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OS - Overall Survival
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1. Introduction

1.1. Small Cell Lung Cancer

1.1.1. Epidemiology

While there has been remarkable progress in the treatment of many cancers, lung 

cancer, especially of the small cell type (SCLC), remains a very present and widespread 

problem, with over 2 million new cases worldwide expected yearly [1]. Even though a 

decrease in the number of smokers resulted in a slight decrease in incidence (1.1%/yr in 

men and 2.6%/yr in women) observable since 2006, in 2023, lung cancer is still estimated 

to become the second most common type of cancer in the US (over 12% of all cases) [2]. 

It also has local importance: the 2018 GLOBOCAN survey has shown that Hungary has 

one of the highest (age-standardized) incidence rates of lung cancer in both men and 

women, exceeding the world average by a factor of 2.46 and 2.81, respectively [1]. The 

most important risk factor is smoking, with over 80% of cases of lung cancer directly 

attributed to smoking [2], and 97-98% of SCLC sufferers being smokers [3,4].

In addition to its high prevalence, the progress of therapeutic options is slow, and 

the prognosis of patients remains disheartening. From the 80s, for three decades we saw 

no major improvement in clinical practice and survival rates stagnated [5]. According to 

the data collected in the US by the Surveillance, Epidemiology, and End Results Program 

(SEER), the 5-year survival rate for SCLC patients showed no significant change between 

2004 and 2018, except for cases where it was diagnosed in the localized stage (and only a 

0.8 pp/yr average increase there), but these account for only 6% of cases [6]. An analysis 

linking the SEER data with the registry of the National Death Index has concluded that  

any drop in mortality due to SCLC that could be observed between 2001 and 2016 is only 

a result of changes in incidence rates [7].

With  classic  chemotherapy  (carboplatin  +  etoposide,  see ch. 1.1.3.),  median 

overall survival (OS) is only 10.3 months, with median progression-free survival (PFS) at 

4.3 months in extensive-stage SCLC  [8]. The advent of immunotherapy has brought 

considerable  advancement  in  the  case  of  many  cancer  types,  but  if  it  holds  any 

breakthroughs for SCLC, we have yet to uncover them. The addition of atezolizumab, an 

immunotherapeutic that has just recently been made part of standard care (see ch. 1.2.3.), 

improves the previous numbers statistically significantly, but to an extent that is only 

slightly relevant clinically (to 12.3 and 5.2 months, respectively) [8]. 
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1.1.2. Biomarkers

The mutations most often found in SCLC are those resulting in a loss of function 

of TP53 and RB1, two known tumor suppressor genes, directly or indirectly. These are 

present to the extent that some consider them obligatory. In addition, mutations in EP300, 

CREBBP, TP73, NOTCH1,  -2 and  -3 are nearly exclusive of each other and together 

cover approximately 60% of SCLC cases. Copy number amplification of MYC family 

genes is also frequent [9]. Unfortunately, loss of function mutations are hard to translate 

into  a  druggable  target.  Overexpression  of  cMYC  has  been  associated  with  the 

effectiveness of CHK1 inhibition [10].

In addition to general markers, it was recognized as early as the 80s that there are 

subtypes of SCLC that show differential expression of several genes [11], among which 

the role of neuroendocrine (NE) genes has also been long since recognized [12]. However, 

this observation was mostly shelved for about 30 years, with only sporadic mention or 

usage in research, until with the advent of advanced sequencing techniques in the 2010s, 

the idea was finally revisited. There are two major approaches to subtype classification 

from this perspective. The first focuses on key transcription factors, mainly NEUROD1, 

ASCL1,  POU2F3,  and  YAP1  [13–15].  The  second  utilizes  a  wider  portion  of  the 

expression pattern and recognizes NE-high and NE-low clusters [16]. It has been shown 

that the two classifications are not independent, with NEUROD1 and ASCL1 associating 

with NE-high status  [17]. We have followed a binary, NE-based classification in our 

studies.

The  lung  immune  prognostic  index  (LIPI),  calculated  from  serum  lactate 

dehydrogenase (LDH) level and derived neutrophil‐to‐lymphocyte ratio (dNLR) has also 

been shown to have prognostic value regarding OS in all stages, and PFS in extensive 

SCLC [18]. A low NLR on its own also associates with longer OS [19]. The amount of 

necrosis in the tumor is associated with survival rate, with a high (10%+) ratio of necrosis 

providing a hazard ratio of 2.87 [20]. Tumor mutational burden (TMB) is also considered, 

mostly in relation to immunotherapies (see ch. 1.2.3.) but shows mixed results. A clinical 

trial of atezolizumab reported no predictive power [21]. A retrospective analysis of the 

KEYNOTE-158 study of pembrolizumab found an increase in objective response rate 

(ORR, 29% vs. 6%) in high-TMB patients [22].
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1.1.3. Clinical practice

While there is progress in research, many new findings have yet to be translated 

into the field of patient care: neither the official classification of lung carcinomas [23], nor 

recognized treatment options  [24] take into account the heterogeneity within SCLC. 

Currently, the 8th version of the TNM system (Tumor, lymph Nodes, Metastasis) is used 

for staging SCLC. In addition, the categories of limited or extensive stage are also used to 

inform clinical decisions [24]. Limited stage (LS) SCLC is defined as lesions that can be 

encompassed within a reasonable radiation field and overlaps with clinical stages I-IIA 

(up to T2, N0, M0), and possibly IIB-IIIC (N1-3, M0), depending on the position of the 

affected lymph nodes. Less than 5% of diagnoses are made in the limited stage. This is due 

to the fact that LS-SCLC is most often asymptomatic and therefore detected late. SCLC 

also progresses very rapidly, so that the patient has a LS malignancy for only a relatively 

short time. Thus, systematic screening would be the main way to improve early detection 

rates.  At  present,  however,  these do not  show considerable  benefits.  Even after  CT 

screening of patients selected on the basis of risk factors, only 14% of patients with SCLC 

were detected in the limited stage [25]. Extensive stage (ES) SCLC is defined as lesions 

that extend beyond a reasonable radiation field, and thus can correspond to clinical stages 

IIB-IV and is definitively the diagnosis if distant metastases are present (M1).

While in select cases of LS-SCLC, lobectomy is considered as a treatment option, 

surgical resection is not supported as a general option [26,27]. For most patients, systemic 

therapy  with  concurrent  radiotherapy  (chemoradiotherapy,  or  CRT)  remains  the 

recommended care. For this a regimen of cisplatin and etoposide is the foremost option in 

LS-SCLC and can be considered for ES-SCLC too, though carboplatin-etoposide with 

atezolizumab  or  durvalumab  is  preferred  in  that  case  [24].  The  clinical  use  of  the 

combination of cisplatin and etoposide dates back to 1985 [28]. Cisplatin and carboplatin 

are platinum complexes with an antimitotic effect, due to their ability to create DNA 

crosslinks, that differ mainly in their toxicity profile [29,30]. Etoposide is a topoisomerase 

II  inhibitor  that  creates  double-stranded  DNA  breaks  [31,32].  Atezolizumab  and 

durvalumab are immune checkpoint blockers (ICB) targeting PD-L1 and have only been 

part of standard care very recently (FDA approval came in 2019 and 2020, respectively

[33]), supplementing platinum and etoposide combination chemotherapy (see ch. 1.2.3.). 

An early start of definitive thoracic radiotherapy (RT) is recommended, supported by 
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diagnostic and imaging techniques to better target the tumor and minimize the irradiation 

of other organs and thus the side effects. In inoperable cases a more focused and intense  

irradiation regimen (stereotactic ablative RT, a.k.a. SABR) can be utilized, targeting the 

primary tumor site or metastases [34]. Brain metastasis is a common complication and is 

frequently already present  at  the time of diagnosis.  If  it  is  not,  prophylactic  cranial 

irradiation (PCI) can be applied in LS-SCLC, with the aim of preventing brain metastases. 

Meta-analysis of data from the late 20th century has shown improvement in 3yr OS [35],

but more recent studies have contested these conclusions [36], and alternatives are being 

explored due to the negative cognitive effects of brain irradiation. Official guidelines also 

call for caution in the application of PCI [24,37].

1.2. Tumor Immune Microenvironment

When cells undergo a cancerous transformation, its effects are not limited to those 

cells  themselves  and  results  in  a  complex  process  that  markedly  changes  their 

surroundings. The change in phenotype, including cell surface and secreted molecules, 

brings about the development of the so-called tumor microenvironment (TME) in the 

adjoining tissue. The TME is divided into the tumor nest, directly between the neoplastic 

cells,  and  the  stroma  around  it,  composed  of  non-cancerous  cells  (e.g.,  fibroblasts, 

mesenchymal cells) and the extracellular matrix (ECM) maintained by them. As the 

situation progresses, various immune cells might also infiltrate either or both areas. The 

number and composition of these cells is crucial to the development of the tumor, and thus 

this aspect of the TME is often referred to as the tumor immune microenvironment 

(TIME).

The  importance  of  the  tumor  (immune)  microenvironment  is  becoming  ever 

clearer.  Beyond  (and  in  some  sense  before)  therapeutic  approaches,  this  also  has 

considerable  impact  on  the  experimental  investigation  of  cancer.  The  adequacy  of 

laboratory cell lines used out of context is being questioned, with some studies showing 

that the environment exerts more influence on the cells than their tissue of origin [38]. 

There  are  some  attempts  at  preserving  or  recreating  the  TME,  like  patient-derived 

organoids [39], but in vitro studies are still challenging.

In the following subchapters I will first give a brief overview of the humoral and 

cellular components of the TIME to showcase both the individual elements and their 

interconnectedness, then explore its translational relevance.
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1.2.1. Cytokines

Various  small  molecule  transmitters  are  present  in  the  TME,  mediating  the 

interaction between the tumor and the immune system. As such, some are secreted by the 

tumor  cells  themselves,  others  in  reaction  to  those  by  surrounding  cells,  as  the 

microenvironment takes shape.

Cytokines produced by the tumor can cause major alterations to the function of 

immune cells. Many tumors interfere with the maturation of monocytic cells, among 

others by producing VEGF, IL-6 and M-CSF, leading to the creation of improperly 

developed myeloid cells that lack proper MHCII expression and antigen presentation 

function (myeloid-derived suppressor cells, MDSC) [40,41]. The high levels of adenosine 

and  hypoxic  conditions  can  push  macrophages  toward  an  M2-like  polarization 

(see ch. 1.3.3.) [42], and lead DCs to expressing VEGF, IL-6, IL-8, IL-10, COX-2, TGFβ 

and IDO [43]. DCs co-cultured with NSCLC also exhibit lower levels of TNFα and IL-12, 

which together with TGFβ and IDO lead to a lower number of IFNγ-producing Th1 cells, 

and an increase in immunosuppressive Treg cells in the TME [44,45].

In addition to the modulation of immune functions, cytokines can also affect 

tumor progression. In breast carcinoma, production of M-CSF has been shown to be 

necessary for metastasis, acting via the recruitment of macrophages  [46]. In NSCLC, 

TGFβ is a major factor in triggering epithelial-mesenchymal transition (EMT), an early 

step in metastasis, with IL-6 enhancing its effects [47].

It is important to recognize that cytokine function is not necessarily absolute and 

can  be  heavily  dependent  on  context  [48].  CXCL10  has  been  shown  to  exhibit 

anti-angiogenic properties in melanoma  [49], and to in addition inhibit metastasis in 

NSCLC [50], but has also been identified as a promoter of metastasis in colorectal cancer  

[51]. The role of TNFα in the TME is also not straightforward. As the name suggests, it 

was first described as a molecule capable of inducing tumor cell death [52], and it is still 

being explored as a potent co-factor in combination immunotherapy [53]. On the other 

hand, it can be secreted by tumor cells or induced by them in monocytes and has been 

shown to cause elevated PD-L1 expression in myeloid cells, hindering innate antitumor 

responses and immunotherapies [54]. It can also enhance TGFβ-mediated EMT [55], and 

TNFα-/- mice were shown to be more resistant to skin tumors [56]. Even more concrete 

effects can be differentially modulated by the same cytokine. IL-10 has been shown to 
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both enhance CD8+ T cell function [57], and to hinder it with the involvement of myeloid 

cells [58].

The above is only a fraction of all effects and connections established by cytokines 

in the TME, but even from this we can get a glimpse of the complexity of the system.  

Together with other clinical factors, like short half-life, narrow therapeutic window (i.e., 

timeframe  in  which  application  is  effective),  and  adverse  effects  related  to 

immunosuppression,  this  leads  us  to  the  conclusion  that  cytokine  monotherapies  in 

general are ineffective as a treatment option in (esp. advanced stage) cancer [59]. This is a 

trend  in  therapeutic  intervention  that  our  findings  presented  herein  also  reinforce 

(see ch. 4.3.2.).

