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1. INTRODUCTION 

According to the World Health Organization, lung cancer was the second most 

commonly diagnosed cancer in 2020 with 2.21 million cases and was the leading cause 

for cancer-related deaths with 1.8 million people dying of lung cancer (1, 2). High 

incidence and mortality rates of this cancer type are characteristic of Hungary as well (3). 

Lung cancer is a heterogeneous disease both in terms of its clinicopathological and 

molecular features, which poses several challenges in the diagnosis and treatment of 

patients (4). 

Proteomics plays a central role in advancing our understanding of cancer biology. 

It refers to the large-scale investigation of proteins, their expression, structure, and 

physiological roles within biological systems. By quantifying the variations and 

abundance of proteins, we gain a deeper understanding of the function of individual 

proteins, and of their spatiotemporal dynamics within those systems (5). The strength of 

proteomics lies in its closeness to the phenotype; thus, it can complement (epi)genomics- 

and transcriptomics-based efforts in biomarker discovery and in capturing the complexity 

of the disease (6-10). 

My doctoral thesis focuses on the heterogeneity of two lung cancer types, small 

cell lung cancers (SCLCs) and anaplastic lymphoma kinase (ALK)-rearranged lung 

adenocarcinomas (LADCs), which we investigated using mass spectrometry (MS)-based 

proteomics and complemented by transcriptome-based findings. The thesis thus continues 

with an introduction to these lung cancer types, followed by an overview of MS-based 

proteomics. 

1.1 Lung cancer 

Histologically, two main types of lung cancer exist: SCLC (representing ca. 15% 

of all cases) and non-small cell lung cancer (NSCLC, accounting for ca. 85% of the cases). 

Within the NSCLC histology type, adenocarcinomas are the most prevalent, followed by 

squamous-cell carcinomas (11). 
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1.1.1 Small cell lung cancer 

While less frequent, SCLC is distinguished by its aggressive behavior and early 

metastatic spread, resulting in a 5-year survival rate of less than 7% (12). Histologically, 

SCLC tumor cells are of small size with round-to-fusiform shape, their cytoplasm is 

generally scanty, have finely granular nuclear chromatin and either absent or 

inconspicuous nucleoli (13). At the molecular level, these tumors are characterized by 

high mutation burden, extensive chromosomal rearrangements, and in general, the tumor 

suppressors TP53 and RB1 are functionally inactivated (14). Oftentimes, diagnosis occurs 

when patients are in the extensive stage of the disease, making surgical intervention no 

longer feasible and limiting treatment options to cytotoxic chemotherapy and radiation 

(14). Immune checkpoint inhibitors have been administered only with moderate success 

to SCLC patients, and targeted therapies have so far failed, which emphasizes the 

importance of basic discovery and clinical translational research to develop more 

effective therapeutic approaches for SCLC (15). 

Recent molecular profiling studies of SCLC shed light on substantial 

heterogeneity, introducing a new classification system based on both neuroendocrine 

(NE) features and unique molecular profiles (12, 16, 17). Based on the expression patterns 

of transcription factors ASCL1, NEUROD1, POU2F3 and YAP1, Rudin et al. proposed 

new molecular subgroups, namely SCLC-A, SCLC-N, SCLC-P and SCLC-Y. These 

subtypes show diverse NE characteristics, with SCLC-A and SCLC-N being classified as 

NE tumors (NE high and low, respectively), while SCLC-P and SCLC-Y were described 

as non-NE tumors (16). The classification system was established based on genomic, 

epigenetic, and transcriptomic profiling studies performed on clinical samples and 

preclinical models (16, 18-20). However, follow-up immunohistochemistry (IHC) 

analyses of human tumor tissue samples demonstrated that not all relationships between 

subtype markers and NE features, as initially anticipated from gene expression data, could 

be confirmed by IHC (21). This study also failed to validate a unique YAP1-driven 

subtype (21). An inflamed subtype (SCLC-I) characterized by an inflamed gene signature 

was proposed as an alternative to the YAP1-defined subtype (22). This underpins the 

importance of protein-level investigations to better understand the molecular subtypes of 

SCLC and to identify diagnostic markers as well as the subgroups’ therapeutic 

vulnerabilities. 
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However, as of today, SCLC heterogeneity is understudied at the protein level. 

The first large-scale proteogenomic analysis of 112 SCLC tissues was only published this 

year (23). Previous proteomic studies treated SCLC as a single entity and SCLC tumors 

were compared with normal bronchial epithelial tissues (24), non-SCLC cell lines (25), 

carcinoid tumor tissues (26), or the cell lines’ proteomic profile was published as part of 

a larger cell line proteome resource (27). 

1.1.2 ALK-rearranged lung adenocarcinoma 

LADC patients have a dismal five-year survival rate of 15%, attributable to the 

fact that diagnosis usually occurs at a late stage and patients develop resistance to 

treatment (28). Multiple morphological subtypes of LADC exist, including acinar, 

lepidic, (micro)papillary and solid morphologies (29). For example, the acinar (also called 

tubular) morphology refers to glandular structures with luminal spaces. Papillary 

morphology is described as finger-like projections lined by tumor cells. In contrast, sheets 

or nests of tumor cells displaying no glandular or papillary structures is characteristic of 

the solid subtype (30). Comprehensive histopathological assessment of lung cancers 

entails the description of various tumor features besides morphology, such as the density 

and distribution of tumor infiltrating lymphocytes, stroma, and mucin production. 

Alongside with the prognostic and therapeutic relevance of tumor morphology (30), these 

histopathological features influence tumor behavior, potentially impacting therapy 

resistance and patient outcome (31-33). 

Considering molecular heterogeneity, numerous genetic aberrations may drive 

lung carcinogenesis, as revealed by whole-genome/-exome and RNA-sequencing studies. 

These aberrations include EGFR, KRAS, BRAF and HER2 mutations and gene 

rearrangements involving ALK, RET, ROS1 and skipping of exon 14 in MET. Currently, 

only targeted therapies against EGFR mutations and ALK fusions are part of standard care 

next to conventional therapies (surgery, chemo- and radiotherapy) and immunotherapy 

(34). 

Merely 3-5% of LADCs from the Caucasian population harbor ALK gene 

rearrangements (35). Upon fusion with partner genes (most frequently EML4), ALK 

activity increases, activating downstream signaling pathways including MAPK, PI3K-

AKT, or JAK-STAT (36). This promotes the proliferation and survival of cancer cells. 
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The aberrantly activated ALK can be targeted with ALK inhibitors (ALKi) such Crizotinib 

(Xalkori; first-generation ALKi) or Alectinib (Alecensa; second-generation ALKi). 

While these therapies significantly improve patient outcomes, most patients experience 

tumor recurrence due to cancer cells acquiring resistance to treatment (37). Intratumoral 

heterogeneity is a crucial contributor to therapeutic resistance. It is a complex 

phenomenon influenced by genetic, epigenetic, and environmental factors, and is affected 

by the interplay between the tumor cells and their microenvironment (38). Notably, lung 

cancers driven by ALK rearrangements often contain ALK-negative regions as well (39), 

potentially introducing additional molecular- and pathway-level heterogeneity within 

these tumors. 

Large cohorts of LADCs were previously investigated via multiple omic 

approaches including proteomics (6-8, 10). However, these cohorts contain only a few 

ALK-driven tumors, and bulk-tissue expression profiling was performed. In parallel, 

spatially resolved profiling studies on non-ALK-driven NSCLCs demonstrated the value 

of the multiplex and targeted RNA/protein analyses for biomarker discovery (40-43). This 

highlights the unmet need to map the multi-omic profiles of ALK-rearranged LADCs 

while also capturing their intratumoral heterogeneity. 

1.2 Mass spectrometry-based proteomics 

Mass spectrometry (MS)-based proteomics has become the primary tool to 

explore entire proteomes in-depth, including the analysis of PTMs and cancer-specific 

protein sequence alterations (44). 

The value in the direct investigation of the entire proteome stems from the intricate 

and dynamic nature of proteome regulation. Protein expression is influenced by factors 

such as alternative splicing, single nucleotide polymorphisms (resulting in diverse 

proteoforms) and transcript degradation. In addition, various processes taking place at 

proteome level, including protein-protein interactions, degradation rates and post-

translational modifications (PTMs), contribute to the intricate nature of the proteome (45, 

46). In line with this, multi-omic cancer studies in the past demonstrated only a weakly 

positive agreement between the samples’ mRNA and protein expression profiles (47-50), 

which emphasizes the importance of directly mapping the cancer proteome. 
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There are two main techniques for the MS-based analysis of proteins, called the 

“top-down” and “bottom-up” approaches. In the top-down methodology, proteins are 

analyzed in their intact form. This requires a more sophisticated instrumentation, and only 

a limited number of proteins can be analyzed at the same time (51). In contrast, the 

bottom-up methodology (also called shotgun proteomics) tackles the analysis of the 

proteome by first subjecting proteins to enzymatic digestion, and then by analyzing the 

resulting peptides. Thus, proteins are inferred based on the measured peptides (52). The 

bottom-up approach is a well-established technique, enabling the identification and 

quantification of thousands of proteins in a single sample (53), thus suitable, for instance, 

in the discovery phase of cancer studies to provide an in-depth view of the tumors’ 

proteome (54). In further paragraphs of the Introduction, only the bottom-up approach in 

the context of discovery proteomic studies is discussed. 

Proteomic experiments start with sample processing, which is instrumental in 

eliminating inferring compounds, in maximizing the number of peptide identifications, 

and in ensuring reproducibility. Tumors may undergo tissue sectioning and histological 

examination prior to proteomic sample preparation. Exact steps, such as protein 

extraction, digestion (oftentimes with trypsin), peptide fractionation, labeling approaches 

for protein quantification, or enrichment of peptides with specific PTMs, are decided 

based on the clinical question and are also determined by the tumors’ storage method 

(fresh-frozen or formalin-fixed paraffin-embedded, FFPE). Regardless of the exact 

sample preparation workflow, complex peptide mixtures are ultimately injected onto a 

liquid chromatography (LC) system coupled with electrospray ionization tandem MS 

(MS/MS). Peptide ions are first separated on a reversed-phase chromatographic column, 

followed by mass measurement (MS1), and then are fragmented and subjected to a second 

stage of mass measurement (MS2) (55). MS data acquisition can be data-dependent and 

data-independent acquisition (DDA and DIA, respectively). DDA involves acquiring an 

MS1 spectrum followed by selecting a set number of precursor peptide ions for 

fragmentation. In contrast, DIA acquires MS2 spectra without bias, sequentially 

fragmenting all peptides in a specified mass-to-charge ratio range. While DDA has 

straightforward mass spectra interpretation, its semi-stochastic nature leads to low 

reproducibility and may overlook less abundant precursor ions. DIA offers precise 

quantitation, increased protein identification, but poses computational challenges and 
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complexities in raw data interpretation (56). Collectively, the gathered liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) data can be used to both 

identify and quantify peptides in a sample with dedicated software (55). 

