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1. Introduction 

Extracellular recordings in the central nervous system (CNS) provide 

information on neural activity patterns that can be valuable both for 

researchers in the field of neuroscience and for developers in the 

brain–computer interface industry. In order to analyze these neural 

patterns, the sources of single neuronal activities (single-units, spikes) 

need to be identified and clustered (spike sorting). To increase the 

precision of spike sorting and the number of recorded extracellular 

activity (spikes) from neurons, high-density neural microelectrode 

arrays (MEAs) are used, which are implanted into the CNS. The 

number of recording sites on the MEAs is growing rapidly by which 

the recorded data is also growing, making an automated, robust, input-

source agnostic spike sorter an increasingly valuable asset. 

Neural activities are usually recorded with sampling rates between 

20–30 kHz. In order to remove local field potential, low- and high-

frequency noises to more reliably identify single-cell activities, a 

bandpass frequency filter is applied to the recordings between 0,3–3 

kHz (or 0,5–5 kHz). 

Manual curation is no longer a viable option for interpreting raw data 

due to the increased number of channels, by which the time of the 

manual curation increases as well. Subjective bias is also present in 

manual curation based on the experience of the curator. 

To automate the detection and clustering of the spikes, spike sorting 

algorithms are developed to speed up the processing of high-channel-

number recordings. Conventional spike sorting algorithms comprise 
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three main processes: spike detection, feature extraction, and 

clustering of the features. Spike detection is usually filtering the 

wideband data from local field potential signals, low and high-

frequency noises. This filtering is often performed in the frequency 

domain and typically falls between 300 and 3000 Hz. Once the data 

has been filtered, action potentials can be detected using various 

methods, like threshold-based detection, energy operators or wavelet 

decomposition. After successful data filtering and action potential 

detection, the spikes need to be realigned for further analysis. One of 

the most popular dimensionality reduction methods is principal 

component analysis (PCA). The third step the clustering plays a 

crucial role in decoding extracellular action potentials. For clustering 

algorithm, a plethora of different methods were proposed, like 

Bayesian models, K-means clustering, Agglomerative clustering, 

Superparamagnetic clustering, ISO-SPLIT and others. 

Modern state-of-the-art algorithms are performing offline spike 

sorting on a high-performance PC. However, a plethora of potential 

applications would benefit from on-site spike sorting. In order to 

evaluate the raw data on-site, allowing for building closed-loop 

systems, several hardware implementations were suggested to create 

an online embedded spike sorting system. The on-chip spike sorting 

solutions however sacrifice precision for speed, while they are also 

limited in the number of channels, they can efficiently process data 

from. 
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2. Objectives 

- One of the aims was to develop a semi-supervised spike 

sorting system that leverages the promising technologies of 

unsupervised learning and loose supervision in the realm of deep 

learning. The system will incorporate detection, feature extraction, 

and sorting components, allowing for a flexible and adaptable 

approach to accommodate varying experimental conditions and 

datasets. 

- Another focus of this thesis is to address the inflexibility of 

current deep learning solutions in spike sorting, which often rely on 

fixed numbers of clusters and waveform identifications. The goal is to 

develop a system that eliminates these constraints while harnessing 

the power of deep learning techniques. The system will adapt to 

changes in parameters across different experiments, leading to 

improved spike sorting performance and adaptability. 

- Investigate the possibilities of deploying spike sorting 

systems in embedded environments, considering the limitations of 

relatively large computational power in current state-of-the-art 

solutions. The objective is to develop a spike sorting system that 

achieves performance comparable to state-of-the-art methods while 

being efficiently deployable in on-site and resource-constrained 

scenarios.   
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3. Methods 

3.1. Datasets 

The Fiath dataset consists of nine recordings obtained from a high-

density silicon MEA with 128 channels targeting different neocortical 

areas. Spike labels were established using the KiloSort algorithm and 

manually refined. Additional custom scripts were applied to remove 

low-amplitude waveforms. 

Paired datasets, such as the Kampff dataset, Boyden dataset or the 

Yger dataset, provide ground-truth references for extracellular 

recordings, but their use is limited to evaluating spike detection 

systems due to the availability of ground-truth labels for only one 

neuron. 

The Hybrid Janelia dataset combines real-world recordings with 

synthetic data to create a comprehensive dataset for evaluating spike 

sorting solutions in conditions closely mimicking real-world 

extracellular recordings, offering recordings with different channel 

counts. 

 

3.2. Metrics  

To evaluate the performance of spike sorting algorithms, various 

evaluation metrics have been established. In this work, we discuss 

several commonly used evaluation metrics, including Recall, 

Precision, F1 Score (Micro, Macro, Weighted), and Accuracy. These 

metrics assess the algorithm's ability to correctly identify true 
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positives, minimize false positives, and provide a balance between 

precision and recall. However, conventional evaluation metrics may 

not capture every aspect of spike sorting. 

