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1 INTRODUCTION 

1.1 Characteristics of malignant tissues 

Cancer develops from normal cells, mutating first to pre-cancerous and then to 

malignant cells, because of genetic or epigenetic lesions. Such lesions originate mostly in 

external mutagenic factors, but hereditary mutations also influence their evolution. These 

genetic lesions lead to gene expression changes in the tumor cells which gear up the 

cancerous phenotype (1). 

While most genes exhibit comparable expression profiles between cancerous and 

normal tissues, those differentially expressed can serve as either target of treatment or 

molecular biomarkers of cancer progression. Targeting a gene with higher expression of 

a certain gene product can deliver astonishing clinical benefit, as was demonstrated over 

two decades ago by the selective inhibition of overexpressed tyrosine kinases (2). 

Gene expression changes in cancer cells are related to a limited set of special 

characteristics often termed as cancer hallmarks (3). These paramount differences 

between malignant and normal tissues include sustaining proliferative signaling, evading 

growth suppressors, resistance to cell death, enabling replicative immortality, 

inducing/accessing vasculature, activating invasion and metastasis, reprogramming 

cellular metabolism, and avoiding immune destruction. 

1.2 Key characteristics of cancer cells – Hallmarks of cancer 

Unrestricted cellular proliferation constitutes a fundamental characteristic exhibited 

by malignant cells. The perpetuation of proliferative signaling and the evasion of growth 

suppressors are contingent upon the presence of a sufficient number of healthy cells 

within the sample and/or the sustained maintenance of proliferative capacity over time 

(4). Notable instances of mutant driver oncogenes that sustain proliferative signaling 

include the epidermal growth factor (EGF) receptor and the RAS-RAF-MEK-MAPK 

pathway signaling transporters, which facilitate the processing and transmission of 

growth-promoting signals (5). In normal cells, proliferative signals are counteracted by 

inhibitory mechanisms that either override or impede the cell division process triggered 

by such signals. The genes responsible for encoding these proteins are recognized as 

tumor suppressor genes, exemplified by RB and tp53 (6, 7). In the majority of human 

tumors, genetic or epigenetic abnormalities affecting the function of the Rb, and tp53 

tumor suppressor pathways are commonly observed (4). 
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Apoptosis, an orchestrated and active form of cellular demise, represents a 

programmed self-destruction process. Activation of apoptotic extrinsic and intrinsic 

pathways, induces alterations in cellular morphology and surface properties, ultimately 

resulting in genome fragmentation and mitochondrial dysfunction. Subsequently, cells 

fragment into apoptotic bodies (8). Tumor cells, distinguished by their resistance to 

apoptosis, employ various mechanisms to achieve this state. These mechanisms include 

the inactivation of the tumor suppressor gene TP53 and upregulation of antiapoptotic 

regulators (e.g., Bcl-2, Bcl-xL) or survival signals (e.g., Igf1/2) (4).  

Normal cells undergo a finite number of cell cycles, with telomeres playing a vital 

role in preventing uncontrolled proliferation by safeguarding the ends of chromosomes. 

In the absence of telomeres, unprotected chromosome ends undergo fusion, resulting in 

karyotypic abnormalities and cellular demise. Telomerase, a specialized DNA 

polymerase, catalyzes the addition of telomeric hexanucleotide repeats to the terminal 

regions of DNA (9). The immortalization of cells, leading to tumorigenesis, is attributed 

to their capacity to maintain telomeric DNA at a length that evades the induction of 

senescence (a non-proliferative state) or apoptosis. This ability is primarily achieved by 

upregulating the expression of telomerase or, less frequently, through an alternative 

recombination-based mechanism for telomere maintenance (3, 4). 

Tumor cells employ the mechanism of angiogenesis to ensure an adequate supply of 

nutrients and oxygen for their sustenance. Vascular endothelial growth factor-A (VEGF-

A) stands as the archetypal inducer of angiogenesis, orchestrating vascular growth, 

maintaining endothelial cell homeostasis, and facilitating wound healing. The 

upregulation of VEGF and fibroblast growth factor (FGF) expression in tumors is 

primarily attributed to oncogenes such as KRAS and hypoxia (4, 10). 

The dissemination of cancer is commonly described as a multi-step and sequential 

process known as the invasion-metastatic cascade. Migration denotes the directed 

movement of cells without encountering barriers, whereas invasion necessitates the 

breakdown of barriers for passage, thus involving the remodeling of the extracellular 

matrix (ECM) (4). During local invasion and distant metastasis, tumor cells undergo 

notable changes in their shape and their adhesion to other cells and the extracellular 

matrix. One significant alteration is the loss of the E-cadherin molecule in tumor cells, 

which plays a pivotal role in cell-to-cell adhesion. Through the formation of adhesion 
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contacts with neighboring epithelial cells, E-cadherin contributes to the assembly of 

epithelial cell sheets and the maintenance of cell quiescence within these sheets (11). 

Tumor cells must carefully regulate their energy metabolism to sustain their growth. 

They achieve this by enhancing glycolysis while restricting oxidative phosphorylation, 

leading to a phenomenon known as aerobic glycolysis. This metabolic shift enables the 

redirection of glycolytic intermediates towards biosynthetic pathways necessary for the 

synthesis of new cellular components (4, 12). In many cases cancer cells can be divided 

to two main subtypes according to their metabolism, one glycolytic like and another with 

an oxidative like type of metabolism. The glucose-dependent cells release lactate as the 

final product of glycolysis, while the cells in the other subpopulation uptake lactate 

generated by neighboring cells and utilize it as their primary energy source, importing the 

lactate to the citric acid cycle (13). The glycolytic shift has been observed in numerous 

rapidly dividing embryonic tissues, indicating its involvement in facilitating extensive 

biosynthetic processes essential for active cellular proliferation and has been 

demonstrated to be linked with mutant tumor suppressor genes and activated oncogenes 

(14, 15). 

The immune system plays a crucial role in identifying and eliminating early 

malignant cells, thereby exerting control over the majority of tumor development. Current 

FDA approved checkpoint inhibitors to treat malignancies include anti-CTLA4 

(tremelimumab, ipilimumab), anti-PD-1 (nivolumab, pembrolizumab), and anti-PDL1 

(avelumab, atezolizumab, durvalumab) agents (16). Nevertheless, tumor cells have the 

ability to evade the defensive mechanisms of the immune system (17). This process 

usually includes the mechanism of losing or altering the expression of antigenic proteins 

recognized by the immune system. Further mechanism of avoiding immune destruction 

is to create an immunosuppressive microenvironment, or by a mechanism called the 

abscopal effect in which the cancer cell modifies the location of the antigene, thus making 

it invisible to the immune system (18, 19). 

Further cancer specific characteristics which enable a cancer cell to proliferate, 

disseminate, and survive involves genome instability and mutation; and creating a tumor-

promoting inflammation in the microenvironment. Genomic instability of premalignant  

cells could lead to random mutations such as chromosomal rearrangements which could 

promote hallmark capabilities (4).  
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A specific inflammatory microenvironment orchestrated by various immunomodulatory 

cells could also promote a malignant shift in premalignant cells. Recent update of these 

hallmarks has proposed further potential cancer specific characteristics such as unlocking 

phenotypic plasticity, nonmutational epigenetic reprogramming, polymorphic 

microbiomes, and senescent cells (20). 

Phenotypic plasticity, a phenomenon of genotypes to produce different phenotypes 

when exposed to different environmental conditions (21). Normally this capability is 

blocked in normal cells after they reached the state of terminal differentiation (22). Cancer 

cells however can reach this state in several ways. Pre-malignant cells with normal 

ancestry could reverse their way of complete differentiation resulting in dedifferentiated 

progenitor-like cell states. Progenitor based malignant cells might cut the process of end 

stage differentiation resulting in a partially differentiated state, similar to the progenitor 

form. Another type of differentiation switch is the process of transdifferentiation in which 

cells with a specific developmental fate switch to another differentiation pathway, 

resulting in new phenotypic characteristics (20). 

Besides genetic mutations which show association with multiple forms of the 

beforementioned cancer hallmarks, there are approaches which highlight the importance 

of a different mode of genome reprograming termed as the nonmutational epigenetic 

reprograming, which have been proposed more than a decade ago (23). A notable example 

of this type of reprogramming is the hypoxia induced aberrant epigenetic regulation in 

pediatric ependymoma (24).  

The microorganism system or microbiome which lives in the barrier tissues of human 

body has a non-negligible role in the health and disease equilibrium. Proper balance of 

heterogeneity of different bacterial species might have either protective or harmful effects 

on the initiation, progression of cancer and response to therapy (25). Changes in this 

symbiotic ecosystem of ours could influence the process of cancer hallmark gain leading 

to phenotypic characteristics like modulated cell growth, inflammation, immune evasion, 

genome instability and therapy resistance (20). The role of dysbiosis in the malignancies 

of the gastrointestinal tract is widely researched, especially in the case of colon tumors 

(26). Besides the role of bacteria in the gut, several studies proposed their important role 

as tumor promoting or repressing factor in oral, skin, and ovarian cancers (27-29). 
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Cellular senescence is considered as an irreversible cellular process in which -

depending on the senescence-inducing triggers- cells end up in state where they stop 

proliferation and form a dormant state (30). The general assumption of cellular 

senescence is being protective factor against malignant transformations (31). On the other 

hand, by certain induction factors senescence of malignant cells could enhance tumor 

progression and therapy resistance (32). 

Previously, several experimental methods capable of examining a variety of these 

hallmark genes at the gene expression level have been comprehensively reviewed  (33). 

Currently, the most widespread and robust techniques to determine transcriptome-level 

gene expression include RNA-sequencing and microarray platforms, while selected genes 

can be measured by RT-qPCR or NanoString technologies (34). 