1.3 Proteomic data processing and analysis 

The raw data obtained from LC-MS/MS require sophisticated algorithms for 

peptide identification, quantification, and protein inference. Commonly used raw data 

processing tools include Proteome Discoverer (Thermo Scientific), FragPipe (57), 

MaxQuant (58), Skyline (59), MetaMorpheus (60), and Spectronaut (Biognosis). 

Peptide identification algorithms are categorized broadly based on how the search 

space is constructed, i.e. the list of sequences that are considered when matching spectra 

to peptides. The de novo search considers all possible amino acid sequences (61), the 

database search uses in silico-digested protein sequences which protein sequences are 

expected to be present in the sample (e.g. human protein sequences for human samples) 

(62), and finally, the spectral library search matches the collected MS2 spectra with 

entries in a reference library, hence the search space is limited to peptides previously 

identified via MS (63). After peptide identifications were made by the algorithms, the 

potential peptide-spectrum matches are subjected to a subsequent statistical validation 

step to discriminate between correct and incorrect identifications. The false discovery rate 

(FDR) is often computed via the target-decoy strategy, in which case the decoy hits are 

used to estimate a threshold for retaining high-confidence target peptide-spectrum 

matches (64). Protein inference takes place after peptide identification, which includes 

grouping peptide-spectrum matches according to their corresponding protein and 

employing another statistical data validation step at the protein level (64). For abundance 

estimation of proteins, label-free quantification (LFQ) and label-based quantification 

approaches were developed. LFQ relies either on spectral counting, or on quantitation 

based on the precursor ions’ chromatographic peak areas. Labeling is based on subjecting 

peptides to metabolic and chemical modifications, thus requiring extra steps during 

sample preparation but providing the highest precision in quantification. In contrast, LFQ 

is cost-efficient from a sample preparation point-of-view and still results in comparable 

proteome coverage (65). 
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Ultimately, data processing software generates a protein abundance matrix listing 

proteins and their abundances per sample, which is then subjected to post-processing, 

followed by subsequent downstream (statistical and bioinformatic) analyses (Figure 1). 

 

 

Figure 1. A schematic data analysis workflow in discovery proteomic studies. 

  

Post-processing includes log2-transformation of protein abundances to remove 

the extreme skewness of the values towards zero and to stabilize the variability of protein 

abundances (66). Run-to-run variability between measurements, stemming from non-

biological factors, needs to be mitigated with normalization, e.g. via using the median, 

linear regression, variance stabilization, or quantile normalization strategies (67). Given 

that normalization only aligns the samples’ global patterns, further batch effects, 
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stemming from differences in sample preparation and data acquisition conditions, might 

still be present and need to be corrected for (68). In addition, proteins quantified only in 

relatively few samples are removed prior to an optional missing data imputation step, and 

before statistical analyses. The imputation method is chosen based on whether the 

missingness is assumed to be intensity-independent or -dependent (69). Popular methods 

include k-nearest neighbors (70) (suited for intensity-independent missingness), 

imputation of values from a normal distribution (71) and imputation by accelerated failure 

model (72) (both suited for intensity-dependent missingness). 

After post-processing, the protein abundance matrix together with the cleaned 

sample metadata, is ready for subsequent downstream analyses. The data analysis steps 

are chosen based on the original research question. Many studies aim to understand how 

proteomic profiles relate to specific phenotypes (73). These can be answered with 

traditional statistical tests such as t-tests, analysis of variance (ANOVA) tests, or linear 

regression. To address the multiple hypothesis testing problem that arises with such 

investigations, p-value adjustment is needed to effectively reduce the number of false 

positive findings, e.g. via the Bonferroni, Holm, or the Benjamini-Hochberg (BH, also 

known as FDR) procedures (74). In addition, machine learning-based approaches such as 

unsupervised clustering, principal component analysis (PCA), partial least squares-

discriminant analysis or support vector machine algorithms are used to explore the high-

dimensional proteomic data at hand (73). 

Additional knowledge on protein function, cellular localization, protein-protein 

interactions and on regulatory processes, can be incorporated in proteomic data analysis 

by approaches termed as “pathway analysis” and “network analysis”. These analyses rely 

on knowledge bases like Gene Ontology, Reactome, Kyoto Encyclopedia of Genes and 

Genomes (KEGG), Molecular Signature Database (MSigDB), STRING, or BioCarta. 

Network analysis builds protein interaction networks using previous experimental data 

and new in silico predictions to gain systems-level biological understanding. In contrast, 

pathway analysis identifies pathways that may explain the molecular mechanisms that 

resulted in the proteins’ altered presence or their differential abundance between sample 

phenotypes (75). Popular methods include over-representation analysis (ORA), which 

assesses the enrichment of a predefined gene set within a subset of “interesting” proteins, 

comparing its presence to what would be expected by chance (76). Gene set enrichment 
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analysis (GSEA) is a rank-based approach that assesses whether predefined groups of 

proteins are predominantly upregulated or downregulated in one sample phenotype 

compared to another. GSEA is particularly valuable when the differential expression 

analysis falls short in detecting subtle yet coordinated changes in expression across 

sample phenotypes for groups of related proteins (77). 

Proteomics, whether used alone or integrated with other omic data, offers valuable 

insights into tumor biology, and aids the identification of diagnostic, predictive, 

prognostic, and therapeutic markers. To promote reproducibility, as well as validation and 

meta-analysis by subsequent research endeavors, it is desirable to share the data and code 

with the scientific community (78). Similarly, public omic data repositories can be 

utilized to validate study findings by reanalyzing prior independent research. 
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2. OBJECTIVES 

1. Proteomic study of SCLC (study I): To perform a proteomic analysis of cell lines 

derived from human SCLCs, including the analysis of both the cell pellet (CP) 

and culture media (CM). To investigate the proteomic differences between cell 

lines from SCLC-A/N/P/Y subtypes, integrated with results from existing 

transcriptomic datasets. To list potential diagnostic or therapeutic markers for the 

subtypes as well as insights into the subtypes’ specific pathway-level features that 

may influence therapy response. 

2. Multi-omic study of ALK-rearranged LADC (study II): To perform a spatial multi-

omic characterization of treatment-naïve ALK-rearranged LADCs, by utilizing 

both bottom-up proteomics and NanoString GeoMx gene expression profiling. To 

describe the molecular characteristics of tumor regions with distinct 

histopathological features, including differences in morphology, immune 

infiltration, stroma and mucin content, as well as to provide the main contributors 

to molecular heterogeneity within tumors which may influence patient outcome 

and therapy response. 
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3. METHODS 

3.1 Characteristics of studied biological specimens 

3.1.1 Small cell lung cancer cell lines 

The 26 human SCLC cell lines were purchased from American Type Culture 

Collection or were kindly provided by our collaborators (Table 1) (79). 

 

Table 1. Cell lines subjected to proteomics, and their general characteristics. 
Abbreviations: N/A, not available; SCLC, small cell lung cancer. Modified table from 
(79). 

Cell line ID Subtype Cell line origin Chemotherapy Culture type 

DMS153 SCLC-A metastatic post-chemo semi-adherent 

DMS53 SCLC-A lung chemo-naïve adherent 

H146 SCLC-A metastatic chemo-naïve suspension 

H1688 SCLC-A metastatic chemo-naïve adherent 

H1882 SCLC-A metastatic N/A adherent 

H209 SCLC-A metastatic chemo-naïve suspension 

H378 SCLC-A lung post-chemo suspension 

SHP77 SCLC-A lung N/A adherent 

GLC4 SCLC-N pleural effusion chemo-naïve suspension 

H1694 SCLC-N lung N/A semi-adherent 

H2171 SCLC-N pleural effusion post-chemo suspension 

H446 SCLC-N pleural effusion N/A adherent 

H524 SCLC-N metastatic post-chemo suspension 

H82 SCLC-N metastatic N/A semi-adherent 

N417 SCLC-N lung N/A suspension 

COR-L311 SCLC-P lung post-chemo suspension 

H1048 SCLC-P pleural effusion N/A adherent 

H211 SCLC-P lung post-chemo suspension 

H526 SCLC-P metastatic chemo-naïve suspension 

CRL-2066 SCLC-Y lung chemo-naïve adherent 

CRL-2177 SCLC-Y lung N/A adherent 

H1341 SCLC-Y metastatic N/A adherent 

H196 SCLC-Y pleural effusion post-chemo adherent 

H372 SCLC-Y metastatic N/A adherent 

H841 SCLC-Y lung post-chemo adherent 

HLHE SCLC-Y metastatic N/A adherent 
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The cell lines were maintained at 37°C in a humidified incubator with 5% CO2, 

in RPMI‐1640 with 10% fetal calf serum (Sigma Chemical Co.), 100 U/ml penicillin and 

10 mg/ml streptomycin (Sigma Chemical Co.) Importantly, cell lines were regularly 

checked for mycoplasma contamination and were used within 10 passages after 

authentication. Subtype (SCLC-A/N/P/Y) was determined by analyzing the ASCL1, 

NEUROD1, POU2F3 and YAP1 gene expression patterns via quantitative polymerase 

chain reaction (qPCR) (79). 

3.1.2 ALK-rearranged LADC tissues 

The primary LADC tumors were obtained from the National Korányi Institute of 

Pulmonology in Hungary. IHC and fluorescence in situ hybridization were used to 

determine ALK positivity at the 2nd Department of Pathology, Semmelweis University, 

Hungary. Ethical approval was granted by the Medical Research Council of Hungary 

(2521-0/2010-1018EKU, 510/2013, 52614-4-213EKU). All patients were treated with 

ALK inhibitors after determining ALK positivity (80). 

The proteomic and transcriptomic regions of interest (pROIs and tROIs, 

respectively) underwent histopathological evaluation, for which the slides were stained 

with hematoxylin and eosin and scanned with a Pannoramic 250b Slide scanner 

(3DHistech Ltd.). Both tumor and normal adjacent tissue (NAT) regions were selected 

for molecular profiling. The morphological areas were manually annotated. Immune 

scores (spanning from 0 to 3) were derived from a semi-quantitative assessment of 

immune cell (lymphocytic) infiltration within the area of tumor cell nests (80). This was 

performed using the QuPATH v0.3.0 software (81). Mucin and stroma scores were given 

as follows: score 0: 0%, score 1: 1-33%, score 2: 34-66%, score 3: >66% mucin or stromal 

content in the given ROI. The clinical and histopathological data of this cohort are 

summarized in Table 2 (80). 

