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1. Introduction 

Bladder cancer (BC) is a common malignancy worldwide, with 550 000 newly diagnosed 

cases and 200 000 deaths in 2018. BC is most prevalent in the developed world, including 

countries in southern and western Europe, and in North America, and occurs three times 

more frequently in men than in women. Smoking, exposure to certain chemicals, and 

water contamination are known risk factors for the development of BC (1). In Hungary, 

based on data from the National Cancer Registry, the number of newly diagnosed BC was 

3546 in 2019 (https://onkol.hu/nemzeti-rakregiszter/), with a slightly increased tendency 

in the last 20 years (Figure 1). In Hungary, BC represents the 8th highest incidence rate 

and the 9th highest mortality rate among all cancer types (2). 

 

Figure 1. The number of newly diagnosed bladder cancer cases in Hungary between 2000 and 

2019. 

1.1 Clinical management of BC 

The most frequent histological type of BC is urothelial carcinoma. BC can be classified 

into non-muscle invasive (NMIBC) and muscle-invasive (MIBC) disease, which differ 

significantly in terms of prognosis and clinical management. Cystoscopy is the gold 

standard for diagnosing patients with symptoms suggestive of BC, which is most 

frequently the painless hematuria. The presence of the tumor can then be confirmed by 

the histological evaluation of transurethral resection (TUR). Approximately 75-80% of 

newly diagnosed BC cases are NMIBC (≤T1) at first presentation. These patients have a 

high recurrence rate (60-70%) but a low progression rate to MIBC (15%) and have a good 

prognosis with over 90% 5-year survival (3, 4). 
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 Patients with NMIBC can be classified into low-, intermediate- and high-risk 

groups based on the tumor stage, grade, and the presence of in situ carcinoma (CIS). A 

single intravesical instillation of chemotherapy (Mitomycin C, Epirubicin, Pirarubicin) is 

recommended within 24 hours after TUR for patients with low-risk tumors (Ta, low 

grade, no CIS, tumor size < 3 cm). Further chemotherapy installation, or Bacillus 

Calmette-Guérin (BCG) treatment is advised for intermediate-risk patients (tumors that 

are not defined as low or high-risk tumors), and BCG instillation for high-risk patients 

(high-grade Ta/T1 and/or CIS and/or recurrent tumors). Chemotherapy instillations and 

BCG therapy proved to reduce the recurrence rate of NMIBCs, however, a life-long 

cystoscopy surveillance is recommended (3, 5). 

The incidence of MIBC represents 20-25% of newly diagnosed cases and its  

5-year survival rate is only 50-60%. For patients with muscle-invasive and clinically 

organ-confined tumors (≥cT2, LN0-LNx, M0) cisplatin-based neoadjuvant chemotherapy 

(NAC) is the gold standard prior to radical cystectomy (RC) (5). The survival benefit 

provided by NAC is around 5-8% at 5 years compared to RC alone. On the other hand, 

the delayed RC due to NAC may reduce the life expectancy for patients with a 

chemotherapy-resistant tumor (6). Therefore, pre-treatment prediction of platinum 

sensitivity may help to select patients who benefit from NAC and may help to avoid 

ineffective platinum treatment and the delay of RC for those who are resistant to NAC.  

Adjuvant chemotherapy (AC) is recommended for patients with locally advanced 

(pT3/4) and/or LN+ tumors at RC, if no NAC has been given preoperatively (7). AC 

improved overall and disease-specific survival rate with 22% and 34% compared to RC 

alone according to a meta-analysis with a total of 945 patients (8). Although the guidelines 

recommending the administration of NAC upfront RC, adjuvant platinum treatment 

remained still widespread in clinical practice.  
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There are arguments both for and against NAC and AC therapeutic strategies (9): 

Advantages of NAC: 

1) NAC is better tolerated than postoperatively applied AC 

2) Pathological response rate gives a relatively good estimation on the platinum 

sensitivity of the tumor. 

