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1. Abbreviations 

5-FU: 5-fluorouracil 

AA: arachidonic acid 

Bcl-2: B-cell lymphoma 2 

cC3: cleaved caspase 3 

COX: cyclooxygenase 

DAVID: the database for annotation, 

visualization, and integrated discovery 

DEG: differential expression of genes 

DNA: deoxyribonucleic acid 

ER: estrogen receptors 

FBS: fetal bovine serum 

GO: gene ontology 

gp: glycoprotein 

H&E: hematoxylin and eosin  

HER2: human epidermal growth factor 

receptor 2 

ICAM: intercellular adhesion molecule  

IFN-α: interferon-alpha 

IHC: immunohistochemistry 

IL-1β: interleukin- 1 betta  

IL-6: interleukin-6 

JAK: janus kinase 

MAPK: mitogen-activated protein 

kinase 

MDSC: myeloid-derived suppressor 

cells 

mEHT: modulated electro-hyperthermia  

MMP: matrix metalloproteinases 

mTOR: mammalian target of rapamycin  

NF-κB: nuclear factor kappa B  

NK: natural killer 

NSAIDs: non-steroid anti-inflammatory 

drugs  

OR: overall response 

PDK-1/Akt: phosphoinositide-

dependent kinase-1/ protein kinase B 

PG: prostaglandin 
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PR: partial response 

PR: progesterone receptor 

Ptgs: prostaglandin-endoperoxide 

synthase  

QoL: quality of life  

SD: stable disease  

STAT3: signal transducer and activator 

of transcription 3 

TAM: tumor-associated macrophages 

TDR: tumor destruction ratio 

TGF-β: transforming growth factor-

betta 

TME: tumor microenvironment 

TNBC: triple-negative breast cancer 

TNF: tumor necrosis factor  

Treg: regulatory T cells 

VCAM: vascular cell adhesion 

molecule 

 VCAM: vascular cell adhesion 

molecule 

VEGF: vascular endothelial growth 

factor 
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2. Introduction  

2.1. Modulated electro-hyperthermia as a tumor treatment method 

2.1.1. A basic principle of modulated electro-hyperthermia  

Modulated electro-hyperthermia (mEHT) is a type of hyperthermia, that represents a 

non-invasive adjuvant treatment method applied to different types of tumors in clinics [1–3]. 

It enhances the effectiveness of conventional cancer therapies, such as chemo -, radio-, and 

immunotherapy [4–8]. 

mEHT delivers energy using a 13.56 MHz electromagnetic current, generated by a 

setup consisting of two coupled electrodes. mEHT specifically targets the tumor without 

affecting healthy neighboring tissues (Figure 1) [9]. The phenomenon can be explained by a 

metabolic change in cancerous tissue. Instead of ‘usual’ aerobic glycolysis happening 

through a citric acid cycle in mitochondria, the tumor is characterized by an increased 

metabolic rate due to high glucose uptake and energy release through anaerobic glycolysis 

(Warburg effect) [10]. This leads to lactic acid, metal ions, and salt accumulation in the 

cytosol and extracellular matrix. These changes significantly enhance the electrical 

conductivity of the tumor compared to healthy surroundings [11]. High conductive tumor 

tissue absorbs electric field selectively, which is transformed into heat. The mentioned 

phenomenon guarantees maintenance of 42 (±0.5) (°C) in the tumor locally and 40 °C in the 

neighboring tissue [12]. 

 



 

 7 

 

Figure 1. Selective energy absorption by malignant tumor. mEHT uses a 13.56 MHz 

electromagnetic current to target cancer tissue selectively. The tumor's highly conductive 

microenvironment, explained by the Warburg effect, absorbs the electromagnetic field, 

resulting in a temperature gradient - 42 °C in the tumor and 40 °C in the neighboring tissue. 

Image created with Biorender.com 

 

mEHT thermal effect leads to the breaking of double-stranded deoxyribonucleic acid 

(DNA), which affects the cell cycle and apoptosis [13]. In addition to that, modulated electro-

hyperthermia exerts a non-thermal effect through the 1/frequency amplitude modulation of 

the electromagnetic field. The modulation disturbs cancer cells by inducing the rotation of 

cell particles. It enhances cell membrane permeability through electroporation and enables 

more effective drug delivery [4,9]. 

1.1.1. Clinical and pre-clinical application of modulated electro-hyperthermia 

The principle of mEHT treatment in both clinical and pre-clinical settings is similar: 

mEHT is administered through a device consisting of plan-parallel electrodes (Figure 2 A, 

B).  

mEHT is used in clinics mostly as an adjuvant therapy in combination with 

conventional anti-cancer therapies.  Multiple clinical studies suggest that mEHT treatment 

is an effective method for tumor growth inhibition in several cancer types, such as 
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glioblastoma, breast, pancreatic and cervix cancers [14]. The safety profile of the treatment 

is approved by a clinical study Phase 1 clinical trial, which demonstrated no significant side 

effects in high-grade glioma patients [15]. Another study evaluated mEHT use in advanced 

metastatic breast cancer patients, who were irresponsive to any other anti-cancer therapies. 

60% of patients demonstrated partial response (PR) or stable disease (SD) to the combination 

therapy, which may prove that mEHT increased sensitization of the cancer to the 

conventional treatment [16]. The latest Phase 3 clinical trial gives evidence regarding the 

efficacy of mEHT in cervical cancer in combination with radiotherapy [17]. mEHT improved 

both overall response (OR) and quality of life (QoL) of the patients.  

The pre-clinical application of mEHT is based on the same principle. However, in 

addition to the mEHT device, 3 optical sensors let us continuously monitor: body temperature 

(rectal optical sensor), heating pad, and room temperature (Figure 2 B) [18]. A more detailed 

description of using the mEHT pre-clinical treatment is given in the methods section.  
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Figure 2. Schematic illustration of clinical (A) and pre-clinical (B) modulated electro-

hyperthermia (mEHT) set-up. (A) The patient lying between the plan-parallel electric 

condenser plates of a clinical mEHT device, which targets the malignant area. Due to 

metabolic changes in the malignant tissue, its impendence is reduced, causing selective 

absorption of the electromagnetic field and localized heating. (B) LabEHY200 mEHT 

treatment setup illustration for in vivo mouse experiments by Schvarcz et al.[18] and Danics 

et al.[19]. The device consists of 3 additional optical sensors for monitoring the heating pad, 

body, and room temperature.  

2.2. Tumor types 

2.2.1. Triple-negative breast cancer  

Triple-negative breast cancer (TNBC) poses significant challenges in treatment due to 

its aggressive nature and lack of therapeutic targets [20]. This subtype of breast cancer is 

characterized by the absence of estrogen receptors (ER), progesterone receptors, and human 

epidermal growth factor receptor 2 (HER2), making traditional hormonal therapies 

ineffective against it [21]. As a result, patients with TNBC often have limited treatment 

options compared to other subtypes of breast cancer. Furthermore, TNBC is associated with 

A

B
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an immune desert phenotype, indicating a lack of immune cell infiltration within the tumor 

microenvironment [22]. This immune evasion mechanism contributes to the rapid metastasis 

of TNBC, particularly to organs such as the brain, lungs, and liver [23].  

There has been a focus on developing adjuvant therapies that target specific molecular 

hallmarks associated with TNBC [24]. These targeted therapies aim to disrupt key signalling 

pathways involved in cancer growth and metastasis [25]. Conventional approaches such as 

chemotherapy and surgical interventions remain essential components of TNBC treatment, 

often used in combination with emerging targeted therapies to maximize efficacy [24]. 

2.2.2. Melanoma  

Melanoma incidence has been rising steadily over the past few decades, particularly in 

fair-skinned populations exposed to excessive ultraviolet radiation [26]. It is an aggressive 

form of skin cancer. Around 65% of people diagnosed with melanoma face metastasis, which 

significantly reduces survival rate [27,28]. Contemporary therapeutic approaches involve 

surgical resection to remove the primary tumor, often followed by chemotherapy [29]. Lately, 

immunotherapy or tyrosine kinase inhibitors, which disrupt specific signaling pathways 

involved in melanoma growth and progression, have demonstrated significant benefits in 

certain patient populations [30,31]. Advanced therapeutical or combination treatments are 

highly valuable to improve the outcome due to the high metastatic and mortality rates. 