1.3 Gene chip technology 

Gene chip technology, a form of microarray technology, is widely employed for 

genome-wide expression profiling, with Affymetrix Gene chips being the most prevalent 

variant (35). In addition to expression profiling, Gene chips find applications in high-

throughput mutation detection, single nucleotide polymorphism (SNP) genotyping, and 

the detection of chromosomal aberrations (36). The production process of Affymetrix 

Gene chips distinguishes them from other microarrays by utilizing photochemical 

synthesis to load DNA probes onto the chips. This technology enables the synthesis of 

over one million distinct probes on a small array approximately the size of a thumb. 

Consequently, gene chips have the capability to simultaneously capture multiple 

oligonucleotides (37) (38). For gene chips, the delivery of probe sequences to quartz slices 

is achieved through in situ synthesis. As the attachment of nucleotides to the array is light-

dependent, photochemical synthesis is employed to transfer nucleotides containing a 

light-sensitive protecting group onto the quartz slices. The precise attachment points of 

the nucleotides are controlled using lithography masks (36) (39). 

The gene chips are utilized in hybridization experiments, wherein the target DNA or 

RNA is labeled with biotin and then hybridized to the microarray. To detect the 

hybridization events, staining is performed using a phycoerythrin-streptavidin-antibody 

complex, followed by scanning the array using a high-resolution scanner (36). 

Gene chip technology offers several advantages. One notable advantage is the ability 

to read a significant number of features from a microarray, depending on the resolution 
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of the scanner used in the experiment. However, in recent times, its usage in diagnostics 

has become less practical and is being gradually replaced by RNA sequencing. RNA 

sequencing offers greater flexibility, improved sensitivity, and the ability to provide more 

comprehensive insights into the transcriptome, leading to its increased popularity in 

diagnostic applications (36). When dealing with well-characterized microorganisms such 

as bacteria, RNA-seq and gene chip technologies yield comparable results (40). However, 

for more complex organisms like humans and human cancer, RNA-seq technology 

surpasses the gene chip method in determining the characteristics of malignant tissues 

(41).  

1.4 RNA Sequencing 

RNA sequencing (RNA-Seq) is a high-throughput technology to unravel 

transcriptome specificities. RNA-Seq is a robust technique to quantify gene expression 

levels, and also enables the discovery of novel transcripts, identification of genes 

undergoing alternative splicing, and detection of allele-specific expression. Moreover, it 

facilitates the examination of various RNA types, encompassing total RNA, pre-mRNA, 

and non-coding RNA types such as microRNA and long non-coding RNA (ncRNA) (42). 

In RNA sequencing, the initial step involves extracting RNA from the target 

biological material, such as cells or tissues. Following this, specific protocols are 

employed to separate the mRNA from the ribosomal RNA which is more abundant than 

mRNA. Two commonly used protocols are the poly-A selection protocol, which enriches 

for polyadenylated transcripts, and the ribo-depletion protocol, which eliminates 

ribosomal RNAs from the sample (42, 43).  

Subsequently, the RNA is converted into complementary DNA (cDNA), via reverse -

transcription. Sequencing adaptors are then attached to the ends of the resulting cDNA 

fragments, and short sequences, known as reads, are generated using high-throughput 

sequencing (HTS) technology. These reads typically range from 30 to 40 base pairs in 

length. The generated reads are then compared to a reference genome and classified into 

different categories, including junction reads, exonic reads, and poly(A) end reads. These 

categories are utilized to construct a precise expression profile at the base-resolution level 

for a given gene (44). 

Regrettably, the RNA sequencing technique encounters various technological 

limitations. These challenges encompass the need for substantial data storage capacity 
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and the complexity involved in developing efficient data processing algorithms. 

Additionally, the accurate identification of sequencing errors poses a significant obstacle. 

While minor errors of 1-2 bases are generally manageable, larger variations necessitate 

more profound sequencing knowledge and precise annotation for accurate interpretation 

(44). Nonetheless, RNA sequencing has undergone remarkable technical advancements 

in recent decades. These developments have expanded the capabilities of RNA-Seq to 

explore multiple facets of RNA biology, including single-cell gene expression, translation 

dynamics, and RNA structure investigations (45). Moreover, RNA-Seq exhibits several 

advantages over other methods, such as the ability to precisely pinpoint transcriptional 

boundaries down to the single-base pair level, providing valuable insights into gene 

regulation (44). 

Both RNA-seq and microarray techniques produce a vast amount of clinically 

relevant data and large repositories, hosting thousands of samples which are now 

available. The National Cancer Institute’s Genomic Data Commons (GDC) platform 

provides whole exome sequencing data and transcriptome-level gene expression datasets, 

such as The Cancer Genome Atlas (TCGA) (46) and the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) (47). The Genotype-Tissue 

Expression (GTEx) repository makes RNA sequencing, exome sequencing and whole 

genomic data available for the same patient (48). Nevertheless, the largest open resource 

is the Gene Expression Omnibus of National Center for Biotechnology Information 

(NCBI-GEO), which provides microarray, next-generation sequencing and additional 

high-throughput genomics data for hundreds of thousands of samples (49). In many cases, 

these repositories provide processed and aggregated results, and it is also common for 

them to offer raw data. At the same time, digesting such large sample cohorts requires 

complex bioinformatical analytical tools and can be time-consuming. Mining these 

databases could be speeded up by an openly available, validated and easily accessible 

online tool which enables the comparison of expression profiles between normal and 

cancer related data.  

1.5 Mass spectrometry 

Mass spectrometry is of utmost importance in the examination of biological 

specimens and has emerged as an essential instrument in the field of proteomics. Mass 

spectrometry has the capability to measure dynamic changes in protein expression, 
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interaction, and modifications, thanks to the utilization of different types of labeling 

techniques (50). Essentially, mass spectrometry quantifies the mass-to-charge ratio (m/z) 

of ions in the gas phase. A typical mass spectrometer comprises three main components: 

the ion source, the mass analyzer, and the detector.  

The ion source is responsible for converting analyte molecules into gas-phase ions. The 

mass analyzer separates the ionized analytes based on their m/z ratios. Finally, the 

detector records the number of ions at each m/z value, providing valuable data for 

analysis. Usually, mass spectrometers are coupled with some separation techniques such 

as liquid chromatography to enable the controlled fractionation of protein mixture (51). 

Currently this machine complex, the HPLC coupled mass spectrometer serves as the gold 

standard in the field of proteomics. 

 Regarding the identity of examined proteins there are two main approaches, the 

discovery-based in which we want to identify a previously unknown set of proteins, this 

is the so-called shotgun method. The other approach is the targeted approach in which 

researchers have a predefined set of proteins (52). By the first approach one can identify 

new biomarkers, however usually this approach is not very specific as proteins with 

smaller abundance can be missed. Based on sample preparation the two main approaches 

are the bottom-up and top-down strategies (50, 53). The top-down approach uses intact 

proteins for further analysis, which can be useful in the case of proper PTM and protein 

isoform identification. On the other hand, this approach faces several drawbacks due to 

the complicated protein fractionation, ionization and fragmentation in the gas phase (52). 

Bottom-up proteomics, considered the standard approach, involves the detection of 

peptides as an indication of the presence of proteins (50, 54). In this strategy, after the 

fractionation by HPLC, the proteins of the protein mixture are digested by enzymes, 

which breaks the proteins down to peptide fragments. Enzymes, like trypsin being the 

most commonly used, are employed for the digestion process. Trypsin cleaves peptides 

at the C-terminus of lysine and arginine residues, this specific phenomenon can be used 

to filter the identified peptides with higher accuracy (55). 

Following digestion, the resulting peptides are ionized since mass spectrometry can 

only measure ions. During ionization, the electrons are removed from the peptides, 

resulting in the formation of positively and negatively charged ions (56). Two methods 

are utilized for ionizing samples: MALDI (Matrix-Assisted Laser Desorption/Ionization) 
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and ESI (Electrospray Ionization). In the MALDI method, the sample is combined with 

a matrix material and then ionization is achieved through the deposition of ions via a laser 

pulse. In the ESI procedure, the sample is introduced into the analyzer in the form of tiny 

droplets using a positively or negatively charged spray. Ionization occurs during the 

subsequent evaporation of the liquid (57). The ionized samples are introduced into the 

mass spectrometer, where they undergo separation based on their mass-to-charge ratio. 

Within the fragmentation chamber, the ionized peptides undergo collisions with noble 

gases, leading to fragmentation along the weakest bond, which is typically the peptide 

bond. The resulting fragmented ions are then detected, and the recorded data are 

subsequently analyzed (56). The outcomes obtained through mass spectrometry are 

represented in the form of a mass spectrum, which displays the abundance of ions relative 

to their mass-to-charge ratios. This spectrum provides valuable information, including the 

molecular mass of the analyzed molecule and the masses of its fragments, which can be 

utilized to determine the molecule's structure. As molecules undergo specific 

fragmentation patterns under particular conditions, the mass spectrum obtained can be 

used for definitive sample identification. In addition to providing quantitative 

measurements, mass spectrometry can also be employed to determine peptide sequences 

(53). 

Protein quantification in mass spectrometry can be achieved using two main 

methods: label-free and using labeled ions. The key distinction between these approaches 

lies in the use of tag molecules for fragment identification. The labeling approach 

employs different tag molecules, either biological or chemical, to label the fragments and 

enable their identification. On the other hand, label-free methods rely solely on the 

intensity of ions during identification, without the use of tag molecules. The TMT 

(Tandem Mass Tag) method is particularly valuable for determining quantitative 

differences between samples (53, 56). 

