) 44 (36.67) 30 (42.86) .39 

Carotid plaque occurrence 

(n,%) 
89 (46.84) 54 (45.00) 35 (50.00) .51 

Femoral plaque occurrence 

(n,%) 
71 (37.37) 38 (31.67) 33 (47.14) .03 

Carotid/femoral and 

coronary plaque co-

occurrence (n,%) 

65 (34.21) 39 (32.50) 26 (37.14) .51 

Carotid+femoral+coronary 

plaque co-occurrence (all 3) 

(n,%) 

32 (16.84) 16 (13.33) 16 (22.86) .09 

4S_PL >1 (n,%)1 119 (62.63) 76 (63.33) 43 (61.43) .79 

4S_hypo >1 (n,%)2 71 (37.37) 46 (38.33) 25 (35.71) .72 

4S_mixed >1 (n,%)2 61 (34.21) 39 (32.5) 22 (31.43) .88 

4S_hyper >1 (n,%)2 75 (37.5) 44 (34.9) 31 (41.9) .36 

4S_mixed/hyper >1 (n,%)2 98 (51.58) 58 (48.33) 40 (57.14) .38 
1: Four-segment score consists of the number of arterial locations that are affected by atherosclerotic 

plaque (right/left carotid/femoral artery). 4S_PL refers to any plaque-type detected by ultrasound. 2: 

4S_hypo refers to the four-segment score of hypoechoic plaques, 4S_mixed refers to the four-segment 

score of mixed plaques and 4S_hyper refers to the four-segment score of hyperechoic plaques. MZ: 

monozygotic, DZ: dizygotic twins, CACS: coronary artery calcification score, SD: standard deviation 
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The average age in study population was 56.84 ± 9.33 years, 37.89% were males. 

MZ twins were slightly younger and had more femoral atherosclerotic plaque occurrence 

than DZ twins – however, femoral atherosclerosis was relatively more common among 

DZ twins. Otherwise, there were no significant differences between the MZ and DZ 

groups. 

 

 

Figure 13. The Venn-diagram showing frequency of overlaps between 

atherosclerosis localizations in our study participants (own image). 

 

Multi-territorial distribution of atherosclerosis can be demonstrated best by a 

Venn-diagram (Figure 13). Among the three investigated vascular territories, coronary 

atherosclerosis without other manifestation was the rarest (7.4% of people with 

atherosclerosis, 4.7% of all participants). Among participants with carotid 

atherosclerosis 58% had co-occurrent coronary calcification and 63% of people with 

femoral atherosclerosis had concomitant CAC. From all participants with 

atherosclerosis 26.4% had more generalized atherosclerosis affecting all three 

investigated segments. Seventeen percent of individuals with CAC had no sign of 

atherosclerosis in their carotid arteries, only in the femoral arteries. Sixty-nine (36%) 

study participants had no sign of atherosclerosis. 
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Demonstration of how these plaque localizations and co-occurrences distribute 

among the MZ and DZ twins is more difficult to show in a didactic way. Detailed lists 

of concordant and discordant twin pairs are presented in Tables 15-18.  

 

Figure 14. Prevalence of coronary calcification in participants with 

different distributions of plaque location in the carotid and femoral arteries. 

 

 

Figure 15. Prevalence of moderate or severe coronary calcification in participants 

with different distributions of plaque location in the carotid and femoral arteries. 
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Table 11. Relationship between coronary artery calcification severity and ultrasound findings.  

 

 

CAC severity 

0  

(n=116) 

1-100 (mild) 

(n=36) 

100-400 (moderate) 

(n=22) 

>400 (severe) 

(n=16) 

Localization of plaques on ultrasound: 

No plaque /4S_PL=0/ (n,%) 62 (87.32) 7 (9.86) 2 (2.82) 0 (0.00) 

Unilateral Carotid  

/4S_PL=1/ (n,%) 
20 (68.97) 7 (24.14) 1 (3.45) 1 (3.45) 

Unilateral Femoral 

/4S_PL=1/ (n,%) 
6 (50.00) 5 (41.67) 1 (8.33) 0 (0.00) 

Unilateral Carotid and Femoral /4S_PL=2/ 

(n,%) 
5 (62.50) 2 (25.00) 1 (12.50) 0 (0.00) 

Bilateral Carotid 

/4S_PL=2/ (n,%) 
9 (42.86) 5 (23.81) 4 (19.05) 3 (14.29) 

Bilateral Femoral 

/4S_PL=2/ (n,%) 
1 (20.00) 1 (20.00) 1 (20.00) 2 (40.00) 

Bilateral Carotid and unilateral Femoral 

/4S_PL=3/ (n,%) 
6 (46.15) 2 (15.38) 2 (15.38) 3 (23.08) 

Bilateral Femoral and unilateral Carotid 

/4S_PL=3/ (n,%) 
6 (42.86) 2 (14.29) 4 (28.57) 2 (14.29) 

Bilateral Carotid and bilateral Femoral 

/4S_PL=4/ (n,%) 
1 (0.06) 5 (29.41) 6 (35.29) 5 (29.41) 

Generalized state according to ultrasound findings: 

Total plaque number (Mean Rank)* 73.03 111.00 136.95 163.22 
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CAC severity 

0  

(n=116) 

1-100 (mild) 

(n=36) 

100-400 (moderate) 

(n=22) 

>400 (severe) 

(n=16) 

Total plaque number > Median (n,%) 33 (38.37) 20 (23.26) 17 (19.77) 16 (18.60) 

Total plaque number ≤ Median (n,%) 83 (80.58) 16 (15.53) 4 (3.88) 0 (0.00) 

4S_PL > Median (n,%) 27 (35.06) 17 (22.08) 18 (23.38) 15 (19.48) 

4S_PL ≤ Median (n,%) 89 (78.76) 19 (16.81) 4 (3.54) 1 (0.88) 

4S_hypo > Median (n,%) 35 (49.30) 14 (19.72) 10 (14.08) 12 (16.90) 

4S_hypo ≤ Median (n,%) 81 (68.07) 22 (18.49) 12 (10.08) 4 (3.36) 

4S_mixed > Median (n,%) 19 (31.15) 16 (26.23) 13 (21.31) 13 (21.31) 

4S_mixed ≤ Median (n,%) 97 (75.19) 20 (15.50) 9 (6.98) 3 (2.32) 

4S_hyper > Median (n,%) 24 (32.88) 18 (24.66) 16 (21.92) 15 (20.55) 

4S_hyper ≤ Median (n,%) 92 (78.63) 18 (15.38) 6 (5.13) 1 (0.85) 
Four-segment score consists of the number of arterial locations that are affected by atherosclerotic plaque (right/left carotid/femoral artery). 4S_PL refers to any 

plaque-type detected by ultrasound. 4S_hypo refers to the four-segment score of hypoechoic plaques, 4S_mixed refers to the four-segment score of mixed plaques and 

4S_hyper refers to the four-segment score of hyperechoic plaques, CAC: coronary artery calcification. *According to Kruskall-Wallis H independent samples’ test. 
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Our next question of interest was how ultrasound findings associate with CAC 

severity (Table 11). First, we compared anatomical localization, uni- and bilaterality of 

carotid/femoral atherosclerosis to CACS presence and severity (see also Figure 14 and 

15.), next we compared the four-segments scores regarding or not regarding plaque 

types (generalized state and severity).  