  



17 
 

Table 2. Summary of clinical data and the histopathological data of ROIs. 
Abbreviations: ALKi, ALK inhibitor; avr., average; nr., number; N/A, not available; 
NAT, normal adjacent tissue; pROI, proteomic region of interest; TIL, tumor infiltrating 
lymphocyte; tROI, transcriptomic region of interest; yrs, years. Modified table from (80). 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 
Sex male male male female female female male 
Age at 
diagnosis 
(years) 

53.6 43.7 68.9 32.8 68.5 64.2 66.7 

Stage on 
presentation 

N/A N/A N/A 3 N/A 4 3 

ALK 
inhibitor 

Crizo-
tinib 

Crizo-
tinib 

Crizo-
tinib 

Crizo-
tinib 

Crizo-
tinib 

Alec- 
tinib 

Alec-
tinib 

Alive no yes no yes yes yes yes 
Overall 
survival 
(years) 

2.2 6.6 4.1 13.8 7.3 4.9 6.7 

pROI 
morphology 
(nr. of 
pROIs) 

tubular 
(2) 

NAT 
(1), 
solid (1) 

NAT (3), 
papillary 
(2), 
tubular 
(1) 

papillary 
(3) 

solid (4) solid (3) NAT (1), 
solid (2) 
 

Avr. TIL of 
pROIs (%) 

25.00 25.00 15.00 23.33 8.75 28.33 30.00 

Avr. mucin 
score of 
pROIs 

3.00 2.00 2.00 3.00 0.00 0.00 0.50 
 

Avr. stroma 
score of 
pROIs 

3.00 2.00 1.67 2.33 1.75 1.00 3.00 
 

tROI 
morphology 
(nr. of tROIs) 

NAT (1), 
tubular 
(11) 

NAT 
(2), 
solid 
(10) 

NAT (2), 
papillary 
(8), 
tubular 
(2) 

NAT (1), 
papillary 
(11) 

solid (12) solid (12) NAT (2), 
solid (10) 

Avr. immune 
score of 
pROIs 

2.25 2.00 2.00 1.42 2.25 1.60 1.17 

 

3.2 Experimentally collected proteomic and transcriptomic data 

3.2.1 Proteomic analysis of SCLC cell lines 

Both the pellets and media (CP and CM, respectively) from 26 cell lines were 

processed and subjected to MS-based proteomic analysis.  

In brief, the CPs were solubilized with a protein extraction buffer containing 25 

mM dithiothreitol, 10% sodium dodecyl sulphate, 100 mM triethylammonium 

bicarbonate (pH = 8). The volume of the buffer was determined by the cell count, where 
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250 μl of protein extraction buffer was added to samples containing 5 million cells. 

Solubilization was achieved by incubation for 5 min at 95°C with shaking at 500 rpm. 

Protein extraction was carried out through a 20 min sonication at 4°C (Bioruptor Plus, 

Diagenode) with 40 cycles (15 s on/15 s off), followed by a brief centrifugation at 20000 

× g at 18°C to remove cell debris. Protein concentration was determined using a Pierce 

660 nm Protein Assay kit (Thermo Scientific) (79). 

The filtered CM samples underwent concentration using spin concentrators (5K 4 

ml, Agilent Technologies) until reaching ca. 100 μl in volume. NanoDrop (DeNovix DS‐

11 FX +) was used for protein determination. Sodium dodecyl sulfate was added to a final 

concentration of 3%, as well as 100 mM triethylammonium bicarbonate was added to 

adjust the pH. Reduction was carried out using 10 mM dithiothreitol with a 1-hour 

incubation period at 37°C (79). 

For both CP and CM, protein digestion was achieved utilizing the S‐Trap 

technology (ProtiFi) with slight modifications, as previously described by our group (82). 

In short, the samples underwent alkylation with 50 mM iodoacetamide and acidification 

with 1.2% phosphoric acid. Subsequently, S‐Trap binding buffer (90% methanol, 100 

mM triethylammonium bicarbonate) was added to 7× the final sample volume, and the 

mixtures were transferred to the S‐Trap 96‐well digestion plate. Captured proteins were 

subjected to four washes with 200 μl of S‐Trap binding buffer followed by brief 

centrifugations (2 min at 1000 × g). For digestion, a buffer containing 50 mM 

triethylammonium bicarbonate along with LysC at a 1:50 enzyme‐to‐protein ratio was 

added on top of the filters. The samples were incubated for 2 h at 37°C. Next, a digestion 

buffer containing trypsin at a 1:50 enzyme‐to‐protein ratio was added, and the samples 

were incubated overnight at 37°C. The next day, peptides were eluted in three steps: 

initially with 80 μl of digestion buffer, followed by 80 μl of 0.2% formic acid, and finally 

with 80 μl of 50% acetonitrile containing 0.2% formic acid. Peptides were dried down 

via a vacuum concentrator. The Pierce Quantitative Colorimetric Peptide Assay kit 

(Thermo Scientific) was used for peptide determination (79). 

A Q Exactive HF‐X mass spectrometer coupled to a Dionex UltiMate 3000 

RSLCnano UPLC system (Thermo Scientific), equipped with an EASY‐Spray ion source 

was used for the nano LC-MS/MS analysis. Peptides from CP and CM samples were 

injected in triplicate (1.5 μg and 1 μg respectively). Samples were loaded onto an Acclaim 
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PepMap 100 C18 trap column (75 μm × 2 cm, 3 μm, 100 Å, nanoViper) and were 

separated on an Acclaim PepMap RSLC C18 column (75 μm × 50 cm, 2 μm, 100 Å) 

(Thermo Scientific). A flow rate of 300 nl/min, a column temperature of 60°C, and a 145-

minute-long gradient was applied using solvents A (0.1% formic acid) and B (0.1% 

formic acid in 80% acetonitrile). Solvent B was increased from 2% to 25% over 115 min, 

then to 32% in the next 10 min, and further to 45% in 7 min. Lastly, solvent B was raised 

to 90% in 8 min, then this concentration was maintained for an additional 5 min (79). 

Considering the MS approach, peptides from the CP were analyzed with one DDA 

and two DIA runs, while peptides from the CM were subjected to two DDA and one DIA 

runs. For the top 20 DDA method, full MS1 scans were conducted at m/z 375-1500, 

resolution of 120000 (at 200 m/z), target automatic gain control value of 3 × 106 and 

maximum injection time of 100 ms. A normalized collision energy of 28 was used for 

fragmentation, with an isolation window set to 1.2 m/z. MS2 scans were acquired at a 

resolution of 15000 (at 200 m/z), with a target automatic gain control value of 1 × 105, a 

maximum injection time of 50 ms, an ion selection threshold of 8 × 103, and dynamic 

exclusion set to 40 s. Regarding the DIA analysis, a complete acquisition cycle comprised 

three MS1 full scans, each followed by 18 MS2 DIA scans with variable isolation 

windows. MS1 full scans were conducted within the range of m/z 375-1455, with a 

resolution of 120000 (at 200 m/z), a target automatic gain control value of 3 × 106, and a 

maximum injection time of 50 ms. MS2 scans were acquired with a resolution of 30000 

(at 200 m/z), using a normalized collision energy of 28 for fragmentation, a target 

automatic gain control value of 1 × 106, automatic maximum injection time, and a fixed 

first mass of 200 m/z. The used variable isolation windows were 13.0, 16.0, 26.0, and 

61.0 m/z, with 27, 13, 8 and 6 loop counts, respectively (79). 

The database search was performed within Proteome Discoverer v2.4, using the 

SEQUEST HT search engine combined with spectral library search. The UniProtKB 

human database (accessed on 15 January 2019) and the Proteome Tools spectral libraries 

were utilized during the search. Carbamidomethylation of cysteine was set as static 

modification, while oxidation of methionine and N-terminal acetylation were included as 

dynamic modifications. A precursor tolerance of 10 ppm and a fragment mass tolerance 

of 0.02 Da were applied. Up to two missed cleavages, and an FDR of 1% at the peptide 



20 
 

and protein levels were allowed. The top three average method was employed for protein 

quantitation (79). 

3.2.2 Proteomic analysis of LADC tumors with ALK-rearrangement 

The sample preparation steps and MS measurements for the proteomic data used 

in our study was initially reported in (83), following previously established protocols 

described in (84, 85). The tissue areas selected for proteomic analysis can be seen in 

Figure 2. In short, the sample preparation included dewaxing, rehydration, and antigen 

retrieval of the selected ROIs, followed by on-surface digestion with a Trypsin/Lys-C 

mix, peptide extraction and purification. Reversed-phase peptide separation was 

performed on an Acquity M-Class BEH130 C18 analytical column using Dionex Ultimate 

3000 RSLC nanoUHPLC. MS analysis in DDA mode was employed using a Bruker 

Maxis II Q-TOF (Bruker Daltonik GmbH) MS. Proteins were identified with Byonic 

v4.2.10 (Swiss-Prot human database, accessed on 01 November 2020), and a focused 

database was created for subsequent label-free quantitation with MaxQuant v1.6.17 (80, 

83). 

3.2.3 NanoString GeoMx profiling of LADC tumors with ALK-rearrangement 

For the NanoString GeoMx profiling, FFPE slides were deparaffinized and 

rehydrated, followed by antigen retrieval and digestion by proteinase-K. Following an 

overnight hybridization with cancer transcriptome atlas probes, the samples were washed 

to remove off-target probes and stained with morphology markers (PanCK, SYTO83, 

CD45, CD3). From each ROI, RNA identification and unique molecular identifier-

containing oligonucleotide tags were cleaved with ultraviolet light and collected by the 

GeoMx. The digital slides with this fluorescent staining were inspected, and ROIs were 

selected (Figure 2). Next-generation sequencing library preparation and purification was 

performed after collecting the oligo tags, and sequencing was carried out on an Illumina 

NovaSeq 6000 (Illumina). The Nanostring DnD pipeline was utilized to process fastq files 

into digital count (.dcc) files, which were uploaded into the GeoMx software for data 

post-processing (80). 
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Figure 2. The analyzed regions across the seven ALK-rearranged lung 
adenocarcinomas. The smaller transcriptomic regions of interest (tROIs) are colored 
based on immune score or whether the tROI was in a normal adjacent tissue (NAT) region 
or at the site of vascular invasion (“tumor lumen”). Regions for proteomic analysis 
covered larger tumor and NAT areas. Hematoxylin and eosin slides: 0.4x magnification, 
fluorescent staining inserts: 63x magnification. Figures in a modified form from (80). 