When it comes to protein quantitation it is beneficial to consider the utilization of the 

targeted bottom-up approach. During this process the peptide quantification is done using 

stable isotope labeled standard peptides, usually labeled with heavy isotopes. If the 

proteins of interest is known beforehand, by the targeted addition of commercially 

available stable isotope labeled peptides, -which only differs in the isotopic composition- 

one can quantify the target peptides in the sample of interest as the SIL peptides have a 
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predefined mass difference. Since the concentration of SIL peptides in the sample is also 

known the absolute concentration of the target peptides can be also measured  (58). 

While mass spectrometry has certain limitations, such as the inability to definitively 

trace the origin of tryptic peptides to determine the encoding genes of detected proteins, 

it offers numerous advantages. Mass spectrometry can be used for the identification of 

unknown compounds by determining their molecular weight, as well as for the 

quantification of specific compounds. Furthermore, it allows for the determination of the 

structure and chemical properties of molecules. In recent years, mass spectrometry has 

found extensive applications in biomarker research (50). 

In the clinical practice MS was introduced almost half a century ago in 

endocrinology and toxicology for drug, steroid, and organic acid quantitation and got its 

main medical application in the widespread newborn screening (59, 60). Although the 

setup of MS based diagnostic applications can be costly and complicated at the beginning, 

the versatility and reliability lead to new applications in clinical settings. In recent years, 

MS has been proved to be a comparatively cost-effective, precise, and quick analysis tool 

in microbial identification (61). With the advent of proteomics and proteogenomics, MS 

based techniques have an increasing role in cancer diagnostics as well (56). Recent studies 

have shed light on several molecular specificities using a proteogenomic approach in 

breast, colon, kidney cancers and several further malignancies (62-64). Precision 

oncology is expected to advance in the next decade through the analysis of 

proteogenomics data from thousands of tumors across major cancer types. This 

advancement enables a deeper molecular classification of cancer, guiding personalized 

approaches for patients and identifying new potential therapeutic targets. Hopefully, this 

will facilitate the study of the relationship between molecular findings and treatment 

outcomes, accelerating clinical trials with valuable biomarkers(65).  

1.6 Clear cell renal carcinoma 

As cancer is the second cause of death worldwide, the identification of potential 

predictive and prognostic biomarkers has outmost importance. Most frequent cancers 

includes the malignant transformation of breast, lung colon, prostate, and pancreas tissues 

(66). Besides the beforementioned, carcinoma of the kidney is also a relatively frequent 

type of cancers with an estimated incidence of more than 80,000 cases in 2023 in the 

United States. Clear cell renal carcinoma (ccRCC) is the malignant transformation of 
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epithelial cells of the kidney and is the most frequent form of kidney cancer (67). In 2020, 

there were 431,288 new cases and 179,368 deaths of kidney and renal pelvis cancer 

worldwide (68). Although the rate of new cases seems to rise, in the past decades the 

mortality rates are stagnating in the US (69). Risk factors of ccRCC include obesity, 

smoking, hypertension, older age, and male gender. Patients with a family history of 

ccRCC also have a higher risk of developing this disease (70).  

Diagnosis of ccRCC is usually based on radiological imaging and tissue slide 

based histopathological examination. Histopathological confirmation is essential before 

systematic therapy initiation (70). Treatment of ccRCC can include surgery, percutaneous 

ablation (71), and targeted drugs including VEGF inhibitors (72) and mTOR inhibitors 

(73) and checkpoint inhibitors. In the case of localized disease, surgical intervention is 

the first-line therapy, and depending on the size and stage, the intervention can range from 

partial to radical nephrectomy. If the tumor mass is relatively small, ablative techniques 

(such as cryo-, thermo-, or radio-ablation) are also available (71). Patients with early-

stage and lack of distant metastasis have more favorable survival rates than those with 

advanced disease (74). The majority of patients, specifically 93 percent with a low-grade 

diagnosis, experience a five-year overall survival, whereas only 15 percent of patients 

with distant metastasis survive for five years(66). Patients with advanced disease (stage 

IV) further require systemic therapy using mTOR inhibitors, VEGF inhibitors, or 

checkpoint inhibitors, such as nivolumab, avelumab, pembrolizumab, ipilimumab, and 

interleukin 2 therapy (75). Patients with locoregional disease can be also treated with 

pembrolizumab in the adjuvant setting (76). 

Uncovering a protein abundance-based gene panel specific to ccRCC could 

provide valuable support for the everyday clinical diagnostic and therapeutic decision-

making process.  
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2 OBJECTIVES 

1. My aim was to create an integrated database of a significant number of 

samples with transcriptome-level data.  

a. With the utilization of both gene chip and RNA-Seq based datasets, 

my goal was to establish a comprehensive set of malignant and 

normal samples from both adult and pediatric patients. 

b. My second objective was to investigate the difference between 

malignant and normal tissues. 

c. My third objective was to assess the database's robustness by 

employing a training-test approach to identify genes exhibiting 

differential expression in specific tumor types. 

d. Finally, I further aimed to establish an online analysis portal which 

enables the comparison of gene expression changes across all 

genes and multiple platforms by mining the entire integrated 

database. 

2. My second main aim was to identify potentially clinically relevant  

biomarkers of ccRCC to help diagnostic and therapeutic decision-making 

process.  

a. An important first objective was to leverage a significant volume 

of transcriptomic and protein data for the purpose of identifying 

proteins that demonstrate elevated expression in ccRCC. 

b. Then, by using data form patients treated at Semmelweis 

University with available proteotranscriptomic and clinical data I 

aimed to investigate the abundance of expressed proteins and the 

effect of these proteins on survival.  

c. By specifically focusing on markers with higher expression in 

tumor tissues using a machine learning approach, I sought to 

increase the specificity of my analysis to solidify future clinical 

application of the results. 
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3 METHODS 

3.1 Database Setup — Gene Arrays 

We searched the NCBI Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) repository for datasets containing “cancer” samples. 

Only datasets utilizing the Affymetrix HGU133, HGU133A_2 and HGU133A platforms 

were considered because these platforms use identical sequences for the detection of the 

same gene. In total, 3,180 GEO series met these criteria, and each of these has been 

manually examined. We executed a filtering process to exclude datasets containing either 

cell line studies, pooled samples, or xenograft experiments. Samples taken after 

neoadjuvant therapy were also excluded. In addition, samples with incomplete 

description, unavailable raw data, and repeatedly published samples with distinct 

identifiers have been removed. For this, the expressions of the first 20 genes were 

compared, and samples with identical values were identified. In each case, the first 

published version was retained in the dataset. After the manual selection, the remaining 

samples were normalized using the MAS5 algorithm by utilizing the Affy Bioconductor 

library (77). Finally, a second scaling normalization was executed to set the mean 

expression on each array to 1000. JetSet correction and annotation package was used to 

pick the most reliable probe set for each gene (78).  

3.2 Database Setup—RNA-seq 

RNA-seq data for a total of 11,688 samples were downloaded from the Genotype-

Tissue Expression (GTEx) portal (version no. 7—15 May 2019), from which two non-

primary cohorts were removed. Read counts were normalized by the DESeq2 algorithm, 

followed by a second scaling normalization.  

Using the GDC database’s (https://portal.gdc.cancer.gov/) TCGA and TARGET 

projects (version no. 15.0 – 20 February 2019), 11,010 and 1,197 files were downloaded, 

respectively. We only included primary tumors, adjacent normal, and metastatic tissues. 

Thus, non-primary tissue samples have been excluded. HTSeq–Counts files were 

normalized by DeSeq2 and a second scaling normalization was also executed for both 

cohorts. 

3.3 Gene annotation 

In order to select the optimal probe set for each gene, we used the JetSet correction 

and annotation package, which delivered 12,210 unique genes in the gene-array datasets. 
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Appropriate genes in the RNA-seq cohorts were selected and annotated by the biomaRt 

and AnnotationDbi R packages. After annotation, gene names referring to Long 

Intergenic Non-Protein Coding RNA, MicroRNA, Small Nucleolar RNA and further non-

relevant names were removed. Genes showing zero expression value or NA in any of the 

tissue types were removed from all datasets. Following the annotation and gene selection 

in the GTEx, TARGET, and TCGA databases, a total of 21,479 genes remained. After 

harmonization, the GTEx and GDC data were combined into a single set.  

3.4 Statistical analysis 

Data processing and analysis features of the TNM-plotter pipeline were developed in 

R version 3.6.1. Comparison of the normal and the tumorous samples was performed by 

the Mann–Whitney U test, and matched tissues with adjacent samples were compared 

using the Wilcoxon signed-rank test. Normal, tumorous and metastatic tissue gene 

comparison were analyzed using Kruskal–Wallis test. The statistical significance cutoff 

was set at p < 0.01. 

3.5 Shiny user interface 

Graphical visualization, including box plots, bar charts, and violin plots produced by 

the TNM-plotter algorithm, were developed using the ggplot2 R package (79). The web 

application and the user interface were developed by employing Shiny R packages, with 

the utilization of the ShinyThemes (http://rstudio.github.io/shinythemes/) and the 

ShinyCssLoaders (https://github.com/daattali/shinycssloaders) R packages (80). 