1.2.2. Immune Cells

Proper characterization of the immune cell content of the TME is crucial. Indeed, 

this information has been found to be better at predicting clinical outcomes than clinical 

staging (TNM) in certain cases  [60].  The overall  level  of  immune infiltration is  an 

important factor and can be referenced in multiple ways. A TME with low infiltration is  

sometimes called cold or immune-desert,  with high infiltration referred to as hot or 

immune-oasis.  Additional  categories  are  also  described  sometimes,  like  ones  with 

lymphoid-like structures attached to the tumor site [61]. These have a crucial impact on 

the effectiveness of immunotherapies (see ch. 1.2.3.).

In addition to the amount of immune cells, the presence of the various types and 

subtypes of lymphocytes and myeloid cells modulates tumor progression. As a rough 

outline, properly activated Th1 cells, cytotoxic CD8+ T cells (CTL), plasma cells and 

M1-like  macrophages  are  able  to  target  and eliminate  tumor  cells,  while  regulatory 

lymphocytes (Treg, Breg), MDSC and M2-like macrophage cells are immunosuppressive 

and thus can be tumorigenic. But as we will see in the following paragraphs, reality is 

more nuanced.

The helper  subgroup of  T lymphocytes  (Th)  are  coordinators  of  the immune 

response, mainly by modulating the cytokine milieu. Their various classes have markedly 

different profiles. Th1 cells are induced by IFNγ and IL-12, and produce IFNγ, IL-2 and 

TNFβ [62]. Th2 cells develop as a response to IL-4, and express IL-4, IL-13, and IL-6 [63].

Th17 cells are induced by TGFβ and IL-6 [64], and secrete IL-17, GM-CSF, TNFα [65] 

and IL-22 [66].
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CD8+ T cells are often referred to as cytotoxic T lymphocytes (Tc, CTL), and 

treated as effector cells capable of attacking tumor cells, associated with better prognosis  

[67]. Generation of cytotoxic CD8+ cells is induced by IL-12 and IL-2, and repressed by 

IL-4 [68,69]. As they express and are repressed through CTLA-4 and PD-1, they are one 

of  the  main  targets  of  ICB therapies [70–72].  However,  care  must  be  taken  when 

evaluating this population in the TME. There are multiple subtypes of this group, and not 

all of them are tumor suppressive [73]. In addition, even the presence of tumor antigen-spe

cific, IFNγ-producing CD8+ cells can be insufficient in preventing recurrence [74]. The 

ratio of CTLs specific to tumor antigens can also be as low as 10% [75,76].

Another subset of T lymphocytes is what is known as regulatory T cells (T reg). 

These  are  CD4+CD25+FoxP3+ cells,  usually  associated  with  immune  tolerance  and 

suppression [77,78]. They are a part of the physiologic T cell repertoire but can also be 

induced  in  specific  environments  (like  the  TME)  and  can  acquire  non-suppressive 

functionality too (producing IFNγ and IL-17) [79]. Induction involves TGFβ and IL-10  

[80,81]. Treg-s execute their inhibitory function via multiple pathways. They are able to 

suppress DC activity through surface expression of the MHCII receptor LAG-3  [82], 

hinder CTL function by modulating IL-2 [83], show cytotoxic activity against effector 

cells via granzyme and perforin  [84], and express immunosuppressive molecules like 

CTLA-4, TGFβ and IL-10 [85,86].

Various types of B lymphocytes can also be found in the TME and associated 

lymphoid  tissues,  with  their  presence  having  a  differing  impact  on  prognosis  [87]. 

Specific antibodies can mark tumor cells and trigger attacks from other immune cells: 

antibody-dependent cellular cytotoxicity (ADCC), mainly from NK cells  [88–90], and 

antibody-dependent cellular phagocytosis (ADCP), mainly by macrophages [91]. B-cells 

also have antibody-independent functions. Certain subsets are able to produce IFNγ and 

IL-12, activating other immune cells, but also granzyme B and TRAIL, directly attacking 

tumor cells [92]. B lymphocytes can also stimulate T cells by acquiring a level of APC 

function [93], and via expression of the surface molecule CD27 [94]. On the other hand, a 

subset often termed regulatory B cells is present in multiple types of cancer and shows  

pro-tumorigenic  functions,  like promotion of  Treg formation  [95],  for  which a  direct 

interaction with tumor cells (via CD40/CD154) may be responsible by induction of IL-10 

and TGFβ expression [96].
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Dendritic cells (DC) are myeloid cells with APC function that can derive from 

both bone marrow precursors and circulating monocytes  [97]. Mature DCs are often 

found in the peritumoral or stroma areas and in interaction with lymphocytes. However, in 

different cases this has both been reported as a factor associated with longer survival [98],

and impeding cytotoxic T cell function [99]. This discrepancy might be explained by the 

existence of a CD103+ subgroup induced by GM-CSF that is able to stimulate CTLs, 

while other DCs cannot [100].

There is also a category of myeloid cells that seems to be activated but immature. 

Myeloid  derived  suppressor  cells  (MDSC)  are  CD33+ cells  that  can  present  with 

polymorphonuclear or monocytic morphology [101], and have been shown to correlate 

with tumor progression [102]. They are not a homogenous group, rather defined by their 

lack of differentiation into another myeloid effector type and immunosuppressive effect 

[103,104].  They  hinder  T  lymphocytes  via  depletion  of  L-arginine  [105–107],  and 

secretion of nitric oxide (NO) [108]. Through production of IL-10, they are able to push 

TAMs towards an M2-like phenotype and lower their secretion of IL-12 [109]. MDSCs 

are also angiogenic, producing MMP9, and even able to take on endothelial properties 

[110].

Previous work in our group has investigated the immune infiltration of SCLC, 

with a focus on T lymphocytes (CD3+, CD8+) [111]. Here, we aim to expand on those 

findings by characterizing the myeloid cell population of the SCLC TME.

1.2.3. Immunotherapy

Historically, the treatment of cancers has largely focused on the direct targeting of 

tumor cells, even though there were some early therapies that aimed at the activation of 

the immune system. Like Coley’s toxins, developed at the end of the 19th century, based 

on the observation of the effects of a Streptococcal infection on cancer patients [112]. In 

1976, application of the BCG vaccine was reported to lower the recurrence of bladder 

cancer [113]. However, these failed to gain traction in the medical community until the 

1990s, when the development of the first immune checkpoint blockers (ICB) spearheaded 

the current renaissance of tumor immunology, leading to the 2018 Nobel prize [114].

Most of ICB drugs to date are monoclonal antibodies (denoted with a -mab suffix 

in their name) that focus on one of two receptors and their interactions with ligands: 

programmed  cell  death  protein  1  (PD-1  or  CD279)  with  either  programmed 
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death-ligand 1  (PD-L1  or  CD274)  or  PD-L2  (CD273)  or  cytotoxic  T  lymphocyte 

associated protein 4 (CTLA4 or CD152) with either CD80 or CD86 (a.k.a. B7-1 and 

B7-2, respectively). Both receptors are expressed prominently (but not exclusively) on T 

lymphocytes [115].

The PD-1 pathway is critical for establishing immune tolerance, and defects lead 

to the development of autoimmune diseases  [116,117]. Upregulated expression of the 

ligands on cancerous cells  is  able to trigger these defensive mechanisms and aid in 

immune escape. High expression of PD-L1 is common in hot TIMEs, and ICB targeted at 

the PD-1/PD-L1 interaction generally associates with better response [118]. Some of the 

more  promising  drugs  inhibiting  this  pathway  are  nivolumab  and  pembrolizumab, 

targeting  PD-1,  and atezolizumab and durvalumab,  targeting  PD-L1.  In  the  case  of 

non-small cell lung cancer (NSCLC) the phase 3 trial of nivolumab has shown a 50% 

increase in progression-free survival [119], and there are studies reporting a remarkable 

increase in OS in 50%+ PD-L1+ tumors treated with pembrolizumab (14.2 to 30 months) 

and atezolizumab (13.1 to 20.2 months) [120], and a 44% increase in PFS (15.6 to 22.4 

months) in 1%+ PD-L1+ tumors treated with durvalumab [121].

Interestingly, in contrast to NSCLC, in SCLC, PD-L1 expression as a predictive 

biomarker  of  responsiveness  to  immune  checkpoint  blockade  is  questionable,  with 

conflicting and difficult to compare results. Joint analysis of two studies investigating 

pembrolizumab as a third-line treatment indicated a positive connection between marker 

expression and responsiveness [122]. But other clinical trials, of using atezolizumab [21],

durvalumab [123], and pembrolizumab [124] as first-line treatment in ES-SCLC, reported 

no correlation between PD-L1 expression and benefit to patients. PD-L1 expression also 

shows no correlation with molecular subtypes of SCLC [125].

Atezolizumab and durvalumab have recently been introduced to the standard care 

of SCLC. While data from their use in a broader scope is yet unavailable, in clinical trials, 

the two show effects of a similar magnitude on median OS (10.3 to 12.3 and 10.4 to 12.9 

months, respectively) and PFS rate (6.4% to 14.9% and 5.3% to 17.9% at 12 months, 

respectively)  [8,126]. The indication of pembrolizumab and nivolumab for SCLC was 

withdrawn in 2021 and 2020, respectively, by their manufacturers after failing to meet 

primary endpoints of OS required to prolong their status after accelerated approval from 

the FDA [127,128].
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The most likely mechanism of action for CTLA4 is by competing for ligands with 

the stimulatory receptor CD28 [129]. Either in NSCLC or SCLC, clinical trials of the 

CTLA-4  blockers  tremelimumab  and  ipilimumab  have  not  shown  decisive  results 

(NSCLC: [130,131], SCLC: [126,132,133]).

1.3. Macrophages

1.3.1. Development

Immune cells that perform phagocytosis as their main purpose are widespread 

throughout higher life forms: even in insects that have only three varieties of immune 

cells,  one  is  a  phagocyte  [134],  and  mononuclear  phagocytes  can  be  found  in  all 

vertebrates [135]. In humans there are resident macrophages in nearly every type of tissue, 

derived  from embryonic  precursors,  and  bone  marrow derived  monocytes  can  also 

extravasate and differentiate into macrophages [136,137]. At first it was theorized that 

these circulating monocytes are the source of the tissue resident populations, but it has 

been shown that they are established prenatally and sustain themselves [138]. These local 

populations show differential gene expression based on their tissue of residence, showing 

the remarkable adaptive potential of macrophages [139].

1.3.2. Function

The main physiological functions of macrophages are:

● Phagocytosis

● Interfacing with the adaptive immune system, including antigen presentation

● Modulation of inflammation

● Aiding tissue remodeling, and wound healing

Phagocytosis itself can serve multiple purposes. This process aids in the cleanup 

of unnecessary structures during development and the remains of dead cells, as well as the 

removal of bacterial invaders. It also serves as the basis of the macrophages’ function as  

antigen presenting cells (APCs). They are capable of expressing MHC class II molecules 

on their surface and interact with various lymphocytes to direct the adaptive response 

[140]. On the other hand, they are also capable of suppressing T cell proliferation, mostly 

via cytokine production [141]. This inherent duality is also present in their relation to 

inflammation.  When presented with pathogen-associated molecular  patterns  (PAMP) 

through  surface  molecules,  like  various  toll-like  receptors  (TLR),  they  release 

inflammatory  cytokines  (e.g.,  IL-1β)  [142].  But  they  are  also  able  to  act  in  an 
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anti-inflammatory capacity, e.g., by secreting TGFβ [143]. During wound healing they 

take up and degrade collagen [144], modulate the development of stem cells [145], and 

induce the proliferation of epithelial cells via IL-10 [146].

This variety and variability makes them key components of the TME, and most of 

these functions should be considered when evaluating their role in cancer. They might 

work as effector cells as phagocytes, initiate adaptive responses via their APC function, 

and influence inflammation and angiogenesis [147]. They can affect not only the growth 

and status  of  primary  tumors  but  can  have  a  profound impact  on  the  formation  of 

metastases, with some considering macrophage involvement obligatory [148].

1.3.3. Polarization

Differentiation into a macrophage is not the last step in the development of these 

lines of mononuclear cells. As the cell senses its surroundings and adapts to its particular 

needs, another series of changes takes place, termed polarization. More than a simple 

response to a given stimulus,  like cytotaxis,  this reaction to the extracellular milieu 

involves considerable changes to gene expression and the overall function of the cell 

[149,150].  As  it  displays  more  plasticity,  it  is  not  classified  as  another  step  of 

differentiation, but it is nevertheless crucial in defining the role and effects of the cell.