3) NAC provide an overall survival benefit of 5-8%, which has been confirmed in large 

prospective studies. 

Disadvantages of NAC: 

1) Pretreatment staging prior to NAC is based on the transurethral resection of the 

bladder (TURB) specimen and may therefore be inaccurate. 

2) The absolute overall survival benefit is only 5-8%, which is a rather low value. 

3) Ineffective NAC delays RC by ~3 months, which may lead to reduced prognosis of 

patients who are resistant to platinum therapy. 

 

 In order to improve the quality of decision-making, chemotherapy predictive 

markers are needed to identify those patients, who will not benefit from NAC and thereby 

avoid delayed surgery.  

Recently immune checkpoint inhibitor (ICI) therapies, and further novel targeted 

therapies, such as FGFR inhibitor erdafitinib and two antibody-drug conjugates; the 

nectin-4 targeting  Enfortumab vedotin and the Trop-2 targeting Sacituzumab govitecan 

have become available as second- and third-line therapies for patients, who had 

progressed during or following chemotherapy or ICI therapy (10). ICIs are also 

recommended for cisplatin ineligible and tissue PD-L1 positive patients in first-line 

setting, and more recently as a maintenance therapy for cisplatin-sensitive patients after 

response to chemotherapy (11, 12). Figure 2 summarizes the potential therapeutic options 

of BC patients in detail. 

 

1.2 Platinum predictive biomarkers in BC 

The availability of second- and third-line treatments raised an unmet need for clinically 

available predictive biomarkers, which may help to optimize therapeutic decision-

making. Although many efforts have been made to identify predictive biomarkers for 

chemotherapy, none of the identified markers has been integrated into the clinical practice 
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yet. Enhanced protein expressions of Emmprin, Survivin, STIP1, HMGA2, and ERCC1 

have been shown to be associated with inferior survival in chemotherapy-treated patients. 

In addition, tumors carrying somatic mutation of ERCC2, ATM, RB1, and FANCC 

showed higher response rates to chemotherapy (13–19) (Table 1).   

 

Figure 2. Recommended therapeutic management for patients with BC according to ESMO 

Clinical Practice Guideline (Powles et al. 2022 (10)). Therapies that could be considered in 

second-or third-line settings are signed with blue dashed lines. ChT: chemotherapy, MIBC: 

muscle-invasive bladder cancer, RC: radical cystectomy, RT: radiotherapy.  

1.3 Immune checkpoint inhibitor predicting biomarkers in BC 

ICI therapies provided a never-before-seen survival benefit in metastatic, platinum-

resistant urothelial BC patients. However, only a small rate of ~15-20% BC patients 

respond to ICI therapy and individual patients may show remarkable differences in their 

sensitivities to ICIs. Tumor cells proved to be able to escape from cellular immune 

surveillance by expressing PD-L1 ligands, that are binding to PD-1 receptors of activated 

T-cells, resulting a blockade in immune response. These immune escape mechanisms can 

be blocked by the use of anti PD-L1 or anti PD-1 agents (11, 20, 21). PD-L1 

immunostaining of tumor and/or immune cells (in terms of TPS, CPS) were shown to be 

associated with better ICI efficacy and become part of clinical decision-making between 

carboplatin and ICI for first-line systemic treatment of cisplatin ineligible BC (11, 22). 

The somatic mutation of ARID1A and the higher gene expression of CXCL13 have been 
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suggested to be associated with better response and survival rates in ICI treated patients 

(23) (Table 1). 

Table 1. Single predictive markers for the efficacy of chemo- and immune checkpoint inhibitor 

therapies in muscle-invasive bladder cancer based on literature data. OS: overall survival, PFS: 

progression-free survival. 