3.3 Data cleaning and post-processing 

Data analysis steps were mainly performed with R v4.2.0 (R Foundation for 

Statistical Computing, Vienna, Austria, 2022) and the custom R scripts were uploaded to 

GitHub: https://github.com/bszeitz/SCLC_proteomics (study I) and 

https://github.com/bszeitz/ALK_rearranged_pADCs_multiomics (study II). 
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3.3.1 Proteomic data post-processing 

Similar post-processing steps were conducted in studies I and II. The protein 

intensities (LFQ or intensity-based absolute quantification (iBAQ) values) were log2-

transformed and normalized by centering the values around the global median in each 

sample (79, 80). Further post-processing steps were done in study I as the same cell lines 

were subjected to LC-MS/MS analysis multiple times. Firstly, triplicate measurements 

from the same MS vial were checked for low-quality measurements, and those were 

subsequently excluded. The median value of protein intensity measurements from the 

same MS vial was then calculated. The batch effect was removed using univariate linear 

regression, after which all replicates from the same cell line could be averaged (79). 

The filter for proteins with quantitative values across at least 80% of the samples 

was performed both in studies I and II. In addition, “on/off” proteins across SCLC 

subtypes were identified in study I based on their missing value patterns. For this analysis, 

proteins present in ≥85% of samples in one SCLC subtype and ≤15% in other subtypes 

were considered “on”, while proteins present in ≤15% of samples in one subtype and 

≥85% in other subtypes were considered “off” in a certain subtype. To impute missing 

values with low-intensity values, the Perseus v1.625 (71) software was used in study I 

(impute low-intensity values based on normal distribution, width = 0.3, down shift = 1.8), 

whereas in study II, the “impute.MinProb” function from the imputeLCMD R package 

was used (79, 80). 

3.3.2 NanoString data post-processing 

The raw NanoString data were first processed in the GeoMX Analysis Software 

v2.2.0.122. All tROIs passed initial quality control, which included checking the 

sequencing parameters and the template control counts. Biological Probe quality control 

was then run to identify any outlying probes (a total of five probes per gene target) before 

individual probe data were collapsed to gene-level counts. A total of nine outlying gene 

probes from nine separate genes, as well as one outlying negative probe was detected and 

removed. In the resulting raw, gene-level count data, the negative probes were used to 

calculate the limits of quantitation for each tROI using the following formula: [geometric 

mean of negative probes × (geometric standard deviation of negative probes)2]. For third 

quartile (Q3) normalization of the raw counts, a normalization factor was generated for 
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each tROI as shown: [geometric mean of all ROI Q3 values in the dataset / individual 

ROI Q3 value]. The final data contained the normalized gene counts of 1811 genes, 

quantified across all tROIs (80). 

3.3.3 Accessing external databases and datasets 

To annotate proteins from study I, various databases were utilized, including 

databases on secreted proteins (86-88), on proteins detectable/actively secreted in the 

blood (the Human Protein Atlas v21.1, https://www.proteinatlas.org), on “druggable” 

proteins (the Human Protein Atlas v21.1). Functional proteins annotations were extracted 

from UniProt, Release 2022_03 (89). The list of Food and Drug Administration (FDA)-

approved drugs that directly interact with selected proteins as part of their mechanism of 

action was gathered from the DrugBank database (90). In addition, the CancerRxGene 

drug sensitivity data [Release 8.3 (91); Genomics of Drug Sensitivity in Cancer 1 

(GDSC1) and GDSC2 datasets] was downloaded from the FTP Server of the Wellcome 

Sanger Institute (79). 

For study I, the transcriptomic data (both the Fragments per kilobase million 

(FPKM) and the Z-score values) of relevant SCLC tissue samples were accessed from 

cBioPortal (92, 93), downloading George et al.’s work (18). In addition, the raw RNA-

Seq data of Cancer Cell Line Encyclopedia (CCLE) cell lines (gene count data, 

normalized using RNA-Seq by Expectation-Maximization, i.e. RSEM method) were 

accessed from the Cancer Dependency Map (94). This raw data were further processed 

using the limma R package (95), which included normalization factor calculation, 

filtering out genes with only expression values below 50, and voom transformation where 

the model matrix included the subtype assignment (79). 

To supplement results in study II, the LADC proteomic and RNA-Seq dataset of 

the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (7) was accessed (80). 

3.4 Data analysis 

3.4.1 Calculation of sample-wise scores 

In study I, the transcriptomic dataset from George et al. (18) was subjected to 

single-sample gene set enrichment analysis (ssGSEA) (96). Only transcripts with sum 

FPKM higher than 50, and one transcript per gene (the transcript with the highest sum 
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FPKM value) was retained. The normalized enrichment score (NES) per sample was 

calculated for selected gene sets with the following settings: sample.norm.type = “rank”, 

weight = 0.75, statistic = “area.under.RES”, output.score.type = “NES”, nperm = 1000, 

min.overlap = 5, and correl.type = “z.score”. To quantify the NE and epithelial-

mesenchymal transition (EMT) characteristics of SCLC cell lines, previously published 

gene sets (Zhang et al. (17) for NE markers, Kohn et al. (97) for epithelial and 

mesenchymal markers) were leveraged. The NE score was calculated for each cell line in 

the following manner: NE score = (Mean Z-scored protein expression of NE markers) - 

(Mean Z-scored protein expression of non-NE markers). Similarly, the EMT score was 

calculated the following way for each cell line: EMT score = (Mean Z-scored protein 

expression of mesenchymal markers) - (Mean Z-scored protein expression of epithelial 

markers) (79). 

In study II, the normalized gene counts from NanoString and the iBAQ protein 

intensities after missing value imputation were transformed into single-sample gene set 

scores (singscores) using the singScore R package (98). The Hallmark (99), KEGG (100) 

and Reactome (101) gene sets were obtained from MSigDB v7.5.1 (102) for this analysis. 

Minimum 10 overlapping genes between our gene/protein expression data and the gene 

set were expected prior to the singscore calculation, other parameters were left at default 

(80). 

3.4.2 Cluster analysis 

Clustering settings for heat map visualizations via the ComplexHeatmap R 

package (103) were hierarchical clustering, Euclidean distance and complete linkage, 

unless specified otherwise. To discover sample groups in an unsupervised manner, a 

consensus clustering algorithm implemented in the ConsensusClusterPlus R package 

(104) was used in both studies. In study I, the basis of clustering was the samples’ protein 

expression profile in the CP dataset after filtering for proteins that have a standard 

deviation (SD) above 1.25. In study II, the pROIs’ protein LFQ values and tROIs’ gene 

counts after Z-score normalization were used. Data were resampled 1000 times via the 

bootstrap method with a probability of 0.8 for selecting any item (i.e. sample) and any 

feature (i.e. protein/gene), then these bootstrap sample datasets were clustered using the 

partitioning around medoids method with Pearson distance and complete linkage. The 
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best number of clusters was selected based on the visual inspection of 

ConsensusClusterPlus outputs in both studies, plus considering silhouette width 

information in study I (79, 80). 

3.4.3 Correlation analysis 

Before assessing the similarity of the tROIs and pROIs in study II, the gene counts 

and singscores of the tROIs from the same pROI were averaged. These averaged values 

were then correlated with the pROIs’ LFQ values and singscores (Pearson correlation 

test, via the correlation R package). BH-adjusted (adj.) p < 0.05 was considered 

significant (80). 

3.4.4 Differential expression analysis 

In study I, ANOVA was used to perform differential expression analysis (DEA), 

followed by Tukey's honestly significant difference post hoc tests. A protein was 

considered significant if both the BH-adj. p-value of the ANOVA test and the relevant 

pairwise Tukey's honestly significant difference test p-values were less than 0.05. For the 

SCLC transcriptomic data from the CCLE database (94), limma was used for DEA by 

fitting a linear model, followed by Empirical Bayes smoothing of standard errors. BH-

adj. p < 0.05 was considered significant (79). 

In study II, the DEA was performed on the gene counts and protein LFQ values 

via the R package glmmSeq (105). Linear mixed effects models were built, in which the 

patient identifiers were included as the random effect. Significance was set at BH-adj. p 

< 0.05 and in case of group comparisons, a minimum of 1.5-fold change (FC) difference 

was accepted (80). 

3.4.5 Pathway analysis 

To perform pathway overrepresentation analysis (ORA), either the clusterProfiler 

(106) and ReactomePA (107) R packages (study I), or the fgsea R package was used 

(study II). In study I, the default list of human genes was used as background. In study II, 

due to the limited number of quantified proteins and genes, the background gene list 

varied according to the conducted analysis (either the commonly quantified 162 genes 

across the tROIs and pROIs were used, or the 2318 proteins and 1811 genes quantified in 

minimum one pROI and tROI, respectively) (79, 80). 
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Pre-ranked gene set enrichment analysis (pGSEA) was performed via the 

clusterProfiler R package. The list of gene sets were downloaded from MSigDB (102) 

v.7.4 (study I) and v.7.5.1 (study II), including the Hallmark (99), KEGG (100) and 

Reactome (101) gene sets which were used in both studies, plus the Gene Ontology (108, 

109) biological process and oncogenic curated gene sets which were only used in study I. 

Prior to pGSEA, the proteins/genes were ranked based on a log2(FC) or coefficient value 

multiplied by the -log10 p-value (all derived from the DEAs described above). In the case 

of multiple-group comparisons in study II, the mean log2(FC)/coefficient was used. The 

pGSEA p-values were adjusted via the BH method. In study I, the pGSEA results were 

further filtered to obtain the list of subtype-characteristic gene sets. In brief, only pGSEA 

p-values < 0.01 in all comparisons of the subtype of interest against the other subtypes 

were accepted, and the normalized enrichment score (NES) had to exhibit an unequivocal 

sign, either positive or negative. In addition, if a gene set identified as characteristic for a 

subtype in one dataset (proteomics or transcriptomics) also exhibited a p-value of less 

than 0.1 in relevant comparisons of the other dataset, and the NES values showed the 

same direction, the gene set was considered significant in both proteomics and 

transcriptomics. For visualization purposes, only representative pathways from the list of 

significant pathways were shown in both studies I and II (79, 80). 

3.4.6 Selection of proteins and genes with stable and variable expression 

In study II, the coefficient of variation (CV) was calculated for each protein and 

gene individually within each patient’s tumor to calculate the variability of their 

expression. The ROIs of NATs were excluded from this analysis (and subsequently, 

proteomic data of Case 2 as it contained only one tumor pROI). Stably and variably 

expressed proteins/genes were chosen based on whether their CV values were among the 

bottom and top 20% within at least four cases, respectively (80). 

3.4.7 Visualizations 

Visualizations were mainly done using the R packages ComplexHeatmap, 

ggbiplot and ggplot2. Some figures in study I were drawn using GraphPad Prism v.8 for 

Windows (GraphPad Software, San Diego, California USA, www.graphpad.com, 2019) 

(79, 80). 
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4. RESULTS 

4.1 Results from the SCLC study 

4.1.1 Cohort overview 

We performed a label-free proteomic analysis to characterize the cellular 

proteome and secretome (CP and CM data, respectively) of 26 cell lines derived from 

primary or metastatic human SCLCs (Table 1). Using qPCR, these cell lines were 

categorized into subtypes based on the gene expression patterns of the relevant 

transcription factors (ASCL1, NEUROD1, POU2F3 and YAP1). In addition, their culture 

type was recorded, with 13 growing adherently, 3 semi-adherently, and 10 in suspension 

(79). 