It  has been known for some time that  different  cytokines are able to induce 

monocyte to macrophage differentiation and that they have a differential effect. As far 

back as 1988, te Velde describes the effects of IL-4 in contrast to IFNγ [151]. That this 

effect can go beyond modulation of a single activation program was expressed by Stein 

and colleagues, who termed it “alternative activation” [152]. The idea started to mature in 

the mind of the scientific community, and we encounter the nomenclature of M1 and M2 

macrophages, based on the Th1- or Th2-biased environment that produced them, first in 

2000 [153]. The former is characterized by producing nitric oxide (NO) via expression of 

the inducible nitric oxide synthase (iNOS), and in general promotes an inflammatory 

response.  The  latter  secretes  ornithine,  and  in  general  serves  a  tissue  regenerative 

function. Soon after, the concept was further refined with the identification of subtypes in 

the M2 group, with Mantovani and colleagues proposing the terms M2a, M2b and M2c

[154]. With the rise of high-throughput techniques the process could be examined with 

even greater resolution, breaking up the discrete subgroups. Based on transcriptomic 
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analysis, Xue and colleagues have described the results of polarization as falling on a 

spectrum [155].

While it is not the most sophisticated level of description, even the distinction 

between M1 and M2 is important in the context of oncology. Studies that do not specify  

polarization status can associate macrophage infiltration with good or poor prognosis, but 

if it is taken into account, we can see that the presence of M1-like cells correlates with 

more positive outcomes, while M2-like cells are linked to poorer outcomes [156].

1.3.4. Therapeutic Repolarization

As research delved more into the different states of macrophages, it was also 

discovered  that  polarization  is  not  terminal,  but  that  a  change  in  the  molecular 

environment can result in adaptive alterations [157]. This also means that repolarization 

by therapeutic intervention can be a valid option in disease conditions supported by 

suboptimal macrophage populations, like chronic inflammation [158] or cancer [159].

However, this field of research is still young. Based on a search of available 

articles  (on  pubmed.ncbi.nlm.nih.gov,  keywords:  macrophage  repolarization  tumor), 

there are sporadic mentions before 2017 (5.4% of articles), but the intentional exploration 

of this approach has only picked up after 2019 (78% of articles).

A recent review of the field highlights the importance of the Jak/STAT, PI3K/Akt 

and NF-κB pathways, and reports some promising results concerning the CD47/SIRPα 

pathway as targets of repolarization therapy [160].
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1.4. Computers in Medicine

1.4.1. Drug repositioning

The development of new drugs is  costly,  both in time and money. With the 

advancement of computer technology various options became available to streamline the 

process  [161].  Based  on  chemical  structure  the  ADMET  (absorption,  distribution, 

metabolism, excretion and toxicity) parameters of large libraries of small molecules can 

be  estimated  [162].  Indications  and effect  profiles  can  be  predicted  before  a  single 

molecule is synthesized [163]. As our data storage capabilities also increased, collection 

of experimental data into massive databases became available, for both small molecules 

(like DrugBank [164] and PubChem [165]) and proteins (like UniProt [166] and HPRD

[167]), that can serve as the basis of high throughput in silico methods.

In addition to the discovery of novel molecular entities, in recent decades drug 

repurposing, i.e., approval and usage of existing compounds for new indications, has 

gained prominence. While this has also started with the employment of classical clinical 

analysis, it was mostly reliant on serendipitous discoveries of side effects (e.g., using 

aspirin in the treatment of cancer  [168,169]). Our group has previously evaluated the 

effectiveness of aspirin, statins and other drugs with purported repositioning potential in 

cancer specifically for SCLC, based on clinical data  [170]. High throughput  in vitro 

methods for screening were developed, but since in silico techniques aiming to predict 

effect profiles work the same for approved molecules and novel ones, they require no 

special adjustments and present a more easily applicable toolset for systematic screening 

efforts [171].

1.4.2. Modeling biological systems

Approaching the drug-organism interaction from the other direction, modeling the 

reaction of biological systems to outside intervention can highlight molecular targets, as 

well as provide insight into the nature of the unperturbed system. Databases of potential or 

extant drugs can then be scanned for agents capable of modulating the behavior of the 

novel targets.

One fairly  intuitive way of  computationally  representing complex systems is 

through networks. This approach emerged from the mathematical field of graph theory 

and has gained ground in the early 2000s [172,173]. Focusing on the interconnectedness 

of components,  rather than the mechanism of those interactions, provides a level of 
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abstraction  that  bypasses  hard  to  measure  biochemical  parameters,  but  nevertheless 

reveals useful information about the system [174]. It also allows for the easy investigation 

of the perturbation of multiple targets at once, which is crucial in the understanding of the 

complete effect profile of a given drug and in the development of combinatorial therapies  

[175].

In the specific case of macrophage polarization, we are investigating a process that 

enables the cell to adapt to the needs of its surroundings. If we aim to study it, we have to 

create a model of that environment. Doing so comprehensively  in vitro would mean 

coculturing multiple different cell types, adding numerous small molecules to the medium 

and monitoring them [176]. That is why most researchers focus on the effect of a few 

specific  signals,  outside  the  broader  context  present  in  vivo [177,178].  Using  a 

computational, in silico, model circumvents those problems, as it gives us full control of 

the experimental conditions.
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2. Objectives

● Characterize the immune cell population (especially TAM and MDSC) of the 

SCLC TME, according to neuroendocrine subtypes and localization in tumor 

compartments to identify influential cell types suitable for modulation.

● Analyze the gene expression patterns of SCLC to identify molecular targets in 

tumor subtypes according to immune cell infiltration and neuroendocrine (NE) 

marker expression status (low vs high).

● Build an in silico model of tumor associated macrophage polarization in response 

to cytokines and other small molecule transmitters in the tumor microenvironment 

to facilitate cancer research and therapy development in the field.

● Identify elements of signal transduction in macrophages as potential drug targets 

in  order  to  modulate  the  polarization  process,  and  counter  or  diminish  the 

immunosuppressive effect of macrophages in the TME.

● Evaluate, in silico, the potential of combination therapies versus the single-target 

approach in macrophage repolarization.

● Create a user friendly and collaborative platform collating and presenting the 

latest drug target information to enhance SCLC drug target validations and drug 

repurposing.

23



3. Methods

3.1. Exploring the Microenvironment of SCLC

3.1.1. Patient Population

In our retrospective study,  we included surgically resected and histologically 

diagnosed samples from 1978 to 2013, collected at the National Korányi Institute of 

Pulmonology (Budapest, Hungary). Of the 219 samples available, matched lymph node 

metastases were included in 32 cases, and we focus our study on the analysis of these 

paired samples. A board-certified pathologist has histologically confirmed the diagnosis 

of SCLC. 27 patients had stage I or stage II SCLC, the remaining 5 had stage IIIA. An 

exploration of the clinicopathological characteristics has been previously reported [179].

3.1.2. Sample Preparation

Formalin-fixed,  paraffin-embedded  (FFPE)  tissue  samples  were  prepared 

immediately after the resection procedure. Fixation was performed in 4% formalin for 2 

hours in room temperature, followed by an additional 48 hours in 4°C and then embedding 

into  paraffin  blocks.  These  FFPE blocks  were  used  in  the  construction  of  a  tissue 

microarray (TMA), according to previously described protocols [180]. The specifics in 

our study were as follows. We created 5-micron sections with an HM-315 microtome 

(Microm, Boise, ID, USA), which were then placed on charged glass slides (Colorfrost 

Plus, #22-230-890, Fisher, Racine, WI, USA). A board-certified pathologist reviewed the 

slides and identified tumor borders after staining with hematoxylin and eosin on an 

automated platform (Tissue-Tek Prisma, Sakura, Osaka, Japan). 1-mm punches were then 

taken from donor tissue blocks, 2 each from primary tumors and 1 each from lymph node 

metastases  (MP10  1.0  mm  tissue  punch  on  a  manual  TMA  instrument,  Beecher 

Instruments,  Sun  Prairie,  WI,  USA).  These  were  seated  into  a  paraffin  block  in  a 

positionally-encoded array format.

3.1.3. Immunohistochemistry and -fluorescence

For the purpose of immunohistochemistry 5-micron slices were cut from the TMA 

blocks and then processed using a Leica Bond RX autostainer. The following antibodies 

were used:
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● against CD68: used as a pan-macrophage marker, mouse monoclonal (diluted 

1:300, ab201340)

● against CD163: used as an M2 marker, rabbit polyclonal (diluted 1:400, ab87099)

● against  CD33: used as an MDSC marker,  mouse monoclonal  (diluted 1:200, 

ab11032)

All three were purchased from Abcam (Cambridge, UK). The Bond Polymer Refine 

Detection kit (#DS9800) was used to stain the slides, according to Leica IHC Protocol F. 

Epitope retrieval was performed by a 20 minute exposure to the epitope retrieval 1 (low 

pH) solution. A Tissue-Tek Prisma automated platform was used to perform clearing and 

dehydration of the slides, followed by cover slipping with a Tissue-Tek Film coverslipper. 

In the case of double stainings, the ImmPRESS®  Duet Double Staining Polymer Kit 

(MP-7724, VectorLabs, Burlingame, CA, USA) was utilized, with the HRP Anti-Mouse 

IgG-brown, and AP Anti-Rabbit IgG-magenta secondary antibodies, counterstained with 

hematoxylin.

Double immunofluorescence was performed with secondary fluorescently labeled 

antibodies  Alexa  488  anti-rabbit  IgG  and  Alexa  546  anti-mouse  IgG  (Invitrogen, 

Carlsbad,  CA,  USA),  targeting  epitopes  of  CD68  and  CD163,  respectively. 

Autofluorescence  was  eliminated  with  TrueBlack® Lipofuscin  Autofluorescence 

Quencher (Biotium, Fremont, CA, USA) from FFPE samples. 

3.1.4. Cell Counting and Analysis

We used an Olympus BX53 upright  microscope to  capture  images  of  TMA 

sections. 20 MP resolution images were taken with a DP74 color CMOS camera, using 

10x and 20x magnification objectives.  The Olympus CellSens Dimensions Software 

package was used for morphometric analysis. Area annotation was performed manually, 

as described in, indicating the tumor nest and stroma [111]. To summarize, sections from 

two separate punches were retrieved for primary tumors, and one for metastases to create 

the TMA-s. Two different 5µm slices, at least 100µm apart, were quantified from all 

TMA blocks. Readings from different slices of the same TMA punch were averaged. 

CD45+,  CD3+,  CD68+ and CD163+ cells were manually counted by two independent 

observers, using the cell counter plugin of ImageJ  [181]. Due to the low cell density, 

records of CD33 expression were binned (0 / 1-10 / 11-20 / 21+). MHCII expression was 

described with an ordinal categorical scale, ranging from 0 to 4.
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We have defined high and low levels of immune infiltration, based on CD45+ and 

CD3+ cell density measured previously by our group [111]. We implemented a threshold 

taking into consideration the distribution of values observed in our samples and their 

median absolute deviation (MAD). To be classified as an infiltration-low, a sample has to 

be low-CD3 in both the tumor nest and stroma compartments and low-CD45 for at least 

one component. To be classified as an infiltration-high, a sample has to be high-CD3 in 

either compartment and also high-CD45 in either compartment.

For all density distributions the Kolmogorov-Smirnov test was used as a test of 

normalcy, and none of them were determined to be normal. Accordingly, we used the 

nonparametric Wilcoxon signed rank test to compare punches from the same patient (as 

matched pairs). We found no significant differences, and thus used the mean of the two 

cores in all analyses. Comparisons between density distributions of CD68+, CD163+, and 

CD33+ cells  from different  circumstances  (NE-high  vs.  NE-low,  primary  tumor  vs. 

metastasis, nest vs. stroma) were performed with the Wilcoxon rank sum test, using 

two-sided p-values. Correlations between densities and expression levels were calculated 

using Spearman’s ϱ. For both the significance threshold was set at p=0.05.

3.1.5. RNAseq Analysis

We have utilized the HTG EdgeSeq Targeted Oncology Biomarker  Panel  to 

extract RNA expression data from our FFPE tissue samples [182]. The panel contains 

2549 genes related to cancer. Samples were run as singletons, and results were validated 

with positive and negative process controls. Expression levels of neuroendocrine genes 

were used as a basis for the NE-high or NE-low classification of samples, as described 

previously [16,179,183].

3.2. Modeling Macrophage Polarization

3.2.1. Model Design

Since we are interested in the effect of therapeutic intervention, we need a model 

that can predict the effects of changes to given, specific elements of the system. Anything 

that can be targeted has to be represented separately, i.e.,  it  needs to be possible to 

implement external changes to each without changing the rest of the model. That is why I 

chose a network-based model.