Chemotherapy predictive markers 

Marker Impact Publication References 

Emmprin positive membrane staining 

associated with poor outcome 

Als et al. 2007 (13) 

Survivin positive cytoplasmatic staining 

associated with poor outcome 

Als et al. 2007 (13) 

STIP1 positive nuclear staining associated 

with worse OS 

Krafft et al.2019a (14)  

  high cytoplasmatic expression 

associated with shorter PFS 

HMGA2 high nuclear staining associated 

with worse OS 

Krafft et al.2019b (15)  

ERCC1 high nuclear expression associated 

with shorter OS  

Ozcan et al. 2012                 (16, 17) 

Sun et al. 2012   

ERCC2 tumors with ERCC2 somatic 

mutation responded to 

chemotherapy 

van Allen et al. 2014 (18)  

ATM somatic mutation of ATM and/or 

RB1 and/or FANCC are responder 

to chemotherapy 

Plimack et al. 2015 (19)  

RB1 

FANCC 

Immunotherapy predictive markers 
Marker Impact Publication Reference 

PD-L1 higher expression on immune cells 

was associated with therapy 

response and/or longer OS 

Rosenberg et al. 2017   (11, 12,20)  

Sharma et al. 2017   

Powles et al. 2020   

ARID1A somatic mutation of ARID1A 

associated with therapy response 

and longer OS 

Goswami et al. 2020 (23)  

CXCL13 higher gene expressions associated 

with therapy response and longer 

OS 

  

 

1.4 Molecular subtypes in BC 

In the last few years, high throughput sequencing and gene expression analyses provided 

a detailed insight into the molecular background of BC and revealed that histologically 

similar urothelial BCs have different molecular properties. Several studies have 

performed mRNA sequencing or gene expression chip analyses and demonstrated that 
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MIBCs can be classified into various molecular subtypes by using cluster analysis based 

on gene expression patterns. Subsequent studies demonstrated that distinct molecular 

subtypes have different prognoses and therapy sensitivity. Early research from the 

University of North Carolina (UNC) distinguished two well-separated groups; the so-

called “luminal” and “basal” subtypes. The luminal subtype shows high gene expression 

of KRT19, KRT20, GATA3, FOXA1, which are typically expressed by the luminal cell 

layer of the urothelium, while the basal subtype expresses high levels of KRT5, KRT6, 

KRT14 genes, which are characteristic for the basal cell layer of the urothelium. These 

groups proved to be prognostically relevant, as the tumors with luminal gene expression 

patterns showed prolonged survival compared to basal tumors (24). Later, researchers 

from the MD Anderson (MDA) Cancer Center distinguished the “p53-like” subtype, 

which may express both basal and luminal genes but have elevated expression of those 

genes that are regulated by the p53 expression. The authors also described that patients 

with a p53-like subtype had less benefit from chemotherapy (25). Considerable attention 

was subsequently directed to molecular subtypes, and more research groups suggested 

parallel different but partly overlapping classification systems. The genomic subtyping 

classifier (GSC) stratified four subtypes, a basal, a luminal, an infiltrated-luminal, and a 

claudin-low subtype, of which the basal tumors showed improved survival after NAC 

(26). The Lund classification described two luminal subtypes (urothelial-like and 

genomically unstable subtypes), a basal subtype, a mesenchymal-like subtype with both 

low luminal and basal gene expressions, and finally a small-cell/neuroendocrine-like 

subtype with poor prognosis, which is characterized by high expression of genes which 

are typically associated with neuroendocrine tumors (27). Later, the same research group 

comparing BC patients who received NAC before RC and found that only the 

genomically unstable and urothelial-like tumors benefited from the NAC treatment, while 

patients with basal subtype did not (28). These results are in contrast with the former 

findings by Seiler et al., who reported that only the basal subtype (by the GSC classifier) 

benefit from NAC (26). Similar to the Lund classifier, the TCGA (The Cancer Genome 

Atlas) classifier determined the neuronal subtype in addition to the basal subtype, and 

three different luminal subtypes (luminal-papillary, luminal-infiltrated, and luminal). The 

luminal-papillary tumors were found to have the best prognosis, whereas the neuronal 

subtype was associated with the poorest outcomes (29). The above classification systems 
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are partly overlapping but do not allow a direct comparison of results between studies 

using different classifier methods. Therefore, a consensus classification has been 

suggested based on the reanalysis of 1750 formerly published MIBC transcriptome 

profiles. This international study agreed to distinguish six Consensus molecular subtypes; 

