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INTRODUCTION 

Cancer arises from normal cells that mutate into pre-

cancerous and eventually malignant cells due to genetic or 

epigenetic lesions. These lesions are primarily caused by 

external mutagenic factors, but hereditary mutations also 

contribute to cancer development. Genetic changes result 

in altered gene expressions within tumor cells, driving the 

cancerous phenotype. While most genes show similar 

expression profiles in cancerous and normal tissues, 

differentially expressed genes can serve as targets for 

treatment or molecular biomarkers of cancer progression. 

Targeting genes with increased expression of specific 

products has demonstrated significant clinical benefits, 

exemplified by the selective inhibition of overexpressed 

tyrosine kinases. Gene expression changes in cancer cells 

are associated with a limited set of distinct characteristics 

known as cancer hallmarks. These include sustained 

proliferative signaling, evading growth suppressors, 

resistance to cell death, replicative immortality, induction 

of vasculature, activation of invasion and metastasis, 

reprogramming cellular metabolism, and avoidance of 



immune destruction. As the second leading cause of death 

globally, identifying potential predictive and prognostic 

biomarkers for cancer is of utmost importance. Frequent 

cancers include breast, lung, colon, prostate, pancreas, and 

kidney carcinomas. Clear cell renal carcinoma (ccRCC) is 

the most common form of kidney cancer, with over 80,000 

estimated cases in the United States in 2023. Mortality 

rates for ccRCC have plateaued in recent years, with better 

survival outcomes observed in patients with early-stage 

and no distant metastasis. For patients with advanced 

ccRCC, systemic therapies involving mTOR inhibitors, 

VEGF inhibitors, and checkpoint inhibitors (e.g., 

nivolumab, avelumab, pembrolizumab, ipilimumab, and 

interleukin 2 therapy) are used. Developing a protein 

abundance-based gene panel specific to ccRCC could 

greatly support clinical diagnostics and therapeutic 

decision-making. In conclusion, understanding the genetic 

and expression changes in cancer cells and identifying 

specific biomarkers for ccRCC are critical steps towards 

improved cancer diagnosis and treatment strategies, with 

the potential to enhance patient outcomes. 

 



OBJECTIVES 

1. My aim was to create an integrated database of a 

significant number of samples with transcriptome-level 

data.  

a. With the utilization of both gene chip and RNA-Seq 

based datasets, my goal was to establish a 

comprehensive set of malignant and normal samples 

from both adult and pediatric patients. 

b. My second objective was to investigate the difference 

between malignant and normal tissues. 

c. My third objective was to assess the database's 

robustness by employing a training-test approach to 

identify genes exhibiting differential expression in 

specific tumor types. 

d. Finally, I further aimed to establish an online analysis 

portal which enables the comparison of gene 

expression changes across all genes and multiple 

platforms by mining the entire integrated database. 

2. My second main aim was to identify potentially clinically 

relevant biomarkers of ccRCC to help diagnostic and 

therapeutic decision-making process.  



a. An important first objective was to leverage a 

significant volume of transcriptomic and protein data 

for the purpose of identifying proteins that 

demonstrate elevated expression in ccRCC. 

b. Then, by using data form patients treated at 

Semmelweis University with available 

proteotranscriptomic and clinical data I aimed to 

investigate the abundance of expressed proteins and 

the effect of these proteins on survival.  

c. By specifically focusing on markers with 

higher expression in tumor tissues using a machine 

learning approach, I sought to increase the specificity 

of my analysis to solidify future clinical application of 

the results. 

  



METHODS 

We utilized data generated by gene arrays obtained from 

the Gene Expression Omnibus of the National Center for 

Biotechnology Information (NCBI-GEO) and RNA-seq 

data from The Cancer Genome Atlas (TCGA), 

Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET), and The Genotype-

Tissue Expression (GTEx) repositories. The altered 

expression within each platform was analyzed separately. 