3.6 Validation of differential expression 

In order to show that differentially expressed genes truly present differential 

expression regardless of sample compilation, and to confirm the reliability of the 

integrated database, we conducted a validation using randomly selected training and test 

sets across breast, lung, and colon tissue datasets in both RNA-seq and gene array 

platforms. In this validation process, we compared the expression profiles of normal and 

tumor samples using the Mann–Whitney U test for 12,210 genes in the GEO and for 

21,479 genes in the GDC datasets. After calculating and adjusting the p-values for each 

gene using the Benjamini-Hochberg method, a chi-squared test was conducted to compare 

the selection overlap between the training set and the test sets. This test was performed to 

validate the proportion of differentially expressed genes. Volcano plots comparing –log10 

p values and Log2 fold changes were generated to visualize differential expression. 
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3.7 Cancer biomarker genes 

To pinpoint genes showing the highest differential expression between normal and 

tumor samples across multiple tumor types, we utilized the analysis pipeline and the 

database of the top ten cancer types with the highest mortality rate. Tumor types were 

selected using the 2019 mortality data from the United States (81). We compared gene 

expression values between normal and tumor samples for all available genes in all 

platforms in each selected tumor type using the Mann–Whitney U test. Then, to combat 

multiple hypothesis testing, we calculated the False Discovery Rate using the Benjamini–

Hochberg method. Subsequently, the remaining significant genes were ranked by using 

the median fold change (FC) in all tissues. In other words, the significant genes were 

ranked based on their gene expression differences across all investigated tumor types. 

Finally, we selected genes with the highest FC values in both RNA-seq and gene array 

datasets, respectively. 

3.8 Determining differentially expressed genes in ccRCC 

Data processing and analysis were performed in R version 4.1.0 (https://www.r-

project.org). Wilcoxon signed-rank test was used to compare the tumorous and adjacent 

normal samples. Genes showing significant differences according to the Wilcoxon test (p 

< 0.01) have been selected and ranked based on their fold-change values (FC). Finally, 

the top 30 genes with a FC over two and significant in both RNA-seq and gene chip 

cohorts were selected for further investigation.  

3.9 Ethics statement 

ccRCC samples were collected at the Department of Urology of the Semmelweis 

University. An institutional ethical review board approved the study under the number ID 

7852-5/2014/EKU by the Semmelweis University Regional and Institutional Committee 

of Science and Research Ethics. All subjects were treated under the tenets of the 

Declaration of Helsinki and written informed consents were obtained before sample 

collection.  

3.10 Sample collection for the proteomic and transcriptomic analysis 

Clear cell renal carcinoma and adjacent normal samples were collected during 

surgical resection from patients diagnosed with ccRCC, tissue samples were stored 
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immediately at -80°C. Sample collection happened between 2011 and 2013, the median 

follow up was 1241 days.  

RNA and protein isolation was performed using the AllPrep DNA/RNA/Protein 

Mini Kit and RNeasy Mini Kit (Qiagen, Hilden, Germany) by the manufacturer’s protocol 

using 30 mg of tissue samples. RNA was quantified using a Qubit fluorometer 

(ThermoFisher, Waltham, USA), and RNA quality check was done using Fragment 

Analyzer Standard Sensitivity RNA Analysis Kit (Agilent, Santa Clara, USA)  

3.11 Gene expression analysis – RNA Sequencing 

According to the manufacturer's protocol, tissue samples were processed with 

Illumina TruSeq Stranded mRNA Sample Prep Kit (Illumina, San Diego, USA). mRNA 

has been enriched using oligo-dT attached magnetic beads before cDNA synthesis has 

been performed. Then, the fragments were adenylated, and Illumina sequencing adapters 

have been ligated onto them. Each sample was indexed with Illumina Truseq HT indexes. 

Finally, samples were cleaned up and sequencing has been performed in an Illumina 

NextSeq 500 instrument (Illumina, San Diego, USA) using the NextSeq500/550 High 

Output v2.5 (150 Cycles) sequencing kit. Before gene expression analysis, the FASTQ 

files were examined by FASTQC. Reads were aligned to GRch38 using the STAR 

alignment tools, and the reads were counted using featureCounts (82, 83). Quality control, 

read alignment, and counting was performed in the Galaxy platform (84). DESeq2 and 

second scaling normalization were done using the count files (85). 

3.12 Targeted liquid chromatography coupled tandem mass spectrometry (LC-

MS/MS) analysis 

The expression of selected target proteins was verified by targeted LC/MS-MS. 

After isolation, protein samples were stored in guanidine isothiocyanate, and stored at -

80°C. For targeted quantification we used stable isotope labeled (SIL) peptides (1-5 

respectively for each protein, labeled at Arg:13C6;15N4, Lys:13C6;15N2). Protein 

concentration was determined by the bicinchoninic acid (BCA) test. Samples were 

reduced by dithiothreitol (DTT) and alkylated using iodoacetamide followed by protein 

precipitation, then samples were re-dissolved in 5% SDS/ 50 mM ammonium-bicarbonate 

for BCA test. Sample volumes representing 50 ug protein content were digested by trypsin 
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according to the S-trap protocol (https://files.protifi.com/protocols/s-trap-mini-long-4-

1.pdf). 

LC-MS/MS analysis was performed using an ACQUITY UPLC M-Class system 

(Waters, Milford, MA, USA) with HPLC coupled to an Orbitrap Fusion Lumos Tribrid 

(Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer on the mixture of the 

protein digests spiked with the mixture of the SIL peptides. Samples were loaded onto a 

trap column, ACQUITY UPLC M-Class Symmetry C18 Trap (100 Å, 5 µm, 180 µm × 

20 mm, 2G, V/M); the sample loading time was 5 min; the flow rate was 5 µL/min, and 

separation was performed on an ACQUITY UPLC M-Class Peptide BEH C18 (130 Å, 

1.7 µm, 75 µm × 250 mm) column with a flow rate of 400 nL/min. MS data acquisition 

was performed in an internal standard triggered parallel reaction monitoring fashion (86), 

where the presence of the corresponding SIL peptides, verified by their expected retention 

time and MS2 fragmentation pattern, triggers data acquisition of the targeted peptides 

with high sensitivity and resolution. MS signal intensities of the SIL peptides were 

between 1–5E7. Raw MS data were analyzed using the Skyline software and the MSstats 

statistical analysis tool. During the data processing steps, we performed the inbuilt 

normalization steps of the MSstats software package, which includes median polishing 

and log2 transformation. 

3.13 Statistical and functional analysis, data visualization 

T-test was used to compare the log2 transformed protein intensity values between 

the tumorous and adjacent normal samples. In order to examine if any of the gene 

candidates are affected by covariates, we performed a t-test to see if any of the proteins 

show differential expression between male and female patients. To examine age as a 

covariate factor, we performed regression analysis to see if any of the examined proteins 

are influenced by age. Functional analysis was performed using the clusterProfiler R 

package (87). For each protein, we performed Cox proportional hazard regression 

analysis. To estimate the best cutoff value for each protein, we examined each possible 

cutoff values between the lower and the upper quartiles; these cutoff values have been 

used for Kaplan–Meier plot visualization. The Benjamini–Hochberg method was used for 

p-value adjustment. For survival analysis, we used the survminer and survival R 

packages. Further visualization has been done using the R packages ggplot2 (79), 

ComplexHeatmap (88) and ggrepel (https://cran.r-
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project.org/web/packages/ggrepel/index.html). Correlation analysis was done using data 

of 88 samples from 57 patients with simultaneously available RNA-Seq and MS results. 

The normalized intensity and read count values were correlated using Spearman 

correlation, statistical significance was set to 0.01. 

3.14 Building a model for ccRCC detection 

Using the results of the targeted LC/MS-MS log2 intensity values we tried four 

supervised AI methods, k-nearest neighbors (KNN), random forest (RF), logistic 

regression (LOGIT), and support vector machines (SVM) to set up the most accurate 

model for cancer detection. The data matrix from MS data was the input for the 

classification model, and we used the “caret” R package for data preparation and model 

establishment (89, 90). From all available patients with MS data, we had to remove one 

patient due to a missing value. The entire cohort was split into training and test cohorts 

with a ratio of 0.7:0.3. Repeated K-fold cross-validation was used for training cohort 

resampling with 10 folds and five repeats. Within the resampling mechanism, we 

performed recursive feature elimination to specify the ideal number of used genes for 

each of the SVM, KNN, LOGIT, and RF algorithms. Model prediction capability was 

validated using the test set. The caret package’s built-in methods were used to determine 

accuracy, specificity, sensitivity, and kappa value, as well as for visualization. 
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4 RESULTS 

4.1 Integrated database 

In total, the entire database holds 56,938 samples, including both RNA-seq and gene 

array samples. These include, after pre-processing, 33,520 unique gene array samples 

from 38 tissue types, including 3,691 normal, 29,376 tumorous and 453 metastatic 

samples. For each of these samples, the mRNA expression of 12,210 genes is available. 

Included RNA-seq data comprise three different platforms. After curation, normalization 

steps and data processing, we collected data of 11,010 samples, including 730 normal, 

9,886 cancerous and 394 metastatic specimens from adult cancer patients. We also added 

1,193 pediatric related data from GDC, consisting of 12 normal, 1,180 cancerous, and 

one metastatic sample. In order to increase the number of normal samples, we further 

included 11,215 RNA-Seq GTEx data from non-cancerous persons. Steps of data curation 

and processing are summarized in Table 1. 

Table 1. Summary of datasets and data processing 

 (T: Tumor, N: normal, M: metastatic). Source: (91) 

 Manual Screening Computational Screening Result T N M 

NCBI 

GEO 

GSE -

3,180 

datasets 

Primary 

tissue series 

n = 554 

(38,897 

Samples) 

Data 

cleaning 

MAS5 (77) 

normalization 

and scaling  

JetSet (78) 

Annotation 

38,431 

Samples 

38 tumor 

types 

29,376 3,691 453 

TARGET 
1,193 

samples 
- 

Data 

cleaning 

DESeq2 (85) 

normalization 

and scaling 

AnnotationDBI 

(92)annotation 

1,193 

samples 

7 tumor 

types 

1,180 12 1 

TCGA 
11,050 

samples 

Removal of 

non-

primary 

tissues 

Data 

cleaning 

DESeq2 

normalization 

and scaling 

AnnotationDBI 

annotation 

11,010 

samples 

33 tumor 

types 

9,886 730 394 

GTEx 
11,688 

samples 

Removal of 

non-

primary 

tissues 

Data 

cleaning 

DESeq2 

normalization 

and scaling 

biomaRt (93)  

AnnotationDBI 

annotation 

11,215 

samples 

51 tissue 

types 

- 11,215 - 
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4.1.1 TNMplot.com analysis platform 

We established a web application to enable a real-time comparison of gene 

expression changes between tumor, normal and metastatic tissues amongst different types 

of platforms across all genes. The portal can be accessed at www.tnmplot.com and has 

several analysis options (91). The pan-cancer analysis tool compares normal and 

tumorous samples across 22 tissue types simultaneously. This RNA-seq-based rapid 

analysis serves as explanatory data to furnish comparative information for a selected gene. 