2.3. Pro-inflammatory mediators and pathways in cancer development 

2.3.1. Cyclooxygenase (COX) isoforms and their biological function 

COX enzymes belong to the peroxidase enzyme family and play a critical role in 

catalyzing the conversion of arachidonic acid (AA) into proteinoids, including prostaglandins 

(PG), thromboxane, and prostacyclin. These lipid compounds are involved in a wide array of 

physiological processes, including inflammation, pain, fever, and regulation of blood flow. 

There are 2 isoforms of COX: COX-1 and COX-2, encoded by prostaglandin-endoperoxide 

synthase 1 (Ptgs1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) genes, respectively, 

each with different biological functions [32]. 
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COX-1 is a constitutively expressed enzyme found in most human cells and tissues 

under normal conditions. Among others, it helps to regulate the production of protective 

gastric mucus, supports platelet function for blood clotting, and maintains blood flow. In 

contrast, COX-2 is an inducible enzyme primarily activated by inflammatory stimuli such as 

cytokines, growth factors, tumor promoters, and microbial endotoxins, and is therefore 

associated with inflammatory diseases [33]. The most important functional mediator for 

COX-2 is prostaglandin E2 (PGE2). Upregulated COX-2 and PGE2 are involved in pain 

sensation, the febrile response, inflammation, tissue injury, and repair [34].  

2.3.2. Mechanisms of COX-2 contribution to cancer progression 

COX-2 expression is upregulated in various cancer types, including breast, colorectal, 

lung, and prostate cancer, as well as in premalignant lesions, indicating its significance in 

early tumorigenesis [35][36].  

Evidence suggests that COX-2 promotes tumor growth through prostaglandins, 

particularly prostaglandin E2. There are diverse functions of PGE2, which favors tumor 

progression as follows (Figure 3): 

• Malignant cells become resistant to apoptosis through the upregulation of the proto-

oncogene B-cell lymphoma 2 (Bcl-2) [37,38].  

• Angiogenesis through the upregulation of vascular endothelial growth factor (VEGF) 

[39]. 

• Metastasis through the upregulation of adhesion molecules [40]. 

• Invasion through the matrix metalloproteinases (MMP) – MMP-2 and MMP-9, which 

breaks down the matrix and supports the cell mobility [41].  

• Immune evasion through the increase of regulatory T cells (Tregs), the activity of 

tumor-associated macrophages (TAM), and myeloid-derived suppressor cells 

(MDSC) [42,43]. 

• Cancer cell survival and proliferation through the modulation of inflammatory 

pathways (Interleukin - 1 beta (IL-1β), IL-6, Tumor necrosis factor-α (TNF-α)), 

mitogen-activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), 
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nuclear factor kappa B (NF-κB)) and signal transducer and activator of transcription 

Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling 

pathway [44][45][46]. 

Within the tumor microenvironment (TME), COX-2 promotes tumor growth, 

proliferation, angiogenesis, metastasis, and immune evasion through the synthesis of 

prostaglandins, particularly PGE2 [47,48]. PGE2 has been linked to cell proliferation by 

modulation of the Bcl-2 gene, which is translated to an anti-apoptotic protein. It prevents 

apoptosis by inhibiting the activity of pro-apoptotic proteins Bax and Bak. PGE2 modulates 

the expression of inflammatory cytokines - IL-1β, TNF, IL-6 [49], and inflammatory 

pathways: mTOR, NF-κB, and MAPK. They support the stability of cancer stem cells and 

proliferation by the establishment of a pro-tumorigenic immunosuppressive 

microenvironment [44][45][46].  

Moreover, COX-2-derived PGE2 expression plays a role in shaping immune responses 

within the TME. It helps the recruitment of tumor-associated macrophages (TAMs), 

myeloid-derived suppressor cells (MDSCs), and regulatory T cells (T-regs) [50]. COX-

2/PGE2 signaling promotes the polarization of TAMs towards a protumor genic M2 

phenotype, inhibits the function of cytotoxic T cells and natural killer (NK) cells, and 

enhances the suppressive activity of T-regs and MDSCs. As a result, COX-2-mediated 

immune evasion results in immune escape, metastasis, and resistance to immunotherapy in 

cancer [51,52][42].  
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Figure 3. Role of COX-2/PGE2 signaling within the cancer. COX-2-derived PGE2 

modulates tumor cell proliferation via the expression of pro-inflammatory cytokines (IL-1β, 

TNF, IL-6), activation of inflammatory pathways (MAPK, mTOR, NF-κB), and transcription 

of the anti-apoptotic gene BCL-2; PGE2 promotes angiogenesis through VEGF; PGE2 

supports immune evasion by inhibiting the immune response via activation of TAMs, Tregs, 

and MDSCs, thereby establishing a pro-tumorigenic and immunosuppressive 

microenvironment; PGE2 enables metastasis by modulating adhesion molecules and MMPs 

in the extracellular matrix. Image created in Biorender.com. 
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2.3.3. Anti-cancer therapy induced COX-2 expression and non-steroid anti-

inflammatory drugs to overcome the limitation 

In the present study, we report that mEHT induced COX-2 synthesis, which we 

consider as part of the therapy-induced cellular stress reaction. Other anti-cancer therapies, 

such as chemo- and radiotherapies are also known to cause overexpression of COX-2 and 

prostaglandins (Figure 4). Bell et al. investigated the COX-2 expression in the 4T1 TNBC 

after treatment with cisplatin and 5-fluorouracil (5-FU) both in vitro as well as in vivo [53]. 

Similarly, radiotherapy can also result in COX-2 overexpression [54,55]. Studies assume 

COX-2 expression may be considered a self-defensive response of cancer cells due to 

therapy-induced cellular stress, which limits the anti-cancer therapy's efficacy [56]. Non-

steroid anti-inflammatory drugs (NSAIDs) are suggested to overcome the problem as they 

effectively reduce prostaglandin production by blocking COX-2 enzymatic activity and 

modulating downstream signaling events [57].  

 

Figure 4. Anti-cancer therapy can induce COX-2/PGE2 overexpression. Anti-cancer 

therapies, such as chemo-, radio-, and mEHT therapies induce the increased production of 

COX-2/PGE2, which may increase cancer cell resistance and limit treatment efficacy. Image 

created in Biorender.com. 

2.3.4. Inflammatory cytokines - IL-6, and IL-1β  

Cytokines are a group of soluble secreted protein molecules that are produced in 

response to changes in the body's normal state, and they carry out their function by interacting 
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with specific receptors. Cytokines can be divided into two large groups: pro-inflammatory 

cytokines (IL-1β, IL-6, TNF-α, IL-17) and anti-inflammatory cytokines (IL-10, interferon-

alpha (IFN-α), transforming growth factor-beta (TGF-β), IL-4, IL-13) [58]. There is a strong 

positive feedback loop between COX-2 expression and pro-inflammatory cytokines, IL-6 

and IL-1β, as they stimulate each other's synthesis [44][59][35].  

IL-6 is considered a malignancy and a prognostic marker for overall survival in several 

cancers [60]. It binds to IL-6Rα coupled with co-receptor - glycoprotein 130 (gp130). Due to 

activating signaling pathways, such as the JAK/STAT signaling pathway, IL-6 promotes 

proliferation and inhibits apoptosis. The IL-6/JAK/STAT pathway is understood as tumor-

promoting and represents a target of the latest anti-cancer treatment development [61]. 

IL-1β exerts its biological function via interacting with IL-1 receptors (IL-1Rs). IL-1β 

is upregulated in various cancer types, such as breast, melanoma, head, colon, and lung 

cancers and it is associated with worse prognosis [62]. It acts as a growth factor and enhances 

the overexpression of other proinflammatory cytokines (TNF, IL-6), pathways (MAPK, NF-

κB ), adhesion molecules (Intercellular Adhesion Molecule (ICAM), Vascular Cell Adhesion 

Molecule (VCAM)), and growth factors such as VEGF, therefore IL-1β synergistically works 

with other factors and promotes inflammation, angiogenesis, and metastasis [63].  