The mean rank of total carotid+femoral plaque number seems to correlate well 

with severity of CAC. However, relatively large percentage of people (38.37%) with 

higher total plaque number than the median had zero CAC score. Hyperechoic 

(4S_hyper) or mixed plaque score (4S_mixed) above the median co-occurred with 

positive CAC in 67-69%, and 41-42% meant moderate or severe CAC. Hypoechoic 

(4S_hypo) or any type of plaque scores (4S_PL) above the median were 50-64% 

associated with positive CACS, 30-42% with moderate or severe CACS, demonstrating 

that the presence of peripheral calcification is somewhat more predictive of CAC. 

However, for ruling out CAC, total plaque number ≤ the median or 4S_PL ≤ the median 

seems to be better, than the differentiated plaque type scores (78-80% vs. 68-78%). 

 

Table 12. Results of non-adjusted Spearman correlation between coronary artery 

calcifications score (CACS) and the four-segment plaque scores.  

N=190 CACS P 

4S_PL (four-segment plaque score regardless of plaque 

type) 

0.557 <0.01 

4S_hypo (four-segment plaque score of hypoechoic 

plaques) 

0.289 <0.01 

4S_mixed (four-segment plaque score of mixed 

plaques) 

0.444 <0.01 

4S_hyper (four-segment plaque score of hyperechoic 

plaques) 

0.551 <0.01 

4S_mixed/hyper (four-segment score of plaques that are 

either mixed or hyperechogenic) 

0.604 <0.01 

4S_PL: four-segment plaque score as seen on ultrasound (right/left, carotid/femoral involvement) 

regardless of plaque-type. 4S_hypo: four-segment plaque score of hypoechoic plaques. 4S_mixed: four-

segment plaque score of mixed plaques. 4S_hyper: four-segment plaque score of mixed plaques. 

4S_mixed/hyper: four-segment score of plaques that are either mixed or hyperechogenic. 

 

In the next step we calculated Spearman correlation between CACS and four-

segment plaque scores and demonstrated that the distribution state of any calcification 
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in the carotid/femoral arteries correlated with CACS best (0.604, p<0.01, Table 12). 

However, to stick with the visual classification system treating mixed and hyperechoic 

plaques as different entities we chose not to merge them in the later genetic calculation, 

and 4s_hyper was chosen as it showed better correlation than 4s_mixed (0.551 vs 0.444, 

p<0.001). 

 

4.2.2. Univariate and bivariate analyses, decomposition of concordance and 

discordance in plaque localization. 

Univariate twin statistical analyses allow us to decompose any investigated trait 

to determine the contribution of underlying additive genetic (A), common 

environmental (C) and unique environmental (E) effects (Table 13). Best fitting model 

was chosen for each trait. We found moderate heritability for both CAC (h=0.67, 

95%CI: 0.35-1) and 4S-hyper (0.69, 95% CI: 0.38-1). On the other hand, dissemination 

of hypoechoic plaques is mainly influenced by unique environmental factors (E=1). The 

4-segment score of mixed plaque type is influenced both by genetic and unique 

environmental factors (h=0.49, 95% CI: 0-0.76; E= 0.50, 95%CI: 0.24-1).  

Regarding the two traits that showed both high-moderate phenotypic correlation 

and high-moderate heritability one-by-one we performed a bivariate genetic analysis 

between CAC and 4S_hyper using a liability-threshold model (Table 14). Best-fitting 

model was AE model showing strong age- and sex adjusted genetic correlation between 

the two traits (0.86, 95%CI: 0.42-1). Polychoric adjusted phenotypic correlation was 

0.48 (95%CI: 0.30-0.63) which was lower than the unadjusted correlation (0.604, 

p<0.01, Table 7.) thus demonstrating an important role of age and gender – however, 

the MZ correlation was higher than the DZ correlation (0.54, 95%CI 0.31-0.72 for MZ 

twins vs. 0.44, 95%CI 0.14-0.68 for DZ twins) also underpinning the significance of 

genetic influences on the similarity of traits. 

As four-segments score were derived from carotid and/or femoral 

atherosclerosis showing better phenotypical correlation than either carotid-coronary or 

femoral-coronary atherosclerosis would, we sought to demonstrate how atherosclerotic 

plaques co-localize in MZ and DZ study participants to have an insight into the genetic 

background of atherosclerotic plaque localizations (Table 15-18). 
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Table 13. The results of univariate analyses of the investigated traits.  

 
  

Goodness-of-fit indices Parameter estimates (95% CI) 

Trait Model AIC -2LL df DiffLL 
P-

value 
A C E 

CAC ACE 337.2 311.9 11 Ref. Ref. 0.67 (0.16, 1) 0 (0, 0.38) 0.34 (0, 0.67) 

 AE* 334.6 311.9 10 0 1 0.67 (0.35, 1) - 0.34 (0, 0.65) 

 CE 340.1 317.5 10 -5.5 0.02 - 0.43 (0.15, 0.66) 0.57 (0.35, 0.85) 

 E 346.2 326.1 9 -14.1 0.00 - - 1 

 Sat. 346.9        

4S_hypo ACE 408.7 378.2 13 Ref. Ref. 0 (0, 0.41) 0.18 (0, 0.45) 0.82 (0.55, 1) 

 

 
AE 406.9 379.2 12 -0.9  0.13 (0, .45) - 0.87 (0.56, 1) 

 CE 406.0 378.2 12 0 1 - 0.18 (0, 0.45) 0.82 (0.55, 1) 

 E* 404.9 379.7 11 -1.5 0.47 - - 1 

 Sat. 419.7        

4S_mixed ACE 342.7 312.2 13 Ref. Ref. 0.49 (0, 0.76) 0 (0, 0.49) 0.50 (0.24, 1) 

 AE* 340.0 312.2 12 0 1 0.49 (0, 0.76) - 0.50 (0.24,1) 

 CE 342.4 314.6 12 -2.4 0.13 - 0.32 (0.02, 0.57) 0.68 (0.43, 0.98) 

 E 344.2 319.0 11 -6.8 0.03 - - 1 

 Sat. 355.0        

4S_hyper ACE 363.4 332.9 13 Ref. Ref. 0.69 (0.19, 1) 0 (0.38, 1) 0.31 (0, 0.63) 

 AE* 360.7 332.9 12 0 1 0.69 (0.38, 1) - 0.31 (0, 0.63) 
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Goodness-of-fit indices Parameter estimates (95% CI) 

Trait Model AIC -2LL df DiffLL 
P-

value 
A C E 

 CE 366.6 338.8 12 -5.8 0.02 - 0.41 (0.13, 0.63) 0.59 (0.37, 0.87) 

 E 371.9 346.8 11 -13.9 0.00 - - 1 

 Sat. 371.9        
Calculations adjusted for age and sex. *: best-fitting model. Values in parentheses express 95% confidence intervals. Abbreviations: AIC, Akaike's Information Criteria; 

BIC, Bayesian Information Criteria; -2LL, -2 log-likelihood (deviance); df, degree of freedom; diffLL, difference in minus 2*log-likelihoods of the base and comparison 

models; A, additive genetic effects; C, common environmental effects; E, unique environmental effects. 
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Table 14. The results of the bivariate analysis between coronary artery calcification 

(CAC) and 4-segment hyperechoic plaque score (4S_hyper).  