In order to represent a process and not just the general relationships of elements, 

data on interactions needs to include directionality and distinguish between activation and 
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inhibition. In other words, edges need to be directed and signed. We also need to decide on 

a  level  of  complexity.  Theoretically  even biochemical  reaction data  can be  directly 

incorporated into a network framework, with differential equations governing changes. 

However, experimental data is prohibitively sparse and not uniformly measured. Taking 

into account the planned scale of the model, we have opted for a simpler representation, a 

Boolean network with logical gates. This is a well-established method that allows for the 

integration of diverse data sources  [184], and for added complexity in the situations 

simulated, like the systematic examination of multi-target therapies [175].

3.2.2. Network Elements

3.2.2.1. Nodes

Our aim is to model the response of the cell to outside signals. This defines a clear 

input:  extracellular signaling molecules.  It  is  also practical  to choose a well-defined 

output: a set of entities that will represent the response (polarization) of the cell. While 

there certainly are proteins that exhibit changes in activity, we know that such a critical 

change to the cell’s functionality involves changes to gene expression. Protein activity 

and  gene  function  both  influence  each  other,  but  modeling  the  complexity  of  that  

feedback system is outside the scope of the current study. Using gene expression as output 

provides a natural endpoint.

We have also started the definition of nodes with the two sides of inputs and 

outputs, as they form the frame of our model. We searched the literature for primary 

research articles on macrophage polarization that provide experimental evidence about 

the  effects  of  potential  inputs  (extracellular  stimuli),  and  outputs  (gene  expression) 

[159,177,185]. We prioritized components that are supported by multiple references to 

raise the confidence level of the data and make verification feasible. The need for manual 

curation also imposed a limit on model size, making this method more fruitful than paring 

down an extensive list of potential components from a large database. Genes without 

sufficient information on the transcription factors regulating them (at minimum a set of 

TF-s that  are necessary and sufficient  for  expression) were excluded.  This included 

VEGFA, which undergoes splicing events that markedly alter its function, but the proteins 

responsible are not well described [186].

In order to connect the two sides of the model, we collected the elements of major 

pathways from the KEGG Pathway database [187]. We limited our search to pathways 
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that  are  researched in  such detail  that  we could expect  to  extract  an  unbroken and 

functional  series  of  direct  connections  from  the  available  literature  and  data.  The 

Jak/STAT, MAPK, PI3K/AKT, and TLR pathways were selected, as this group contains 

all input and output points of our system and meaningfully connects them. To ensure that 

any combinatorial effects and crosstalk between the pathways is present in the model, first 

neighbors of these core nodes that interact with components from at least two pathways 

were added, based on the databases listed in ch. 3.2.2.2.. The list of nodes was also 

reviewed based on our verification criteria (see ch. 3.2.3.4.). We have found criteria that 

could not be satisfied with only the nodes collected in the above, systematic manner. In  

these cases, we have analyzed the literature about the expression of the genes in question, 

and upstream signaling elements as necessary, to identify the source of the discrepancy. In 

some cases, functional components were found to be missing from the model and were 

then included as additional nodes (see ch. 4.2.2.).

We have also checked the relevance of each node and excluded proteins that do 

not change in activity in macrophages. On one end are proteins that show no expression in 

macrophages. This is according to the Gene Atlas database (accessed via biogps.org) 

[188]. On the other are those that have constitutive activity in this cell type (e.g., PU.1, a 

transcription factor). These were considered to be essential for either the survival of the 

cell or upholding its identity as a macrophage, making them unfit to be targeted with 

therapeutic intervention. Thus, they would have been nodes that are active in all cases and 

states of the model and would hold no information whatsoever.

The accurate representation of certain proteins and their processes in our Boolean 

system has necessitated the addition of a number of “technical” nodes. These denote 

complexes and altered forms whose behavior could not be described with only the proper 

choice of edge weights. Furthermore, we have grouped certain proteins into one node if 

their functionality did not differ on a scale that could be represented in our system. For  

example, we have included only a single “PI3K” node to account for the complex of 

multiple  separate  protein  subunits.  Interactions  of  group members  were  included as 

interactions of the whole group.

The entire list of nodes, their groupings and expression levels are presented in 

Supplementary Table 1 of [189].
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3.2.2.2. Edges

To define our edges, we first collected and collated information from the STRING 

[190] and SignaLink2 [191] databases. Since we are looking for direct interactions, we 

have limited the data loaded from the STRING database to those tagged as “binding”.  

Both databases contain data for which evidence is circumstantial or weak: STRING often 

lists connections that are based on the interactors’ presence in the same pathway, and 

SignaLink2 contains edges that are supported only by in silico predictions. We did not 

include these. During the later stages of model construction, we have also utilized the 

HPRD database to check individual interactions [167]. We did not find a database of 

transcription factor - gene interactions suitable for our needs, and thus those edges are 

based on a systematic manual search of the literature. Since the databases do not contain 

(unequivocal)  information  on the  direction  and sign  of  edges,  this  information  was 

collected separately as part of the manual curation of the system. Evidence was collected 

with the aim of describing a human macrophage, with evidence in other cell types usually 

rejected. Exceptions to this were made only if it served to fulfill verification criteria 

(see chs. 3.2.3.4. and 4.2.2.).

With regards to the interactions represented by edges, it should be noted that 

sub-protein elements of signal transduction (Ca2+, PIP3) were not given separate nodes. In 

addition,  physical  interactions  within  larger  complexes  were  omitted,  based  on  the 

analysis of the information flow in the complex. E.g., while MyD88 and TRAF6 have a 

physical  bond  in  vivo,  their  relationship  is  already  functionally  described  in  the 

MyD88 → IRAK1 → TRAF6 set of edges. These bonds and scaffold proteins serve an 

important function in the kinetics of the formation of complexes, but unless a component 

of the model is able to completely disrupt the binding, their effects are too subtle to 

include in our Boolean system.

The edges are also weighted in order to encode how multiple incoming edges 

affect the activity of their target, by effectively creating logic gates. Thus, they do not  

represent parameters of the binding event or enzymatic action, but rather dependencies. If 

a node has two incoming edges of weight 0.5, these interactions are assumed to be both 

necessary for the activation of the node (rather than, e.g., both being able to create 50% 

activity), forming an AND gate (see Eq.1. in ch. 3.2.3.1.). Inhibition is represented by 

29



negative  weights,  and  such  edges  are  otherwise  evaluated  in  the  same  manner  as 

activating ones.

The complete list of edges, including references in support of them, is presented in 

Supplementary Table S2 of [189].

3.2.3. Model Evaluation

Calculations were performed with MatLab (The MathWorks, Inc.). Scripts are 

available as Supplementary File S5 of [189].

3.2.3.1. State progression

The model starts each run with all nodes inactive, except for those constitutively 

active for technical reasons and any input nodes chosen for that particular instance. The 

activation state  of  these nodes is  kept  constant.  From this  starting point  the system 

advances in discrete steps. The new activation state of each non-fixed node is calculated 

from the previous network state and all of them are evaluated in each step; this is called a 

synchronous update scheme. The nodes that have an impact on the state of a particular 

node are the ones sending edges to it. Their concerted effect is represented by a logical  

gate and is encoded in the weight of those edges.

These steps are continued until a stable cycle of network states is reached. This set 

of states is called an attractor, more specifically a limit cycle if there is more than one 

constituent state and a fixed point of there is only one. To recognize attractors, we have 

used an implementation of Brent’s cycle detection algorithm [192]. The output of the 

model is always evaluated after an attractor has been reached. We base the mathematical 

representation of this ruleset on the one published in [193]. Subsequent system states are 

calculated as:

St+1=thr (W ⋅St−Θ ) [Eq.1.]

where Sx is the state of the system at step x, represented as a binary column vector, W is a 

square weight matrix containing all edge weights (with nonexistent edges having a weight 

of 0), Θ is a vector of threshold values for each node and thr is a threshold function defined 

as: [if x≥0: thr(x)=1, otherwise thr(x)=0]. Constitutive node states are implemented by 

changing the threshold value for them (in Θ) to ±100, making them independent of 

incoming edges or their lack thereof.
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3.2.3.2. Polarization index

The  output  of  a  particular  run  is  a  gene  expression  pattern,  encoded  as  the 

activation state of the output nodes. We chose to process this into a continuous index value 

representing polarization state, in accordance with the spectrum model of macrophage 

polarization [155]. We refer to this as the polarization index, or pI, and calculate it as:

pI (i )=
A1 (i )
T 1

−
A2 (i )
T 2

 [Eq.2.]

where Ax(i)  is  the number of active outputs of type x given input i  for fixed point  

attractors, and the sum of the ratio of states in which each output of type x is active for all 

such outputs given input i for limit cycles. Tx is the total number of outputs of type x. Type 

1 genes push polarization in an inflammatory direction (towards an M1-like state), and 

type 2 genes promote a tissue-protective polarization (towards an M2-like state). In our 

model the outputs designated type 1 are: CD64, CD68, CIITA, CXCL10, IFNβ, IL-12A, 

IL-12B, IL-1B, IL-6, iNOS, and TNFα. The outputs considered to be type 2 are: CCL17, 

CCL22, CCL24, CD209, MERTK, MRC1, and TGFβ.

3.2.3.3. Synergy index

In  the  simulations  where  we  inhibit  two  nodes  simultaneously,  we  define  a 

measure of synergy, i.e., how different is the result of these inhibitions from what we 

would expect based on their individual effects. We term this the synergy index, or synI, 

and calculate it as:

synI (A ,B ,i )=
|ΔpI (AB ,i )|

max (|ΔpI (A ,i )|+|ΔpI (B ,i )|, τ )
 [Eq.3.]

where ΔpI(X,i) is the change in polarization index due to the inhibition of node(s) X 

compared to no inhibition under the same input conditions, i.  is an adjustment parameter𝜏  

included to avoid extreme index values in cases where ΔpI values are low for single 

inhibitions, as these would be misleading. In our work we use τ=0.1, but this choice is 

arbitrary.
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3.2.3.4. Verification

The aim of this model is to link external stimuli to changes in gene expression. 

Thus, the most direct way to verify that it reflects the real-world workings of the system it 

represents is via comparison to experiments measuring the same. There is not enough data 

in literature about changes to protein activity levels during these studies to include such in 

our evaluation, and so we have to restrict the verification to inputs and outputs only. There 

are some cases where multiple of our outputs were measured in response to one of the  

inputs,  but keeping this linkage would mean we would have to evaluate them on a 

per-study basis, which could introduce a bias we would have to control for. Thus, we 

verify the model with individual input-output pairs supported by in vitro experiments. We 

only  take  into  account  results  that  are  clearly  stimulatory  or  inhibitory,  the  former 

satisfied by the gene node being active in response to the given input alone, the latter by 

the gene node being inactive. Articles that report no significant change in expression 

levels were not included. We have collected evidence for 55 input-output pairs. The pairs 

and the PMIDs of the articles in support of them are presented in Supplemental Table S3 

of [189].

3.3. Online data collation tool

Our data retrieval and integration utility is built with the R language and produces 

an HTML output viewable in any browser. A target list can be provided as a local TSV file 

or online as a Google Sheet document. Targets should be specified with their HUGO 

(Human Genome Organization) name and UniProt ID. The first R script (clue.R) loads 

this list, then accesses the REST API of clue.io and for each listed element looks for 

components in its database, i.e., any information about repurposing attempts. Entries 

without a clue.io record are excluded from further searches. This data is passed to the next 

script as an RDS file (a format specific to the R language). In the next step dataPatch.R 

collects additional data from various sources. It automatically searches the FDALabel 

service and the website of the European Medicines Agency (EMA) and filters the results 

to provide direct links to relevant drug labels. Using the UniProt ID, data about the target 

is collected through the UniProt REST API, including Gene Ontology (GO) terms from 

the molecular function and cellular component categories, and references to STRING and 

Reactome. Using the compound name found in clue.io, a search request is sent to the 

PubMed database. Results are filtered for randomized controlled trials, clinical trials, 
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reviews, systematic reviews and meta-analyses and the top 3 according to the best match 

algorithm of PubMed are recorded. A third R script (renderWebPage.R) is responsible for 

creating a human-readable output. It collects related information from different sources 

into one group (like multiple mechanism of action (MoA) items or outgoing links to 

similar resources like DrugBank and PubChem) and converts the data table structure into 

a hierarchical presentation format. A more in-depth explanation of underlying functions is 

available at https://cycle20.github.io/EZCancerTarget/index.html, and all scripts, version 

descriptions  and  the  runtime  environment  can  be  downloaded  for  free  at 

https://github.com/cycle20/EZCancerTarget.
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4. Results

Primary  tumors  and  metastases  were  classified  into  NE-high  and  NE-low 

categories. The NE-high subtype was more prevalent in the cohort, with 20 primary and 

24 metastatic tumors falling into this group. There were 11 primary and 8 metastatic 

samples in the NE-low group. Next, we characterized the samples in regard to immune 

infiltration level. In our analysis, 56% of infiltration-high tumors were classified NE-low, 

and 87.5% of infiltration-low tumors as NE-high.