A representative boxplot of pan-cancer analysis using cancer types with the highest 

mortality rate is displayed in Figure 1. 

The second approach directly compares tumor and normal samples by either 

grouping all specimens of the same category and running a Mann–Whitney U test or—in 

the case of the availability of paired normal and adjacent tumors—by running a paired 

Wilcoxon statistical test. The results are visualized by both boxplots and violin plots. We 

have also implemented a graphical representation of sensitivity and specificity: a diagram 

provides the percentage of tumor samples that show higher expression of the selected 

gene than normal samples at each major cutoff value. Example outputs of normal–tumor 

comparison are displayed in Figures 2 and 3. 

 

http://www.tnmplot.com/
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A 
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B 

Figure 1. A and B: Boxplots of top two genes differentially expressed in most of the cancer types with the highest mortality rates. 
Significant differences by a Mann–Whitney U test are marked with red color (* p < 0.01), Abbreviations: Esoph – esophagus; Lung_AC 

– lung adenocarcinoma; Lung_SC – squamous cell lung cancer; Renal_CC – clear cell renal carcinoma; Renal_CH - Chromophobe renal 
cell carcinoma; Renal_PA - papillary renal cell carcinoma. Source: (91).
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(A) (D) 

  

(B) (E) 

  

(C) (F) 

Figure 2. Boxplots (A,D), bar charts (B,E) and violin plots (C,F) of TOP2A gene 
expression in breast (left) and colon cancer (right) when comparing paired normal and 

tumor gene array data. The bars represent the proportions of tumor samples that show 
higher expression of the selected gene compared to normal samples at each of the quantile 

cutoff values (minimum, 1st quartile, median, 3rd quartile, maximum). Specificity is 
calculated by dividing the number of tumor samples with the sum of tumor and normal 
samples below each given cutoff. In cases where the fold change was over 1, those “over” 

were used instead of those “below”. Source: (91).  
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(A) (D) 

  

(B) (E) 

  

(C) (F) 

Figure 3. Boxplots (A,D), bar charts (B,E) and violin plots (C,F) of ADH1B gene 
expression in breast (left) and colon cancer (right) when comparing paired normal and 

tumor gene array data. The bars represent the proportions of tumor samples that show 
higher expression of the selected gene compared to normal samples at each of the quantile 

cutoff values (minimum, 1st quartile, median, 3rd quartile, maximum). Specificity is 
calculated by dividing the number of tumor samples with the sum of tumor and normal 
samples below each given cutoff. In cases where the fold change was over 1, those “over” 

were used instead of those “below”. Source: (91).  
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While the number of metastatic samples is generally limited, there are sufficient 

specimens available in the RNA-seq and gene array databases for five and twelve tissue 

types, respectively. The third feature of the analysis platform allows us to simultaneously 

compare these tumor, normal and metastatic data using a Kruskal–Wallis test and the 

Dunn post-hoc test. 

4.1.2 Sensitivity and specificity 

Whenever a new biomarker is developed, the two most crucial pieces of information 

include sensitivity (the proportion of tumors which have higher expression than normal 

at a given cutoff) and specificity (the proportion of tumors divided by the total sum of all 

tumors and normal over the given cutoff). The online analysis interface provides a 

graphical representation of sensitivity and specificity at the major cutoff values 

(minimum, Q1, median, Q3, and maximum). 

TOP2A was the most upregulated gene in the above analysis, with a fold change of 

3.26 in breast cancer and 2.54 in colon cancer, among others. In Figure 2, the expression 

boxplot, the sensitivity/specificity plot, and the violin plots for TOP2A are displayed 

using the breast and colon cancer datasets. The most downregulated gene was ADH1B, 

which had a fold change of 0.3 in breast cancer and 0.22 in colon cancer (see detailed 

plots in Figure 3). 

4.1.3 Gene expression analysis of cancers with the highest mortality 

We compared the expression of all genes in normal and tumor samples across the ten 

most lethal tumor types, including breast, bladder, colon, lung, liver, esophageal, prostate, 

pancreas, renal, and ovarian cancers. In the gene array dataset, 555 and 2,623 genes 

reached statistical significance at False Discovery Rate (FDR) <10% and fold change 

over 1.5, respectively. Similarly, in the RNA-seq cohort, 3,189 and 12,037 genes were 

dysregulated at FDR <10% and fold change over 1.5, respectively. 

4.1.4 Linking the most significant genes to cancer hallmarks 

We performed gene ontology analysis on the 55 genes shared by all cancer types in 

both RNA-Seq and gene array studies. Most enriched biological processes in which these 

genes might be involved resulted in mainly terms which participate in cell proliferation 

as presented in Figure 4. We further linked the best 55 genes common across all cancer 

types in both platforms to the cancer hallmarks based on their functions available in 

Entrez Gene Summary, GeneCards Summary, and UniProtKB/Swiss-Prot Summary. The 

majority of the genes (n = 21) were linked to sustained proliferative signaling. The second 

most common hallmark was the deregulation of cellular energetics (n = 13). Activation 
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of invasion and metastasis (n = 5), enabling replicative immortality (n = 8), and avoiding 

immune destruction (n = 5) were also represented by multiple genes. Only single genes 

were linked to genome instability and mutation, evasion of growth suppressors, and 

tumor-promoting inflammation as presented in Figure 5. The overlapping 55 genes are 

listed in Table 2. 

 

Figure 4. Functional representation of the mostly enriched GO terms of biological 

processes using a gene set commonly identified across the deadliest cancers.  
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Table 2. Top fifty-five genes differentially expressed when comparing normal and tumor 
samples across the ten most common tumor types in RNA-seq and gene array datasets. 

Fold change over one corresponds to higher expression in tumors, and fold change below 
one corresponds to higher expression in normal specimens (highlighted in grey). Source: 

(91). 

Gene Mean Fold Change Gene Mean Fold Change 

TOP2A 7.8 RUVBL2 1.77 

SPP1 7 TMSB10 1.76 

CENPA 6.03 RPN1 1.75 

NEK2 5.63 CHPF2 1.67 

MELK 5.46 CERS2 1.63 

HMMR 5.29 SH3BGRL3 1.61 

KIF20A 4.96 APRT 1.6 

NEIL3 4.89 IRAK1 1.56 

TTK 4.85 SEC61A1 1.54 

ASPM 4.82 PSME2 1.52 

CCNB2 4.76 SPAST 1.49 

DTL 4.44 DNASE1L1 1.42 

NCAPG 4.44 PGLS 1.4 

ZWINT 4.15 DIRAS3 0.6 

CCNB1 4.14 ECHDC3 0.59 

BUB1B 3.79 PDE8B 0.56 

TK1 3.76 PCDH9 0.52 

PRC1 3.72 PEG3 0.46 

CENPU 3.58 PKNOX2 0.44 

KPNA2 3.23 CXCL12 0.42 

CENPN 3.03 PHYHIP 0.33 

CKAP2 2.62 GPM6A 0.32 

KNOP1 2.26 FHL1 0.27 

SNRPB 2 DPT 0.25 

MAGOHB 1.9 C7 0.24 

RPN2 1.83 AOX1 0.22 

SNRPF 1.82 ADH1B 0.15 

ENO1 1.79     
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Figure 5. Manually curated hallmark representation of the top 55 markers across the top 
10 deadliest cancer types.  
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4.1.5 Validation of differential expression between normal and tumor samples 

In order to confirm the reproducibility of differential expression, and to confirm the 

reliability of the integrated database, we conducted a validation using randomly selected 

training and test cohorts across breast, lung and colon cancers using both RNA-seq and 

gene array samples. During this process, we analyzed the normal–tumor gene-expression 

difference for all genes in these three selected tissue types. Randomly selected sample 

cohorts comprised the test and the training set, and we conducted differential gene-

expression analysis for all genes in both training and test sets using a Mann–Whitney U 

test. In each setting, the training and test sets were equally sized to avoid false positive or 

false negative findings. Using a chi-square test, we aimed to validate the proportion of 

differentially expressed genes across both test and training sets. In the breast cancer gene 

array and RNA-seq datasets, respectively, 7,223 and 11,689 genes showed significant 

difference in both training and test sets. These deliver a high concordance in both cases 

with a chi-square test p value <0.0001. Regarding colon cancer, 8,259 and 6,763 genes 

presented significant difference in both training and test datasets in gene array and in 

RNA-seq samples, respectively (p < 0.0001). In lung cancer, altogether, 7,846 and 8,484 

overlapping genes reached significance in both examined cohorts in the gene array 

platform and in RNA-seq, respectively (p < 0.0001).  

Based on the results of each analysis, which consistently showed a p-value of less than 

0.0001, we concluded that the database has the potential to yield highly reproducible 

results in both platforms. Volcano plots and Venn diagrams depicting the results of the 

validation are listed in Figure 6. 
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

Figure 6. Volcano plots and Venn diagrams of differentially expressed genes in 
breast, colon and lung cancer using equally sized training–test sets —Venn diagram 

(A) and Volcano plot (B) from breast cancer; Venn diagram (C) and Volcano plot 
(D) from colon cancer Venn diagram (E) and Volcano plot (F) from lung cancer. 