Statistical significance was determined using either Mann-

Whitney or Kruskal-Wallis tests, while the False 

Discovery Rate (FDR) was calculated using the 

Benjamini-Hochberg method. In total, the database 

comprises 56,938 samples, which includes 33,520 samples 

from 3180 gene chip-based studies (453 metastatic, 29,376 

tumorous, and 3691 normal samples), 11,010 samples 

from TCGA (394 metastatic, 9886 tumorous, and 730 

normal samples), 1193 samples from TARGET (1 

metastatic, 1180 tumorous, and 12 normal samples), and 

11,215 normal samples from GTEx. 



Through the utilization of in silico discovery datasets 

containing paired normal tissue samples from gene array 

and RNA-Seq data repositories, we identified the top over-

expressed genes in ccRCC (clear cell renal carcinoma). To 

validate these findings, we obtained surgically resected 

ccRCC specimens from Semmelweis University and 

performed RNA sequencing on matched tissue sample 

pairs from pathologically confirmed ccRCC patients. The 

resulting differential expression was further assessed at the 

protein level using targeted mass spectrometry (MS). 

Subsequently, we established a support vector machine-

based classification algorithm based on the protein-level 

data. To expand our analysis, we constructed a database 

comprising 558 renal tissue samples from NCBI GEO and 

examined them to identify the most prominently expressed 

genes in ccRCC. Additionally, for the protein level 

analysis, we obtained 162 samples each of malignant and 

normal kidney tissues. 

  



RESULTS 

Integrated database 

In total, the entire database holds 56,938 samples, 

including both RNA-seq and gene array samples. These 

include, after pre-processing, 33,520 unique gene array 

samples from 38 tissue types, including 3,691 normal, 

29,376 tumorous and 453 metastatic samples. For each of 

these samples, the mRNA expression of 12,210 genes is 

available. Included RNA-seq data comprise three different 

platforms. After curation, normalization steps and data 

processing, we collected data of 11,010 samples, including 

730 normal, 9,886 cancerous and 394 metastatic 

specimens from adult cancer patients. We also added 1,193 

pediatric related data from GDC, consisting of 12 normal, 

1,180 cancerous, and one metastatic samples. In order to 

increase the number of normal samples, we further 

included 11,215 RNA-Seq GTEx data from non-cancerous 

persons.  

TNMplot.com analysis platform 

We established a web application to enable a real-time 

comparison of gene expression changes between tumor, 

normal and metastatic tissues amongst different types of 



platforms across all genes. The portal can be accessed at 

www.tnmplot.com and has several analysis options. The 

pan-cancer analysis tool compares normal and tumorous 

samples across 22 tissue types simultaneously. This RNA-

seq-based rapid analysis serves as explanatory data to 

furnish comparative information for a selected gene. 

The second approach directly compares tumor and 

normal samples by either grouping all specimens of the 

same category and running a Mann–Whitney U test or—

in the case of the availability of paired normal and adjacent 

tumors—by running a paired Wilcoxon statistical test. The 

results are visualized by both boxplots and violin plots. 

We have also implemented a graphical representation of 

sensitivity and specificity: a diagram provides the 

percentage of tumor samples that show higher expression 

of the selected gene than normal samples at each major 

cutoff value. While the number of metastatic samples is 

generally limited, there are sufficient specimens available 

in the RNA-seq and gene array databases for five and 

twelve tissue types, respectively. The third feature of the 

analysis platform allows us to simultaneously compare 

http://www.tnmplot.com/


these tumor, normal and metastatic data using a Kruskal–

Wallis test and the Dunn post-hoc test. 

Sensitivity and specificity 

Whenever a new biomarker is developed, the two most 

crucial pieces of information include sensitivity (the 

proportion of tumors which have higher expression than 

normal at a given cutoff) and specificity (the proportion of 

tumors divided by the total sum of all tumors and normal 

over the given cutoff). The online analysis interface 

provides a graphical representation of sensitivity and 

specificity at the major cutoff values (minimum, Q1, 

median, Q3, and maximum). 