Overall, IL-6 and IL-1β are key regulators of the TME, exerting pleiotropic effects on 

cancer progression and immune responses [64]. Their expression is associated with increased 

inflammation, cell proliferation, angiogenesis, and resistance to apoptosis [65](66). 

Targeting IL-6 and IL-1β and their signaling pathways represents a promising therapeutic 

approach to disrupt the pro-tumorigenic TME, enhance anti-tumor immune responses, and 

improve patient outcomes in cancer treatment [64] [56] [66].  

2.4. Cyclooxygenase inhibitors and cancer therapy 

2.4.1. COX-1 and COX-2 inhibitors - mechanism of action 

COX inhibitors are divided into 2 main groups: non-selective non-steroid anti-

inflammatory drugs (NSAIDs) (aspirin) and selective COX-2 non-steroid anti-inflammatory 

drugs (SelCOXIBs) (Figure 5). They contribute anti-inflammatory, antipyretic, and analgesic 



 

 16 

effects. NSAIDs bind to the COX active site, that is created by a long hydrophobic channel 

and prevents catalyzing arachidonic acids to prostaglandins [67].  

Acetylsalicylic acid (aspirin, ASA) is synthesized from the natural compound - 

salicylic acid. It can irreversibly inactivate COX-1 and COX-2 due to acetylation but inhibits 

COX-1 more than COX-2. COX-1 is involved in platelet aggregation; therefore, aspirin is 

used in cardiovascular protection. Inhibition of COX-1 in the long term may cause a 

significant gastrointestinal side effects, such as gastritis, stomach ulceration, and 

bleeding[67].  

selCOXIBs are designed for COX-2 inhibition, while sparing COX-1. They have 

demonstrated a better anti-inflammatory effect, but also a risk of increased cardiovascular 

adverse events [68]. 

 

 

Figure 5. non-selective COX and selective COX-2 inhibitors effect on endothelial cells 

and platelet aggregation [69]. 
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2.4.2. Non-selective COX and selective COX-2 inhibitors in cancer therapy 

Numerous epidemiological and experimental studies show that NSAIDs reduce the risk, 

incidence, and mortality in some cancers [70], including melanoma [71] and breast cancer 

[72]. Both non-selective and selCOXIBs have been associated with lower cancer incidence, 

however, selCOXIBs have demonstrated greater significance [73]. NSAIDs inhibit the 

production of prostaglandins and pro-inflammatory cytokines [74], tumor growth factors 

[43,45,75] and inflammatory pathways such as NF-κB [76], MAPK [77], mTOR [78], PDK-

1/Akt [79], Wnt/β-catenin [80]. These pathways support cell proliferation and angiogenesis 

but suppress apoptosis. Therefore, COX inhibitors influence tumor progression by decreasing 

migration [81], metastasis [82,83], angiogenesis [84], increasing apoptosis and sensitivity to 

other conventional anti-cancer therapies such as chemotherapy, immunotherapy, or 

radiotherapy [85,86] (Figure 6).  
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Figure 6. The underlying mechanism of COX inhibition - NSAIDs and selCOXIBs 

regulate signaling pathways in cancer cells. NSAIDs inhibit prostaglandin synthesis 

through the COX inhibition. COX inhibition modulates pro-inflammatory cytokines (IL-1β, 

IL-6), and inflammatory pathways such as NF-κB, MAPK, mTOR, PDK-1/Akt, and Wnt/β-

catenin by the inhibition of activation of transcription factors. These pathways support cell 

proliferation, immune evasion, and angiogenesis but suppress apoptosis. Image created in 

Biorender.com 

2.4.3. Combination of COX-2 inhibitors with other anti-cancer therapies  

Various studies have demonstrated that COX-2 inhibition, when combined with cancer 

treatments, significantly enhances outcomes against cancer (Table 1). The table offers a 

summary of combination treatments of COX inhibitors and possible synergistic mechanisms 

of action. 

 

Table 1. Studies on the combined use of COX-2 inhibitors in the treatment of human 

cancers. 

 Summary of combined treatments with COX inhibitors and possible synergistic 

mechanisms of actions based on the review paper Rodrigues P, Bangali H et al 2024 [87] 

Combination Cancer type Effect(s) Mechanism/Si

gnaling 

pathway 

References 

Celecoxib and 

cyclophosphami

de 

Breast cancer Anti-

angiogenic 

Decrease 

VEGF 

[88] 

Celecoxib and 

5-FU 

Squamous cell 

carcinoma 

Inhibit 

proliferation 

Inhibit AKT 

pathway 

[89] 

Celecoxib and 

epirubicin 

Novikoff 

hepatoma 

Reduce 

proliferating 

Suppress 

CD44, CD133 

and 

[90] 
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MDR-1 

expression 

Celecoxib and 

doxorubicin 

Human skin 

cancer 

Enhance 

apoptosis 

Inhibit AKT 

pathway 

[91] 

Celecoxib and 

rapamycin 

Gastric cancer Increase 

sensitivity 

Inhibit 

PI3K/AKT 

pathway 

[92] 

Celecoxib and 

doxorubicin 

Drug-resistant 

breast cancer 

Induce 

apoptosis 

Inhibit P-gp 

expression 

[93] 

Celecoxib and 

curcumin 

HCC Inhibit 

angiogenesis 

Inhibit Akt, 

NF-κB , and 

PGE2 

[94] 

Tolfenamic acid 

and cisplatin 

Breast cancer Induce 

apoptosis 

Increasing P-

53 

[95] 

Celecoxib and 

erlotinib 

NSLC Enhance 

apoptosis and 

radio-

sensitivity 

Inhibit EGFR 

and PIK/AKT 

pathway 

[96] 

Celecoxib and 

gefitinib 

NSLC Induce 

apoptosis 

Inhibit EGFR 

pathway 

[97] 

Celecoxib and 

gefitinib 

Prostate cancer Enhance 

apoptosis/reduc

e tumor 

proliferation 

Increased 

caspase 3 

cleavage/ 

decreases in 

BCL-2 and 

ABCB1 

expression 

[98] 
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Celecoxib and 

imatinib 

Colon cancer Inhibit 

proliferation 

Increase 

Caspase-3 

activity 

[99] 

Celecoxib and 

sunitinib 

Renal cancer Immunomodul

ation/ Alleviate 

tumor progress 

Inhibit GM-

CSF and 

STAT3 

expression/Alle

viating 

MDSCs 

[100] 

Celecoxib and 

sorafenib 

Ovarian cancer Induce 

apoptosis/ 

Reduce 

chaperone 

proteins 

[101] 

Celecoxib and 

sildenafil 

Ovarian cancer Induce 

apoptosis/Incre

ased platinum 

sensitivity 

Reduce 

chaperone 

proteins 

[101] 

 

2.5. Endothelial marker CD105 and its role in angiogenesis  

CD105, also known as endoglin, is a transmembrane glycoprotein predominantly 

expressed on the surface of endothelial cells. It serves as a crucial component in the 

regulation of angiogenesis and cellular responses to TGF-β signaling [102]. It has a role in 

vascular development and repair and has significant implications in pathological conditions 

such as cancer and fibrotic diseases [103]. In oncology, targeting CD105 with monoclonal 

antibodies or small molecules could effectively hinder tumor angiogenesis, thereby starving 

the tumor of its blood supply and inhibiting its growth. Clinical trials investigating anti-

CD105 therapies, such as TRC105, have demonstrated potential in treating various cancers 

by disrupting the angiogenic processes, although the exact mechanism is not fully understood 

[104]. 

 



 

 21 

3. Objectives  

Our aims were: 

1. To investigate the molecular effects of mEHT in the treatment of 4TI TNBC.  

2. Understanding the role of mEHT-induced COX-2, IL-6, and IL-1β expression in 4T1 

TNBC.  

3. To enhance the anti-tumor effect of mEHT - establish a protocol for 4T1 TNBC and 

B16F10 melanoma mouse models using combinational treatment of mEHT and COX 

inhibitors. 