Source: (91). 

  



36 

 

4.1.6 Top genes differing between malignant and normal breast tissues. 

To establish a tissue-specific expression pattern in malignant breast tissues, we 

conducted an analysis to identify genes exhibiting statistically significant differential 

expression. To achieve this, we applied a fold change (FC) cutoff of 1.5 and a false 

discovery rate (FDR) cutoff of 10%. Notably, our findings revealed several highly 

differentially expressed genes in breast cancer, such as COL11A1 (FC = 22.34, p = 

3.5E−108) and MMP1 (FC = 17.73, p = 1.6E−59) summarized in Figure 7A. 

Additionally, COL10A1 and UBE2S exhibited substantial differences in gene expression 

with FC values of 16.55 and 9.14, respectively, along with adjusted p-values of 2.8E−114 

and 5.7E−109. Furthermore, we conducted a gene ontology analysis to explore the 

functional characteristics of the identified top genes. The most significantly enriched term 

was related to extracellular external encapsulating structure, with subterms related to 

matrix and structure organization. Further significantly enriched term with numerous 

genes involved was the spindle cytoskeleton fission division with enriched subterms 

related to chromosome segregation and nuclear division Figure 7B. 

4.1.7 Top genes differing between malignant and normal colon tissues. 

To discern a tissue-specific expression pattern specific to colorectal cancer, we 

identified the top genes exhibiting statistically significant differential expression. To 

accomplish this, we implemented stringent criteria, setting a fold change (FC) cutoff of 

1.5 and a false discovery rate (FDR) cutoff of 10%. Our analysis revealed several highly 

differentially expressed genes, including COL11A1 (FC = 30.72, p = 7.3E−149) and 

CST1 (FC = 17.28, p = 6.5E−100) Figure 8A. Additionally, notable differences in gene 

expression were observed for PPBP (FC = 16.67, adjusted p = 4.4E−44) and CEMIP (FC 

= 16.6, adjusted p = 3E−171). Using gene ontology analysis, we successfully identified 

the functional terms that are associated with the upregulated genes. Our analysis resulted 

in significant enrichment in biological processes associated with the cell checkpoint cycle 

phase with enriched subterms related mostly to the regulation of nuclear division, 

chromosomal organization, and further positive regulation cell cycle processes. Another 

important enriched term with several involved genes and subterms was the sister fission 

chromatid segregation with subterms related to organelle fission and nuclear division 

Figure 8B.  
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Figure 7. Volcano plot of highly expressed genes specific to breast cancer (A) Functional 
enrichment result of the mostly enriched GO terms in breast cancer (B).  

A 

 

B 
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Figure 8. Volcano of highly expressed genes specific to colon cancer (A) Functional 

enrichment result of the mostly enriched GO terms in breast cancer (B).  

A 

B 
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4.2 Clear cell renal carcinoma transcriptomic database setup 

The database including both RNA-Seq and gene chip datasets comprises 1,317 

samples. The RNA-seq based data consists of 607 samples from the GDC TCGA project 

including 535 malignant specimens. These RNA-seq based datasets also include 72 paired 

normal samples which we used to identify tumor specific differences. In the gene chip 

dataset, we included 23 GEO series which contain 715 samples. Of these 715 samples, 

277 were from normal kidney tissues, and 438 were from ccRCC. 414 samples out of the 

entire gene array database were paired samples (207 pairs), and we used the paired 

specimens for further analysis. Thus, we all used 558 (144 RNA-Seq and 414 gene chip) 

normal and tumor samples to identify differentially expressed genes.  The entire 

analysis pipeline is summarized in Figure 9.  

Figure 9. Analysis pipeline. Using transcriptomic data, we identified the top differentially 
expressed genes discriminating normal kidney tissue and ccRCC. Using our own patient 

sample data we performed RNA-Seq to measure gene expression and targeted LC- 
MS/MS to measure protein abundance for the selected top genes. Using proteomic data, 
we established an optimal gene panel and the most accurate model for ccRCC detection. 

CV: K-fold cross-validation, RFE: recursive feature elimination, KNN: k-nearest 
neighbors, RF: random forest, LOGIT: logistic regression, and SVM: support vector 

machines. Source: (94). 

4.2.1 Genes over-expressed in ccRCC 

We uncovered differentially expressed genes between paired ccRCC and adjacent 

normal tissues using gene chip data from NCBI-GEO and RNA-Seq data from GDC-

TCGA. IGFBP3 was found to be the most upregulated gene in tumor tissues confirmed 

to both platforms (FC gene chip = 8.15, p = 1.01E-33 and FC RNA-Seq = 10.47, p = 2.17E-12). 
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The most significant genes include previously established molecular targets like VEGFA 

(FC gene chip = 3.02 p = 3.1E-32 and FC RNA-Seq = 9.03, p = 3E-13) and CCND1 (FC gene chip 

= 4.12, p = 2.3E-32 and FC RNA-Seq = 5.98, p = 4.25E-13). PLIN2 is a further differentially 

expressed gene that showed comparable results in both array and sequencing studies with 

FC gene chip = 3.85, p = 1.59E-32, and FC RNA-Seq = 7.08, p = 1.1E-11 respectively. Top 

differentially expressed genes are also shown in Figure 10. 

Figure 10. A and B Differential gene expression of compared normal and ccRCC tumor 

samples from the gene chip data. Ridge plots of differentially expressed genes shows the 
distribution of log2 expression values. Source: (94). B ridge plots of ccRCC samples and 

adjacent normal tissues from TCGA data.  

A 

 
B  

4.2.2 Gene expression analysis of Semmelweis cohort 

The Semmelweis cohort includes 162 samples from 81 patients. In the RNAseq 

analysis, we examined 32 normal and 57 tumor samples with an average sequencing yield 

of 7.5 million reads per sample. In these, we confirmed differential expression for 29 



41 

 

genes. Top differentially expressed genes like VEGFA (FC = 32, p = 1.77E-11) IGFBP3 

(FC = 1.56.1, p = 6.24E-09), PFKP (FC = 13.81, p = 4.59E-09), PLIN2 (FC = 46.5, p = 

2.82E-11) showed comparable results with the GDC and GEO datasets. Further results of 

the gene expression changes are presented in Table 3. 

4.2.3 Proteomic analysis of Semmelweis cohort 

Proteomic analysis was performed using 162 normal and malignant tissue 

samples. Of the complete list of the 30 selected genes from GDC and GEO results, we 

were able to successfully measure 22 in the targeted LC-MS/MS. Top differentially 

expressed genes include PLIN2 (FC = 26.09, p = 3.9E−39), PLOD2 (FC = 15.84, p = 

6.51E−36), PFKP (FC = 12.78, p = 1.01E−47), IGFBP3 (FC = 3.04, p = 7.53E−18), 

CCND1(FC = 7.9, p = 1.04E−24) and VEGFA (FC = 3.5, p = 1.4E−22) shown in Figure 

11. Differential analysis between male and female patients resulted in no significant 

differences. Regression analysis of age and protein expression showed a significant result 

only in the case of IGFBP2, however, the adjusted R-squared value was 0.064. Thus, we 

can conclude that neither age nor gender can be considered as a covariate factor. Using 

the clusterProfiler R package, we performed an enrichment analysis; mostly enriched GO 

terms are connected to migration and adhesion. Results of the enrichment analysis are 

presented in Figure 12. Detailed results of the protein expression changes are also 

presented in Table 3.  

Using 88 tissue samples with simultaneously available RNA-Seq and MS data we 

performed a correlation analysis to assess the link between RNA expression and protein 

expression values. Fourteen genes had a significant correlation between protein and RNA 

data, with a mean coefficient of 0.51. Genes showing the most significant differential 

expression in both platforms also presented the highest correlation coefficients, including 

PLIN2 (R = 0.70), IGFBP3 (R = 0.66), PFKP (R = 0.59), PLOD2 (R = 0.59), CCND1 (R 

= 0.58) and VEGFA (R = 0.56). 
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A  

B 

Figure 11. Differential protein abundances of compared normal and ccRCC tumor 

samples. Ridge plots of differentially expressed proteins shows the distribution of log2 

intensity values (a). Heatmap of log2 intensity values (b) Source: (94). 
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Figure 12. Gene ontology of the top genes. Gene ontology (GO) analysis of the strongest genes which discriminate normal kidney and ccRCC 

in all investigated cohorts. In the Gene-concept network plot (cnet plot) the linkages of genes and biological concepts are presented as a 
circular- shaped network. The color of the genes represents the FC values, and the size of the GO terms represents the associated genes. 

Source: (94). 
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Table 3. Summary table of differential expression analysis of the twenty genes reaching 

significance in all cohorts. 