4.1. Myeloid cells in the TME of SCLC

4.1.1. Distribution

The distribution of CD33+, CD68+ and CD163+ cells shows a particular pattern 

across our axes of interest: tumor nest/stroma, primary/metastatic and NE-high/NE-low 

[fig. 1., fig. 2.]. By comparing pairs of data that differ in one attribute (e.g., CD86 in the 

stroma  of  primary  tumors  in  NE-high  vs  NE-low samples),  we  have  observed  the 

following. First,  the stroma has two properties in contrast to the tumor nest: overall  

immune infiltration is significantly higher (p<0.008 in all cases, for all  myeloid cell 

types),  and  it  has  CD33+ cells  (though  fewer  in  number  than  other  immune  cells

[fig. 1. (I)]).  Second,  in  primary  NE-low tumors,  we can  detect  a  higher  density  of 

myeloid cells, when compared to their NE-high counterparts [fig. 1. (J, K)]. Specifically: 

a significantly higher density of CD68+ and CD33+ cells in the stroma (p=0.048 and 0.019, 

respectively), and a significantly higher density of CD68+ and CD163+ cells in the tumor 

nest (p=0.032 and 0.003, respectively) [fig. 2.].
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Figure 1. Immunohistochemical analysis of myeloid markers in SCLC tissue samples.  

Samples are formalin-fixed and paraffin-embedded (FFPE). Myeloid cells show multiple  

morphologies. Both amoeboid and ramified cells express CD68 (A-D), while CD163+ 

cells are mostly ramified and exhibit long processes (G). Both markers show preferential  

expression in the stroma compartment (ROI-s marked on C, F, and G). CD163 expression 

is particularly sparse in the tumor nest (arrowheads on H). In cases of high immune  

infiltration, CD68 can be found in the nest compartment (ROI on A). Both macrophage  

markers also appear in necrotic areas (ROI-s marked on D and E). CD33+ cells are  

present exclusively in the stroma, and only in low numbers (arrowheads on I). On images  

J  and  K  hematoxylin  and  eosin  staining  shows  the  histologic  characteristics  of  

neuroendocrine (NE) high and low tumors, respectively. (Source: [194], used according 

to the Creative Commons Attribution (CC BY) license.)
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 Figure 2. Comparison of cell density data of myeloid cells in different SCLC subtypes  

and split between the stroma and tumor nest compartments. CD68+ cell numbers are  

significantly increased in primary NE-low tumors, compared to NE-high (A, B). While  

CD163+ cell density does not show significant differences in the stroma across subtypes  

and compartments (C), it is significantly elevated in the nest of primary tumor sites of  

NE-low cases (D). CD33 did not appear in the tumor nest. In the stroma, its levels are  

increased  in  primary  NE-low  tumors  (vs.  primary  NE-high) (E).  There  were  no 

significant differences in CD68, CD163, and CD33 expression patterns of NE-high and 

NE-low  cases  in  lymph  node  metastases  (A-E). Data  was  obtained  with  

immunohistochemistry  from  formalin-fixed,  paraffin-embedded  (FFPE)  samples,  

organized into a tissue microarray. Values for a given sample are the average of two  

slices from the same punch. Values measured in the stroma are indicated with (s) in the  

title (A, C, E), while those from the tumor nest are labeled (t) (B, D). Grouping based on  

neuroendocrine marker expression is shown with the box color: clear for NE-high and 

gray for NE-low. For CD68 and CD163 (A-D), cell density is measured in cell/mm2. In  

the case of CD33 (E), density was measured as distinct categories labeled from 0 to 3. In 

all figures the red line represents the median of values, the box ranges from the 25th to the 

75th percentile and whiskers stretch to the minimum and maximum values (ignoring  

outliers). Red (+) marks indicate outliers, defined here as values further from the closest  

edge of the box (25th or 75th percentile) than 1.5 times the height of the box. Vertical axes 

in A-D have a break point (marked with \\) in order to accommodate all outliers without  

compromising the presentation of the bulk of the data. (*) marks p<0.05 and (**) p<0.01,  

according to the Wilcoxon rank sum test. (Candidate’s own figure, unpublished)
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4.1.2. Associations with other immune markers

Previously, our group has also measured CD45 (as a pan-leukocyte marker), CD3 

(as a T-cell marker) and the major histocompatibility complex II (MHCII) expression of 

tumor cells  [111]. Here, we have analyzed the correlations between these factors and 

myeloid cell markers [fig. 3.].

We observe that all significant correlations are positive. CD68 shows negative 

association to all other markers in NE-low metastases, in the stroma and nest separately 

(ϱ=-0.314 to -0.872), but these are not significant (p>0.05), possibly affected by the low 

number of observations (n=5 or 6). CD45 and CD3 show consistently high correlation in 

all cases (min ϱ=0.821). In primary tumors, evaluating the stroma and the nest together, 

all 4 cell types have fairly high correlation, with values slightly higher in NE-low cases. In 

lymph node metastases this is limited to NE-low tumors and excludes CD68. If we stay 

focused on primary tumors, but look at the tumor nest separately, all  markers show 

consistently high correlation, including tumor MHCII expression (CD45/CD3 ϱ=0.928, 

for all others ϱ=0.703 to 0.812). In the stroma of primary tumors CD3, CD45 and CD163 

are strongly correlated (min ϱ=0.811), with CD68 and MHCII showing lower levels of 

association to other markers.

Figure 3. Heatmap of the correlation of immunological markers in various subsets of  

SCLC samples. The markers being compared are CD68, CD163, CD45, and CD3 on  

immune cells and MHCII on tumor cells. The pair of markers being compared is indicated 

on the vertical axis (one group for each marker), and the subsets on the horizontal axis. If  

a  category  is  left  blank,  both  options  for  that  category  (subtype,  compartment  or  
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localization) were taken into account. “high” and “low” refer to neuroendocrine (NE)  

marker levels. “lymph n.” refers to lymph node metastasis, in contrast to the “primary”  

tumor site. Color corresponds to the value of Spearman’s ϱ, with the scale indicated on  

the  bar  on  the  right.  No  value  is  presented  (marked  in  gray)  for  cases  where  the  

correlation is non-significant (p>0.05). There are a number of “hot spots'' with high  

correlation  values.  CD3 and  CD45  correlate  strongly  over  all  categories.  Without  

categorization with regards to nest/stroma and primary/lymph node, all immune cell  

markers correlate moderately or better with each other. The situation is similar if we look  

at  only  primary tumors,  with  a  few exceptions,  including cases  where  MHCII  also  

correlates with the other markers (notably primary/nest/-). CD163 correlates strongly  

with  CD3  and  CD45  in  the  lymph  node/- /NE-low  case.  (Candidate’s  own  figure,  

unpublished)

4.2. Boolean Network Model of Macrophage Polarization

4.2.1. Characteristics

We have built a network that includes 106 nodes and 217 edges between them. Of 

the nodes, there are 9 input and 22 output, with 75 inner nodes connecting them [fig. 4.]. 

One of the fundamental characteristics of a network is its degree distribution. (The degree 

of a node is the number of edges connected to it.) Protein-protein interaction networks 

have been observed to fall into a specific category regarding this in most cases. They 

exhibit a so-called scale-free architecture, where the degree distribution follows a power 

law  [195]. We have examined our system to check whether it also follows this trend  

[fig. 5. (A)]. The disparity in the case of degree = 1 can be explained by the fact that this is 

a control network. A degree of one is restricted to input and output nodes only, as all  

others are required to have at  least  one incoming and one outgoing edge.  The only 

exception to this are the JAK-s that have no inputs, as their nodes are constitutionally 

active for technical reasons, and out of them only JAK3 has only 1 edge. This limitation is 

responsible  for  the  lower-than-expected  frequency.  The  other  difference  is  the 

overrepresentation of nodes of degree = 4. While a direct cause is hard to ascertain, we 

observe that most technical nodes (8 out of 11) have this trait. Excluding technical nodes 

from calculations fails  to bring the number in line with expectations.  If  we declare  

degree = 1 and degree = 4 outliers  and exclude them, the network fits  a  scale-free 

distribution (R2 = 0.80).
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 Figure 4. Visual representation of the macrophage polarization network. Certain  

categories of nodes are colored (teal: input, green: output, yellow: transcription factors,  

gray: technical nodes). Red edges indicate an inhibitory effect. Signaling pathways are  

highlighted with  colored boxes.  The image was created with  the  aid  of  Cytoscape.  

(Candidate’s own figure, published in [189], used according to the Creative Commons  

Attribution (CC BY) license)

To rule  out  that  our  selection  of  nodes  created  any major  distortions  in  the 

pathways examined, we checked the betweenness centrality of nodes [fig. 5. (B)] and 

confirmed that we cannot find any component with an anomalously heightened value. 

Looking at  the  attractors  reached,  in  the  case  of  the  unperturbed model  and single 

inhibitions, all of them are steady state. This is to be expected, based on our decision to not 

include major feedback loops. This changes and a few limit cycles appear (2894, 0.26%) 

with the simultaneous inhibition of two nodes, showing that the model is not completely 

bereft of cyclical substructures. In order to double-check that all interactions in the model 

can happen in an actual cellular environment, we have pulled localization data for all 

components from the Gene Ontology database [196,197] [fig. 5. (C)]. All interactions are 

theoretically possible in the cytosol, nucleus or the plasma membrane.

4.2.2. Verification

When the verification criteria were first applied to the model during development, 

the output had an approximately 65% match with it. Differences between the two were 

used to spot incorrect or incomplete parts of the model. There were three major points of 

difference that involved the addition of new nodes. The protein node HCK was introduced 

to reconcile the model with the IL13→CD209+ criterion [178]. There was support for an 

IL13→Akt connection, but not in macrophages [198]. Investigating this link led us to 

HCK, and it was then included based on the support for the overall input-output link 

established in macrophages. The GM-CSF→CIITA+, iNOS+ criteria [199,200] could not 

be satisfied within the framework at the time, and this prompted the search for a “missing” 

node and later addition of the transcription factor NFAT5. The node of STK4 was added 

and removed multiple times during the fine-tuning of the system, due to insufficient data 

about its direct connections and was kept in the published version of the model based on 

its effects on verified input-output connections. The final model shows a 94.55% match 

with the verification criteria (52 of 55).
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 Figure  5.  General  statistics  of  the  in  silico  protein-protein  interaction  network,  

representing  overall  structural  properties  (degree  distribution  (a),  betweenness  

centrality of nodes (b)) and co-localization of components (c). a) Degree distribution. A  

power law curve was fitted (R2 = 0.80) to the data with degrees 1 and 4 ignored as outliers 

(red line). This supports that our network has a “small world” property, a characteristic  

feature of most biological networks. b) Betweenness centrality against degree per node.  

Nodes of possible interest are labeled. All nodes emerging this way are known to be of  

central importance, meaning that our network does not overrepresent minor actors and  

pathways. c) Cellular localization of model components. For each protein data from the  

Gene Ontology database was extracted. Here the terms were extended to include all  

sub-terms (those connected with one or more “is_a” relations). In the cases marked with  

an  asterisk,  certain  terms  connected  by  a  “part_of”  relation  were  also  merged:  

"nucleoplasm" and "nuclear body" were merged into "nucleus", "external side of plasma 

membrane" was merged into "cell surface", and "extrinsic component of cytoplasmic side 

of plasma membrane" was merged into "cytoplasmic side of plasma membrane". The  

components of the network co-localize into major subcellular compartments, supporting 

that  direct  interaction  between  them  is  feasible  in  vivo.  (Candidate’s  own  figure,  

published  in  [189],  used  according  to  the  Creative  Commons  Attribution  (CC BY)

license)

We have also examined how internally consistent the assignment of inputs and 

outputs to polarization directions is. We calculated a polarization index for the input 

nodes too, analogous to what we defined for the outputs (see ch. 3.2.3.2.), for all input 

combinations, based just on their assignment. Then we compared the two indices [fig. 6.]. 