4. To gain new, translationally relevant insights that can be used in clinical therapy. 
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4. Materials and methods 

4.1. Cell culture  

B16F10 cells (B16-F10 (RRID: CVCL_0159)) melanoma cell line was purchased from 

ATCC (ATCC®CRL 6475TM; Manassas, VA, USA), 4T1 (4T1 (RRID: CVCL_0125)) 

TNBC mouse cell line was provided by Judy Lieberman (Lieberman Laboratory, Harvard 

University, Boston, MA, USA). Cells were cultured according to protocols described in the 

previous studies [18,105]. In brief, 4T1 cells were grown as adherent cultures in a medium 

(DMEM, 4.5 g/L glucose without L-glutamine and Phenol Red, Capricorn Scientific, 

Ebsdorfergrund, Germany) supplemented with 10% Fetal Bovine Serum (FBS (South 

America Origin), EU approved, Euroclone S.p.A. Pero, Italy), L-glutamine 200 mM 

(Capricorn Scientific, Ebsdorfergrund, Germany), and penicillin 100x (Capricorn Scientific, 

Ebsdorfergrund, Germany). The B16F10 cells were cultured in MEM (Minimum Essential 

Medium) supplemented with 1% (v/v) MEM-vitamin solution, 5% (v/v) heat-inactivated 

HyClone fetal bovine serum, 1 mM sodium pyruvate, 2 mM L-glutamine, and 1% (v/v) 

nonessential amino acids (NEAAs) purchased from Thermo Fisher Scientific (Waltham, MA, 

USA). Regular mycoplasma screening was conducted on all cell lines, and all experiments 

were carried out using mycoplasma-free cells.The cell lines underwent authentication in the 

past three years through multiple evaluations, comparing newly acquired data with well-

established databases and reference panels. The process ensures the ongoing verification and 

validation of cell line identities. 

4.2. Animals housing  

Female BALB/c and C57BL6/ mice, aged 5 weeks, were ordered from the National 

Institute of Oncology (Budapest, Hungary) and housed under minimal disease conditions at 

the Animal Facility of the Basic Medical Science Center of Semmelweis University with free 

access to standard mouse chow and tap water ad libitum and under a 12 h dark/light cycle. 

Interventions and animal housing were carried out in accordance with Hungarian Law Nos. 

XXVIII (1998 and 2002) and LXVII (2002), both of which deal with animal protection and 

welfare, as well as European Union guidelines. The National Scientific Ethical Committee 
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on Animal Experimentation approved all animal treatments under the code PE/EA/50-2/2019 

on November 1, 2019. 

4.3. In vivo treatment of 4T1 TNBC  

1×106 4T1 TNBC cells /50µl PBS (Phosphate Buffered Saline with no Magnesium and 

Calcium, , Lonza A. G., Basel, Switzerland) were aspirated into Hamilton syringe (Hamilton 

Company, Reno, NV, USA), Mice were inoculated in the 4th mammary fat pad at the age of 

six- to eight-weeks In brief, isoflurane (Baxter International Inc., Deerfield, IL, USA) was 

used to anesthetize animals: for induction - 4-5% and for maintenance - 1.5-2%. 4T1 tumor 

cells were subcutaneously injected in each mouse's inguinal mammary fat pad using 

compressed air (0.4-0.6 L/min). On the eighth day after tumor injection, tumor volume was 

measured using ultrasound, as described previously [19]. Mice were randomized according 

to tumor volume into six different groups. On the same day, animals were given a daily dose 

of 100 mg/kg acetylsalicylic acid (Aspirin, ASA, Sigma-Aldrich Co., St. Louis, MO, US.) or 

6 mg/kg selective COX-2 inhibitor (SC236, Axon Medchem BV, Groningen, The 

Netherlands) via intraperitoneal injections [82]. Drugs were dissolved in 10% DMSO, 40% 

PEG300, 5% Tween-80, and 45% saline. Treatment with COX inhibitors, administered every 

day during the entire experiment, was combined with mEHT (Figure 7 A). Mice were treated 

four times in every 48 hours with a newly constructed labEHY-200 mEHT device 

(Oncotherm Ltd., Páty, Hungary) or Sham as detailed in our prior publications [18,19]. 

Tumor volume was monitored by ultrasound and digital caliper every day until the 

termination of the experiment. 

In two separate experiments, we investigated the long-term effects of mEHT treatment. 

In the time-kinetic experiment (Figure 7 B), mice were treated with mEHT and tumors were 

harvested after 3 mEHT treatments at different time-points. In the long-term follow-up 

experiment (Figure 7 C), tumors were harvested 96 hours after 2 mEHT treatments. The mice 

were euthanized by cervical dislocation on the day after the last treatment. Tumors were 

excised and cleaned for further processing. Half of the tumors were fixed in a 4% 

formaldehyde solution (Molar Chemicals Ltd., Halásztelek, Hungary), the other half was cut 

and stored at -80 °C for molecular analysis.  
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Figure 7. Experimental protocols of the 4T1 model. 4T1 triple-negative breast cancer 

(TNBC) cells were inoculated at the day zero. Mice were randomized at day eight. Modulated 

electro-hyperthermia (mEHT) treatments and NSAID administeration were performed every 

day from randomization until the end of the experiment. Ultrasound and caliper tumor 

volume measurements were performed on every intermittent day. Tumors were harvested at 

the end of the study. (A) Combination therapy: 4x mEHT treatment in combination with 

Aspirin or SC236. (B) Time kinetic experiment: 3x with mEHT treatment + tumor harvest at 

different time points. (C) Long-term follow-up: 2xmEHT treatment + tumor harvest at 96h 

after the last treatment. 
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4.4. In vivo treatment of B16F10 melanoma 

1×105 B16F10 melanoma cells were injected into the tail vein of female C57BL/6 mice, 

which induced tumor nodules in the lungs. The mice were randomized based on body weight. 

One day after inoculation, mice were treated with mEHT alone or mEHT combined 

with aspirin at 11.1 mmol/L concentration in their drinking water [106]. Because aspirin 

insoluble in water, aspirin was dissolved in 0,2 % DMSO and then mixed with the drinking 

water using a magnetic mixer. pH was adjusted to 7.4 - physiological pH using a combination 

of NaOH and/or HCl and a pH meter. Animals have been six times treated with the LabEHY-

200 device set up to maintain 41–42 °C inside the mice’s lungs [105]. According to the 

protocol, 30 min mEHT treatments were repeated six times in total on every third day (Figure 

8). Animals were terminated on day 20, 48 hours after the last mEHT treatment. The burden 

of lung melanoma was assessed by counting the number of tumor nodules on the lung surface 

[105].  

 

 

Figure 8. Experimental protocol of the B16F10 melanoma experiment. Randomization 

was performed at day 1, B16F10 melanoma cell were inoculated through the tail vein at day 

1, modulated electro-hyperthermia (mEHT) treatments were performed at day 2, 5, 8, 11, 14 

and 17. Aspirin mEHT combined with aspirin at 11.1 mmol/L concentration in their drinking 

water was administered every day from day zero until the end of the experiment. Tumors 

were harvested at day 20. 
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4.5. Real-time PCR after RNA isolation 

RNA was isolated using TRI reagent (Molecular Research Center Inc., Cincinnati, OH, 

USA) according to protocol provided by the manufacturer. A high-capacity cDNA reverse 

transcription kit was used to reverse transcribe the isolated RNA (Applied Biosystems, 

Carlsbad, CA, USA). The amplified cDNA was used as template for the RT-PCR. SYBR 

Green-based qRT-PCR using Sso Advanced TM Universal SYBR® Green Supermix and the 

CFX96 Touch Real-Time PCR Detection System was used to detect messenger RNA in the 

samples (Bio-Rad, Hercules, CA, USA). The 18S and GAPDH genes were used as 

normalising genes (Table 2). 