 

Traits Adjust Model 
Model fit 

(p) 

Model fit 

(AIC) 
A C E 

CAC and 

4S_hyper 

Age and 

sex 
ACE - -81.9 0.99 0 0.13 

  AE* 0.98 -87.8 

0.86 

(0.42, 

1) 

- 

0.14 

(0, 

0.58) 

  CE 0.01 -77.4 - 0.42 0.58 

 

 

 

 E 0 -67.1 - - 1 

 Phenotypic correlation 

  All (95% CI) MZ (95% CI) DZ (95% CI) 

CAC and 

4S_hyper 

Age and 

sex 
0.48 (0.30, 0.63) 0.54 (0.31, 0.72) 

0.44 (0.14, 

0.68) 
*: best-fitting model. AIC: Akaike's Information Criteria. A: additive genetic effect, C: common 

environmental effect, E: unique environmental effect. 

 

In Table 15, we listed MZ twins who had coronary calcification in a descending 

order regarding CACS severity and grouped them into concordant and discordant pairs 

(concordant: both twins have CAC; discordant: only one of them has CAC). We color-

coded the overlapping anatomical localizations and found that all CAC concordant MZ 

twins had at least one overlapping concomitant plaque localization. Out of these 17 twin 

pairs 13 twin pairs had also carotid atherosclerosis (76%) and 8 twin pairs had 

concomitant femoral atherosclerosis (47%). However, from these 8 twin pairs, only 4 

had femoral-coronary atherosclerosis without overlapping concomitant carotid 

atherosclerosis (24%) - and these were rather among lower CACS values. MZ twin pairs 

discordant to CAC were fewer (n=11), had less extended CAC and less atherosclerosis 

on ultrasound except for one twin pair. In the latter case one twin had moderate 

atherosclerosis, while the other twin didn’t have any atherosclerosis manifestation 

(Table 15, CAC Discordants, first MZ twin pair).   

We grouped the remaining MZ twin pairs without CAC regarding their 

ultrasound atherosclerosis manifestations (Table 16). Fourteen MZ twin pairs were free 

from atherosclerosis in all investigated arterial beds, while 11 MZ twin pairs were 

discordant (only one twin had carotid and/or femoral atherosclerosis) and the remaining 
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10 twin pairs had mostly mild atherosclerosis in both twins – all of them had 

overlapping localization: 7 twin pairs had concordant carotid atherosclerosis, three twin 

pairs had concordant femoral atherosclerosis.  
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Table 15. Ultrasound findings of MZ (monozygotic) twins concordant and discordant to CAC (coronary artery calcification).  

 

MZ 

CAC Concordants:  CAC Discordants:   

MZ Twin 1+  

(More Severe) 
MZ Twin 2+ MZ Twin1+ MZ Twin 2− 

 

Mean CACS: 728.65 
CAR.bil.o. CAR.bil.o. CAR.bil + FEM.bil. -  

CACS: 1233 CACS: 224.3 CACS: 195.8 -  

Mean CACS: 726.25 
CAR.bil.o. CAR.bil. + FEM.uni CAR.uni.o. CAR.uni.o.  

CACS: 971 CACS: 481.5 CACS: 19.71 -  

Mean CACS: 556.86 
CAR.bil. + FEM.uni FEM.bil. + CAR.uni - CAR.uni.o.  

CACS: 822.86 CACS: 290.87 CACS: 10 -  

Mean CACS: 533.02 
FEM.bil.o. FEM.bil. + CAR.uni FEM.bil. + CAR.uni FEM.uni.o.  

CACS: 675.83 CACS: 390.21 CACS: 7 -  

Mean CACS: 499.885 
CAR.bil + FEM.bil. CAR.bil.o. CAR.bil.o. CAR.uni + FEM.uni   

CACS: 525.64 CACS: 474.13 CACS: 5.1 -  

Mean CACS: 356.04 
CAR.uni.o. CAR.bil.o. - -  

CACS: 407.54 CACS: 304.54 CACS: 3.5 -  

Mean CACS: 330.28 
CAR.bil. + FEM.uni CAR.bil. + FEM.uni - CAR.Bil.o.  

CACS: 466.98 CACS: 193.59 CACS: 2.5 -  

Mean CACS: 319.5 
CAR.bil. + FEM.uni CAR.bil. + FEM.bil. CAR.bil.o. CAR.uni. + FEM.uni  

CACS: 360 CACS: 279 CACS: 2.23 -  

Mean CACS: 254.95 
CAR.bil. + FEM.bil. CAR.uni. - FEM.uni.o.  

CACS: 413.58 CACS: 96.32 CACS: 2 -  

Mean CACS: 193.35 
CAR.uni.o. FEM.bil. + CAR.uni - -  

CACS: 262.2 CACS: 124.5 CACS: 1.11 -  

Mean CACS: 138.5 
CAR.bil. + FEM.bil. CAR.bil. + FEM.bil. FEM.uni.o. -  

CACS: 195 CACS: 82 CACS: 0.64 -  

Mean CACS: 134.225 
CAR.bil.o. CAR.bil.o.    

CACS: 259.54 CACS: 8.91    
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MZ 

CAC Concordants:  CAC Discordants:   

MZ Twin 1+  

(More Severe) 
MZ Twin 2+ MZ Twin1+ MZ Twin 2− 

 

Mean CACS: 124.1 
FEM.bil.o. FEM.bil. + CAR.uni    

CACS: 209 CACS: 39.2    

Mean CACS: 71.85 
CAR.uni.o. CAR.uni.o.    

CACS: 91.88 CACS: 51.82    

Mean CACS: 68.465 
CAR.bil.o. CAR.uni.    

CACS: 80.7 CACS: 56.23    

Mean CACS: 39.5 
FEM.uni.o. FEM.uni.o.    

CACS: 78 CACS: 1    

Mean CACS: 36 
CAR.Bil. + FEM.bil. FEM.uni.    

CACS: 68.19 CACS: 3.81    
CACS: coronary artery calcification score; CAR: carotid artery; FEM: femoral artery; bil.: bilateral; uni: unilateral; o: only. Overlapping localizations are 

highlighted with the same color (orange or blue). 

 

Table 16. Ultrasound findings of MZ (monozygotic) twins without CAC, grouped as: at least one of them has atherosclerotic plaque 

seen on ultrasound / none of them has.  
 