While the correlation between them is moderate, with a Pearson r of 0.58, the tendency we 

expected from their relation is apparent. In addition, a slight clustering of the output pI 

values can be observed. This is not an inherent attribute of how the index is constructed, as 

the  value  set  is  close  to  continuous.  There  are  three  subsets,  one  each  that  shows 

polarization towards an M1-like and an M2-like state,  and one that  is  transitory or 

uncommitted. There is only a relatively narrow band of input-pI where both committed 

subgroups are present, at input-pI = 0 and slightly below that. The subgroups also separate 

on the output-pI axis, with transition points at approximately ±0.2. We use these values in 

the definition of repolarization (see ch. 4.3.2.).
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Figure 6. Relating input and output polarization of a macrophage in the BCN model.  

Each instance of a unique input combination is represented by a circle.  A significant  

moderate correlation between the two indices can be clearly observed (Spearman’s  

ϱ=0.555, p=1.09×10- 42). This supports that the model does not deviate severely from our 

current knowledge of the high-level functions (i.e., promotion of M1-like or M2-like 

behavior)  of  these  components.  (Candidate’s  own  figure,  published  in  [189],  used 

according to the Creative Commons Attribution (CC BY) license)
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4.3. Molecular Targets

4.3.1. Targeted RNA seq of SCLC tissue samples

After  identifying  four  tumor  subsets  (see ch. 4.),  we  looked  for  potential 

molecular  targets  by comparing gene expression values between them. To visualize 

particularly  enhanced  or  repressed  genes,  we  created  volcano  plots  [fig.  7.].  The 

comparison of primary and metastatic samples shows only few points of significant 

difference [fig. 7. (F)], and thus for the other plots we pooled their data. To establish the  

differences between the major subgroups, we plotted all NE-high versus all NE-low and 

all  infiltration-high  versus  all  infiltration-low  samples  [fig.  7.  (A,  B)].  As  an

infiltration-high TME is expected to be more susceptible to immunotherapy, we were also 

interested if we could focus such efforts based on NE status [fig. 7. (C)]. Since the NE 

subtypes are already gene expression based, we also wanted to explore any more subtle 

differences within these groups, in relation to immune infiltration status [fig. 7. (D, E)].

The  volcano  plot  analysis  highlighted  certain  gene  sets.  In  the  case  of  NE 

subgroups, the following show a heightened expression compared to the other subgroup. 

In NE-low: ANXA1, CD44, CD70, CXCR2, FCGR1A, HLA-B, IFI27, ITGAM, ITGB6, 

ITGB4, KRT5, MYC, MMP7, YBX3. In NE-high: CDH2, CHGA, FGF5, GRP, ISL1, 

NCAM1,  NKX2,  SOX3,  SYP.  Genes  in  the  NE-high  group  are  mainly  neural  or 

neuroendocrine differentiation factors. The immune-infiltration based subgroups exhibit 

higher  levels  of  the  following  genes.  In  infiltration-high:  CD70,  CXCL9,  CXCR2, 

FCGR1A, GZMA, HLA-B, MMP7, ITGAM, IFI27, YBX3. In infiltration-low: CDH2, 

CHGA, FGF5, GRP, IL9, INS, ISL1, NCAM1, SYP. The NE-high and infiltration-low 

lists show considerable overlap. These cross-subtype similarities are further explored on 

the Venn diagrams of [fig. 8.]. We have collected emerging potential molecular targets 

that already have drugs available for them (in clinical trials or launched) in Supplementary 

Table S6 of [194].
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 Figure 7. Comparing the RNA expression patterns of different SCLC subtypes with  

volcano plots. Between the patterns in primary sites and metastases (F) there are very few 

genes showing a considerable difference. Based on the level of infiltration (B) a handful  

of genes get highlighted but based on NE status (A) we can see a higher number of genes,  

many with higher fold change and significance. Contrasting subtypes based on both

(C-E) yields different sets of genes. Dots represent individual genes. On the horizontal  

axis is the base 2 logarithm of the fold change (FC). On the vertical axis is the base 10  

logarithm of the p value from a Mann-Whitney U test, multiplied by  -1. Points with

p < 0.05 are colored based on their FC and some are also labeled. Those with log2FC >1 

are light blue, >1.5 are blue, and >2 are red. A plot title of “A vs B” means that FC was 

calculated from B/A, putting the genes overexpressed in category A on the left side of the 

plot.  (Candidate’s  own figure,  modified after  [194],  used according to the Creative  

Commons Attribution (CC BY) license.)

Figure 8. Genes with differential expression in SCLC subtypes by neuroendocrine type  

and level of immune infiltration. Genes listed in a given set are upregulated in the noted  

subtype, in comparison to its respective counterpart (infiltration-high vs low, NE-high vs  

low). (Candidate’s own figure, modified after  [194],  used according to the Creative  

Commons Attribution (CC BY) license)
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4.3.2. in silico simulations

To highlight potential targets in macrophages for drugs aimed at repolarization, 

we have simulated therapeutic intervention by blocking proteins in the network (making 

the node constitutively inactive). We evaluate the effect of these perturbations by looking 

at the change in the polarization index. We have simulated single inhibitions [fig. 9.] and 

combinations of two [fig. 10.], with all possible input combinations. In the latter case we 

improve the characterization of the effect with the synergy index (for a description of 

these indices, see chs. 3.2.3.2. and 3.2.3.3.).

Figure 9. Effects of single-target inhibition on the polarization index. On the horizontal  

axis we see the 67 potential target nodes. Input and output nodes were not included, with 

the  exception  of  the  TLR  receptors.  On  the  vertical  axis  are  listed  all  511  input  

combinations.  The order  of  entities  on both  axes  has  been chosen for  presentation  

purposes of this heatmap, and are based on the first principal component of the data  

shown here. Two regions of interest (ROI) are highlighted. ROI#1 contains instances  

predominantly shifted toward an M2-like state, while ROI#2 contains ones shifted toward 

an M1-like state by the perturbation. However, both contain a considerable amount of  

essentially unperturbed instances, and cover a rather small portion of targets (approx.  

30% and 7%, respectively). (Candidate’s own figure, published in [189], used according 

to the Creative Commons Attribution (CC BY) license)
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We also need a numerical definition of repolarization. We have seen in [fig. 6.]  

that ±0.2 is a pI threshold that roughly separates groupings of more extremely polarized 

states from those with no clear direction of polarization. Thus, we consider a perturbation 

to  have caused repolarization if  both the unperturbed and perturbed states  reach an 

attractor that has a pI with an absolute value >0.2 and they have opposite signs. This 

necessitates  a  change  in  the  polarization  index  (∆pI)  of  over  0.4,  but  most  of  the 

perturbations showing such a great shift fail to affect repolarization.

In the case of single target inhibition, we have examined a total of 34 237 cases (67 

targets over 511 input combinations). There are quite a few that show abs(∆pI)>0.4; we 

see 790 cases  with a  shift  towards an inflammatory state  and 2210 in the opposite  

direction. These constitute 2.31% and 6.46% of all cases, respectively. However, of these 

perturbations with considerable effect, only a total of 4 repolarize the cell, all of them 

towards an M1-like state and none in the other direction.

We see  a  different  outcome with  the  simultaneous inhibition of  two targets. 

Among  the  1,129,821  possible  cases  (2211  target  combinations  over  511  input 

combinations) we have checked, we have found a total of 528 that result in repolarization. 

Of these 326 are towards an M1-like state and 202 towards an M2-like one. Given the 

sheer number of possibilities, this is still limited, comprising 0.79% and 0.16% of cases 

with an abs(pI)>0.4, respectively, but is a useful amount from a translational standpoint.

To further  characterize  these  combinations,  we calculate  their  synergy index 

(defined with Eq. 3. in ch. 3.2.3.3.) [fig. 10.]. The value of synI is indicative of the  

relationship  between  the  pathways  affected  by  the  perturbations.  Two  completely 

independent pathways would result in a synI of 1. This is the result in 23.14% of the cases. 

If the index drops below 1, the targets are likely to be a part of the same pathway(s), 

serially connected, making blocking both of them at least partially redundant. This is the 

most common relationship, and we see this in 75.10% of cases. A synergy index over 1 

indicates  convergent  pathways,  creating  effects  that  neither  single  inhibition  could 

achieve alone. Only 1.76% exhibit such a true synergistic relationship.

Combinations with a repolarizing effect toward an M2-like state show a majorly 

different distribution of these categories. 200 of the 202 cases have a synI over 1. Most of 

these involve blocking NFAT5, even though that in itself has negligible impact, with a 

∆pI just above -0.1. Even the targets that comprise the other half of these combinations 
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only shift the system to around pI=0. In the case of repolarizing toward an M1-like state, 

true synergistic combinations are rarer. The only node that can cause repolarization as a 

single target, STAT6, is part of 75.5% of all combinations that can achieve the same. But 

even  in  this  case  we  see  an  increase  in  effectiveness.  STAT6  alone  can  cause 

repolarization for only 4 input combinations (18% of inputs that lead to an M2-like end 

state), but combinations widen this range. Simultaneous inhibition of STK4 is effective 

for  10  inputs  (45%) and blocking Sp1 leads  to  repolarization  for  14  inputs  (64%). 

Considering all  dual  inhibitions,  18 (82%) of inputs  can be shifted into an M1-like 

polarization. We also have to note that in the few combinations that show synergy, there 

are some striking cases. Like JAK1 and JAK3 (or their complexes with IL4R), that alone 

have next to no impact on polarization (with a ∆pI of +0.05 and 0, respectively), but  

together can lead to a total ΔpI of +0.57 for certain inputs (either IL-10 or IL-1 combined 

with IL-4). The above also results in a distribution of synI different from both that of all 

combinations and those repolarizing in the other direction. The dominant category is 

synI=1, covering 77.9% of combinations (254). The ratio of synI>1 combinations is still  

higher than without filtering, but only reaches 11.7% (38) of repolarizing combinations.

All repolarizing combinations are listed in Supplementary Table S4 of [189].
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 Figure 10. Perturbation of the system by simultaneous inhibition of two nodes. a) Shift  

in the polarization index. On the horizontal axis we see the 2211 potential target node  

combinations. Input and output nodes were not included, with the exception of the TLR  

receptors. On the vertical axis are listed all 511 input combinations. The order of entities  

on both axes has been chosen for presentation purposes of this heatmap, and are based on 

the first principal component of the data shown here. ROI-s are chosen as they were for  

fig. 9., showing combinations that push the model mainly in one direction. They are  

somewhat wider (37% and 11%, respectively), than in the case of single inhibitions, but  

not considerably. b) Heatmap of the synergy index. Axes and their sorting is the same as 

in a). The previously observable ROI-s are unclear here, high synergy instances do not  

necessarily  overlap  with  those  of  high  ΔpI.  We can  only  distinguish  an  inert  zone  

(highlighted), with no changes based on both ΔpI and synI. c) Plotting synI versus pI. The 

apparent upper limit (most observable below -0.2 pI) is an artifact of the τ adjustment  

parameter (see Eq.3. in 3.2.3.3.) not permitting synI to rise above ΔpI/τ. (Candidate’s  

own figure, published in  [189], used according to the Creative Commons Attribution

(CC BY) license)

4.3.3. Drug repositioning data collation tool: EZCancerTarget

Our drug repositioning data collation tool is online and available to researchers. It 

aids in the acquisition and structuring of data stored in disparate large databases, greatly 

reducing the time and effort necessary to perform a thorough search. It also helps in 

avoiding errors that manual data entry can bring about. As it collects information during 

runtime, the results will always be up to date. Our novel approach of presenting data on 

both compounds and their  biological  targets side by side in the same data structure 

shortens the gap between these two sides of drug repurposing, usually detailed in separate 

databases.
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The  workflow  is  started  on  the  project’s  Github  page 

(https://github.com/cycle20/EZCancerTarget).  To  avoid  problems  stemming  from 

multiple simultaneous users, those wishing to use the utility remotely (via the Google 

spreadsheet for input) have to receive authorization from the project administrator. It can 

also be installed locally, for which detailed guidance can be found at the link above. The 

spreadsheet includes links, with which users can start the script, follow progress and view 

the resulting web page [fig. 11.]. Information collecting and rendering the results takes 

approximately 30 minutes.

Figure 11. Example results page of EZCancerTarget. On the left side, targets used as  

input are listed, along with a user-defined label in brackets (optional). Clicking on one  

will bring up search results on the right. At the top outgoing links are given to other  

resources on the target. Compounds related to the target are listed along with mode of  

action (MoA) and clinical status. These can be explored further through the links in the  

last  two  columns.  Additional  data  can  be  accessed  by  clicking  the  options  below.  

(Candidate’s own figure.)
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5. Discussion

Small cell lung cancer (SCLC) is a highly progressive type of malignancy and 

advancements in its therapy have been unfortunately lacking. We believe that bridging the 

gap  between  knowledge  gained  from biological  research  and  applied  techniques  in 

clinical practice is paramount.