Table 2. Primer Pair designed for RT-PCR 

Gene 

Symbol 
Gene Name Primer Pair 

18S 
18S 

(Mus musculus) 

Fwd: 

CTCAACACGGGAAACCTCAC 

Rev: 

CGCTCCACCAACTAAGAACG 

GAPDH 

glyceraldehyde-3-

phosphate 

dehydrogenase 

(Mus Musculus) 

Fwd: CTCCCACTCTTCCACCTTCG 

Rev: GCCTCTCTTGCTCAGTGTCC 

IL-1β 
Interleukin 1 beta 

(Mus Musculus) 

Fwd: 

ACCTGTTCTTTGAGGCCGACA 

Rev: 

CCACAGCCACAATGAGTGAC 

IL-6 
Interleukin 6 

(Mus Musculus) 

Fwd: 

GATGCTACCAAACTGGATATAA

TC 

Rev: 

GGTCCTTAGCCACTCCTTCTGTG 
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COX-2 

Ptgs2 
Fwd: 

TCACGTGGAGTCCGCTTTAC 

(Mus Musculus) 
Rev: 

AGGATGCAGTGCTGAGTTCC 

 

4.6. Immunohistochemistry and histopathology 

The tumor tissues were preserved in 4% formalin and then encased in paraffin 

(FFPE). Using a polymer-peroxidase system (Histols, Histopathology Ltd., Pécs, Hungary), 

we cut serial sections of 2.5 m, dewaxed, and rehydrated them for hematoxylin-eosin (HE) 

staining or immunohistochemistry (IHC) (Table 3). The viable tumor area per cross-sectional 

tumor area was determined using the QuantCenter image analysis software (3DHISTECH), 

and the tumor destruction ratio (TDR%) was determined by dividing the necrotic area by the 

whole tumor area [19]. 

 

Table 3. Antibodies and conditions used for immunohistochemistry 

Antigen Type Reference no. Dilution Vendor 

cCasp3 Rabbit, pAb #9664 1:1600 
Cell 

Signaling 

 

4.7. Nanostring 

Extracted RNA was used for RNA detection with Nanostring technology (Nanostring, 

Redwood, CA, USA). Nanostring uses unique optical barcoded RNA that hybridize to the 

target RNA in the sample to enable digital counting of individual RNA molecules without 

possible artefacts introduced by enzymatic steps. The gene expression panel was custom 

made based on our previous publication in which mEHT-regulated genes were detected by 

next generation sequencing (NGS) and verified by Nanostring. The custom panel composed 

of 134 genes [18]. 
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In brief, 100 ng RNA was used for hybridization. After hybridization, samples were 

transferred to the nCounter Prep Station for data collection on the nCounter Digital Analyzer. 

The 4.0 nSolver Analysis Software (Nanostring, Redwood,CA, USA) was used for data 

analysis. Genes with log2 fold change values greater than 1.5 or less than -1.5 were 

considered the most regulated for further analysis. Values obtained from three replicates of 

two groups, mEHT or mEHT+SC236, were used to generate the volcano plot. DEGs was 

conducted utilizing the Gene Ontology (GO) which was accessed through the DAVID [107]. 

GO analysis was used to identify genes that can be classified into different groups. In our 

study, we used the database for DAVID (https://david.ncifcrf.gov/) to perform functional 

annotation clustering the most regulated genes. The p-value represents the probability of 

chance association between genes and a specific functional category. The p-value was 

adjusted with the Benjamini-Hochberg procedure to control for false discovery rate (FDR) 

by correcting for multiple comparisons. 

4.8. Statistical data analysis  

The statistical analysis was conducted using GraphPad Prism software (v.6.01; 

GraphPad Software, Inc., La Jolla, CA, USA). Unpaired Mann-Whitney non-parametric tests 

were used to compare the Sham and the mEHT-treated groups. Long-term examinations were 

statistically evaluated with one-way ANOVA. The data are presented as mean ± SEM. 

Differences were considered statistically significant if p < 0.05. 

  

https://david.ncifcrf.gov/


 

 29 

5. Results 

5.1. mEHT induced IL-1β, IL-6, and COX-2 mRNA expression 

mEHT induced the expression of pro-inflammatory cytokines (IL-6, IL-1β) in 4T1 

TNBC in vivo. In the time-kinetic experiment, mice were terminated after the last mEHT 

treatment at 4h, 12h, 24h, 48h and 72h (Figure 9 A). IL-6 (Figure 9 B) peaked at 12 hours 

(p=0.007), while IL-1β (Figure 9 C) peaked at 24 hours after the last mEHT treatment 

(p=0.009). IL-6 was 3.8- and IL-1β 3 times higher in the mEHT-treated mice vs Sham. COX-

2 mRNA was significantly elevated at 72h after the last mEHT session (p=0.01) (Figure 9 D) 

and was increased even at 96 hours (Figure 9 F) after 2X mEHT treatment. 
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Figure 9. Time kinetics of proinflammatory cytokines’ mRNA after modulated electro-

hyperthermia (mEHT) treatment. (A) Experimental protocol of the time kinetic 

experiment. (B, C, D) – mice were treated 3 times with mEHT and terminated at 4, 12, 24, 

48 and 72h after last treatment. Inflammatory cytokines expression was measured using qRT-

PCR: (B) IL-6. (C) IL-1β. (D) COX-2. (E) Protocol of the long-term follow-up experiment 

(G) – mice treated twice with mEHT and terminated at 96h, and COX-2 expression was 

measured. (F) COX-2 mRNA 96h after two mEHT treatments (p=0.06). Expression 

normalized to 18S reference gene. Values are expressed as mean±SEM, Unpaired Mann–

Whitney test *: p< 0.05, **: p< 0.01. Number of animals/groups: (B – D) Sham-each 

timepoint:12, mEHT- 4h:6; 12,24h:7; 48,72h:8; (F) 96h: Sham:6; mEHT: 6. 

5.2. mEHT disrupts blood vessels with following recovery seen in the endothelial 

marker CD105 expression in 4T1 TNBC 

mEHT treatment significantly downregulated CD105 expression at 12h (p=0.0002) 

compared to the Sham treated group, however, its expression returned to the Sham level 

afterwards (Figure 10). 

 

Figure 10. Time kinetics of CD105 mRNA after modulated electro-hyperthermia 

(mEHT) treatment). Expression is normalized to 18S reference gene. Values are expressed 

as mean±SEM, Unpaired Mann–Whitney test ***: p< 0.001 Number of animals/groups: 

Sham-each timepoint:12, mEHT- 4h:6; 12,24h:7; 48,72h:8;  
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5.3. mEHT induced expression of IL-1β, IL-6 and COX-2 was inhibited by NSAIDs 

In a separate experiment, mEHT and NSAID combination therapy was investigated 

(Figure 11 A). The mRNA level of IL-1β and COX-2 were upregulated (3.8x and 2.5x, 

respectively) 24h after the 4 mEHT treatments. IL-1β induction was almost completely 

reversed to the Sham level using SC236, but not aspirin (Figure 11 B), whereas COX-2 

induction was reversed by both SC236 and Aspirin (Figure 11 C). 

 

Figure 11. Pro-inflammatory cytokine mRNA after 4-time treatment with modulated 

electro-hyperthermia (mEHT) and NSAID. (A) Experimental protocol. (B) Expression of 

IL-1β. (C) Expression of COX-2. Expressions are normalized to GAPDH. One-way ANOVA, 

Values are expressed as mean±SEM, *: p< 0.05, **: p< 0.01. Number of animals/groups: (B 

– C) Sham+Veh:6; Sham+ASA:5; Sham+SC236:5; mEHT+Veh:8; mEHT+ASA:5; 

mEHT+SC236:10.  
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5.4. mEHT inhibited tumor growth was accelerated by NSAID co-treatment 

During the experiment of mEHT and NSAID combination therapy experiment (Figure 

12 A) tumor volumes were assessed by ultrasound. Tumor volumes progressed in 

Sham+vehicle treated mice from 264 ± 67 mm3 (after 2 treatments) to 320 ± 59 mm3 (after 3 

treatments) and to 413 ± 77 mm3 (after 4 mEHT treatments) (Figure 12 B, C, D, G). 