MZ 

0 CAC Concordants 0 CAC Concordants 

  0 US Concordants 

MZ twin 1 (+) MZ twin 2 (+/-) MZ twin 1 (-) MZ twin 2 (-) 

 CAR.uni - -                  - 

 CAR.uni. + FEM.uni - - - 

 CAR.uni CAR.uni - - 

 CAR.uni - - - 

 CAR.bil.+ FEM.uni. FEM.uni.o. - - 

 CAR.bil.o. CAR.uni. - - 

 CAR.uni. - - - 
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MZ 

0 CAC Concordants 0 CAC Concordants 

  0 US Concordants 

MZ twin 1 (+) MZ twin 2 (+/-) MZ twin 1 (-) MZ twin 2 (-) 

 CAR.bil.o. CAR.bil.o. - - 

 CAR.uni. CAR.uni. - - 

 FEM.Bil. FEM.uni. - - 

 CAR.uni - - - 

 CAR.bil. CAR.uni. - - 

 CAR.bil. CAR.uni. - - 

 CAR.bil. - - - 

 CAR.uni. -   

 CAR.bil. + FEM.uni. CAR.uni. + FEM.uni.   

 CAR.uni. -   

 CAR.bil. + FEM.uni. -   

 CAR.uni CAR.uni   

 CAR.bilat.fem.uni. -   

 FEM.uni. -   
CAC: coronary artery calcification; CACS: coronary artery calcification score; CAR: carotid artery; FEM: femoral artery; bil.: bilateral; uni: unilateral; o: 

only. Overlapping localizations are highlighted with the same color (orange or blue).
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Table 17. Ultrasound findings of DZ (dizygotic) twins concordant and discordant to 

CAC (coronary artery calcification).  
 

DZ 

CAC  

Concordants: 
 

CAC  

Discordants: 
 

DZ Twin 1+  

(More Severe) 
DZ Twin 2+ DZ Twin 1+ DZ Twin 2− 

Mean CACS: 

990.3 

CAR.bil. + 

FEM.bil. 

FEM.bil. + 

CAR.uni 
FEM.bil. + CAR.uni 

CAR.uni + 

FEM.uni 

CACS: 1248 CACS: 732.6 CACS: 728.44 - 

Mean CACS: 

877.5 

CAR.bil. + 

FEM.bil 

CAR.uni + 

FEM.uni 

CAR.bil. + 

FEM.bil. 

FEM.bil. + 

CAR.uni 

CACS: 1467 CACS: 288 CACS: 334.4 - 

Mean CACS: 

252.85 

FEM.bil.o. 
CAR.bil. + 

FEM.bil. 

CAR.bil. + 

FEM.bil. 
CAR.uni 

CACS: 413.4 CACS: 92.3 CACS: 202 - 

Mean CACS: 

221.65 

CAR.bil + 

FEM.bil. 

CAR.uni + 

FEM.uni  
CAR.bil.o. - 

CACS: 438.21 CACS: 5.09 CACS: 196 - 

Mean CACS: 

170.1 

CAR.bil + 

FEM.bil. 

CAR.bil. + 

FEM.bil. 
- - 

CACS: 256.92 CACS: 83.25 CACS: 189.3 - 

Mean CACS: 

86.46 

FEM.uni CAR.uni - CAR.uni 

CACS: 149.25 CACS: 23.68 CACS: 145.6 - 

Mean CACS: 

73.2 

CAR.bil. + 

FEM.bil. 

CAR.bil. + 

FEM.uni. 
FEM.bil.o. 

FEM.bil. + 

CAR.uni 

CACS: 79.63 CACS: 66.76 CACS: 62.69 - 

Mean CACS: 

68.74 

FEM.bil. + 

CAR.uni. 

CAR.bil. + 

FEM.uni 
CAR.uni. 

CAR.bilat + 

FEM.uni 

CACS: 114.91 CACS: 22.57 CACS: 61 - 

 
  CAR.uni + FEM.uni  - 

  CACS: 14.34 - 

 
  - - 

  CACS: 14 - 

 
  FEM.uni - 

  CACS: 11 - 

 
  CAR.bil.o. 

FEM.bil. + 

CAR.uni 

  CACS: 6.36 - 

   - 
CAR.bil. + 

FEM.uni 
  CACS: 3.02 - 

CACS: coronary artery calcification score; CAR: carotid artery; FEM: femoral artery; bil.: bilateral; uni: 

unilateral; o: only. Overlapping localizations are highlighted with the same color (yellow or blue). 

Contradictory localizations are highlighted with red color. 
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Table 18. Ultrasound findings of DZ twins without CAC, grouped as: at least one 

of them has atherosclerotic plaque seen on ultrasound / none of them has.  

 

DZ 

0 CAC Concordants 0 CAC Concordants 

  0 US Concordants 

DZ Twin 1 DZ Twin 2 DZ Twin 1  DZ Twin 2 

 CAR.bil.o. - - - 

 CAR.uni. - - - 

 
FEM.bil. + 

CAR.uni 

CAR.bil. + 

FEM.bil. 
- - 

 FEM.uni - - - 

 
FEM.bil. + 

CAR.uni 
- - - 

 FEM.bil.o. 
CAR.uni. + 

FEM. Uni 
- - 

   - - 
CAC: coronary artery calcification; CACS: coronary artery calcification score; CAR: carotid 

artery; FEM: femoral artery; bil.: bilateral; uni: unilateral; o: only. Overlapping localizations 

are highlighted with the same color (yellow or blue).  

 

Next, we listed and grouped the DZ twin pairs with the same logic (Table 17-18). Eight 

DZ twin pairs were CAC concordant, they rather had severe atherosclerosis both in the 

coronary arteries both on ultrasound. One pair had contradictory plaque localization: one 

twin had femoral-coronary and the other had carotid-coronary atherosclerosis. There 

were 13 CAC discordant DZ twin pairs. Contrary to the MZ twins, they had more 

frequent moderate-severe CAC (46% of discordant DZ twins vs 9% of discordant MZ 

twins). In this group we also found a contradictory plaque localization: one twin had only 

mild coronary atherosclerosis and the other twin had more severe carotid-femoral 

atherosclerosis without CAC (Table 17, CAC discordants, last twin pair). 

 

Seven DZ twin pairs were free from atherosclerosis, four twin pairs were 

discordant for atherosclerosis and the remaining two DZ twin pairs had concordant 

moderate carotid-femoral atherosclerosis without CAC (Table 18). 

 

 

 

 



72 
 

4.2.3.  Additional results 

Additionally, the Spearman correlation between CACS and aortic PWV was 

calculated in order to assess phenotypical resemblance between the two traits (Table 

19).  

Table 19. Spearman correlation between aortic PWV (pulse-wave velocity) and 

CACS (coronary artery calcification score). 

 

 Correlation with CACS p 

Aortic PWV 0.394 <0.01 

 

In order to assess significant determinators of CACS we conducted logistic 

regression with model containing the following parametes: age, sex, 4S_hyper, 

4S_mixed. In additional model containing age, sex, 4S_hyper, 4S_mixed and aoPWV 

– later parameter did not reach statistical significance (p=0.08) thus we left it out. 