4.1.2 Proteome-level heterogeneity of SCLC cell lines 

A total of 10161 proteins were identified and quantified, with 9570 proteins 

detected in the CP and 6425 in the CM. Among these, 8405 and 5408 proteins were 

quantified across minimum 80% of the samples in the CP and CM respectively. These 

filtered data were used for downstream statistical analyses. As expected, the filtered CM 

data showed a relatively higher number of secreted proteins (n = 514) and proteins 

detectable in the human blood plasma (n = 3126) compared to the filtered CP data (295 

secreted and 3076 plasma proteins) (79). 

Cell lines grown adherent on plastic and cell lines grown in suspension showed 

clearly distinct protein expression profiles. In the CP data, 270 significantly upregulated 

and 244 downregulated proteins were detected in adherently growing cell lines compared 

to cell lines grown in suspension. In the CM data, 148 and 244 proteins showed significant 

upregulation and downregulation in adherently growing cell lines, respectively. 

Subjecting the differentially expressed proteins separately for CP and CM to pathway 

ORA showed that KEGG pathways such as the protein processing in endoplasmic 

reticulum, lysosome and glycosaminoglycan degradation were significantly (p < 0.05) 

enriched both in CP and CM. In addition, other pathways such as the endocytosis and gap 

junction pathways were found to be overrepresented among the differentially expressed 

proteins in the CP and CM data, respectively (79). 
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Multiple observations in the CP data hinted that the cell lines’ gene expression-

based subtype classification translates into distinct proteomic subtypes. Firstly, the 

transcription factors showed increased protein-level expression in their respective 

subtype (Figure 3) (79). 

 

 

Figure 3. The protein abundance of key transcription factors ASCL1, NEUROD1, 
POU2F3 and YAP1 derived from the proteomic analysis of small cell lung cancer 
(SCLC) cell lines. Mean label-free quantification (LFQ) values of proteins ± standard 
deviation are shown, separately for each subtype (SCLC-A/N/P/Y). Missing LFQ values 
are indicated by an x. The significance of independent t-tests is indicated above the 
boxplots (*p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001). Figure in a modified 
form from (79). 
 

Secondly, an unsupervised consensus clustering of the CP samples based on their 

most variable proteins grouped the samples into four distinct clusters which corresponded 

to the qPCR-based subgroups with only one misclassified sample (Figure 4A). The H1882 

cell line was classified into the SCLC-A subgroup according to the qPCR results, but into 

the SCLC-P subset based on the proteomic data. Interestingly, higher POU2F3 gene 

expression was detected in this cell line compared to other SCLC-A cell lines. Of note, 

SCLC-Y cell lines exhibited the most distinct protein expression profile compared to 

other subtypes. The high concordance between qPCR- and proteome-based subtypes 

prompted us to use the qPCR-based classification system to group our cell lines into 

subtypes (79). 

Characterizing the cell lines based on their NE and EMT features demonstrated 

that in most SCLC-A cell lines, NE and epithelial markers were more strongly expressed 

than non-NE and mesenchymal markers (mean (M)NE score = 0.71, MEMT score = -0.70). 

SCLC-N cell lines showed NE characteristics with mixed epithelial-mesenchymal 

characteristics (MNE score = 0.56 and MEMT score = 0.39). Cell lines of the SCLC-P type 

exhibited lower NE features than SCLC-A and -N but higher than SCLC-Y, together with 
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a higher expression of epithelial markers (MNE score = -0.05 and MEMT score = -0.61). 

Lastly, prominent non-NE and mesenchymal features were characteristic for SCLC-Y 

cell lines (MNE score = -1.35 and MEMT score = 0.75) (Figure 4A). In contrast to the CP 

data, the CM data were more affected by the culture type of the cell line than by the 

subtype classification (Figure 4B) (79). 

 

 

Figure 4. Proteomic analysis of small cell lung cancer (SCLC) cell lines confirms 
molecular heterogeneity. (A) Heat map of most variable proteins (>1.25 standard 
deviation, SD) from the cell pellet data. Cell lines are sorted according to their consensus 
cluster assignments and main sample annotations are shown above the heat map. (B) 
Principal component analysis plot of the culture media data using only the highly variable 
(>1.25 SD) proteins, where cell lines are colored according to the subtype and shape 
indicates culture type. Figures in a modified form from (79). 
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4.1.3 Proteins with potential diagnostic or therapeutic relevance 

To find potential diagnostic (tissue or blood-based) markers for each subtype, 

proteins showing subtype-specific up- or downregulation (i.e. protein abundance is 

higher/lower in a given subtype compared to all the three other subtypes) using DEA were 

sought out. This list was supplemented with four proteins showing on/off characteristics 

across the subtypes in the CP data, namely achaete-scute homolog 1 (ASCL1; “on” in 

SCLC-A), regulator of G-protein signaling 22 (RGS22; “on” in SCLC-P), neurexophilin-

4 and puratrophin-1 (NXPH4 and PKHG4; “off” in SCLC-Y). In total, 367 and 34 

subtype-specific proteins were identified in the CP and CM data, respectively, with 11 

proteins displaying subtype-specificity in both datasets. Among these, 33 proteins were 

assigned to subtype SCLC-A, 54 to SCLC-N, 32 to SCLC-P, and 271 to SCLC-Y. 

Notably, 22 of these proteins exhibited subtype-specific expression patterns in the CM 

data and are also detectable in the human blood plasma, thereby representing potential 

blood-based subtype markers (79). 

In addition, six of the subtype-specific proteins were annotated as “druggable” 

(i.e. are targets of drugs approved by FDA), indicating that these proteins could serve as 

potential subtype-specific therapeutic targets. The drugs that directly interact with these 

proteins as part of their mechanism of action were collected (Table 3) (79).  
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Table 3. List of potentially targetable small cell lung cancer (SCLC) subtype-specific 
proteins. Abbreviations: CM, culture media; CP, cell pellet; FDA, Food and Drug 
Administration; RTK, receptor tyrosine kinase; SCLC, small cell lung cancer. Modified 
table from (79). 

Protein name 

(gene name) 

Dataset & 

specificity 

Annotation FDA-approved drugs 

Aromatic-L-amino-

acid decarboxylase 

(DDC) 

CP, higher 

expression in 

SCLC-A 

Enzyme that catalyzes 

dopamine and serotonin 

synthesis 

Benserazide, 

carbidopa, methyldopa 

Ephrin type-A 

receptor 2 (EPHA2) 

CP, higher 

expression in 

SCLC-Y 

RTK, involved in contact-

dependent bidirectional 

signaling with neighboring cells 

Dasatinib, regorafenib 

Histone deacetylase 

1 (HDAC1) 

CP, higher 

expression in 

SCLC-A/N/P 

Histone deacetylase with 

regulatory function in 

transcriptional processes 

Romidepsin, vorinostat 

Integrin alpha-V 

(ITGAV) 

CP, higher 

expression in 

SCLC-Y 

Integrin, receptor for a wide 

array of proteins. Cluster of 

differentiation marker 

Antithymocyte 

immunoglobulin, 

levothyroxine 

Integrin beta-1 

(ITGB1) 

CP, higher 

expression in 

SCLC-Y 

Integrin, receptor for a wide 

array of proteins. Cluster of 

differentiation marker 

Antithymocyte 

immunoglobulin 

Mast/stem cell 

growth factor 

receptor kit (KIT) 

CP and CM,  

higher expression 

in SCLC-P 

RTK, acts as cell-surface 

receptor for the cytokine KIT 

Ligand. Cluster of 

differentiation marker 

Ancestim, imatinib, 

lenvatinib, pazopanib, 

regorafenib, ripretinib, 

sorafenib, sunitinib, 

tivozanib 

 

Several SCLC cell lines have previously been tested against seven of these drugs 

(CancerRxGene database, (91)). Contrasting the drug sensitivity data with our proteomic 

data showed that lower ephrin type-A receptor 2 (EPHA2), mast/stem cell growth factor 

receptor kit (KIT) and histone deacetylase 1 (HDAC1) protein abundance were indicative 

of increased resistance (i.e. generally higher logarithmic half maximal inhibitory 

concentration (IC50) values) to the drugs (dasatinib, pazopanib, and vorinostat 

respectively) targeting these proteins (Figure 5) (79). 
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Figure 5. Relationships between protein expression and drug sensitivity of small cell 
lung cancer (SCLC) cell lines. Scatter plots showing the logarithmic half maximal 
inhibitory concentration (IC50) values of the cell lines for drugs selected from the 
Genomics of Drug Sensitivity in Cancer 1 (GDSC1) database (from left to right: 
dasatinib, pazopanib, and vorinostat), as a function of the measured protein label-free 
quantification (LFQ) values (EPHA2, KIT, HDAC1). Pearson correlation analysis results 
are indicated above the plots, and dots are colored according to the cell lines' subtype 
assignment. Figure in a modified form from (79). 
 

4.1.4 The multi-omic portraits of SCLC subtypes 

To detect the unique pathway-level patterns for each subtype, pGSEAs were 

performed for each pairwise subtype comparison both in our CP data and in the RNA-

Seq data of the 50 SCLC cell lines from CCLE (94). The subtype-specificity of the 

pathways was additionally validated using the SCLC tissue RNA-Seq data published by 

George et al. (18). In this validation process, ssGSEA scores for the selected pathways 

were calculated for each tumor individually. Subsequently, these scores were averaged 

per subtype to assess the pathway activity trends across the subtypes (79). 

In the SCLC-A subtype, upregulation of members of the neural precursor cell 

proliferation was supported by both the proteomic and transcriptomic cell line dataset 

(Figure 6A). In addition, oxidative phosphorylation (OXPHOS) and respiratory chain 

elements displayed concordant overexpression in SCLC-A according to proteomics, 

while the members of the subpallium development gene set were only significantly 

upregulated according to transcriptomics. Of note, the higher expression of OXPHOS 

elements in this subtype was also supported by the SCLC tissue transcriptomics data (79). 

Regarding SCLC-N, subtype-specific downregulation of epidermis development 

process elements was observable in both cell line proteomics and transcriptomics data 

(Figure 6B). The proteome of SCLC-N could be further characterized by the 
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downregulation of immune response, cytokine signaling, cytoskeleton organization and 

cell adhesion-related proteins, as well as by the upregulation of DNA replication and 

transcription-associated proteins. While not confirmed with cell line transcriptomics, 

several of the aforementioned pathways showed the subtype-specific trend in the tissue 

transcriptomics data (79). 