Monotherapy mEHT +vehicle was able to significantly reduce tumor size after 3 mEHT 

treatments (p=0.006) (Figure 12 C). Average volume in the mEHT-treated group was 258 ± 

54 mm3 compared to 320 ± 59 mm3 in the Sham-treated group. However, the combination 

therapy (mEHT+ASA and mEHT+SC236) was able to significantly reduce tumor volume 

already after 2 mEHT treatments to 156 ± 51 mm3 (p=0.02) and 145 ± 49 mm3, respectively, 

(p=0.02) compared to the Sham-treated group with an average volume of 264 ± 67 mm3 

(Figure 12 B). After 4 treatments, only the COX-2 specific combination (mEHT+SC236) 

with 166 ± 54 mm3 average volume proved to be significantly more effective than mEHT 

monotherapy (average volume 285 ± 77 mm3). The COX-2 specific combination 

(mEHT+SC236) was the most effective inhibitor of tumor growth (Figure 12 G). This 

observation was supported by significant reduction of the tumor weight at the end of the 

study (Figure 12 E, F). Average tumor weight in the mEHT treated group was 284 ± 88 mg, 

while in the mEHT+SC236 it was only 175 ± 51 mg (p=0.04). 

Most mice lost not more than 5-10% of their bodyweight by the 3rd treatment, and all 

recovered by the end of the study. The body weight loss was not significantly different 

between the groups. Sham treated mice (20.1 ± 1 g) lost an average of 0.5 grams (19.6 ± 0.6 

g) by the 3rd treatment. The mEHT treated group (19.4 ± 1.5 grams) lost an average of 1.7 g 

(17.7 ± 1.6 g). Animals that received the combination treatment of mEHT and ASA (20.7 ± 

0.7 g) lost only 1.2 g (19.5 ± 0.6 g), while those treated with mEHT+SC236 (20.7 ± 1 g) did 

not lose weight (Figure 12 H). Bodyweight by the end of the study did not differ significantly 

from the initial bodyweight in any of the groups. 
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Figure 12. Tumor growth, tumor weight and bodyweight. (A) Experimental protocol. Red 

circles: US data taken after the 2nd, 3rd and 4th modulated electro-hyperthermia (mEHT) are 

given on fig. 5/B, C, D, G. Tumor volume after (B) 2, (C) 3 and (D) 4 mEHT treatments. (E) 

Tumor weight (milligrams) at the end of the experiment. (F) Representative images of all 

excised tumors (Scale bar, 1 cm). Time curves of tumor growth measured by (G) ultrasound. 

(H) Body weight (grams). Values are expressed as mean±SEM. One-way ANOVA, Mean ± 

SEM, *: p< 0.05, **: p< 0.01, ***: p< 0.001, ****: p< 0.0001.  

5.5. mEHT-induced tumor tissue destruction proved to be cC3-dependent apoptosis 

that was enhanced by NSAIDs 

H&E staining was performed on tumor samples taken after the termination of the 

mEHT and NSAID combination therapy experiment (Figure 13 A). Pale areas (dead cells) 

on the H&E-stained slides (Figure 13 B) are corresponding to cleaved caspase-3 positive 

areas on the immunohistochemistry slides (Figure 13 C), designated as destructed areas 

appeared on Sham-treated tumors (TDR=52 ± 11 %). mEHT monotherapy (TDR=56 ± 5 %, 

p=0.9) or in combination with aspirin (TDR=66 ± 10 %, p=0.4) increased the TDR% to some 

extent, however, these did not reach statistical significance. Significant increase of the TDR 

was only achieved in the group treated with mEHT + SC236 (TDR=75 ± 14 %). The TDR in 

the mEHT + SC236 group was significantly different from the mEHT monotherapy group 
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(Figure 13 D). 

 

Figure 13. Tumor destruction ratio (TDR%) and cleaved caspase 3 (cC3) staining in 

harvested tumors. (A) Experimental protocol. (B) Representative pictures of H&E-stained 

tumors - tumor destruction ratio (TDR%) (red annotation) of whole tumors (blue annotation). 

(C) Representative pictures of cC3 stained tumors. (D) Quantification of tumor destruction 

ratio (TDR%). (Magnification: 40 x) One-way ANOVA, Values are expressed as mean±SEM, 

*: p< 0.05.  
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5.6. Multiplex (Nanostring) analysis demonstrated that COX-2 inhibition negatively 

correlated with tumor promoting factors associated with tumor cell membrane 

and extracellular matrix 

Three samples from the mEHT and mEHT+NSAIDs experiment (Figure 14 A) passed 

the Nanostring quality control (QC) and the Nanostring run was successful. 74 genes were 

identified as differentially expressed (DE) that are displayed on the heat map (Figure 14 B). 

The most regulated genes are presented individually (red dots) on the volcano plot (Figure 

14 C). Genes were identified (Table 4) and clustered in two groups using DAVID. 7 genes 

were identified as membrane proteins and 6 genes as secreted proteins. The P value and the 

p-value calculated with the Benjamini-Hochberg procedure is also given on (Figure 14 D). 
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Figure 14. Heat map and volcano plot of differentially expressed genes after modulated 

electro-hyperthermia (mEHT) vs mEHT+SC236 treatment from Nanostring data. (A) 

Experimental protocol. (B) Heat map of 74 differentially expressed genes (Nanostring 

nSolver® advanced analysis). Brown indicates upregulation, blue - downregulation. (C) -

Volcano plot of the most differently expressed genes (significance levels are plotted against 

fold changes (FCs). Vertical dotted lines: log2 FC=0.75, horizontal dotted line: -log10(P) 

=1,30103. n=3/group. Genes marked with red dots are identified in Table 34(D) Regulated 

genes were clustered into two groups by DAVID. The Benjamini adjusted P-value indicates 

enrichment of genes in a particular functional category. 

Upregulated proteins in mEHT+SC236 vs mEHT monotherapy were: 

- A Disintegrin like And Metalloproteinase - with ThromboSpondin Type 1 motif 15 

(ADAMTS15); C-X-C motif chemokine Ligand 11 (CXCL11); EGF -containing Fibulin 

-like Extracellular Matrix Protein (EFEMP1) which were identified by DAVID as 

secreted proteins. 

- Atypical ChemoKine Receptor1 (ACKR1); TENeurin transmeMbrane protein 2 

(TENM2); C-type LEctin domain Containing (CLEC10A); ENDothelin B Receptor 

(EDNRB); NeuReXiN protease -3 (NRXN3) which were identified by DAVID as 

membrane proteins.  

Downregulated proteins were: 

- Fibroblast Growth Factor-Binding Protein (FGFBP); NePhroNecTin (NPNT); 

STannioCalcin-1 (STC1) which were identified by DAVID as secreted proteins. 

- EPithelial Cell Adhesion Molecule (EPCAM) and EPHrin type-B receptor 6 (EPHB6) 

which were identified by DAVID as membrane proteins. 
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Table 4. Absolute mRNA count of secreted and membrane proteins from the Nanostring data 

performed on the 4T1 cell line. Individual data of the mEHT and mEHT+SC236 group 

members and group averages. Bold indicates downregulation, non-bold-upregulation. 

Linear mRNA data was received through the nSolver advanced analysis method.  

Group RNA 

count 

mEHT mEHT+SC236 

 Genes #35 #51 #56 Avg. #7 #14 #32    Avg. 

Secreted 

proteins 

Adamts15 28 98 74 65 294 286 113 231 

Cxcl11 77 89 148 105 370 213 396 326 

Efemp1 51 118 150 106 940 562 325 609 

Fgfbp1 355 224 155 245 56 174 68 99 

Npnt 1870 1714 817 1467 499 610 762 323 

Stc1 544 464 232 413 138 102 190 143 

Membrane 

proteins 

Ackr1 24 46 22 31 143 136 42 107 

Tenm2 3 19 19 14 47 87 35 56 

Clec10a 48 98 80 75 1239 1173 418 943 

Ednrb 48 62 51 54 614 352 231 399 

Nrxn3 4 10 11 9 27 40 22 29 

Ephb6 75 51 52 59 22 44 24 30 

Epcam 3263 5624 4580 4489 1832 3646 3090 2856 

 

5.7. Aspirin diminished lung nodules in the B16F10 melanoma model 

In the melanoma tail vein injection model (Figure 15 A) pulmonary melanoma nodules 

were counted macroscopically. In untreated (Sham lungs 38.1 ± 16 nodules were counted. 

mEHT treatment alone reduced the number of nodules (28.8 ± 12) although the difference 

was not statistically significant However, mEHT combined with aspirin, significantly 

decreased the number of focies compared to mEHT alone (8.1 ± 8) (Figure 15 B, C). On the 

other hand, aspirin alone (31 ± 29) had no significant effect compared to Sham (26 ± 14) 

(Figure 15 D, E).  
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Figure 15. Effect of modulated electro-hyperthermia (mEHT) in combination with 

Aspirin on tumor burden in B16F10 mouse model. (A) Experimental protocol. (B) 

Quantification and (C) representative images of melanoma lung nodules in Sham, mEHT, 

and Aspirin + mEHT groups and in Sham and Aspirin groups (D, E). (Scale bar, 1 mm). 