Linking the most significant genes to cancer hallmarks 

We performed gene ontology analysis on the 55 genes 

shared by all cancer types in both RNA-Seq and gene array 

studies. Most enriched biological processes in which these 

genes might be involved resulted in mainly terms which 

participate in cell proliferation. We further linked the best 

55 genes common across all cancer types in both platforms 

to the cancer hallmarks based on their functions available 

in Entrez Gene Summary, GeneCards Summary, and 

UniProtKB/Swiss-Prot Summary. The majority of the 



genes (n = 21) were linked to sustained proliferative 

signaling. The second most common hallmark was the 

deregulation of cellular energetics (n = 13). Activation of 

invasion and metastasis (n = 5), enabling replicative 

immortality (n = 8), and avoiding immune destruction (n 

= 5) were also represented by multiple genes. Only single 

genes were linked to genome instability and mutation, 

evasion of growth suppressors, and tumor-promoting 

inflammation. 

Genes over-expressed in ccRCC 

We uncovered differentially expressed genes between 

paired ccRCC and adjacent normal tissues using gene chip 

data from NCBI-GEO and RNA-Seq data from GDC-

TCGA. IGFBP3 was found to be the most upregulated 

gene in tumor tissues confirmed to both platforms (FC gene 

chip = 8.15, p = 1.01E-33 and FC RNA-Seq = 10.47, p = 2.17E-

12). The most significant genes include previously 

established molecular targets like VEGFA (FC gene chip = 

3.02 p = 3.1E-32 and FC RNA-Seq = 9.03, p = 3E-13) and 

CCND1 (FC gene chip = 4.12, p = 2.3E-32 and FC RNA-Seq = 

5.98, p = 4.25E-13). PLIN2 is a further differentially 

expressed gene that showed comparable results in both 



array and sequencing studies with FC gene chip = 3.85, p = 

1.59E-32, and FC RNA-Seq = 7.08, p = 1.1E-11 respectively. 

Gene expression analysis of Semmelweis cohort 

The Semmelweis cohort includes 162 samples from 81 

patients. In the RNAseq analysis, we examined 32 normal 

and 57 tumor samples with an average sequencing yield of 

7.5 million reads per sample. In these, we confirmed 

differential expression for 29 genes. Top differentially 

expressed genes like VEGFA (FC = 32, p = 1.77E-11) 

IGFBP3 (FC = 1.56.1, p = 6.24E-09), PFKP (FC = 13.81, 

p = 4.59E-09), PLIN2 (FC = 46.5, p = 2.82E-11) showed 

comparable results with the GDC and GEO datasets. 

Proteomic analysis of Semmelweis cohort 

Proteomic analysis was performed using 162 normal and 

malignant tissue samples. Of the complete list of the 30 

selected genes from GDC and GEO results, we were able 

to successfully measure 22 in the targeted LC-MS/MS. 

Top differentially expressed genes include PLIN2 (FC = 

26.09, p = 3.9E−39), PLOD2 (FC = 15.84, p = 6.51E−36), 

PFKP (FC = 12.78, p = 1.01E−47), IGFBP3 (FC = 3.04, p 



= 7.53E−18), CCND1(FC = 7.9, p = 1.04E−24) and 

VEGFA (FC = 3.5, p = 1.4E−22).  

Using 88 tissue samples with simultaneously 

available RNA-Seq and MS data we performed a 

correlation analysis to assess the link between RNA 

expression and protein expression values. Fourteen genes 

had a significant correlation between protein and RNA 

data, with a mean coefficient of 0.51.  

Survival Analysis Using Proteome-Level Data  

To estimate the potential effects of protein expression on 

patient survival, we performed a survival analysis using all 

available proteins. Five out of the investigated proteins 

showed a correlation with survival. Patients with elevated 

expression of PLOD2 protein showed significantly worse 

overall survival compared to subjects with lower 

expression (p = 2.42E−7, HR = 5.03). Overexpression of 

further proteins such as TIMP1 (p < 3E−2, HR = 4.71), 

VIM (p < 3E−2, HR = 2.49), LGALS1 (p < 3E−2, HR = 

2.47), and P4HA1 p < 3E−2, HR = 2.6) also showed 

significant correlation with impaired overall survival. 



ccRCC specific model creation 

MS based protein abundance data of the twenty 

selected proteins in the 162 patient samples were used for 

establishing the most robust classification algorithm. We 

investigated multiple machine learning methods 

(including k-nearest neighbors, random forest, logistic 

regression, and support vector machines) to build a model 

which is capable to differentiate between normal and 

malignant kidney tissues. For the proper estimation of the 

optimal gene panel, we performed recursive feature 

elimination. Of the four methods, SVM delivered the best 

performance in both test and training cohorts using nine 

proteins as input. SVM was able to identify tumor tissues 

from MS quantification data with a classification accuracy 

of 0.98 in the test set (Kappa = 0.95, sensitivity = 0.95, 

specificity = 1). 