As our understanding of tumor biology grows, the importance of the interplay 

between the immune system and tumor cells in the tumor microenvironment (TME) 

becomes ever more apparent. Cells of both lymphocytic and myeloid lineage appear in the 

TME, and their presence can be a boon as much as a bane  [201–203]. However, the 

immune contexture (types, amount and localization of immune cells) of the TME is not 

fixed, as evidenced by its modulation by the cancer itself. This is accomplished through 

secretion  of  small  molecules  (like  cytokines  and  chemokines)  and  other  bioactive 

chemicals (e.g., reactive oxygen species (ROS)) and taking advantage of environmental 

factors (like hypoxic conditions).  These can enable the tumor to not only neutralize 

particular immune cells, but to hinder immune clearance as a whole [204,205]. This also 

presents a potential new angle of attack for intervention that in recent years has garnered 

considerable attention in translational medicine and shows promising results [206,207].

Continuing previously published work from our group  [111], we have further 

characterized the immune cell content of limited-stage (LS) SCLC using resected tissue 

samples [194]. Compared to immune cell densities reported in other types of lung cancer  

[208], we found that immune infiltration in SCLC is low not only for lymphocytes [111], 

but also myeloid cells, regardless of tumor compartment. We have also explored the 

association of neuroendocrine (NE) marker expression and overall immune infiltration 

(CD45+ level). In the earlier results of the group from 2020, we saw that both overall  

infiltration, and specifically T lymphocytes (CD3+, CD8+), are significantly elevated in 

NE-low tumors, and in the stroma compartment [111]. Here we show that while there is 

some level of association between NE status and level of infiltration (most cases being 

either NE-low/infiltration-high or NE-high/infiltration-low), a considerable number of 

cases are either NE-low/infiltration-low or NE-high/infiltration-high. This could provide 

an explanation to the observation that subtype status alone is not a significant predictor of 

OS, in patients who underwent resection followed by adjuvant chemotherapy with or 

without thoracic irradiation [125]. Thus, genetic markers and immune contexture both 
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need to be taken into account separately for an accurate description of SCLC subtype for 

clinical purposes.

Here, we have shown that CD68+ TAM-s are the most numerous leukocytes of the 

SCLC TME. Even compared to CD3+ T-cells, their density is approximately two times 

higher  [111].  Following  the  trends  of  overall  infiltration  [111],  their  numbers  are 

significantly higher in the stroma (vs. the tumor nest), and in primary NE-low tumors

(vs. primary NE-high). Another major group of myeloid cells, CD33+ MDSC, are present 

only in the stroma, and in very small numbers, with a slight increase in NE-low tumors. 

This is in direct contrast with results from NSCLC, where high levels of MDSC-s were 

reported [209]. We have also observed that while the density of T-cells correlates highly 

with the level of overall immune infiltration in all compartments and subtypes, in the case 

of  TAM-s,  this  linkage  is  restricted  to  primary  tumor  nests,  hinting  at  additional 

mechanisms affecting their population.

Others have attempted to quantify immune cell populations in SCLC with single 

cell RNA sequencing [210–212]. While these studies report a higher T cell to myeloid cell 

ratio than our IHC results, this is likely due to the fact that nearly all of their samples show 

an NE-high phenotype (positive for ASCL1 and/or NEUROD1). We have seen that cells 

of monocytic origin (CD68+ and CD163+) are more numerous in NE-low tumors. Single 

cell analysis reveals the important fact that there is intratumoral heterogeneity in the 

expression of  subtype markers,  with one study linking tumor cells  with an NE-low 

phenotype in otherwise mostly NE-high samples with stemness characteristics  [211]. 

Further exploration of NE-low tumors with single cell resolution would be necessary to 

gain a comprehensive understanding of SCLC features.

In addition to their numerically superior presence in SCLC, macrophages exhibit 

an outstanding plasticity of function, accessed via a process called polarization. The result 

of this is nuanced, but two main directions can be recognized: an M1-like direction that 

promotes inflammation and an aggressive immune response, and an M2-like direction 

that coordinates tissue repair and angiogenesis. This ability to adopt either tumoricidal or 

immunosuppressive functionality might explain why overall TAM infiltration level does 

not associate with OS [15]. In relation to SCLC subtypes, we observed that in primary  

NE-low tumors the amount of TAM-s showing an M2-like polarization (CD163+) is 
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significantly higher. This might counteract the effects of the overall higher infiltration in 

this subtype.

These  results  highlight  macrophages  as  key  players  in  the  SCLC TME and 

promising targets for immunotherapy. While therapies attempting to lower the number of 

M2-like, negatively modulated cells, either by impeding their recruitment or directly 

affecting depletion  [213], have merit, repolarizing immunosuppressive TAM-s would 

have a much more potent effect by also introducing additional tumoricidal immune cells 

to the TME [214].

To  better  understand  macrophage  function  and  to  find  ways  to  affect  their 

polarization status, we have established a computational network model of intracellular 

events in the early stages of polarization [189]. Interactions were assembled based on PPI 

databases, and then were curated and expanded with a systematic search of available 

literature. It is validated against published primary research results that measured the 

connections between our  inputs  and outputs  and displays the properties  that  can be 

expected of such a network. We have used this network to investigate the system both 

unperturbed and with modifications simulating small inhibitory molecules used as drugs. 

With  these  we  have  observed  that  monotherapies  are  not  well  suited  to  achieving 

repolarization, but the combined inhibition of two targets presents multiple effective 

options that in most cases are based on a synergistic effect, i.e., the combination being 

more potent than the sum of their components. This observation is in keeping with the  

previous results of Fumia and Martens, who found in their model of tumor cells that  

single-target interventions are ineffective at changing the state of the cell [193]. We have 

also investigated the level of synergy between targets in our dual inhibition scenarios, as it 

is indicative of their relative position in the network. We observe that the pathways 

responsible for different polarizations differ not only in the identity of their members but 

follow a different logic and network architecture. Pathways promoting an M1-like state 

show a convergent structure, while those promoting an M2-like state rely more on parallel 

lines of signal transduction.

In order to functionally model signal transduction events, our model includes 

directed and signed edges. We had to collect the necessary data for this manually from the 

literature, as the available extensive databases like STRING [190] or HPRD [167] do not 

contain this kind of information, as they rely on high-throughput techniques that do not 
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provide these parameters. Indeed, most PPI-based network models are undirected and 

unsigned. There have been recent attempts at developing an automated method to predict 

these attributes, and they have shown that including edge direction and sign information 

enhances  the  performance  of  drug  target  and  cancer  driver  mutation  predictions 

[215,216].

We have aimed to create our output such that it can work with various methods of 

interpretation and is not limited to what we present in conjunction with the model. This is 

a break from the norm of hardwiring the states of interest into the model structure as a few 

nodes, usually with a relatively low degree [193,217,218]. Our 27-node gene expression 

pattern is able to represent a large variety of subpopulations, in accordance with the 

spectrum model of macrophage polarization [155]. Its flexibility also makes it easier to 

expand or modify to incorporate new data, or to integrate it into a larger scale model.

Others  have  also  published  in  silico models  of  intracellular  processes  inside 

macrophages. Palma and colleagues presented a simple model with 14 inner nodes [219],

which was then extended later to 21 nodes by another team [218]. As they span a similar 

functional space as our model, this also means that they often include indirect interactions 

as edges and exclude components based on their perceived importance. In order to include 

all  possible  targets  and  to  create  a  more  detailed  model,  we  have  incorporated  92 

intracellular  proteins,  grouped into 64 inner nodes in our system and allow indirect 

interactions very sparingly. There are two more recent models that have a high level of 

detail [220,221], but both limit their analysis to single-node inhibition. As we have shown, 

targets that are effective as part of a combination would often be overlooked by screening 

for individual targets. Single-target inhibition also differs more from real world situations, 

both because of treatment practices, and because perfectly single-target small molecule 

inhibitors are practically nonexistent.

In our search for molecular targets, we first focused on the SCLC cells themselves. 

We have categorized our samples on the NE-high/low and infiltration-high/low axes and 

compared  the  expression  profiles  of  the  resulting  subgroups.  The  expression  of 

Annexin A1 (ANXA1) is heavily upregulated in NE-low tumors but shows no association 

with immune infiltration status.  ANXA1 contributes to immunosuppression,  with an 

effect that resembles glucocorticoids, positively affecting TGFβ signaling and wound 

healing, and suppressing inflammation [222]. Its upregulation, and its correlation with a 
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poor prognosis has been shown in other types of cancer too: in gastric cancer [223], in 

hepatocellular carcinoma [224], in melanoma [225], and in adenocarcinoma of the lung

[226]. In breast  [227] and colorectal  [228] cancer high ANXA1 expression has been 

linked to an increased resistance to chemoradiotherapy. In addition, there is evidence of 

its involvement in tumor invasion and metastasis, through the role it plays in macrophage 

polarization and epithelial-mesenchymal transition  [229,230]. On the molecular level, 

this  involves  an  enhancement  of  CXCR4  and  matrix  metalloproteinase  (MMP) 

expression, via an increase in IκB kinase (IKK) and thus NFκB activity [231]. Our own 

findings also support this: we have observed a higher expression of ANXA1 in tumors 

with a high density of CD163+ (M2 TAM) cells [194].

Our analysis of gene expression patterns has also highlighted the receptor-ligand 

pair of CD27 and CD70, both showing upregulation in the NE-low and infiltration-high 

categories. CD27 is a member of the TNF receptor superfamily that promotes T-cell 

proliferation by activating the NFκB pathway [232]. The expression of its natural ligand, 

CD70, is a main factor in the regulation of CD27 activity, and is therefore controlled and 

transient, appearing mostly on subpopulations of activated lymphocytes in physiological 

conditions  [233–235]. Expression of CD70 has been observed in glioblastoma  [236],  

non-Hodgkin lymphoma [237], renal cell carcinoma [238], and NSCLC [239]. It was also 

shown that the presence of CD70 on tumor cells increases the presence of regulatory

T-cells (Treg), and thus supports tumor growth, by supporting their survival [240], and by 

inducing regulatory function in CD25- T-cells through activation of FoxP3 [237].

There are  a  number of  other  genes that  our  search has  highlighted as  being 

differentially  expressed  in  NE-low  tumors  and  there  is  evidence  in  the  literature 

corroborating their involvement in the TME and tumor progression. CXCR2 has been 

linked to poor prognosis in NSCLC [241,242]. Also in NSCLC, MMP7 level has been 

reported to be associated with proliferation of tumor, resistance to chemotherapy and 

unfavorable prognosis [243]. Our data shows that MMP7 is more prevalent in NE-low 

tumors, but is not linked to the level of immune infiltration. ITGB6 associates with 

ITGAV to form a receptor recognizing, among others, fibronectin and latency associated 

peptide  (LAP),  able  to  promote  tumor  cell  invasion  [244] and  immunosuppression 

through the release of TGFβ [245]. We also have to mention TP63, a protein associated 

58



with the cell cycle, that has shown high expression in our study, but has been reported as a 

tumor suppressor in NSCLC [246].

We have also identified proteins differentially expressed in NE-low tumors that 

have  not  yet  been  connected  to  cancer,  but  based  on  their  known  functions  their 

involvement  is  likely,  making  them  promising  targets  of  future  research.  The 

nucleotide-binding protein YBX3 is described in relation to cold shock, but also binds to 

and represses the promoter of GM-CSF [247], and can thus potentially influence TAM 

behavior. High-affinity IgG Fc receptor 1A (FCGR1A) levels have not been reported 

before  in  cancer,  and  here  we  show high  relative  expression  in  both  NE-low and 

infiltration-high tumors. The receptor is involved in antigen presentation and is reported 

to be of import in monoclonal antibody therapies [248].

Using our computational model, we have investigated the possibility of targeting 

proteins in macrophages to counteract the immunosuppressive effects of the TME that 

push their polarization in an M2-like direction. We have observed that inhibition of 

multiple  targets  simultaneously  outperforms  single-target  approaches,  often  in  a 

synergistic manner, i.e., proving more effective than the sum of individual effects. As part 

of combinatorial target-pairs, STAT6, JAK1 and JAK3 emerged as primary candidates, 

with Tyk2, STK4 and Sp1 also showing potential to a lesser extent.

STAT6 is a major transcription factor, and the only target whose inhibition could 

create repolarization in our model as a single target. There are molecules already in use in 

oncotherapy,  imatinib  [249] and gefitinib  [250],  that  have been shown to  influence 

STAT6 phosphorylation and polarization in TAM. There is also one study using STAT6 

inhibition as part of combinatorial therapy [251]. Their secondary target is IKKβ, and they 

show that simultaneous inhibition is more effective in creating repolarization, though the 

effect is not necessarily synergistic, which is in line with the prediction of our model (see 

Supplementary Table S4 of [189]). 