After creating a model with significant contributors to CAC (Table 20), machine 

learning methods were used for training on 70% of the data, which was cross-validated 

on the other 30% of the data giving the following results on the receiver operating curve 

(ROC, Figure 16.) and diagnostic values of model (Table 21). 

The ROC curve shows that choosing 0.4 value as threshold we get the highest 

sensitivity and specificity values. The area under curve is 0.89 indicating that our model 

components inserted to Formula 3.31. is a good predictor for coronary artery 

calcification.  

Table 20. Logistic regression model parameters significantly determining 

coronary calcification. Aortic pulse-wave velocity did not reach statistical significance 

thus it was left out from the model. 4S_hyper: 4-segment score of hyperechoic plaques, 

4S_mixed: 4-segment score of mixed plaques. 

 

Coefficients Estimate St. error Z value P Log odds 

Log 

odds 

(2,5%) 

Log odds  

(97.5%) 

Intercept -9.38 1.85 -5.08 <0.01 0.00 0.00 0.00 

Sex 1.26 0.42 2.97 <0.01 3.51 1.57 8.33 

Age 0.13 0.03 4.33 <0.01 1.14 1.08 1.22 

4S_hyper 0.68 0.23 2.95 <0.01 1.97 1.28 3.16 

4S_mixed 0.56 0.23 2.42 0.02 1.75 1.13 2.80 

Model fit parameters: null deviance: 254.03 (df = 189), residual deviance: 170.18  

(df = 185), AIC: 180.18 
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Figure 16. Receiver operating curve of model (including sex, age, 4S_hyper and 

4S_mixed parameters) predicting CAC. Area under curve (AUC) is 0.89. Threshold 

value of 0.4 gives highest sensitivity (0.81) and specificity (0.84) values. 

 

Other diagnostic values of our model show good overall accuracy (0.83, 95%CI: 

0.70-0.91), with relatively weak negative predictive value (0.78) – however using 

different threshold or prediction of moderate/severe calcification state would give us 

even better negative predictive value (not demonstrated).  

 

 

 

Table 21. Diagnostic values of model (containing sex, age, 4S_hyper and 4S_mixed) 

predicting the presence of coronary calcification. 

 

 Value 95% confidence 

interval 

p value 

Sensitivity 0.81   

Specificity 0.84   

Positive predictive value 0.87   

Negative predictive value 0.78   

Accuracy 0.83 0.70-0.91 <0.01 

 

 Although previously in Tables 15-18. we listed all twin pairs and their 

plaque localisations one by one which could give us an impression on MZ twins having 

higher resemblance than DZ twins regarding their traits, we thought that a different 
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approach (Figure 12) could demonstrate this difference in a more illustrative way 

(Figure 17).  

 

 
Figure 17. Graphics of the intrapair resemblance of plaque co-localizations in 

monozygotic (MZ) and dizygotic (DZ) twins. *: Number of twin pairs falling to 

category 1 (clear overlap) were multiplied by weighing number 3, number of twin pairs 

with probable overlap (category 2) were multiplied by 2 and number of twin pairs with 

possible overlap (category 3) were multiplied by 1 and all the weighted numbers of each 

category were summed up. Category 4 was multiplied by -1 and category 5 was 

multiplied by 0. Abbreviations: Cor: coronary atherosclerosis; CAR: carotid 

atherosclerosis, FEM: femoral atherosclerosis. 

Figure 17 demonstrates the higher resemblance of MZ twins especially in regard 

of Phenotype 1 (coronary-carotid co-localization of atherosclerosis) – which was most 

frequently present as a clear overlap in MZ twins. Phenotype 2 (coronary-femoral co-

localisation) was the second most common atherosclerosis manifestation showing also 

higher resemblance in the MZ twins. Contradictory plaque localization was not present 

in the MZ twins, only in the DZ twins. Notably, twin pairs falling into category 5 

multiplied by zero are eliminated from this figure – not to disturb the display – however, 

majority of twin pairs fell into this category.    

 

-5 0 5 10 15 20 25 30

Category 5 (too early or too advanced)

Category 4 (contradictory plaque localization)

Phenotype 3 (CAR-FEM) *

Phenotype 2 (Cor-FEM) *

Phenotype 1 (Cor-CAR) *

Intrapair resemblance of plaque co-
localizations - 'first two' sites

DZ MZ
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5. DISCUSSION 

 The topic of our twin research covers genetic vs. environmental contributions to 

various CV phenotypes related to chronic or acute changes in CBF – which involved 

longitudinal changes in arterial stiffness parameters, development of 4-segment scores 

(based on carotid-femoral ultrasound, potential extracoronal ATB marker), cooccurrence 

of carotid-coronary and femoral-coronary atherosclerosis traits. The investigated 

parameters are also verified or promising CV risk factors partially through reducing 

CBF. Aortic stiffness is known to cause acceleration of the reflected wave arriving back 

to the aortic root in systole instead of diastole thus limiting blood flow to the coronary 

arteries. Agatston score was found to correlate with the extent of CAD, associated with 

decreased coronary diameter and lower dilatory reserve capacity. Even in genetic 

atherosclerosis studies there is a missing gap - atherosclerosis phenotype specification 

especially in regard of generalized state and localization of atheromas. As we previously 

discussed, IMT is frequently treated as a surrogate for atherosclerosis, while arterial 

stiffness is often treated as a distinct entity – although they are both different aspects of 

arterio- and atherosclerosis. Our aim was to investigate the genetic patterns of CV traits 

in twins to gain insights into the genetic vs. environmental background of 

pathomechanisms indirectly leading to reduced CBF.  

 Our first specific aim was to assess the genetic contribution to longitudinal 

changes in arterial stiffness parameters such as aortic PWV and aortic AIx. Most 

importantly, we found that during a 4.4 year follow-up the longitudinal covariance of 

both parameters are in larger part genetically driven (genetic covariance for aortic PWV 

was covg=0.88 and covg=0.55 for aortic AIx).  

 Previous studies confirmed moderate heritability of aortic PWV and aortic AIx 

(40-50.1% for aortic PWV and 41-48.7% for AIx), meaning that the phenotypic variance 

is near half attributable to the genotypic variance of the study population [99-101]. Our 

cross-sectional heritability estimates were similar for aortic PWV (h2=0.51 at wave 1 and 

h2= 0.49 at wave 2), also showing substantial longitudinal genetic stability and moderate 

percentage of overlapping genes (rg=0.64).  Regarding aortic AIx, heritability at wave 1 

was slightly higher (h2=0.57) and heritability at wave 2 was lower (h2=0.37) compared 

to previous heritability estimates possibly due to distinct methodological concepts. 
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 In previous studies about the longitudinal changes of aortic PWV, follow-up for 

25 years in asymptomatic adults found different rates of arterial stiffening acceleration 

between genders and also between different SBP groups [102]. On the contrary, during 

a follow-up of two years, aortic PWV values in young adults showed moderate-high 

tracking stability [103]. Our statistics included adjustment for age, sex, longitudinal 

changes in MAP and BMI. However, regarding the adjusted and unadjusted covg values, 

we saw only subtle effects of these covariates on the longitudinal run of aortic PWV 

(adjusted covg= 0.88; unadjusted covg= 0.98). Thus, here we demonstrated a major role 

of genetic contribution to longitudinal variations in aortic PWV. In contrary, Huang et 

al. (2021) found a diminishing role of genes on the longitudinal run in a young twin 

population [104]. This difference could be due to the distinct age groups and different 

method to measure arterial stiffness.  