  GDC cohort GEO cohort SE-RNA-seq SE-MS 

SYMBOL FC P-value FC P-value FC P-value FC P-value 

ANXA1 2.32 6.87E-09 2.89 3.08E-33 1.41 8.29E-04 2.26 1.46E-13 

ARHGDIB 2.96 1.01E-12 3.07 1.27E-33 0.63 1.23E-04 1.68 4.83E-07 

C1S 2.19 7.33E-07 3.64 2.79E-25 11.48 3.18E-03 1.22 1.04E-01 

CCND1 5.98 4.25E-13 4.12 2.28E-32 1.09 1.93E-07 7.89 1.04E-24 

FN1 3.70 1.67E-10 5.21 1.08E-34 1.66 1.24E-04 1.99 2.31E-08 

GPNMB 3.32 3.86E-07 3.48 2.66E-29 5.29 1.53E-01 2.11 1.02E-07 

HLA-DPB1 4.49 7.73E-12 3.45 1.62E-32 13.45 1.42E-06 1.37 1.20E-02 

HLA-DRA 4.26 6.68E-13 3.17 5.31E-33 6.23 1.78E-05 1.31 5.60E-02 

HMOX1 5.01 5.22E-12 2.95 5.54E-29 51.46 1.81E-09 1.32 8.10E-02 

HPCAL1 3.21 3.35E-11 2.86 2.43E-32 16.96 2.16E-07 1.75 5.33E-06 

IGFBP3 10.47 2.17E-12 8.15 1.01E-33 1.56 6.24E-09 3.04 7.53E-18 

LGALS1 4.16 1.50E-11 4.57 1.76E-34 8.78 1.48E-05 1.76 6.03E-08 

LIPA 2.78 1.33E-11 3.07 2.12E-34 12.41 5.35E-05 1.62 7.13E-07 

MYOF 1.86 1.16E-07 2.86 3.86E-34 13.95 9.74E-06 1.87 5.39E-08 

P4HA1 3.78 3.17E-13 2.96 2.71E-34 12.84 7.70E-07 3.15 2.30E-22 

PFKP 3.97 3.24E-12 5.69 2.12E-34 13.81 4.59E-09 12.78 1.01E-47 

PLIN2 7.08 1.10E-11 3.85 1.59E-32 46.48 2.82E-11 26.09 3.90E-39 

PLOD2 3.38 3.72E-10 4.21 3.75E-34 0.58 4.92E-07 15.84 6.51E-36 

RARRES2 2.59 5.16E-09 3.35 1.65E-31 2.79 2.96E-01 0.53 2.11E-07 

TIMP1 3.72 2.90E-09 3.61 1.87E-34 8.21 1.75E-05 1.21 2.13E-01 

VEGFA 9.03 3.04E-13 3.02 3.09E-32 32.00 1.77E-11 3.49 1.40E-22 

VIM 6.82 2.92E-13 2.88 1.68E-33 18.01 4.04E-10 2.06 4.09E-08 

4.2.4 Survival Analysis Using Proteome-Level Data  

To estimate the potential effects of protein expression on patient survival, we 

performed a survival analysis using all available proteins. Five out of the investigated 

proteins showed a correlation with survival. Patients with elevated expression of PLOD2 

protein showed significantly worse overall survival compared to subjects with lower 

expression (p = 2.42E−7, HR = 5.03). Overexpression of further proteins such as TIMP1 

(p < 3E−2, HR = 4.71), VIM (p < 3E−2, HR = 2.49), LGALS1 (p < 3E−2, HR = 2.47), 

and P4HA1 p < 3E−2, HR = 2.6) also showed significant correlation with impaired overall 

survival. Kaplan-Meier curves of genes associated with varying overall survival rates are 

shown in Figure 13. 
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13.Figure Kaplan–Meier plots of VIM(A), PLOD2(B), TIMP1(C), P4HA1(D), 
LGALS1(E), each protein shows a significant correlation with impaired overall survival. 

Source: (94).  
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4.2.5 Validation using data from CPTAC.  

To further support our analysis, we validated our results using CPTAC data from 

the study of Clark at al.(64). Out of the 22 proteins identified by our current study, 21 

were also available in the CPTAC dataset. The FC values between the two MS analyses 

had comparable results. Correlation analysis of the log2FC values of the CPTAC and SE 

cohorts resulted in a significant correlation (R = 0.91, p = 3.7E−9) Figure 14. Top proteins 

identified, such as PLIN2 (FC = 6.92, p = 1.7E−33), PLOD2 (FC = 4.89, p = 7.4E−33), 

PFKP (FC = 4.2, p = 4.3E−56), IGFBP3 (FC = 2.28, p = 2.1E−31), and VEGFA (FC = 

3.12, p = 3E−32), had significant differences between normal kidney and ccRCC in the 

CPTAC study. Further results are displayed int Table 4.  

14. Figure Correlation analysis of log-transformed CPTAC and SE Fold-change values. 
Each dot rep-resents a FC value of a protein, we also added a trend line using a linear 

model. Source: (94). 
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Table 4 Summary table of own MS data and CPTAC protein expression differences 

Source: (94). 

SE Data MS CPTAC Protein Data 

  
Fold-

Change 

Adjusted p-

Value 

Fold-

Change 
Adjusted p-Value 

ANXA1 2.26 1.46 * 10−13 2.31 6.60 * 10−41 

ARHGDIB 1.68 4.83 * 10−7 1.87 7.10 * 10−42 

C1S 1.22 0.10 1.03 0.49 

FN1 1.99 2.31 * 10−8 1.91 1.90 * 10−25 

GPNMB 2.11 1.02 * 10−7 2.23 2.60 * 10−17 

HLA-

DPB1 
1.37 0.01 1.96 3.10 * 10−32 

HLA-DRA 1.31 0.06 2.22 7.80 * 10−36 

HMOX1 1.32 0.08 1.67 1.20 * 10−29 

HPCAL1 1.75 5.33 * 10−6 2.50 5.00 * 10−45 

IGFBP3 3.04 7.53 * 10−18 2.28 2.10 * 10−31 

LGALS1 1.76 6.03 * 10−8 1.77 1.60 * 10−33 

LIPA 1.62 7.13 * 10−7 1.91 9.40 * 10−31 

MYOF 1.87 5.39 * 10−8 1.88 2.00 * 10−39 

P4HA1 3.15 2.30 * 10−22 3.20 9.90 * 10−57 

PFKP 12.78 1.01 * 10−47 4.20 4.30 * 10−56 

PLIN2 26.09 3.90 * 10−39 6.92 1.70 * 10−33 

PLOD2 15.84 6.51 * 10−36 4.89 7.40 * 10−33 

RARRES2 0.53 2.11 * 10−7 0.76 1.20 * 10−13 

TIMP1 1.21 0.21 1.10 0.17 

VEGFA 3.49 1.40 * 10−22 3.12 3.00 * 10−32 

VIM 2.06 4.09 * 10−8 2.27 1.70 * 10−63 

CCND1 7.89 1.04 * 10−24 - - 

4.2.6 ccRCC specific model creation 

MS based protein abundance data of the twenty selected proteins in the 162 patient 

samples were used for establishing the most robust classification algorithm. We 

investigated multiple machine learning methods (including k-nearest neighbors, random 

forest, logistic regression, and support vector machines) to build a model which is capable 

to differentiate between normal and malignant kidney tissues. For the proper estimation 

of the optimal gene panel, we performed recursive feature elimination. Of the four 

methods, SVM delivered the best performance in both test and training cohorts using nine 

proteins as input. SVM was able to identify tumor tissues from MS quantification data 

with a classification accuracy of 0.98 in the test set (Kappa = 0.95, sensitivity = 0.95, 

specificity = 1). 
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 Results of all four methods (SVM, k-nearest neighbors, random forest, and logistic 

regression) in test sets are displayed in Table 5, the list of optimal genes is provided in 

Table 6. 

 

Table 5 Summary table of classification accuracy, sensitivity, specificity, and Kappa 

values in the test set by each applied method. KNN: k-nearest neighbors, RF: random 

forest, LOGIT: logistic regression, and SVM: support vector machine Source: (94). 

 RF SVM KNN LOGIT 

Accuracy 0.958 0.979 0.9375 0.958 

Kappa 0.916 0.958 0.8750 0.916 

Sensitivity 0.916 0.958 0.8750 0.916 

Specificity 1.0 1.0 1.0 1.0 

 

Table 6 Summary table of ideal gene panels in each algorithm. KNN: k-nearest 

neighbors, RF: random forest, LOGIT: logistic regression, and SVM: support vector 

machines. Source: (94). 

RF PFKP PLOD2 PLIN2             

SVM PFKP PLIN2 PLOD2 IGFBP3 VEGFA P4HA1 CCND1 VIM ANXA1 

KNN PFKP PLIN2 PLOD2 IGFBP3 VEGFA P4HA1 CCND1     

LOGIT PFKP PLIN2 PLOD2             
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5 DISCUSSION 

5.1 Differential expression analysis of the most malignant cancers 

Our most important aim was to establish a framework for the comparison of gene 

expression in malignant, normal and metastatic tissues. To that end, we established a 

database from publicly available RNA-seq and gene array resources. Followed by a 

multistep manual and computational curation, we used the datasets in combination with 

established statistical algorithms to set up an online analysis platform. Finally, the 

reproducibility of the results delivered by our approach was validated using a training–

test approach with multiple randomly differentiated cohorts in three distinct tumor types. 

Since all implemented examinations delivered high concordance, we can state that the 

established database provides solid results in both platforms used. 

One of the major features of our approach is the generation of an expression cutoff -

based sensitivity/specificity plot. This graphical representation displays a bar graph 

showing the proportion of tumor samples with elevated expression compared to the 

normal cohort at selected cutoff values (minimum, first quartile, median, third quartile, 

maximum).  

Since pharmacologically useful targets have to be as specific to the tumor cell as possible, 

by looking at the graph, one can obtain easily interpretable information regarding the 

clinical utility of the selected gene. The conventional approach to show sensitivity and 

specificity would be to generate a receiver operating characteristics (ROC) plot and 

examine the area under the curve to assess the usefulness of a potential biomarker. Of 

note, our group also established the www.rocplot.org platform, capable of identifying 

predictive biomarkers in multiple tumor types by employing ROC analysis (95).  