To address these limitations, we introduce custom evaluation methods 

that offer more comprehensive insights into the efficiency and efficacy 

of spike sorting algorithms. The xSpeed metric evaluates the relative 

performance of sorting speed compared to the actual recording 

duration, providing a quantitative indicator of algorithm efficiency. 

The Mean Embedding Similarity (MES) matrix and Distance Between 

Clusters (DBS) matrix assess cluster separability in the latent space 

generated by the model's encoder. A Combined matrix integrates both 

matrices, offering a holistic view of cluster separability based on 

spatial positioning and feature characteristics. Moreover, we introduce 

the Template Embedding Similarity (TES) matrix, which investigates 

the distances between embeddings of cluster-wise averaged 

waveforms.  

 

3.3. Semi-supervised architecture  

The basis of the semi-supervised model (ELVISort) is a β-Variational 

autoencoder, which is customized to fit the target task. The input of 

ELVISort is a 2D matrix of electrophysiological signals, where rows 

correspond to channels and columns correspond to sampling points in 

time. A subsidiary goal was to train the network to effectively 

reconstruct the different input patterns from their compressed 

representations, which are coded by the different states of the latent 
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space of the autoencoder. A proper representation offers the possibility 

of distinguishing spikes originating from different sources. To achieve 

this, multiple branches are used while training the autoencoder to 

ensure the emergence of a well-balanced latent space which is useful 

for classification and sorting as well. 

In spike analysis, time-domain feature extraction is as important as the 

inspection of space-domain-specific inter-channel relations. To 

exploit this concept, the main elements of ELVISort are long short-

term memory (LSTM), bidirectional LSTM (Bi-LSTM) and 

2D convolutional layers.  

The encoder consists of two different branches: the LSTM-based 

branch processes data in the time domain, having a 2-dimensional 

matrix as input while the 2D CNN branch extracts spatiotemporal 

features from a 3-dimensional input. For the convolution branch 

4 building blocks from GoogLeNet were included beside dropout and 

convolutional layers. The outputs of the LSTM and CNN branches are 

concatenated and combined non-linearly using fully connected layers. 

The last encoder layer outputs the mean and variance of the latent 

inference. 

In the reconstruction branch, only LSTM elements were used. A 

custom layer was implemented to handle the inference of the latent 

variables based on their mean and variance approximated by the 

encoder. The latent space was constricted to a size of 32 in order to 

improve clustering. To further compress information, a hierarchical 

latent layout was used, moreover fully connected layers were applied 

to the latent variables to further decrease the size of the latent space.  
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3.4. Training of edgeTPU-compatible model 

The training of edgeTPU-compatible model was conducted in two 

phases. First an unsupervised model was trained to extract relevant 

information from 1D waveforms. Subsequently, in the second phase, 

a supervised model was trained to detect spikes and predict the feature 

vector previously learned. For the unsupervised part, the nearest-

neighbor contrastive learning (NNCLR) was chosen. 

During training, pairs of inputs of the same cluster are given to the 

model and fed through the same encoder, which produces a feature 

vector for each input. These feature vectors are then processed by a 

projection head, and the NNCLR loss is calculated based on the output 

of this projection head.  

The base model for NNCLR was constructed using Residual blocks, 

1D convolution layers, Dense layers, and Batch normalization layers. 

Together, these layers work to transform the input sample into a 

compact, low-dimensional feature vector that represents the 

underlying patterns in the data. The model depth is quite shallow, to 

enhance stability and avoid overfitting. The input pairs for the self-

supervised model were formed by 1-dimension waveform instances 

and the mean waveform of the given cluster.  

For the supervised model, the single-shot detector was adopted, 

utilizing MobileNetV2 due to its lightweight architecture, edgeTPU 

support, and suitability for systems with limited computational 

resources. To enhance the model's performance, customizations were 

made to MobileNetV2, doubling the output dimensions while 

preserving the depth of the original model. 
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For the supervised model, inputs in the form of snippets were 

constructed, encompassing all channels from a specific recording and 

maintaining a fixed timespan. Within these snippets, the single-shot 

detector was tasked with identifying different spikes and predicting 

the feature-vector of each spike based on the previously learned 

feature-space from the NNCLR unsupervised method.  

The model was deployed within an embedded environment, with the 

chosen EdgeTPU chip as the basis. This chip is built around a 

specialized Tensor Processing Unit (TPU) designed for deep-learning 

tasks and demonstrates impressive efficiency, consuming only 1 Watt 

for 2 Tera Operations Per Second. To achieve such efficiency, the chip 

only supports quantized models. Consequently, the model underwent 

quantized-aware training to minimize performance degradation during 

the quantization process. 