 Taken together with our results we might suggest that arterial stiffening show a 

more age-related longitudinal genetic stability pattern in older patients, whereas early or 

accelerated vascular ageing could be more influenced by environmental factors. This 

idea is supported by the finding that before the age of 50 aortic AIx is more influenced 

by age than aortic PWV, while after the age of 50 aortic PWV is more influenced by age 

[41]. Similar to our results, Cecelja et al. found 55% heritability of aortic PWV 

progression, which was correlated with arterial dilation but not with wall thickness [105].  

 We acknowledged as a limitation that aortic PWV measured at the brachial 

arterial site by Arteriograph could less accurately reflect the central elasticity. One study 

found that the correlation of PWV measured by Arteriograph with stiffness measured by 

Sphygmocor was only 0.54-0.59 in healthy individuals [106], but another study found 

no significant difference between these two methods and found that body surface 

measurement for calculating aortic length was critical in measurement accuracy [107]. It 

is not unequivocal how changes in body parameters over time might have affected the 

calculations at the brachial site, however adjustment for BMI assured that our results 

were independent from changes in BMI. Duration of follow-up might have not been long 

enough to show differential genetic contributions in case of aortic PWV. Another 

limitation is that our population was not large enough to take optimal/suboptimal 

treatment of hypertension, untreated hypertension, or different types of antihypertensive 



77 
 

medication – as environmental factors – into account. We used the actual MAP value as 

a covariate influencing the actual PWV value. 

 In regard of aortic AIx we found substantial, however less genetic longitudinal 

stability and a higher overlapping environmental effect (re= 0.52) on the longitudinal 

phenotypic changes, which was also a novel finding. This result is in line with previous 

observations about higher sensitivity of aortic AIx to pathophysiological factors and 

pharmaceutics than aortic PWV. For example, ß-adrenerg isoprenaline reduced aortic 

AIx without changing aortic PWV, which was mainly due to changes in HR, SBP and 

diastolic blood pressure (DBP) [108]. Indeed it is known, that reflection sites (related to 

DBP and height), aortic PWV, amplitude of reflected wave, duration and pattern of left 

ventricular ejection (including heart rate and ventricular contractility) influence the value 

of aortic AIx [40]. Although still largely genetically influenced, aortic AIx might show 

more responsiveness to therapy or lifestyle changes and epigenetic influences are also 

possible contributors to the expression of novel genes longitudinally.  

 As a limitation we could not observe the forward and reflected wave components 

contributing to aortic AIx, although these traits have been linked to distinct genes and 

proteins [109]. However, in a sensitivity analysis we found that the augmented pressure 

wave is less genetically driven, than the pulse pressure (covg=0.45 for AP and covg=0.68 

for PP).  

 Exponential interest in the genetic basis of arterial stiffness could be observed in 

the later years. Observed genetic influences include genetic polymorphisms associated 

with the RAAS (renin-angiotensin-aldosterone system), endothelial physiology, 

inflammation, matrix metalloproteases, elastin and others: ß-adrenergic receptor gene, 

G-protein β3 subunit, osteopontin, fetuin-A, or ectonucleotide 

pyrophosphatase/phosphodiesterase 1 (ENPP1) [33, 109]. Cecelja et al. investigating 

female twins found significant correlation between the expression levels of ENPP1 and 

COL4A1 (collagen type IV, alpha 1) in lymphoblastoid cell lines (among 52 genes 

previously associated with arterial stiffness phenotype) and longitudinal changes of 

aortic PWV, which could act synergistically [110]. The authors also suggested different 

mechanisms contributing to arterial stiffness at different vascular ages, which might 

partially explain differing results from cross-sectional GWAS studies. 
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 In conclusion, our results suggest that aortic PWV is a more rigid parameter, 

which reflects the arterial wall’s mechanistic properties better and as such – its 

longitudinal variance is under strong genetic control. The differences in distinct age 

groups in broader studies might highlight the importance of early vascular aging. AIx is 

dependent on many other physiological factors which could also be used as a 

therapeutical intervention point to lower negative consequences on coronary blood flow.    

 Our second specific aim was to establish a phenotypical and a possible genetic 

correlation between CACS and a candidate extracoronary ATB marker. Altough aortic 

stiffness was shown to correlate both with coronary atherosclerosis [111,112] and 

numerous extracoronary vessels – thus was proposed to be an indicator of generalized 

atherosclerosis [22] – we found only moderate phenotypic correlation between aortic 

PWV and CAC (r=0.39, p<0.01 – result not published). The in-house developed 4-

segment score which represents the presence and dissemination state of sclerotic plaques 

in the carotid and femoral arteries showed stronger correlation with with CAC (r=0.604 

for 4S_mixed/hyper and r=0.551 for 4S_hyper). We also found a substantial genetic 

overlap between the expression of 4S_hyper and CACS (rA=0.86). 

 Previous studies found that combination of carotid and femoral ultrasound could 

better predict CACS than using only carotid ultrasound [113,114]. It is unclear which 

specific carotid-femoral ultrasound trait would best predict CACS, however we used 

similar approach as some other authors did. Yerly et al. used the term atherosclerosis 

burden score (ABS), which most likely corresponds to our 4S_PL score, summing the 

‘bifurcations’ with atherosclerotic plaques [113]. Jarauta et al. used the term ‘number of 

territories with plaque’ – which was not further specified, could also represent similar 

characteristic, as 4S_PL used by us [115]. We further broke down this score according 

to plaque types and found different proportions of heritability to each one of them (h2=0 

for 4S_hypo; h2=0.49 for 4S_mixed; h2=0.69 for 4S_hyper). We found similar 

magnitude of phenotypic correlation for both 4S_PL and CACS (r=0.557), and 4S_hyper 

and CACS (r=0.551). We also confirmed that carotid and femoral ultrasound could 

predict coronary calcification with high accuracy (0.83, CI: 0.70-0.91 – result not 

published). Interestingly, we found that bilateral atherosclerosis in carotid or femoral 

arteries was also more indicative of more severe CAC than the combination of unilateral 

carotid and femoral atherosclerosis (in both cases the 4S_PL is 2).  
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 Being a cross-sectional study and regarding atherosclerotic plaque progression a 

slow, longitudinal process, we cannot undoubtedly conclude that the formation and 

dissemination status of hypoechoic plaques is less heritable than the later, hyperechoic 

(calcified) plaque type. However, our results suggest that the process of plaque 

calcification might be indeed in larger part, genetically determined – moreover in a 

systemic or generalized manner. The mechanism of atherosclerotic plaque formation is 

still not fully understood. Interesting insight is that some authors suggest that atheroma 

formation and more extensive calcification might even be two different entities with 

some overlap between them [116]. Furthermore, other authors approach calcification as 

an evolutionary, immunobiological process, which serves as a mechanical barrier 

towards injurious stimuli [117].  It is possible however, that the irreversibility and 

“terminal state” of calcification in the atherosclerotic plaque progression make it more 

likely that twin pairs – who else way might have different rates of atherosclerosis 

progression – would resemble more in regard of this trait. Therefore, this irreversible 

state could explain higher heritability estimates in a cross-sectional design. Future 

longitudinal twin studies can help elucidate this question. 