We have seen in our simulations that the inhibition of JAK family members by 

themselves can have a limited effect on polarization, affecting repolarization only when 

paired  with  another  target.  One  explanation  would  be  that  their  function  is 

context-dependent and can simultaneously affect pathways acting cross-purposes. This is 

supported by the results of previous efforts at targeting the family with therapeutics. 

Tofacitinib targets JAK1 and JAK3 (with a minor effect on JAK2), has been tested for use 
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in  rheumatoid  arthritis  and  other  inflammatory  diseases  [252],  and  shows 

anti-inflammatory effects, via a modulation of immune cells. In the case of macrophages, 

it is most likely that these are achieved by interfering with the JAK1-STAT1 interaction, 

without much contribution via JAK3 [253]. In contrast to this, in other scenarios the same 

drug has shown an ability to block STAT6 function [254], and anti-angiogenic effects 

[255], both indicating a shift towards M1-like functions from a macrophage perspective.

Less is known about the other two targets in this context. Modulation of STK4 

function has shown contradicting results.  Both inhibition by malibatol  A  [256],  and 

activation with adapalene [257] was reported to create a shift toward anti-inflammatory 

functions in macrophages. Sp1 was explored as a target in multiple forms of cancer

[258–260], but its connection with or effect on TAM-s was not investigated.

As it might be of importance in inflammatory diseases, we have also searched for 

targets that would push the system in the other direction, toward an M2-like state, and 

NFAT5 has emerged as a protein of interest. Arctigenin has been shown to inhibit NFAT5 

and have an anti-inflammatory effect through the modulation of cardiac macrophage 

function [261]. In our model, individual inhibition of NFAT5 was insufficient to affect 

repolarization. This discrepancy might be due to our exclusion of feedback routes. As a 

secondary  effect,  dependent  on  the  inhibition  of  NFAT5,  a  decrease  in  the 

phosphorylation  of  STAT1  and  JAK2  has  also  been  reported  [261],  which  might 

strengthen the overall impact of the drug. Based on the localization and function of these 

proteins, the most likely path of effect between them and NFAT5 would be via the 

modulation of the gene expression of a third element, creating a (possibly autocrine)

loop.

According  to  the  Essential  Genes  database  of  the  International  Mouse 

Phenotyping Consortium [262,263], KO of the targets we have identified in both studies is 

not cytotoxic or lethal, thus their inhibition via drugs should be viable. They had no data 

available for CD70, but double knockout mice have been created [264] and no systemic 

defects were reported.

We also have to consider the limitations of our work. The in vitro studies were 

retrospective, and we do not have access to sufficient data on outcomes. Thus, we are 

unable to link our findings with prognoses. In addition, our data comes exclusively from 

limited-stage SCLC, and thus our results are not necessarily descriptive of advanced-stage 
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malignancies. However, surgical resection is not recommended in extended stage disease, 

lowering sample availability. Tissue samples acquired by bronchoscopy are prohibitively 

small. Post mortem sample collection brings in biases and cohort homogeneity is low 

(e.g., in terms of treatments received). The cohort size and the individual sample sizes are 

also not extensive. The genes ASCL1, NEUROD1, POU2F3 and YAP1 were not yet 

known as subtype markers during the data collection phase of our study and thus were not 

included in the genetic panel used. However, they show substantial overlap with NE status 

[17], and the low cohort size would preclude us from drawing statistically significant 

conclusions from the 4 genetic [183] or 7 histologic subtypes [15] defined by them. To 

provide a thorough characterization of the SCLC subsets we identified, especially on the 

genetic  level,  further  studies  with  higher  case  numbers  will  be  necessary.  Targets 

identified on the transcriptomic level will need to be confirmed on a proteomic level with 

in situ experiments before use in pharmacological studies.

In the case of the in silico model, its design constricts what aspects of polarization 

it can handle. The BCN presented ignores questions of time altogether. The speed of 

interactions is presumed the same by omission of a parameter to account for it, due to this 

information being inaccessible on the scale of our model. Beyond not being able to predict 

the speed of reaching a polarized state, this also makes it impossible to represent certain  

signaling circuits that depend on signal duration, like the interaction of IL-10 and IL-6 

[265]. We assume that gene expression is slower than signal transduction by orders of 

magnitude and limit our system to the early response by excluding events requiring 

protein  synthesis.  Some  of  these  are  known  to  create  feedback  loops  and  affect 

subsystems not exhaustively represented in our network. One such is the metabolic state 

of the macrophage, known to be involved in polarization [266] and interactions with other 

parts  of  the  TME  [267].  Using binary values  to  represent  node activity  means that 

encoding intensity levels would be problematic, and the current model ignores them 

entirely.  We  also  did  not  consider  the  possibility  of  activating  proteins  with  an 

intervention [268]. Due to the low intensity resolution and the lack of a time scale, we 

cannot draw conclusions about the in vivo stability of the resulting state, and we also do 

not gain insight into mechanisms that adjust the longevity of it. In addition, verification is 

limited by the available data. The majority of experiments we utilize connect one input 

with one output, an approach taken by others facing similar issues too [269]. To be more 
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thorough, combinations of both inputs and outputs would have to be considered, but such 

data is not available at the time of writing and performing a series of systematically 

chosen high-throughput in vitro experiments to provide them is out of the scope of this 

project.
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6. Conclusions

● CD33+ MDSC in the stroma, and CD163+ M2-like TAM cells in the tumor nest

are  significantly  more  prevalent  in  NE-low  SCLC,  compared  to  NE-high, 

establishing  an  immunosuppressive  TME  with  potential  future  therapeutic 

applications.

● In primary tumors, leukocyte numbers correlate with both macrophage markers 

(CD68 and CD163) in the nest, but in the stroma only with CD163, i.e., M2-like 

cells,  implying  distinct  mechanisms  of  colonization  in  different  tumor 

compartments.

● Interventions aimed at tipping the balance of immune infiltration and suppression 

are expected to be particularly effective in CD68- and CD163-high subsets of  

NE-low tumors. We identified CD70, ANXA1, FCGR1A, ITGB6, MMP7, YBX3 

and CXCR2 as potential targets for this purpose.

● NE-low and infiltration-high tumors showed highly similar expression profiles at 

both primary sites and lymph node metastases. Smaller subgroups of NE-high, but 

phenotypically infiltration-high and NE-low, but phenotypically infiltration-low 

tumors exist, with distinct expression profiles.

● Our  in silico model can replicate experimentally observed cell behavior in its 

scope  and  shows  the  expected  characteristics  of  a  complete  network 

encompassing the selected pathways involved in macrophage polarization.

● When aiming to affect  repolarization,  interventions designed against  a  single 

target  are  suboptimal  compared  to  treatments  simultaneously  targeting  two 

intracellular actors. Individual targets in combination therapies might not show a 

significant effect on cellular state on their own.

● When attempting to repolarize cells into an M1-like state, our model highlights 

STAT6, JAK1 and JAK3, and to a lesser extent Tyk2, STK4 and Sp1 as potential 

targets. When trying to push the system toward an M2-like state, NFAT5 emerges 

as a point of interest.

● We  created  a  platform  for  drug  repurposing  in  oncopharmacology  that  is 

accessible and expandable by the international research community, intended to ai

d research into SCLC and other highly aggressive malignancies.

63



7. Summary

Translational research of the tumor microenvironment (TME) is an emerging field 

of  study that  has  resulted  in  therapeutic  developments  in  multiple  types  of  cancers 

recently. Our understanding of the TME of small cell lung cancer (SCLC) is incomplete, 

severely limiting therapeutic prospects and the application of the newest advances in the 

field. We aimed to gain new insights about the immune cells in the SCLC TME, with 

special attention to tumor-associated macrophages (TAMs) and their polarization state, to 

reveal molecular targets for therapeutic intervention.

First, we characterized the cellular environment regulating anti-tumor immunity 

in limited-stage neuroendocrine (NE)-high and NE-low SCLC subsets, including lymph 

node  metastases.  Immunohistochemical  labeling  and cell  counting  on TMAs (tissue 

microarrays) showed that overall immune-infiltration is low, and that TAMs are the most 

abundant cell type in the tumor nest TME, exceeding CD3+ T-cells. Also, the amount of 

CD163+ M2-polarized TAMs is significantly higher in NE-low (vs. NE-high) tumor nests. 

TAM density shows a strong positive correlation with CD45 and CD3 in primary tumor 

nests,  but not in the stroma. We identified potential  molecular targets based on our 

expression data in NE-low and infiltration-high tumor subsets.

Next, we propose an in silico approach aimed at understanding the intracellular 

systems driving polarization and their dependence on extracellular cues. We create and 

verify a Boolean Control Network model, connecting extracellular signals with the gene 

transcription to model the early response in macrophages. We observe that inflammatory 

and regenerative pathways show a difference in architecture. Based on simulations of 

therapeutic intervention, we conclude that inhibition of single targets is insufficient to 

change an established polarization in most cases. Inhibition of multiple targets (often with 

an individually weak effect) is necessary, with STAT6, JAK1 and JAK3 emerging as 

important targets to push toward M1 and NFAT5 toward M2.

To facilitate the use of large databases we present a novel, open access platform 

aimed at drug repurposing that we call EZCancerTarget, aggregating data from databases 

such as PubChem, DrugBank, PubMed, and EMA, complete with biological background 

information and literature citations for every target from UniProt, String, GeneCards and 

more. The content of the platform can be expanded or replaced by users to suit their 

purposes.
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7.1. Összefoglalás (Summary in Hungarian)

A  tumor  mikrokörnyezetre  (TME)  fókuszáló  transzlációs  kutatások  újszerű 

megközelítést  jelentenek  és  több  ráktípusban  is  terápiás  lehetőségeket  tártak  fel.  A 

kissejtes  tüdőrák  (SCLC)  mikrokörnyezetének  megismerése  segíthet  új  terápiás 

célpontok  azonosításában.  Kutatásunk  az  SCLC  TME  megértését  célozta,  különös 

tekintettel altípusaira, az infiltráló makrofágokra (TAM) és azok polarizációjára.

Először  a  tumorellenes  immunválaszért  felelős  immunsejtek  előfordulását 

vizsgáltuk neuroendokrin markerekben (NE) magas és NE-alacsony, limitált stádiumú 

SCLC-ben  és  nyirokcsomó  áttéteiben.  Immunhisztokémiával  jelölt  szövetmintákon 

kimutattuk, hogy  az SCLC egy alacsony immun infiltráltsággal jellemzhető daganat. 

Ebben  a  kontextusban  fontos  megállapításunk  hogy  más  daganatokkal  szemben  a

TAM-ok alkotják  a  legnépesebb  populációt,  megelőzve  a  CD3+ sejteket  is.  Az  M2 

polarizált  CD163+ sejtek  száma  szignifikánsan  magasabb  az  NE-alacsony  tumor 

fészkekben. A TAM sűrűség erős pozitív korrelációt mutat a CD45 és CD3 markerekkel 

elsődleges  tumor  fészkekben,  de  a  környező  strómában  nem  találtunk  hasonló 

összefüggést.  Expressziós  adatok  alapján  lehetséges  farmakológiai  célpontokat 

azonosítottunk NE-alacsony és immun-oázis tumorokban.

A makrofágok polarizációs folyamatait és azok külső jelekkel való összefüggését 

in silico megközelítéssel vizsgáltuk. Létrehoztunk és verifikáltunk egy Boolean Control 

Network modellt, mely összeköti a sejten kívülről érkező jeleket a korai válasz során 

jelentkező génexpressziós változásokkal. Megfigyeltük, hogy a proinflammatorikus és 

regeneratív útvonalak felépítésük jellegében is különböznek. Terápiás beavatkozásokat 

szimulálva arra a következtetésre jutottunk, hogy egyetlen célpont gátlása nem elégséges 

a  polarizáció  megváltoztatásához,  két  megfelelő  (önmagában akár  elenyésző hatású) 

célpont egyidejű gátlásával viszont elérhető. M1 irányba történő modulációnál a STAT6, 

JAK1 és JAK2, M2 irányba pedig az NFAT5 fehérjék szerepe emelkedett ki.

Új  célpontok  azonosítására  irányúló  kutatások  támogatására  és  hatóanyag 

indikációk újratervezésére (drug repurposing) felépítettünk egy nyíltan elérhető online 

eszközt, az EZCancerTarget-et. Ez számos adatbázis, köztük a PubChem, DrugBank, 

PubMed  és  EMA  adatait  összesíti  gyógyszer(jelölt)ekről  és  gazdagítja  biológiai 

háttérinformációkkal célpontjaikról a UniProt, String, GeneCards és más forrásokból.
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