(1) luminal papillary, (2) luminal non specified, (3) luminal unstable, (4) stroma-rich, (5) 

basal, and (6) neuronal-like subtypes. In addition, the study confirmed a better prognosis 

for luminal papillary, and a poor prognosis for neuronal subtypes, while the authors found 

no platinum-predictive values of any of the six subtypes. Finally, they suggested that the 

luminal non specified, luminal unstable, and neuronal-like subtypes could have benefit 

from ICI therapy (30). Figure 3 illustrates the recently described and partly overlapping 

molecular subtype classifiers. 

 

Figure 3. Different molecular classifiers with partly overlapping subtypes. Ba/SCC-like: 

basal/squamous cell carcinoma, Ba/Sq: basal/squamous, Lum: luminal, Lum-inf: luminal-

infiltrated, LumNS: luminal non specified, Lum-pap: luminal-papillary, LumU: luminal unstable, 

Mes: mesenchymal-like, Ne: neuronal, Sc/Ne: small-cell/neuroendocrine-like, Uro-like: 

urothelial-like. 

Each classifier presented above is based on transcriptome sequencing or gene expression 

chip data and thus on the analysis of thousands of genes. The molecular classifications 

had not spread into daily clinical practice yet, due to the methodological complexity and 

high costs of transcriptome sequencing. Therefore, a simple and cost-effective method is 

needed to identify molecular subtypes in the everyday practice. A few studies based on 
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immunohistochemistry (IHC) were published to overcome these methodological 

difficulties. However, IHC-based approaches typically used only two to five target 

proteins and can only distinguish luminal, basal, double positive, or double negative 

subtypes, and therefore cannot reproduce the mRNA-based classification systems (31–

33). The only exception is the IHC panel, which was elaborated to reproduce the Lund 

classification system with five subtypes by using a minimum of 13 protein markers (34). 

However, the application of 13 IHC markers is still hardly routine compatible.    

 Taken together, an easily available subtype classifier method is needed, which can 

be performed on the pathological routine collected formalin-fixed and paraffin-embedded 

(FFPE) tissue samples and is able to reproduce the most relevant molecular subtype 

classification systems.  
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2. Objectives 

2.1 The aim of the present retrospective study was: 

1) To develop a cost-effective and simple analytical method for the reproduction of 

the most relevant gene expression-based molecular subtype classification systems. 

2) To assess the prognostic and platinum-predictive value of various molecular 

subtypes in our own institutional BC patient cohorts.  

3) To assess the platinum-predictive value of 12 single genes at the mRNA as well 

as two genes at the protein level in our own institutional BC patient cohorts. 

4) To assess the platinum-predictive value of serum markers in our own institutional 

BC patient cohorts. 

Figure 4 outlines the study objectives along with the required steps and 

measurements essential for accomplishing these aims. 

2.2 Required steps / overview of the research 

1) Definition of a reduced gene set, which is able to distinguish between various 

molecular BC subtypes.  

2) In silico development of classifier methods for each molecular subtype 

classification systems (MDA, LundTax, TCGA, and Consensus) using the 

reduced marker set. 

3) In silico validation of the newly developed classifiers on publicly available 

datasets. 

4) Application of the above developed marker set and classifier methods to our own 

RC-treated institutional BC cohort. For this, we determined the expression of 68 

genes in 100 frozen BC tissue samples by using the TaqMan array card 

quantitative polymerase chain reaction-based method (qPCR). 

5) Application of the above developed (and further improved) marker set and 

classifier methods to our own institutional cohort of patients with pT3/4 or LN-

positive BC, who did vs. did not receive adjuvant chemotherapy. For this, we 

determined the mRNA expression of 48 genes in 160 FFPE tissue samples by the 

NanoString nCounter method. 
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6) In addition to subtype-specific genes, we also added 12 single genes with potential 

platinum-predictive value.  