 Co-heredity of coronary atherosclerosis with other arterial segments’ 

atherosclerotic involvement hasn’t been investigated in twins yet. We found high 

contribution of genetic factors to the correlation between CAC and 4S_hyper. Although 

four-segment approach permits better phenotypic correlation, our study is limited in the 

capability of treating carotid and femoral atherosclerosis as different entities because of 

relatively small sample size. However, demonstrating plaque dissemination patterns in 

MZ and DZ twins (Tables 15-18, Figures 12, 17.), we suggest that dissemination route 

of atherosclerosis is rather a genetically predisposed than a merely stochastic process. 

Although a high percentage of our study population had either more extended or too 

early atherosclerosis to investigate this question, we observed that carotid-coronary co-

occurrence in MZ twins without femoral atherosclerosis findings was more common than 

femoral-coronary co-occurrence without carotid atherosclerosis - suggesting two distinct 

underlying genotype. This highlights the importance of adding femoral ultrasound 

screening to carotid ultrasound. Important to bare in mind – some individuals with 

coronary atherosclerosis might be missed by screening their carotid and femoral arteries 

– however on a population level our results suggest that these patients would be only 4-
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5%, while carotid-femoral ultrasound could find around 87% of patients with CAC 

(Figure 13). The positive predictive value of our model including age, sex, 4S_hyper and 

4S_mixed was also 87% (Table 21). 

 There is limited information about the genetics of multi-vessel atherosclerosis. 

Lucatelli et al. found major genetic correlation (rg=0.77) between carotid and femoral 

atherosclerosis in a twin study population [79]. The Tampere Vascular study found site-

specific genes only for aorta and femoral artery, but not for carotid arteries [80]. A 

substudy of the Rotterdam study found that the joint effect of three SNPs associated not 

only with calcification in the coronaries, but also with calcification in the carotid arteries 

and the aorta [81], which is in line with our results.  

 Another Tampere study investigated more thoroughly the overlapping and 

differing gene up- and downregulations in aortic, carotid and femoral arteries. 

Osteopontin was the single most upregulated gene compared to healthy individuals and 

it was highly upregulated in all investigated arterial beds, possibly playing a role in 

calcification and plaque progression. Furthermore, Apolipoprotein-D (ApoD) was down-

regulated in every arterial segments. They also found differences between these arterial 

beds. Most significant differences were between aortic and carotid plaques (especially 

ApoD and C-X-C motif chemokine ligand 14, CXCL14, genes were down-regulated in 

the former location). Many other upregulated genes were related to inflammation and 

lipid transport. Apolipoprotein C1 was significantly upregulated especially in the carotid 

arteries. Enzyme encoding genes from the matrix-metalloprotease family were also 

significantly upregulated in all plaques compared to the control group. Furthermore, 

50.4% of Ingenuity Canonical Pathways and 41.2% of Gene Ontology terms overlapped 

between all three locations, however differences were also observed. These were mostly 

related to the leukocyte activity of arterial wall, for example pathways that influence 

adhesion and diapedesis of agranulocytes [82]. These valuable results are partly in line 

with our findings and demonstrate differing locus minoris resistenciae of the arterial 

walls in distinct regions which might be a key explanation to individual differences in 

atherosclerosis plaque locations. 

 The above study is also suggestive of the validity of the other interpretation of 

our finding, namely that calcification is a more generalized and rather uniformly 

genetically driven process, which might not be arterial site-specific. Several other results 



81 
 

show that intra-individual inter-arterial correlation is highest among calcified plaque 

type, also supporting this idea [118-123].  

 Genetic basis of atherosclerotic calcification was extensively studied in the 

coronary arteries. Genes found to be involved (among others) are insertion-deletion 

polymorphism of the ACE (angiotensin-converting enzyme) gene [124], ApoE ε3/2 ε3/3 

ε4/3 genotypes [125], MMP3 genotype [26], polymorphisms in the MGP (matrix Υ-

carboxyglutamic acid protein) gene [127], and TREML-4 (triggering receptor expressed 

on myeloid cells) gene involved in inflammatory processes [128]. The process of 

vascular calcification is still not fully understood. Research shows that extracellular 

vesicles release microcalcification which more easily confluence into macrocalcification 

in a collagen-poor environment [45,129-131]. Calcium-phosphate imbalance and 

trabecular bone formation are also thought to play a role due to the plasticity of 

mesenchymal cell highlighting the role of genes involved in ossification [132-134]. 

 Despite the limitations of our study (cross-sectional design, relatively small 

sample size), our results support the proposal that carotid-femoral ultrasound could help 

re-group patients’ CV risk and might help pre-select patients who would possibly benefit 

from CAC screening. Nowadays therapeutic options are available for extensively 

calcified arteries including double-wire technique, rotational and orbital atherectomy 

[135]. 

 We also observed that CACS and aortic PWV are only moderately correlated, 

while the extracoronary large vessel 4-segment plaque scores showed better phenotypical 

correlation and might represent generalized state of atherosclerosis better. We do not 

propose to use arterial stiffness as a surrogate marker for atherosclerosis (in the sense of 

atheroma formation). 

  Highlighting the genetic background of multivessel atherosclerosis and plaque 

calcification, we found good correspondence with the results of broader genetic studies. 

Using carotid-femoral ultrasound could be a reasonable method for assessing 

extracoronay atherosclerosis burden. With the good phenotypical and genetical 

correlation with CACS we underpin the validity of examining cost-benefit studies of 4-

segment scores’ screening in the future. We also believe that our twin studies generate 

further research, which will help better understanding of the complex pathophysiology 

of atherosclerosis. Especially longitudinal studies about the dissemination route of 
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multivessel atherosclerosis would fill missing gaps. Future investigations of common 

(e.g. osteopontin) or differing gene expressions in dinstinct ahteroscleroslerosis 

phenotypes might possibly help elucidate some of the reproducibility problems in genetic 

studies. Further development of polygenic risk scores for distinct atherosclerosis 

phenotypes could be the most individual and most effective way to start early prevention 

or raise surveillance of CV diseases.  
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6. CONCLUSIONS 
 

In our international and national twin studies we investigated the longitudinal 

and cross-sectional heritability and genetic association patterns of four important and 

promising CV risk factors leading to reduced coronary blood flow, also potentially 

describing atherosclerosis burden (ATB): aortic PWV and aortic AIx (rigidity markers 

of the aorta), CACS and four-segment scores derived from carotid-femoral ultrasound. 