CONCLUSIONS 

1. Creation of an integrated database of a significant number 

of samples with transcriptome-level data 



a. I have established an integrated database with nearly 

57,000 samples of gene expression data suitable for the 

identification of differentially expressed genes. 

b. In my database I included 3,691 normal, 29,376 

primary tumor, and 453 metastatic tissues from gene 

chip based datasets. 

c. I further included RNA-seq based datasets, comprising 

11,957 normal tissues, 11,066 primary tumor tissues, 

and 395 metastatic tissues. 

d. I have incorporated 1,193 pediatric and more than 

55,000 adult samples from both RNA-Seq and gene 

chip based datasets.  

e. Investigating the top ten cancers with the highest 

mortality rates I identified aberrantly functioning 

pathways related to cell proliferation as the main 

characteristics of malignant cells.  

f. I validated the genes showing differential expression in 

specific tumor types using a training-test approach, 

thereby enhancing the established database's 

robustness. 



g. I created an online analysis portal that compares gene 

expression changes across all genes and multiple 

platforms. 

2. Identification of potentially clinically relevant biomarkers 

of ccRCC to help diagnostic and therapeutic decision-

making process. 

a. By the combination of transcriptomic data and targeted 

mass spectrometry I identified the top 22 differentially 

expressed proteins in ccRCC. 

b. Using the proteotranscriptomic data of 162 samples 

from Semmelweis University I identified the effect of 

this protein panel on patient survival.  

c. Using a support vector machine-based machine 

learning approach I identified the top nine proteins with 

higher expression in tumor tissues. These proteins 

could serve as promising biomarkers in the clinical 

setting. 

  



SUMMARY 

Genes showing higher expression in either tumor or 

metastatic tissues can help in better understanding tumor 

formation and can serve as biomarkers of progression or 

as potential therapy targets. Our goal was to establish an 

integrated database using available transcriptome-level 

datasets and to create a web platform which enables the 

mining of this database by comparing normal, tumor and 

metastatic data across all genes in real time. We utilized 

data generated by either gene arrays from NCBI-GEO or 

RNA-seq from TCGA, TARGET, and GTEx repositories. 

The entire database contains 56,938 samples, including 

33,520 samples from 3180 gene chip-based studies 11,010 

samples from TCGA, 1193 samples from TARGET and 

11,215 samples from GTEx. The most consistently 

upregulated gene across multiple tumor types was TOP2A, 

the most consistently downregulated gene was ADH1B. 

Validation of differential expression using equally sized 

training and test sets confirmed the reliability of the 

database in breast, colon, and lung cancer. The online 

analysis platform enables unrestricted mining of the 

database and is accessible at TNMplot.com. We further 



used a proteotranscriptomic approach to differentiate 

normal and tumor tissues in ccRCC. Using transcriptomic 

data of patients with malignant and paired normal tissue 

samples from gene array and RNA-Seq cohorts, we 

identified the top genes over-expressed in ccRCC. We 

collected surgically resected ccRCC specimens to further 

investigate the transcriptomic results on the proteome 

level. The differential protein abundance was evaluated 

using targeted mass spectrometry. We assembled a 

database of 558 renal tissue samples and used these to 

uncover the top genes with higher expression in ccRCC. 

We further investigated the expression of the identified 

genes on our patient data both on the transcriptomic and 

protein level using 162 tissue samples. The most 

consistently upregulated proteins were IGFBP3, PLIN2, 

PLOD2, PFKP, VEGFA, and CCND1. We also identified 

those proteins which correlate with overall survival. 

Finally, a support vector machine-based classification 

algorithm using the protein-level data was set up. We used 

transcriptomic and proteomic data to identify a minimal 

panel of proteins highly specific for clear cell renal 



carcinoma tissues. The introduced gene panel could be 

used as a promising tool in the clinical setting. 
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