7) Validation of the chemotherapy predictive value of the selected single genes in an 

independent data set. Two of the 12 markers were also investigated by 

immunohistochemistry in an independent institutional cohort. 

8) Analysis of the chemotherapy predictive value of SDC1 and MMP7 in serum 

samples by the ELISA method as well as in FFPE tissue samples by 

immunohistochemistry. 

 

 

Figure 4. Summary flowchart of the performed analyses. BC: bladder cancer, ELISA: Enzyme-

Linked Immunosorbent Assay, FFPE: formalin-fixed and paraffin-embedded, IHC: 

immunohistochemistry, MIBC: muscle-invasive bladder cancer, qPCR: quantitative polymerase 

chain reaction, TCGA: The Cancer Genome Atlas. 
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3. Methods 

3.1 Institutional patient cohorts 

3.1.1 Frozen bladder cancer tissue cohort for RT-qPCR gene expression analysis 

Frozen tumor tissue samples were collected from MIBC patients who underwent RC 

between 1990 and 2005 at the Department of Urology at the University of Duisburg-

Essen. Tissue samples were stained by hematoxylin and eosin and tumorous area were 

defined by uropathologist. Inclusion criteria were: ≥pT2 urothelial MIBC, no 

chemotherapy before RC, ≥50% tumor cell content in the tumor tissue, and available 

follow-up data. Hundred-four samples met the inclusion criteria. Four of 104 samples 

(4%) were excluded due to lowered gene expression assay (TaqMan) efficiency. Table 2 

summarizes the characteristics of 100 patients with fresh-frozen tumor samples, who met 

the inclusion criteria. 

3.1.2 FFPE bladder cancer tissue cohort for NanoString gene expression analysis 

FFPE tumor samples were collected from patients with MIBC, who underwent RC 

between 2005 and 2018 at the Department of Urology, University of Duisburg-Essen and 

Semmelweis University, Budapest. Inclusion criteria were:  ≥pT3 and/or lymph node 

positivity at RC (indication for an adjuvant platinum-based chemotherapy), no 

chemotherapy before RC, ≥50% tumor cell content in the tumor tissue, and available 

follow-up data. Hundred-ninety-one samples met the inclusion criteria. Ninety-five 

patients received adjuvant platinum-based chemotherapy (chemo cohort) within 90 days 

after RC, while 96 patients did not receive postoperative chemotherapy (non-chemo 

cohort). Eight of 191 (4%) samples were excluded due to low gene expression assay 

(NanoString) efficiency. Further 23 patients with distant metastasis at RC were excluded 

from final data analysis. Table 4 summarizes the characteristics of 160 patients with FFPE 

MIBC tumor samples.  

3.1.3 FFPE bladder cancer tissue cohort for immunohistochemistry 

For IHC analysis, FFPE tumor samples were collected from patients with MIBC, who 

received postoperative platinum-based chemotherapy between 2004 and 2010 at the 

Department of Urology, University Hospital of Essen (n = 29) or were enrolled in a phase 

II, prospective, multicenter, randomized, double-blinded trial (n = 43) (SUSE, AB 31/05, 

RUTT 204).  
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3.1.4 Bladder cancer serum samples for ELISA analysis  

Baseline serum samples were collected from MIBC patients, who received postoperative 

platinum-based chemotherapy between 2010 and 2017 at the Department of Urology, 

University Hospital of Essen (n = 16) and the Department of Urology, Semmelweis 

University of Budapest (n = 36). Inclusion criteria were: ≥pT2 urothelial MIBC, no 

chemotherapy before RC. Table 5 summarizes the characteristics of serum and IHC 

patient cohorts. 

3.1.5 Ethics statement  

The studies were performed according to the Declaration of Helsinki and the institutional 

ethics committees approved the study protocols (08-3942-BO /15-6400-BO, TUKEB 

55/2014, AB 31/05, RUTT 204). 