Our most prominent and novel findings are the following:  

(1) Both aortic PWV and aortic AIx phenotypes are moderately genetically 

determined. Substantial genetic covariation contribute to the longitudinal expression of 

both these traits during a 4.4-year follow-up period. 

(2) The variance components analyses showed that longitudinal changes in 

aortic AIx - although mainly genetically determined – are partly more sensitive to 

environmental factors, some of which are continuously influencing the value of aortic 

AIx. Therefore, therapeutics aiming to reduce aortic AIx might be more effective than 

in the case of aortic PWV. 

(3)  CACS phenotypically correlated well with both four-segment plaque score 

(4S_PL) and four-segment score of hyperechoic plaques (4S_hyper).  

(4) Calcified plaque score of carotid/femoral arteries and CACS showed both 

strong-moderate heritability and we found a substantial overlap in the genetic factors 

contributing to these traits – therefore, our results suggest that having a high 4S_hyper 

score makes people more prone to have a higher CACS mainly due to genetic factors.  

(5) Our results highlight the importance of genetic factors in the etiology of 

atherosclerosis and support both the idea of polygenic risk score assessment as earliest 

screening, both the idea that combined ultrasound screening of carotid and femoral 

atherosclerosis may have better potential use based on the good phenotypical and 

genetical correlation with CAC. Our proposed genetic predisposition of atherosclerosis 

dissemination route in multivessel atherosclerosis might generate further longitudinal 

studies. 
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7. SUMMARY 

 
 

 The polygenic background of common atherosclerotic phenotypes is not fully 

understood especially in regard of disease progression and multi-vessel localization.  

 Our first aim was to investigate the genetic contribution to the longitudinal 

manifestations of arterial stiffness parameters such as aortic pulse-wave velocity (PWV) 

and augmentation index (AIx). The second aim was to investigate the phenotypic and 

genetic associations of coronary artery calcification score (CACS) with carotid/femoral 

atherosclerosis assessed by ultrasound. 

 Repeated measure of aortic PWV and aortic AIx (TensioMed Arteriograph) were 

conducted during a follow-up of 4.4 years in 368 Italian and Hungarian twins (214 

monozygotic, MZ; 154 dizygotic, DZ). Bivariate Cholesky models were implemented 

to decompose influences on phenotypic variances and covariances. Agatston score 

(non-enhanced CT) and 4-segments scores of uni/bilateral carotid/femoral 

atherosclerosis (B mode ultrasound) was evaluated in 120 MZ and 70 DZ Hungarian 

twins. We calculated heritability of plaque types and estimated both the phenotypic and 

genetic correlations of calcified plaques (CACS and 4S_hyper: 4-segment hyperechoic 

plaque score).  

 Aortic PWV showed moderate genetic continuity (h2= 0.51, [95% CI 0.36-0.63] 

at wave 1; h2=0.49 [95% CI 0.34-0.62] at wave 2), with genes explaining 0.88 [95% CI 

0.61-1.00] covariance between the longitudinal values. Aortic AIx showed diminishing 

genetic contribution over time (h2=0.57 [95% CI 0.45-0.67] at wave 1 and h2=0.37 

[95%CI 0.21-0.51] at wave 2), with relatively less but still substantial effect of genes 

on the longitudinal covariance (covg=0.55 [95% CI 0.35-0.70]). CACS and 4S_hyper 

were moderately heritable (0.67 [95% CI 0.37–1] and 0.69 [95% CI 0.38–1], 

respectively). The 4-segment score of hypoechoic plaques showed no heritability, 

mixed plaque type showed intermediate heritability (h2=0.50 [95% CI 0–0.76]). Age 

and sex adjusted phenotypic correlation between CACS and 4S_hyper was 0.48 [95% 

CI 0.30–0.63]. Genetic correlation between these two traits was 0.86 [95% CI: 0.42–1]. 

 We conclude that there is a substantial role of genetic covariance in the 

longitudinal expression of arterial stiffness parameters. Highly overlapping genetic 

factors contribute to atherosclerotic calcification in the coronary, carotid and femoral 

arteries.  
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8. ÖSSZEFOGLALÁS 

 

Az atherosclerosis fenotípusok poligénes háttere nem teljesen tisztázott, 

különösen a betegség progresszióját, illetve több ér együttes megbetegedését tekintve. 

Első célkitűzésünk az volt, hogy artériás stiffness paraméterek longitudinalis 

genetikai hátterét vizsgáljuk: az aorta pulzushullám sebesség (PWV), valamint az 

augmentációs index (AIx) paramétereket. Második célkitűzésünk a koronária kalcifikáció 

score-ral (CACS) korreláló carotis-femoralis ultrahang fenotípus kiválasztása, illetve 

ezen korreláció genetikai hátterének vizsgálata volt. 

Ismételt aorta PWV és AIx méréseket (TensioMed Arteriograph) végeztünk 

átlagosan 4.4 év különbséggel 368 olasz, illetve magyar ikerben (214 monozigóta - MZ, 

154 dizigóta - DZ). Bivariáns Cholesky módszerrel bontottuk szét a kovarianciákat közös 

genetikai illetve környezeti eredetre. Natív CT-n állapítottuk meg az Agatston score-t, 

valamint B módú ultrahang vizsgálat során számítottunk 4-szegmens score-okat az 

uni/bilateralis carotis/femoralis atherosclerosis felmérésére 120 MZ és 70 DZ magyar 

ikerben. Kiszámítottuk a különböző plakktípusok örökletességét, illetve a meszes 

plakkok közötti genetikai korrelációt (CACS és 4S_hyper – 4 szegmens echodenz plakk 

score). 

Az aorta PWV közepes genetikai folytonosságot mutatott az örökletességet 

tekintve (h2= 0.51, [95% CI 0.36-0.63] az első méréskor; h2=0.49 [95% CI 0.34-0.62] a 

második időpontban); a kovarianciát pedig nagymértékben a gének határozták meg: 0.88 

[95% CI 0.61-1.00]. Az AIx tekintetében csökkenő jelentősége volt az örökletességnek: 

h2=0.57 [95% CI 0.45-0.67] az első méréskor; h2=0.37 [95%CI 0.21-0.51] a második 

méréskor. Az echoszegény 4S plakk score nem mutatott örökletességet, a kevert típusú 

plakk score közepes örökletességet adott (h2=0.50 [95% CI 0–0.76]). A CACS és 

echodenz 4S plakk score közötti, életkorra és nemre korrigált korreláció 0.48 [95% CI 

0.30–0.63] volt, mely korreláció nagy részét egymással átfedő géneknek tulajdoníthatjuk 

(0.86 [95% CI: 0.42–1]). 

Következtetéseink tehát, hogy jelentős részben genetikai kovariancia áll az aorta 

stiffness paraméterek hosszabb távon követett kifejeződésének hátterében, valamint 

döntően egymással átfedő genetikai hatások állnak a koszorúerek, a carotisok, valamint 

a femoralisok meszes plakkjainak együttes előfordulása hátterében. 
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