 

To assess the model's speed, evaluations were conducted on two 

different TPU devices: the Coral Development Board Mini and the 

Coral USB Accelerator. Throughout the evaluation process, 

measurements were taken for both the inference speed of the model 

on the TPU chip and the additional time needed by the non-max 

suppression postprocessing step.  
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4. Results  

4.1. Results of the semi-supervised solution  

The performance of ELVISort was evaluated on various datasets, 

including Kampff, Fiath, and Hybrid Janelia. The algorithm's 

effectiveness was compared to state-of-the-art spike detectors and 

sorters, and it consistently performed well, outperforming some 

popular algorithms. 

The model trained and tested on the Kampff dataset managed to 

produce excellent results, where it achieved an impressive F1 score of 

0.964 and an accuracy of 95%.  

The Fiath dataset was used to test ELVISort's detection and 

classification performance. The proposed method achieved an average 

F1 score of 85.55% for the validation set and 82.42% for the test set. 

ELVISort's combined model was also tested on the Hybrid Janelia 

dataset, demonstrating consistent performance with and without the 

non-spike cluster. The algorithm's performance per cluster was 

evaluated, particularly regarding true positives (TP) versus falsely 

matched snippets (false positives + false negatives, FP+FN).  

 

4.2. Results of the edgeTPU compatible deep learning solution 

Using the NNCLR method, a highly separable latent space is obtained. 

To demonstrate the effectiveness of our approach in creating a general 

embedding space, and the overlapping clusters can be indeed resolved 

by using channel information, we generated similarity matrices to 
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analyze the distinguishability of various clusters. In order to further 

examine the separability of the clusters, we also included channel-

distance information between the clusters in our analysis. This was 

necessary because the hybrid recordings we used to train our model 

contained similar waveforms that were used to generate different 

clusters on different channels. The combination of both types of 

information resulted in a highly separable matrix, demonstrating the 

ability of our model to create a general embedding space that is able 

to effectively separate different waveforms. Feature prediction and the 

detection of the individual spikes were assessed separately as well. To 

assess the performance of the detection of our model, we used paired 

recordings. This allowed us to compare the results to those of other 

existing solutions. We demonstrate that our model performs very well 

in terms of spike detection and is able to generalize to new recordings 

with different electrode parameters and waveform types. In fact, the 

results show that our model performs better and more consistently 

than current state-of-the-art methods, even though it is specifically 

designed for use on embedded systems.  

A separate assessment was made for the two hybrid datasets, where 

detection, sorting and the combination of the two was considered. The 

detection performance has a quite large gap between the two 

recordings: one of the probable explanations for this is that for the 

HS_64_12 recording cluster with the smallest SNR has an SNR value 

of 4.38, while for the HS_32_32 the minimum SNR is 0.34. The 

sorting of the found spikes show a more robust performance: while the 

Isosplit5 algorithm provides a faster sorting, the agglomerative 
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clustering has a better performance on the generated feature space, 

however being the slower one. 

We tested the inference speed of our model on 128-channel samples 

in three different scenarios: a completely PC-based setup, where high 

performance CPU and GPU is available; a hybrid setup where high 

performance CPU is coupled with a TPU-based USB Accelerator, and 

a development-board-based setup, where a lower performance CPU is 

coupled with a TPU. The first setup was obviously the fastest, while 

the last one was the slowest one. 
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5. Conclusions 

 

- The application of semi-supervised deep learning methods to 

spike sorting has yielded promising results. The proposed deep 

learning model, ELVISort, leverages the β-VAE architecture to 

efficiently detect and sort spikes. ELVISort successfully reduces the 

input data size to less than 0.5% of its original dimensions, thereby 

achieving notable gains in memory and time efficiency during the 

clustering process. The model's performance was rigorously assessed 

using publicly available datasets, demonstrating commendable F1 

scores on both the Hybrid Janelia and Kampff datasets. These findings 

underscore the potential of ELVISort as a valuable tool in the 

development of memory and time-efficient brain-computer interfaces 

in the future. 

- The presented edgeTPU-compatible system is designed to be 

scalable in two key ways. First, it can be trained on multiple datasets 

simultaneously, allowing the system to be input-source agnostic, 

meaning it can be trained on data from different sources without 

requiring any prior knowledge of the recording conditions or electrode 

geometry. Second, the system can also be scaled in terms of 

architecture by using state-of-the-art methods to improve both the 

self-supervised and supervised components of the model. 

- In the realm of deep learning solutions for edge devices, our 

model for edgeTPUs distinguishes itself as the pioneering deep 

learning-based solution capable of accommodating recordings with a 

high number of channels, while being deployable on embedded 
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systems, particularly on TPUs and at the same time, being able to 

exhibit a performance similar to existing state-of-art methods on 

unseen recordings.  
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