Mean ± SEM, Unpaired Mann–Whitney test *: p< 0.05. Number of animals/groups: (B) 

Sham:6; mEHT:5; mEHT+ASA:6; (D) Sham:10; ASA:9.   
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6. Discussion 

In the present study, we demonstrated that mEHT monotherapy induced inflammatory 

cytokines such as IL-6 and IL-1β. Inflammatory cytokines are a sign of more aggressive 

cancer phenotype [35,64]. By creating an inflammatory microenvironment within the tumor, 

IL-6 and IL-1β may promote tumor cell proliferation by activation of transcription factors 

and angiogenesis by the induction of key factors such as vascular endothelial growth factor 

(VEGF). There is a significant positive feedback loop between COX-2, IL-6, and IL-1β [59]. 

Based on the general knowledge, one of the COX-2 inducers are cytokines such as IL-1β 

[34] or IL-6 [49]. Our data revealed a COX-2 induction at 72- and 96-hours after mEHT 

treatment, which may be explained by the earlier upregulation of IL-6 and IL-1β at 12h and 

24h. Similarly, to our results, a recent paper demonstrated relatively late COX-2 induction at 

24h by chemotherapy (cisplatin and 5-FU) in 4T1 cells. Ablation of COX-2 with 

CRISPR/Cas9 effectively enhanced the treatment efficacy by reducing production of 

inflammatory proteins. Hence, similarly to our study, COX-2 inhibition was essential for 

effective combination therapy (chemo+immune therapy) [108]. Other studies demonstrated 

that photodynamic therapy has also induced significant IL-1β and COX-2 expression 

activating the tumor-favorable microenvironment, where COX-2 inhibitors were used to 

overcome the problem. A combination of photodynamic therapy with selective COX-2 

inhibitors effectively inhibited inflammatory cytokine and VEGF synthesis and enhanced 

therapy-induced cytotoxicity and apoptosis [109].  

In addition, CD105 (endoglin) was checked in time kinetics experiment, which 

represents the endothelial marker and is involved in the regulation of angiogenesis and wound 

healing [102]. We supposed significant blood vessel disruption after mEHT treatment at the 

12h time point, which recovered over time. CD105 may represent a possible target combined 

with mEHT [102]. The concept related to blood vessel disruption after mEHT treatment was 

assessed by the study by our group Bokhari et al.2024 [110]. The study suggests that targeting 

angiogenesis and impairing tumor vascularization in combination with mEHT can 

synergistically inhibit tumor growth. This therapeutic strategy, however, requires further 

investigation. 
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In this hypothesis, it is suggested that NSAIDs may regulate the TME and mEHT-

induced proinflammatory cytokines: IL-1, IL-6, and COX-2. As a result, NSAIDs may 

enhance the mEHT-induced tumor cell death. Combining clinically available mEHT with 

NSAIDs is a new potential tool in oncologic therapy. 

We combined mEHT with COX inhibitors, namely aspirin and SC-236 in TNBC 4T1 

and B16F10 melanoma experimental mouse models. The 4T1 TNBC growth inhibitory effect 

of mEHT monotherapy was quite similar to our previously published studies, where mEHT 

alone effectively inhibited 4T1 TNBC growth after the third treatment [18,19]. However, 

here the combination of mEHT with NSAIDs, demonstrated significant tumor shrinkage 

earlier: already after the second treatment, as revealed by both ultrasound and a digital caliper 

measurements of tumor volume. The clinical relevance of achieving tumor reduction at an 

earlier stage of treatment is enormous, as earlier inhibition of exponential tumor growth 

offers better prognosis. Shrinking the tumor early, may render it more susceptible to 

subsequent treatments like surgery, radiation, or chemotherapy. Thus, early tumor size 

reduction could potentially make these treatments more effective, leading to better outcomes 

[111]. Early cancer treatment is also emphasized by the recent NHS cancer guideline[112]. 

The tumor volume proved to be markedly small after combined treatment (mEHT+SC236) 

only after the fourth treatment compared to mEHT.  

Besides the tumor size reduction in the NSAID combined groups the tumor destruction 

ratio (TDR) of the remaining small tumors was also larger. However, in mEHT- monotherapy 

treated tumors, only tumor size was smaller than in the Sham-treated tumors. The TDR did 

not differ significantly, similarly to our previous studies [18]. The lack of significant increase 

in TDR is largely due to the severe spontaneous destruction of Sham tumors growing to a 

size where spontaneous necrosis is evident [113].  

Moreover, the tumor damage response was accompanied by a significant increase in 

cleaved caspase 3, suggesting that apoptosis played an important role in the antitumor effect 

of mEHT and NSAIDs [114]. As cancer cells often evade apoptosis, inducing apoptosis in 

cancer cells is a critical goal of cancer treatment. The intrinsic resistance of cancer cells to 

apoptosis is the basis of resistance to chemotherapy [115]. Thus, induction or reactivation of 
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apoptosis in cancer sensitizes cancer cells to therapy [116]. Monotherapy with both mEHT or 

COX-2 inhibitors induced significant cC3 staining in TNBC in the previous [19,117],as well 

as in this present study. COX-2 inhibition and mEHT-induced apoptosis may have 

contributed to the synergistic effects of mEHT+NSAIDs [70,118]. 

Non-steroid anti-inflammatory drugs have never been used in combination with mEHT 

before us. Although, a natural agent like curcumin, has similar anti-inflammatory properties. 

Indeed, by attenuating M2 TAM and MDSC tumour infiltration on CT26 colon cancer mouse 

model, curcumin effectively synergized mEHT-mediated tumor growth suppression [119].  

Neither mEHT, nor the NSAIDs, nor any combination appeared to be toxic based on 

the body weight data as animals did not lose more than 5-10% of their body weight [47]. 

Assessing treatment toxicity in preclinical models is crucial to evaluate the safety for clinical 

translation [2]. Based on the body surface area dose conversion method [120], 100 mg/kg 

ASA is equivalent to a moderate human ASA dose of 300-500 mg/day [81]. Long-term ASA 

treatment can result in renal, cardiovascular, and gastric toxicity as well as bleeding and 

hypersensitivity [121]. SC236 used in the present study is analogous to Celecoxib. Celecoxib 

is associated with a decreased risk of gastrointestinal bleeding, although it still has a higher 

incidence of cardiovascular events in comparison to traditional NSAIDs [122]. Although the 

applied mEHT+NSAID dose combination did not appear to have any toxicity, the toxicity 

findings of the present mouse study must be reevaluated in large animal models and early-

phase clinical studies before reaching conclusions relevant to the clinical setting. 

According to our RT-qPCR data NSAIDs attenuated mEHT induced IL-1β and COX-

2 expression. Besides inflammatory proteins, NSAIDs may affect COX-independent 

inflammatory pathways, by the inhibition pathways that support cell proliferation and 

angiogenesis but suppress apoptosis [76–79]. Therefore, COX inhibition-induced apoptosis 

sensitizes cancer to other conventional anti-cancer therapies such as chemotherapy, 

immunotherapy, radiotherapy [85,86] or mEHT [123]. 