Considering SCLC-P specific pathways, elements of the neurotrophin signaling 

pathway and the lamellipodium organization gene set were detected as concordantly 

overexpressed in SCLC-P, supported by both cell line dataset but not confirmed by tissue 

transcriptomics (Figure 6C) (79). 

Lastly, a substantial number of processes showed SCLC-Y-specific patterns 

(Figure 6D). In particular, members of extracellular matrix (ECM) organization, 

cytokine-mediated signaling, interleukin signaling, inflammatory response, EMT, cell-

substrate adhesion, response to growth factors, and MAPK cascade were overexpressed 

in SCLC-Y compared to other subtypes, both in the cell line proteomic and transcriptomic 

data. With the exception of cytokine-mediated signaling, all subtype-specific trends were 

validated by tissue transcriptomics. At the gene expression level, upregulation of 

apoptotic pathway and the JAK-STAT signaling members was observed. On the other 

hand, proteomics revealed the higher expression of proteins associated with the signaling 

by Rho-GTPases, as well as with the activation of transmembrane transporter disorder-

related processes. Moreover, protein-level data showed the downregulation of protein 

acetylation, DNA repair and chromatin modification elements in this subtype. The latter 

two gene sets showed the same subtype-specific trend in tissue transcriptomics as well 

(79). 
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Figure 6. Subtype-specific biological processes detected in small cell lung cancer 
(SCLC) subtypes SCLC-A/N/P/Y. (A) SCLC-A-specific processes. (B) SCLC-N-
specific processes. (C) SCLC-P-specific processes. (D) SCLC-Y-specific processes. The 
subtype-specificity of underlined pathways was supported by the SCLC tissue 
transcriptomic data published by George et al. (18). Abbreviations: avr., average; NES, 
normalized enrichment score. Figures in a modified form from (79). 
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4.2 Results from the ALK-rearranged LADC study 

4.2.1 Cohort overview 

Seven primary LADC tumors with confirmed ALK rearrangement were 

investigated in this study (Table 2). The tumor samples were collected before any 

therapeutic interventions, and all patients underwent treatment with ALK-inhibitors 

following the confirmation of ALK positivity. Two out of seven patients passed away due 

to lung cancer until the last follow-up (January/February 2022). Selected tumor and NAT 

regions on the FFPE tissues were subjected to transcriptomic and proteomic analyses 

(Figure 2). The tROIs (n = 84) were chosen by taking into account their morphologic 

setting and varying levels of lymphocytic infiltration. In contrast, the pROIs (n = 23) 

covered greater areas of the whole tumor slide (80). 

4.2.2 Multi-omic heterogeneity of ALK-rearranged LADCs 

Through NanoString GeoMx Digital Spatial Profiling, a total of 1811 genes were 

quantified across all tROIs. Label-free proteomics resulted in the quantification of 2318 

proteins in at least one pROI, out of which 1154 proteins were quantified across minimum 

80% of the pROIs and were kept for statistical analyses (80). 

The mean Pearson correlation coefficient (r) between proteomics and 

transcriptomics was 0.43±0.33 at the gene level (n = 162 genes), with 69 and 1 genes 

showing significant positive and negative correlation respectively. At the singscore level 

(n = 431 gene sets), the mean Pearson’s r between pROI and tROI data was 0.24±0.34, 

and 63 and 6 gene sets showed a significant positive and negative correlation, 

respectively. Positive correlation between proteomics and transcriptomics was detected 

for pathways including metabolism (e.g., glycolysis, RNA, tyrosine and phenylalanine 

metabolism), immune-system-related processes (such as adaptive immune system, 

allograft rejection), signal transduction and gene regulation (mTORC1 signaling, MYC 

targets, p53 pathway, NCAM signaling), cell cycle and DNA replication. The only 

significantly negatively correlated gene across the two molecular layers was RPLP0. In 

addition, the negatively correlating processes (assessed based on singscores) included 

MAP2K and MAPK activation, oncogenic MAPK signaling, and developmental biology 

(80). 
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In addition, unsupervised consensus clustering of the pROIs and tROIs (Figure 

7A-B) revealed that clustering was largely driven by interpatient differences with the 

exception of NAT regions, which were clustering together regardless of patient (80).  

 

 

Figure 7. The observed sample heterogeneity of the seven ALK-rearranged lung 
adenocarcinomas (LADCs). (A) Heat map showing consensus clustering results for the 
proteomic regions of interest (pROIs) based on the proteins’ Z-scored label-free 
quantification (LFQ) values. (B) Heat map showing consensus clustering results for the 
transcriptomic regions of interest (tROIs) based on the Z-scored gene counts. Figures in 
a modified form from (80). 

4.2.3 Molecular changes associated with histopathological characteristics 

Comparing tumor and NAT regions with DEA, a total of 310 proteins and 47 

genes were significantly upregulated in tumor pROIs and tROIs respectively (from which 

10 were shared between pROI and tROI results), while 136 proteins and 38 genes were 

upregulated in NAT pROI and tROI regions respectively (from which 3 were shared 

between the two datasets). Notably, the C3, C4BPA, CLU, COL1A1 and LAMB3 genes 

showed upregulation in tumors (tROI data), but their protein products showed 

downregulation in tumors (pROI data). Interestingly, when examining the list of 

differentially expressed genes and proteins in the LADC dataset from CPTAC (7), only 

the ALK-rearranged tumor and NAT subset of the CPTAC cohort confirmed the trends 
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observed in our data for glutathione peroxidase 1 (GPX1, upregulated in tumors) and 

complement component 4 binding protein alpha (C4BPA; conflicting differential 

expression patterns across proteomics and transcriptomics) (Figure 8A) (80). 

At the pathway level, supported by both molecular layers, tumor regions displayed 

an increased expression of members of glycolysis, mTORC1 signaling, unfolded protein 

response and infection pathways compared to NAT regions, as uncovered by pGSEA 

(Figure 8B). The proteomic data highlighted additionally the upregulation of members of 

translation, RNA, glucose, and amino acid metabolisms in tumors, as well as the 

downregulation of proteins involved in apical junction, ECM organization, receptor 

tyrosine kinase (RTK) signaling such as MAPK signaling and Toll-like receptors. Of 

note, the members of the complement and coagulation cascade were upregulated in 

tumors according to the tROI data but downregulated according to the pROI data (80). 

Regarding immune infiltration patterns, the sulfotransferase family 1A member 1 

(SULT1A1) protein showed significant upregulation with increasing tumor infiltrating 

lymphocyte (TIL) amounts in the pROI data, while the tROI data showed the upregulation 

of the B alpha chain of HLA class I histocompatibility antigen (HLA-B) and the 

downregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) with higher immune 

score. Only the tROIs showed significant pathway-level differences with increasing 

immune score according to pGSEA. Consistent with pathological evaluation, the list of 

significantly activated pathways with higher immune score in the tROI data were mainly 

immune system related. Notable examples include antigen processing and presentation, 

interferon signaling and neutrophil degranulation (80). 
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Figure 8. Proteomic and transcriptomic differences between tumor and normal 
adjacent tissue (NATs) regions in ALK-rearranged lung adenocarcinomas (LADCs). 
(A) Tumor vs NAT expression differences for GPX1 and C4BPA in our data, validated 
by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) LADC study (7). 
Symbols indicate t-test significance (ns: not significant, *p-value ≤ 0.05; **p-value ≤ 
0.01; ***p-value ≤ 0.001). (B) Normalized enrichment scores (NESs) derived from pre-
ranked gene set enrichment analysis for tumor vs NAT comparisons. NES from the 
analysis of proteomic regions of interest (pROIs) and transcriptomic regions of interest 
(tROIs) are shown on the x- and y-axis respectively. Figures in a modified form from 
(80). 
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In the pROI data, we additionally investigated mucin and stroma score-related 

proteomic differences. In total, 4 and 13 proteins were upregulated and downregulated 

with increasing mucin score, while 1 and 3 proteins were upregulated and downregulated 

with increasing stroma score, respectively. At the pathway level, increasing mucin and 

stroma scores could be associated with the concordant upregulation of EMT-related 

proteins and ECM organization. Parallelly, members of RNA metabolism or signaling by 

ROBO receptors were downregulated with higher mucin and stroma scores (Figure 9) 

(80). 

 

 

Figure 9. Proteomic differences linked to increasing mucin and stroma scores in 
ALK-rearranged lung adenocarcinoma (LADC) tumor regions. Normalized 
enrichment scores (NESs) derived from pre-ranked gene set enrichment analysis results 
for the mucin high vs low (x-axis) and stroma high vs low (y-axis) comparisons in the 
proteomic regions of interest (pROI) data are shown. Figure in a modified form from (80). 
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4.2.4 Intratumoral homogeneity and heterogeneity 

To uncover the drivers of intratumoral molecular homogeneity and heterogeneity, 

the overall expression variability for each protein and gene within each case was assessed 

by computing their CV. Notably, three heat shock proteins (encoded by genes HSPA1A, 

HSPB1 and HSP90B1) showed high stability at the protein expression level within 

minimum four tumors, but high variability at the gene expression level. In parallel, both 

proteins and genes with a stable expression within minimum four tumors showed an 

enrichment (ORA p < 0.05) for PI3K-AKT-mTOR signaling, oncogenic MAPK 

signaling, and “signaling by moderate kinase activity BRAF mutants” pathways (Table 

4) (80). 

The pathway analysis for the proteins and genes showing high variability (n = 101 

and 232, respectively) within minimum four tumors resulted in the enrichment of gene 

sets such as the ECM-associated pathways, EMT, complement and coagulation cascades, 

MET-activated PTK2 signaling, angiogenesis and glycolysis (ORA p < 0.05), supported 

by both molecular layers (Table 4). Among the proteins and genes showing high 

variability across all examined cases (six cases for pROIs and seven for tROIs), 

fibronectin 1 (FN1) stood out for being highly variable at both molecular layers. 

Interestingly, this protein is connected to several pathways enriched for heterogeneously 

expressed genes and proteins, indicating its potential significance in the context of the 

observed molecular heterogeneity (80). 
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Table 4. Pathways enriched for proteins and genes that are stably or variably 
expressed across tumor ROIs. Only pathways are mentioned which were commonly 
enriched both in the pROI and tROI data with p < 0.05. Abbreviations: adj, adjusted; 
ECM, extracellular matrix; nr, number; pROI, proteomic region of interest; tROI, 
transcriptomic region of interest. Data from (80). 