After completing the entire database, our paramount question was: which genes are 

most specific to cancer across multiple tumor types? We performed a comparative study 

across the top ten most deadly tumor types and ranked the common genes in these 

malignancies, regardless of the platform. The most consistently upregulated gene was 

DNA topoisomerase 2-alpha (TOP2A), a gene playing an important role in transcription 

and replication. Several studies highlighted the importance of TOP2A, and elevated 

TOP2A expression can serve as a prognostic biomarker in multiple malignancies, 

including lung (96), colon (97), and breast cancer (98). At present, multiple drugs, 

including doxorubicin, epirubicin or etoposide, are widely used in clinical practice to 
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target TOP2A or other topoisomerase gene products (99). These agents are now used in 

multiple tumor types, including breast cancer (100), leukemias and lymphomas (101, 

102). 

The most consistently downregulated gene across the investigated tumor types was 

Alcohol dehydrogenase 1B (ADH1B), a member of the alcohol dehydrogenase enzyme 

subgroup which serves as an important member in the ethanol, retinol and further 

alcoholic substance metabolization processes. In concordance with our results, earlier 

studies came to a comparable conclusion, as downregulation of ADH1B might have a 

role in multiple cancers, including colon (103), lung (104) or head and neck cancer (105). 

A notable limitation of our study is the low number of available metastatic tissues. 

Although the total number (n = 848) seems robust, these represent only 1.5% of the 

included specimens. Unfortunately, this is an open issue not dealt with in any of the large-

scale data collection projects.  

Current clinical diagnostics of cancer relies mainly on pathological examination 

using tissue slide staining or immune-histochemistry. The importance of tissue inspection 

is undoubtful, however, with the increasing burden of workload in pathological 

diagnostics the need for further potent diagnostic possibilities and tools capable to provide 

sufficient pathological decision support is necessary. While transcriptome-based methods 

are useful for this purpose, several studies with promising results were published recently 

in the proteome field as well. Establishing proteins with differential abundance in 

malignant samples compared to healthy tissues can provide valuable information in 

diagnostics and therapeutic target identification. For example, a breast cancer study 

comparing malignant breast cancer samples to adjacent normal samples using MS 

identified a novel luminal subtype (106). A comparison of normal prostate and prostate 

adenocarcinoma samples was performed to identify a new prognostic biomarker (107). 

5.2 Characteristics of differentially expressed proteins in ccRCC 

 Like other cancer types, early surgical intervention is the best solution for total 

recovery in ccRCC as well. Especially in the early stages, when the disease is localized, 

partial or radical nephrectomy is the most frequently performed treatment option (71). In 

the present study, by using transcriptomic data we uncovered genes with higher 

expression in ccRCC and then developed an algorithm capable to identify ccRCC tissues 

with accuracy high enough for future clinical application. We focused on genes having 
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higher expression in the tumor tissues. By using targeted MS data of the selected proteins, 

our algorithm is capable to differentiate between normal and malignant tissues and could 

provide a valuable decision support during the pathological diagnostic process.  

The final discriminative algorithm is based on the differential expression of nine 

proteins. Of these, VEGFA and CCND1 are well-known cancer biomarkers. VEGFA 

(vascular endothelial growth factor A) is used as a target molecule in ccRCC treatment 

(72). CCND1 (cyclin D1), a member of the cyclin family, acts as a regulator of cyclin-

dependent kinases (CDKs). CDK inhibitors are widely used in the treatment of breast 

cancer (108). PLOD2 (procollagen-lysin 2-oxoglutarate 5-dioxygenase) has a role in the 

maintenance of intermolecular collagen cross-links (109). The aberrant function of 

PLOD2 might have a role in ovarian cancer (109) and gastric cancer progression (110). 

PFKP (phosphofructokinase platelet isoform) is responsible for one of the early steps of 

glycolysis (111). It might also have a crucial part in metabolic reprogramming in multiple 

cancer types like breast cancer (112) and non-small cell lung cancer (113). IGFBP3 

(insulin-like growth factor binding protein 3) acts as a carrier protein of several types of 

IGF molecules, and it is related to cell growth and differentiation (114). IGFBP3 has been 

shown to be important in the development of colorectal and breast cancer (114, 115). 

PLIN2 (perilipin 2) is a member of the perilipin family and takes part in the formation of 

intracellular lipid storage droplets in multiple tissue types (116). It has been connected to 

the development of atherosclerosis (117) but it has relevance in cancer initiation and 

progression as well (116). Using Western blot technique, an earlier study has proposed 

PLIN2 as a potential plasma biomarker in ccRCC (118). As both IGFP3 and PLIN2 can 

be detected in the plasma, we hypothesize that they could also serve as potential 

diagnostic biomarkers of ccRCC. Using our current knowledge, however, we lack any 

robust evidence for our hypothesis. 

By survival analysis, we identified five proteins with a high expression which 

correlates with poor survival outcomes. Out of these five, PLOD2, VIM, and P4HA1 are 

also highlighted by our model. Both PLOD2 and P4HA1 are enzymes involved in 

collagen-related pathways and proved to be a biomarker of epithelial-to-mesenchymal 

transition (EMT) in multiple types of cancers (119, 120). While vimentin acts as an 

important structural protein and a known marker of EMT, overexpression of these 
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proteins in patients with poor survival outcomes implies their involvement in EMT and 

metastasis formation in renal cell clear carcinoma.  

We must note an important limitation of our approach. Although transcriptome-

based examinations can provide valuable input of new potential biomarkers, due to 

mechanisms like alternative splicing, mutations, and post-translational modifications, 

RNA expression only moderately correlates with protein expression as shown both in our 

and further studies (121). A further limitation of our model is the incapability of tumor 

stage estimation, as staging is usually based on imaging, pathological examination, and 

further clinical characteristics.  

In summary, we established the largest currently available transcriptomic cancer 

database, consisting of nearly 57,000 samples, by utilizing multiple RNA-seq and 

microarray datasets. We show that the results obtained by these specimens are highly 

reproducible, and we have set up an online analysis portal which enables mining of the 

database for any gene to assess expression differences in normal, cancer and metastatic 

samples (91).We further validated our results on the proteome level using a set of renal 

samples of paired normal and tumor tissues to identify biomarkers differentiating renal 

clear cell cancer (ccRCC) and normal kidney tissues. With a support vector machine-

based machine learning algorithm using nine genes, we set up a model which can 

differentiate between normal and malignant ccRCC tissues using proteomic data. Finally, 

a set of proteins showed a significant correlation with poor survival outcomes and might 

serve as potential biomarkers of progression (94). 
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6 CONCLUSIONS 

1. Creation of an integrated database of a significant number of samples with 

transcriptome-level data 

a. I have established an integrated database with nearly 57,000 samples of 

gene expression data suitable for the identification of differentially 

expressed genes. 

b. In my database I included 3,691 normal, 29,376 primary tumor, and 453 

metastatic tissues from gene chip based datasets. 

c. I further included RNA-seq based datasets, comprising 11,957 normal 

tissues, 11,066 primary tumor tissues, and 395 metastatic tissues. 

d. I have incorporated 1,193 pediatric and more than 55,000 adult samples 

from both RNA-Seq and gene chip based datasets.  

e. Investigating the top ten cancers with the highest mortality rates I 

identified aberrantly functioning pathways related to cell proliferation as 

the main characteristics of malignant cells.  

f. I validated the genes showing differential expression in specific tumor 

types using a training-test approach, thereby enhancing the established 

database's robustness. 

g. I created an online analysis portal that compares gene expression changes 

across all genes and multiple platforms. 

2. Identification of potentially clinically relevant biomarkers of ccRCC to help 

diagnostic and therapeutic decision-making process. 

a. By the combination of transcriptomic data and targeted mass spectrometry 

I identified the top 22 differentially expressed proteins in ccRCC. 

b. Using the proteotranscriptomic data of 162 samples from Semmelweis 

University I identified the effect of this protein panel on patient survival.  

c. Using a support vector machine-based machine learning approach I 

identified the top nine proteins with higher expression in tumor tissues. 

These proteins could serve as promising biomarkers in the clinical setting. 
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7 SUMMARY 

Genes showing higher expression in either tumor or metastatic tissues can help in better 

understanding tumor formation and can serve as biomarkers of progression or as potential 

therapy targets. Our goal was to establish an integrated database using available 

transcriptome-level datasets and to create a web platform which enables the mining of 

this database by comparing normal, tumor and metastatic data across all genes in real 

time. We utilized data generated by either gene arrays from NCBI-GEO or RNA-seq from 

TCGA, TARGET, and GTEx repositories. The entire database contains 56,938 samples, 

including 33,520 samples from 3180 gene chip-based studies 11,010 samples from 

TCGA, 1193 samples from TARGET and 11,215 samples from GTEx. The most 

consistently upregulated gene across multiple tumor types was TOP2A, the most 

consistently downregulated gene was ADH1B. Validation of differential expression using 

equally sized training and test sets confirmed the reliability of the database in breast, 

colon, and lung cancer. The online analysis platform enables unrestricted mining of the 

database and is accessible at TNMplot.com. We further used a proteotranscriptomic 

approach to differentiate normal and tumor tissues in ccRCC. Using transcriptomic data 

of patients with malignant and paired normal tissue samples from gene array and RNA-

Seq cohorts, we identified the top genes over-expressed in ccRCC. We collected 

surgically resected ccRCC specimens to further investigate the transcriptomic results on 

the proteome level. The differential protein abundance was evaluated using targeted mass 

spectrometry. We assembled a database of 558 renal tissue samples and used these to 

uncover the top genes with higher expression in ccRCC. We further investigated the 

expression of the identified genes on our patient data both on the transcriptomic and 

protein level using 162 tissue samples. The most consistently upregulated proteins were 

IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1. We also identified those proteins 

which correlate with overall survival. Finally, a support vector machine-based 

classification algorithm using the protein-level data was set up. We used transcriptomic 

and proteomic data to identify a minimal panel of proteins highly specific for clear cell 

renal carcinoma tissues. The introduced gene panel could be used as a promising tool in 

the clinical setting.  
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