The results of the Nanostring multiplex data analysis demonstrated that the 

combination of mEHT with a selective COX-2 inhibitor regulated secreted and cell 
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membrane proteins. Some of the secreted proteins are extracellular matrix (ECM) proteins 

(EFEMP1, NPNT, STC), ECM regulators (ADAMTS15, CXCL11, FGFBP1,) and thus are 

an essential part of the tumor microenvironment. The identified membrane proteins serve as 

receptors (EPHB6, ACKR1, EDNRB) or adhesion molecules (EPCAM) and may enhance 

antitumor immunity (TENM2 and CLEC-10A), thus they may contributed enhanced mEHT 

induced cancer destruction through regulating the TME related immune response. 

ADAMTS15 was upregulated in mEHT+ SC236 compared to mEHT monotherapy. It 

is involved in extracellular matrix remodeling [124,125], and participates in tissue 

organization and vascular homeostasis. ADAMTS15 is a secreted protease modifying the 

extracellular matrix components like proteoglycans and collagen [126]. The role of 

ADAMTS15 in tumor pathophysiology is inhibition of angiogenesis and cell migration [127]. 

To our knowledge, the regulation of ADAMTS15 by COX-2 has not been described before. 

ADAMTS15 may be acting as a tumor suppressor in breast cancer by modulating cell-

environment interactions [128,129]. ADAMTS15 expression is a favorable prognostic factor 

in breast cancer. Higher expression has been associated with better clinical outcomes, 

including longer overall survival and disease-free survival [130] [131].  

Similarly, secreted proteins, such as EFEMP1 and CXCL11, which are known targets 

of selCOXIBs [46], were also upregulated in the combination group. EFEMP1 is an 

extracellular matrix protein, associated with elastic fiber formation and cell adhesion [132] 

and is considered a tumor-suppressor gene [133,134]. Its expression is diminished in breast 

cancer [135]. The anti-angiogenic properties (reduction of angiogenic sprouting) of EFEMP1 

have been described [136]. Although contradictory data suggesting EFEMP1 to be a bad 

prognostic indicator have been also published [137], our data support the beneficial role of 

EFEMP1 in breast cancer. CXCL11 is involved in the immune response including T-cell and 

TME regulation. CXCL11 can enhance antitumor immune cell migration and infiltration in 

the breast cancer tissue [138].  

Additionally, downregulated secreted glycoproteins were FGFBP1, STC1 and NPNT. 

FGFBP1’s physiologic role is to regulate fibroblasts and some cellular processes, such as 

differentiation and growth. In cancer biology, FGFBP1 may stimulate angiogenesis, PD-L1 
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expression and immune inhibition [139,140]. STC1 is a secreted glycoprotein. Its biological 

role is the regulation of phosphate and calcium homeostasis [141]. In cancer cells, STC1 

enhances metastasis via the PI-3K/Akt/NF-κB signaling pathways [142]. Similarly to our 

results, a study demonstrated, that NSAIDs (Ibuprofen) attenuated IL-1β induced STC1 

expression in chondrocytes [143]. The glycoprotein NPNT is secreted into the TNBC 

extracellular matrix and plays a role in adhesion and migration. In cancer, NPNT may 

promote metastasis via its integrin-binding site, which is important for adhesion and 

transmigration through the endothelial cells [144]. Thus, downregulation of NPNT by 

NSAIDs may have contributed to the reduced tumor formation in our lung melanoma model. 

Regulation of NPNT and FGFBP1 by COX-inhibition has not been described before. As 

described, FGFBP1, STC1 and NPNT proteins have tumor promoting effect, thus, 

downregulation of these proteins could have contributed to the synergistic effect seen in our 

study.  

Membrane glycoproteins, such as ACKR1, EDNRB, TENM2 and CLEC-10A, were 

highly expressed in the selCoxib treated group. These proteins are considered as biomarkers 

of good prognosis for various cancers. They may negatively regulate the tumor-favorable 

microenvironment and support the anti-tumor immunity in breast cancer, although their role 

in tumor pathophysiology is not yet completely understood [145–148]. The regulation of 

these proteins by COX-inhibition has not been described before. In our study, the 

upregulation of these proteins by selCoxIb treatment probably contributed to the enhanced 

effects of mEHT in treating tumors. Neurexin 3 (NRXN3) encodes a protein involved in 

synaptic signaling and neural development in the nervous system [149]. Overlaps between 

genes involved in neural development and in cancer, suggest links between nervous system 

development and tumorigenesis [150,151]. Emerging research suggests a role of NRXN3 in 

some cancers, including breast cancer [152], through its involvement in cellular adhesion, 

migration, and invasion. 

Additionally, the expression of the membrane proteins EPCAM and EPHB6 were 

downregulated by selCoxib treatment. Their biological role has been associated with cell-

adhesion and signaling. Thus, they may stimulate 4T1 cell growth, therefore, EPCAM and 
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EPHB6 are associated with poor survival [153]. Silencing EPCAM significantly decreased 

the capacity of TNBC cell proliferation [154]. EPCAM expression is related to COX-2 

expression, TME regulation, and angiogenesis [155].  

The listed regulated genes are mostly considered predictor biomarkers of prognosis in 

various cancers. The clinical implications of these genes are often context-dependent, and 

continuous research is essential to comprehend their roles in diseases and how they can be 

utilized for clinical purposes like diagnosis, prognosis, and targeted therapies. 

Furthermore, we investigated the combination therapy of mEHT with aspirin in the 

B16F10 melanoma model. Tumor nodules in the lungs were targeted with a new application 

method developed by Thomas MJ et al in 2020 [105]. The pulmonary nodules were counted 

to evaluate the effect of the combination therapy. Our findings suggest, that mEHT efficacy 

was enhanced by aspirin, however, aspirin alone did not reduce the nodule count in the lungs. 

The study has shown the positive impact of aspirin in the B16F10 tumor model, as it induces 

cC3-mediated apoptosis. [83,106]. Our data in 4T1 TNBC model also supports the role of 

cC3-mediated apoptosis. It appears that cC3-mediated apoptosis might contribute to the 

observed synergistic inhibition of tumor growth [34], [35]. Although, the exact molecular 

mechanism needs to be further investigated.  
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7. Conclusion 

We suggest a new combination treatment protocol, which could be implicated in the 

clinical setting as a therapeutic option due to its effectiveness and availability.  

We can draw the following conclusion based on our results: 

1. mEHT treatment stimulated the expression of proinflammatory cytokines IL-1β, IL-6, 

and COX-2 in 4T1 TNBC 

2. The combination therapy of mEHT+aspirin and mEHT+SC236 demonstrated a 

synergistic inhibition of tumor growth in 4T1 TNBC animal cancer model. However, 

selective COX-2 inhibition proved to be more effective 

3. The mEHT induced expression of IL-1β and COX-2 were attenuated after COX-2 

inhibition 

4. Selective COX-2 inhibition enhanced mEHT-induced tumor destruction 

5. Selective COX-2 inhibition may modulate the extracellular matrix, and cell membrane 

functions in the tumor microenvironment leading to inhibition of cancer cell 

proliferation 

6. Apirin+mEHT demonstrated synergistic lung nodule inhibition in B16F10 melanoma 

mouse model 
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8. Summary 

Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks 

modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy 

which demonstrated clinical efficacy for the treatment of various cancer types. In this study, 

we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1β) and interleukin-6 

(IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-

promoting tumor microenvironment. Thus, we combined mEHT with non-steroid anti-

inflammatory drugs (NSAIDs): a non-selective aspirin, or the selective COX-2 inhibitor 

SC236, in vivo. We demonstrate that NSAIDs synergistically increased the tumor growth 

antagonizing effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor 

destruction ratio (TDR) was observed mEHT was applied with the the combination of SC236. 

IL-1β and COX-2 expression were significantly reduced by the combination therapies. 

Furthermore, tumor damage was accompanied by a significant increase in cleaved caspase-3 

(cC3), suggesting that apoptosis played an important role. Additionally, a custom-made 

Nanostring panel demonstrated significant upregulation of genes participating in the 

formation of the extracellular matrix and cell membrane functions. Similarly, in the B16F10 

melanoma model, mEHT and aspirin synergistically reduced the number of melanoma 

nodules in the lungs. In conclusion, mEHT combined with selective COX-2 inhibitors may 

offer a new therapeutic option in the treatment of TNBC.  
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