Enriched pathways pROI data tROI data 
Nr. of 
proteins in 
pathway 

Adj. p for 
pathway 
enrichment 

Nr. of 
genes in 
pathway 

Adj. p for 
pathway 
enrichment 

for stably expressed proteins/genes 
PI3K-AKT-mTOR signaling 7 3.9 × 10-4 15 1.1 × 10-1 
Oncogenic MAPK signaling 5 9.1 × 10-2 10 1.1 × 10-2 
Signaling by moderate kinase activity BRAF 
mutants 

4 1.3 × 10-1 8 1.7 × 10-2 

for variably expressed proteins/genes 
Angiogenesis 4 8.6 × 10-2 9 1.6 × 10-2 
EMT 15 1.4 × 10-3 34 1.3 × 10-8 
Complement and coagulation cascades 7 6.0 × 10-2 19 4.3 × 10-6 
ECM-receptor interaction 9 2.8 × 10-2 17 5.6 × 10-3 
Degradation of the ECM 12 3.7 × 10-3 16 8.9 × 10-4 
Diseases of glycosylation 6 1.1 × 10-1 5 1.7 × 10-1 
ECM proteoglycans 12 5.9 × 10-5 13 2.2 × 10-2 
ECM organization 24 3.1 × 10-7 29 3.0 × 10-3 
Integrin cell surface-interactions 9 2.9 × 10-2 17 6.6 × 10-3 
MET activates PTK2 signaling 6 2.8 × 10-2 11 3.0 × 10-3 
MET promotes cell motility 6 6.0 × 10-2 11 5.6 × 10-3 
Non-integrin membrane-ECM interactions 6 1.9 × 10-1 11 7.3 × 10-2 
Regulation of IGF transport and uptake by 
IGF-binding proteins 

9 2.9 × 10-2 11 1.1 × 10-2 

Response to elevated platelet cytosolic Ca2+ 8 2.4 × 10-1 13 4.2 × 10-2 
Signaling by MET 6 8.6 × 10-2 11 1.6 × 10-1 
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5. DISCUSSION 

5.1 Study of SCLC subtypes 

Molecular heterogeneity in SCLC is currently under intense investigation given 

the subtypes’ prognostic and therapeutic relevance (110). Next to the SCLC cell lines 

with classical NE phenotype and suspension growth type, a “variant” form (NE-low) of 

SCLC, mainly forming adherent cell cultures, as well as tumors lacking NE 

differentiation have been reported (16, 111, 112). In our study, half of the SCLC cell lines 

grew adherently, and in line with previous findings, this growth pattern was associated 

with non-NE characteristics. We linked distinct protein profiles to adherently versus in-

suspension-growing cell lines, such as dysregulation of glycosaminoglycan degradation, 

endocytosis, and gap junction pathways (79). 

According to a classification system proposed by Rudin et al. (16), our cell lines 

were classified into SCLC-A, -N, -P and -Y subtypes based on the mRNA expression 

patterns of ASCL1, NEUROD1, POU2F3 and YAP1 (n = 8, 7, 4 and 7, respectively). At 

protein level, these transcription factors exhibited higher abundances in their respective 

subtypes as well. Based on the protein expression of NE and non-NE markers, we 

confirmed that SCLC-A and -N cell lines exhibit NE features, while SCLC-P and -Y 

groups show rather non-NE features (79). Recent IHC-based studies on human tumor 

tissues corroborated the overexpression of NE markers in SCLC-A and -N, while SCLC-

P tumors did not display notable NE differentiation at the protein level (21, 113). 

Regarding epithelial and mesenchymal features, a previous SCLC cell line study already 

outlined that SCLC-P and -Y exhibit epithelial and mesenchymal attributes, respectively, 

while SCLC-A and -N display mixed characteristics (114), which was in line with our 

findings (79). 

Importantly, according to unsupervised cluster analysis, the SCLC cell lines could 

be categorized into four subgroups based on their CP proteomic profiles, which was in 

alignment with their predefined mRNA-based subtypes (except for one misclassified cell 

line). The overall high variability of protein expressions in the CM data compared to the 

CP data (mean SD of 1.20 and 0.85 in the CM and CP data respectively), may have 

affected the detection of subtype-specific signatures in the CM proteome. Another 
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contributing factor to proteomic differences across cell lines was the culture type, 

impacting both the CP and CM (79). 

We report 367 and 34 proteins in the CP and CM showing subtype-specific 

expression patterns, among which six proteins are also FDA-approved drug targets. 

Specifically, DDC was found to be overexpressed in SCLC-A, while EPHA2, ITAV, and 

ITB1 (corresponding to genes EPHA2, ITGAV, and ITGB1) were overexpressed in SCLC-

Y. HDAC1 was downregulated in SCLC-Y, and KIT was upregulated in SCLC-P (79). 

High levels of ASCL1 correlated with stronger expression of DDC (115), and EPHA2, a 

non-NE marker (17), was previously reported to be upregulated in SCLC-Y (114). The 

overexpression of integrins in SCLC-Y has been linked to chemotherapy resistance 

through the suppression of chemotherapy-induced apoptosis (116). In agreement with 

this, we previously reported a positive correlation between YAP1 protein abundance and 

resistance to chemotherapeutic agents in SCLC cell lines (110). The downregulation of 

HDAC1 in SCLC-Y in our study aligns with the reported HDAC inhibitor resistance in 

SCLC-Y (117). KIT protein is a known marker for SCLC-P (118). Additionally, our 

hypothesis that overexpression of proteins in one or multiple subtypes may indicate 

sensitivity of those subtypes to drugs targeting these proteins was supported by 

CancerRxGene data (91) and our follow-up study (119). Specifically in the present study, 

we confirmed that KIT-targeting drugs, such as pazopanib, are potentially suitable for 

targeting POU2F3-driven SCLCs, while YAP1-driven tumors are more resistant to 

vorinostat, a drug that targets HDAC1 protein (79). 

To delineate the distinctive characteristics of SCLC subtypes, we also conducted 

a multi-omic pathway-level analysis, integrating expression differences from both 

quantified proteins in our dataset and transcripts from CCLE transcriptomic data (94), 

supplemented by observations from an SCLC tissue transcriptome data (18). This 

comprehensive approach revealed a list of potential subtype-specific therapeutic 

vulnerabilities (79). 

Given ASCL1's established regulatory role in neural differentiation (120), neural 

precursor cell proliferation and subpallium development-related proteins showed a 

concordant upregulation in the SCLC-A subtype. Our proteomic data strongly indicated 

that the activation of OXPHOS and respiratory chain elements is highly specific to SCLC-

A (79). Cell lines lacking MYC expression, which is characteristic of SCLC-A (16, 18), 
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tend to rely more on oxidative metabolism, suggesting potential susceptibility of SCLC-

A tumors to OXPHOS inhibitors (79).  

In our study, SCLC-N cell lines, primarily forming suspension cultures, showed 

a consistent downregulation of cell adhesion pathways. Proteomic data also revealed 

increased activity in DNA replication and transcription, coupled with a decrease in 

cytokine-mediated signaling in this subtype (79). Notably, a similar trend was observed 

in a study comparing gene expression between SCLC and normal tissue (121). 

Epithelial-like SCLC-P cell lines displayed an upregulation in the lamellipodium 

organization pathway, a critical step in EMT associated with enhanced cell motility and 

invasive capacities (122). In addition, the observed upregulation in neurotrophin signaling 

suggests the potential effectiveness of PARP inhibitors as therapeutic agents for SCLC-

P, as previously proposed (22), given that prolonged PARP activation can contribute to 

neurotrophin-induced neuronal death (123). Additionally, our data implies that direct 

targeting of neurotrophin signaling could be a suitable treatment option in POU2F3-

driven SCLC (79). 

SCLC-Y cell lines formed a distinct subgroup in our samples. Proteomics revealed 

a unique downregulation of protein acetylation, chromatin modification, and DNA 

double-strand break repair pathways in this subtype, in parallel with the overexpression 

of the MAPK cascade and Rho-GTPase signaling members (the latter supported by the 

known role of Rho in YAP/TAZ activity (124)) (79). In a previous study, SCLC-A was 

found to be selectively sensitive to MAPK activation compared to SCLC-N and -P, but 

no cell lines from the SCLC-Y subtype were tested by the authors (125). Due to the 

adherent nature of YAP1-driven cell lines, we observed an upregulation of focal adhesion, 

ECM organization, and cell-substrate protein pathways along with peroxisome and 

endocytosis-related proteins in the SCLC-Y subgroup (79). Tlemsani et al. highlighted 

that SCLC-Y cell lines exhibit high presenting and native immune predisposition, and 

have the highest antigen-presenting machinery scores, thus we can anticipate sensitivity 

to immune-checkpoint inhibitors (114). Consistent with this, we identified a distinctive 

upregulation of cytokine-mediated signaling and inflammatory response in this subtype 

(79). 

There are controversies surrounding the existence of the SCLC-Y subtype, as 

comprehensive immunohistochemical and histopathological analyses of SCLC subtypes 
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in patient samples have not identified a distinct YAP1-driven subtype (21). Conversely, 

our preclinical proteomic study clearly delineates a distinct SCLC-Y subtype among the 

examined cell lines (79). 

Cell lines enable the examination of pure populations of homogeneous tumor cells 

without the presence of admixed stromal or inflammatory cells, which is particularly 

valuable in drug sensitivity assays and subtyping studies, such as the current one (126, 

127). However, some study limitations need to be mentioned. The number of examined 

cell lines was low (n = 26), and the proteomic profiles of the adherent culture types and 

SCLC-Y could not be investigated independently because all YAP1-driven cell lines grew 

adherently. The treatment-related data about the original tumors was not retrievable for 

some SCLC cell lines, partly because the majority of the examined cell lines were 

established in the past century. However, it is noteworthy that neither the 

NE/mesenchymal characteristics nor the protein expression profile differed significantly 

based on the presence or absence of chemotherapy (data not shown). It is also notable that 

unique up- or downregulation of pathways in an SCLC subtype may not necessarily 

translate to dependency or independency from those pathways due to the interconnected 

nature of biological processes and numerous regulatory factors, including feedback and 

feed-forward loops which interfere with such processes. In conclusion, our results should 

primarily be viewed as hypothesis-generating for future studies. Subsequent proteomic 

analyses of larger SCLC cohorts, preferably incorporating fresh tissue samples from 

patients with homogeneous treatment histories, are needed to validate our findings (79). 

5.2 Study of ALK-rearranged LADCs 

Spatial molecular profiling of tumors is increasingly popular and enhances our 

understanding of cancer, including lung cancer, by providing the crucial spatial context 

(40-43). We explored the proteome and transcriptome-level drivers of inter- and 

intratumoral heterogeneity in seven LADCs with confirmed ALK rearrangements, which 

were collected prior to treatment with ALK inhibitors (80). 

From the FFPE slides, larger proteomic and smaller transcriptomic regions 

including NAT ROIs and tumor ROIs with various histopathological features 

(morphology, immune infiltration, mucin and stroma scores) were selected for molecular 

profiling. Morphological and other histological features are often combined within a 



46 
 

LADC tumor and carry prognostic value (30, 128). In this study, only one tumor displayed 

multiple morphologies. Notably, a multitude of regions (10 out of 23 pROIs and 44 out 

of 84 tROIs) showed solid patterns, which was accompanied by lower mucin scores 

compared to papillary and tubular morphologies (80). 

We achieved the confident quantification of 1154 protein groups and 1811 genes 

across the pROIs and tROIs, and only 162 genes were commonly present in both data sets 

(80). A lower positive correlation between the two molecular layers (median Pearson’s r 

= 0.43 and 0.24 at gene and pathway levels, respectively) was observed, which was in 

line with previous studies reporting moderate (7, 8, 10) to low (6, 129-131) positive 

correlations between proteomics and transcriptomics. In our study, positive correlations 

were present in pathways such as amino acid metabolism, glycolysis, p53 pathway, 

adaptive immune system, and DNA replication (80). This was consistent with a previous 

finding by Chen et al. (6). The significant negative correlation we detected for the 

ribosomal protein RPLP0 was supported by the previous observations that ribosomal 

functions tend to be lowly correlated between the two molecular layers (10, 131, 132). 

The poor correlation for some RNA and protein abundances, e.g., for members of 

developmental biology and MAPK signaling pathway (80), may result from post-

transcriptional or -translational regulation not captured by our study (133-135). 

Unsupervised clustering of pROIs and tROIs revealed that intertumoral 

heterogeneity is more pronounced than intratumoral heterogeneity, except for NAT 

regions, which were distinct based on their molecular expression profiles. Comparing 

tumor and NAT regions resulted in numerous differentially expressed proteins and genes, 

with some overlap across the molecular layers. Notably, three complement cascade 

proteins (corresponding to genes C3, C4BPA, and CLU) and two proteins secreted to the 

ECM (encoded by genes COL1A1 and LAMB3) showed opposite tendencies between 

pROIs and tROIs (downregulated in tumors at pROI level but upregulated in tumors at 

the tROI level compared to NATs). Interestingly, we observed GPX1 showing higher 

gene and protein expressions in ALK-rearranged LADCs compared to NATs (80), which 

was not detectable in ALK-negative LADCs of the CPTAC cohort (7). Similarly, another 

study not focusing on the ALK-driven subgroup identified GPX1 as downregulated in lung 

tumors compared to NATs (136). The role of this gene in lung cancer is not yet elucidated 
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(137), however, one study indicated that GPX1 may induce cisplatin-based 

chemoresistance in NSCLC (138). 

Pathway-level differences between tumors and NATs reflected known cancer 

hallmarks, such as impaired glycolysis (139), unfolded protein response (140), translation 

(141), ECM organization (142) pathways or signaling by RTKs (143). The last three 

hallmarks were only significant in the proteomic data, which underscores the significance 

of proteomics in spatial omic studies (80). 

The investigation on the role of tumor-infiltrating immune cells and potential 

immunotherapy strategies in NSCLC is ongoing (40-43). It is noteworthy to explore these 

aspects in the ALK-rearranged subtype as well, where immune-based therapies have 

shown limited efficacy (144). Investigating immune-infiltration-related patterns in our 

pROI data showed SULT1A1 protein being upregulated with increasing TIL %. 

Regarding tROI expression data, HLA-B and PTGS2 genes exhibited up- and 

downregulation with increasing immune score respectively. These 3 proteins/genes 

represent potential markers for variability in immune infiltration. Additionally, multiple 

immune-related processes, such as neutrophil degranulation, or antigen processing and 

presentation, , were upregulated with increasing immune scores in the tROIs, confirming 

agreement between the gene expression signatures and pathological evaluation. In 

contrast, no pathways were significant when comparing pROI regions with varying 

TIL%, possibly due to more heterogeneous immune infiltration patterns within the pROIs 

(80). 

Our previous publication on the hereby presented proteomic data showed the 

mucin content's significant impact on proteomic and glycosaminoglycan profiles while 

the effect of stromal content was less prominent (83). This finding was reaffirmed in our 

current analysis, where we observed a greater number of differentially expressed proteins 

associated with mucin score compared to stroma score (17 vs 4), with no overlap in the 

lists of significant proteins. However, despite these differences, we observed that 

alterations in mucin and stroma scores across the pROIs affected similar pathways. For 

example, upregulation of ECM components was detected both with higher mucin and 

stroma scores, aligning molecular findings with histologically visible phenotypes (80).  

Focusing on intratumoral molecular homogeneity, our data showed that members 

of the oncogenic MAPK and PI3K-AKT-mTOR signaling generally show stable 
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expression across tumor regions at both proteome and transcriptome level (80). This is 

consistent with the observation that aberrant ALK activity leads to the activation of both 

pathways (145). Investigation of pathways that can contribute to intratumoral 

heterogeneity pointed to EMT and ECM organization (80). EMT is one of the cancer 

hallmarks (146) which may mediate ALKi resistance (147). Within the EMT process, 

ECM remodeling plays an essential role and promotes cancer metastasis (148). Notably, 

three heat shock proteins displayed high expression stability at the protein level but high 

expression variability at the gene level (80). Heat shock proteins are produced when cells 

are under stressful conditions, thus the observed disagreement may stem from post-

transcriptional regulation enabling cells to adapt to stress in a timely manner (149). 

Interestingly, a well-known EMT marker, FN1, showed high intratumoral variability 

across ROIs at both protein and gene level (80). FN1 can have both tumor-promoting and 

-suppressive characteristics (150), and some studies link lower FN1 expression to a more 

favorable outcome (151, 152), while others noted the downregulation of FN1 with LADC 

progression (153, 154) or no relationship with survival (155, 156). The heterogeneous 

FN1 expression within tumor tissue, as demonstrated in this study, may contribute to these 

controversies in the literature. Moreover, there is a lack of investigations into the specific 

role of FN1 in ALK-rearranged LADCs (80). 

Limitations of this study need to be noted. While we strengthened the reliability 

of our findings by validating multiple results with data from a larger, previously published 

LADC cohort (CPTAC) (7), the observations made on this small cohort with 

heterogeneous clinical data may not be generalizable to all ALK-driven LADCs. 

Evaluating individual molecular characteristics of histopathological features (such as 

mucin and stroma content) is challenging due to their interconnected nature. Intratumoral 

molecular variability may be influenced by stochastic factors at the cellular level and 

phenotypical differences, as well as varying extent of tumor purity. Both the spatial gene 

expression profiling and the shotgun proteomic approach have identification and 

quantification biases (bias for known cancer-related genes and high-abundant proteins, 

respectively) (80). These are unavoidable technical and biological limitations which often 

lead to milder correlations in the measured protein and transcript abundances (133-135). 

In addition to this, the size-differences in the examined pROIs and tROIs in our study 

may also impact the agreement between proteome- and transcriptome-level results (80). 
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The pROI sizes are inherent to the technique used in this work (on-tissue digestion with 

repeated pipetting), providing the required efficiency and reproducibility (85). Overall, a 

larger cohort of ALK-rearranged LADCs will be necessary to investigate in the future to 

corroborate the findings presented in this study (80).   
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6. CONCLUSIONS 

Study I: 

1. The recently defined, qPCR-based SCLC-A/N/P/Y classification system in SCLC 

was confirmed at the protein level by analyzing 26 human SCLC cell lines via 

MS-based proteomics. 

2. Proteomics uncovered a list of potential proteins that display subtype-specific 

expression patterns, including several potential IHC- and blood-based markers 

and therapeutic targets. 

3. Furthermore, the subtypes also demonstrated unique signatures at the pathway-

level, such as upregulated OXPHOS in SCLC-A, DNA replication in SCLC-N, 

neurotrophin signaling in SCLC-P and EMT in SCLC-Y.  

4. The YAP1-driven subtype was clearly distinguishable at the protein level, and 

proteomics provided an abundance of potential markers of this subtype compared 

to the other subtypes.  

 

Study II: 

5. The spatial proteomic and transcriptomic profiling of treatment-naïve ALK-

rearranged LADCs was performed, where the two molecular layers exhibited 

modest correlation with each other. 

6. Both proteomics and transcriptomics indicated that molecular heterogeneity 

across tumors was more prominent than molecular heterogeneity within tumors.  

7. The spatial multi-omic analysis uncovered potential biomarkers and dysregulated 

pathways linked to tumors or NATs, varying levels of immune infiltration, mucin, 

and stroma content. Notably, overexpression of GPX1 in tumors compared to 

NATs may be detectable only in the ALK-rearranged subset of LADCs but not in 

non- ALK-driven LADCs. 

8. Within tumors, heterogeneity in terms of the expression of ECM elements, such 

as FN1, was observed at proteome and transcriptome level. 
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7. SUMMARY 

Advances in omics profiling have enhanced our understanding of lung cancer, 

revealing new molecular subgroups and new avenues in targeted therapies. Proteomics, 

in particular, can bring new insights into cancer by offering a closer representation of the 

phenotype. In our work, we aimed to perform a proteomic analysis complemented with 

gene expression data on relatively rare lung cancer types to gather insights on their intra- 

and intertumoral heterogeneity.  

In the small cell lung cancer (SCLC) study, we focused on characterizing newly 

defined SCLC subtypes at the protein level. We examined pellets and cell media of 26 

human SCLC cell lines, supplemented with public transcriptomic data of SCLC cell lines 

and tissues. We confirmed the presence of molecular subtypes at protein level which were 

previously defined based on the gene expression of key transcription regulators: ASCL1, 

NEUROD1, POU2F3, and YAP1. We identified proteins with potential subtype-specific 

expression, including known druggable proteins and potential blood-based markers, and 

pathways that may be uniquely activated or suppressed in a certain subtype compared to 

the other three subtypes, representing further potential therapeutic targets. Importantly, 

while tissue-based immunohistochemistry studies failed to confirm a YAP1-driven 

subtype, we found it to be the most distinct SCLC subgroup.  

In the study of ALK-rearranged lung adenocarcinoma (LADC), we performed, for 

the first time, spatial transcriptomic (NanoString GeoMx, 12 regions per case) and 

proteomic profiling (2-6 regions per case) on seven treatment-naïve formalin-fixed 

paraffin-embedded tumors with varying histopathological features. The two molecular 

layers exhibited modest correlation with each other, however, both datasets demonstrated 

stronger intertumoral heterogeneity compared to intratumoral heterogeneity. We 

identified potential markers and dysregulated pathways linked to tumors and normal 

adjacent tissues, and to the extent of immune infiltration, mucin and stroma content, 

including markers that behave distinctively in ALK-rearranged LADCs compared to non-

ALK-driven LADCs. The extracellular matrix elements, particularly fibronectin 1, 

exhibited substantial variability within tumors. 

In summary, the studies presented in this thesis generated new hypotheses for 

future lung cancer research, providing a list of biomarkers and dysregulated pathways 

with potential clinical relevance, and contributed to our understanding of cancer biology.  
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