3.2 RNA extraction and gene expression analyses 

RNA was isolated from fresh-frozen RC specimens using RNeasy Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. Then, 500 ng RNA was reverse 

transcribed using the Multiscribe Reverse Transcriptase Kit (Thermo Fisher Scientific, 

Waltham, MA, USA). Gene expression levels of selected genes (Section 4.1) were 

measured by TaqMan Gene Expression Assay using the 364-well TaqMan Array Card 

platform on QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems, Life 

Technologies, Thermo Fisher Scientific, Waltham, MA, USA) according to 

manufacturer’s protocol. The list of determined genes and the detailed evaluation of gene 

expression results are described in Section 4.1. 

 RNA was isolated from FFPE RC specimens using RNeasy DSP FFPE Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Prior to RNA 

extraction, macrodissection has been performed and only the marked tumor areas were 

used for RNA extraction. Gene expression analysis with a custom gene panel of 48 

molecular subtype-specific and 12 additional single genes (Section 4.3) was run on the 

NanoString nCounter Analysis System (NanoString Technologies, Seattle, WA, USA). 

For data analysis, the nSolver 4.0 Software was applied. Gene expressions were 

normalized to the geometric mean of two reference genes (TBP, GAPDH), six internal 

positive controls, and eight internal negative controls. The list of determined genes and 

the detailed evaluation of gene expression results are described in Section 4.3. 



 

19 
 

3.3 Enzyme-Linked Immunosorbent Assay (ELISA) 

Patients’ baseline SDC1 serum levels were determined by the SDC1 ELISA kit (Diaclone 

CD138, Gene-Probe, San Diego, CA, USA; Cat. Nr.: 950.640.096) according to the 

manufacturer’s instructions. The cut-off value of SDC1 for dichotomization was set at 

the upper 25th percentile (180 ng/mL). 

Patients’ baseline MMP7 serum levels were measured using a Quantikine ELISA 

kit from R&D Systems (Wiesbaden, Germany; Cat. Nr.: DMP700) according to the 

manufacturer’s instructions. The cut-off value of MMP7 for dichotomization was set at 

the median. 

3.4 Immunohistochemistry 

To perform SDC1 IHC staining a mouse monoclonal antibody against SDC1/CD138 

(clone MI15, dilution 1:100, Dako/Agilent, Santa Clara, CA, USA) was used after heat-

based antigen retrieval (30 min, 96◦C, pH 6.0) on the FFPE sections. SDC1 staining 

intensity was scored as 1, 2, or 3, equivalent to negative, moderate, and strong intensities. 

A percentage score was also defined as 0–10%—0 Pts., 11–20%—1 Pt., 21–30%—2 Pts., 

31–40%—3 Pts., 41–50%—4 Pts., 51–60%—5 Pts., 61–70%—6 Pts., 71–80%—7 Pts., 

81–90%—8 Pts., 91–100%—9 Pts. Then, an IHC-score was calculated by multiplying 

the intensity score and percentage score. Weak SDC1 expression was considered as a 

score <4, moderate ≥4 and <10, and strong expression was considered as a score ≥10. 

SDC1 expression was evaluated separately for cell membrane, cytoplasm, and stroma.  

 To perform MMP7 IHC staining a mouse monoclonal antibody against MMP7 

(JL07, dilution 1:75, Santa Cruz Biotechnology, Dallas, Texas, USA) was used after heat-

based antigen retrieval (20 min, 95°C water bath, citrate buffer [pH 6]). MMP7 staining 

intensity was scored as 1, 2, or 3, equivalent to negative, moderate, and strong intensities, 

while a percentage score was defined as 0–10%—0 Pts., 11–50%—1 Pts., 51–80% —2 

Pts., and 81–100%—3 Pts.. Then, a score was calculated by multiplying the intensity 

score and percentage score. High MMP7 expression was considered as IHC-score >3. 

To perform CLDN4 staining a mouse monoclonal antibody (clone 3e2c1, dilution 

1:1000, Invitrogen, Waltham, Massachusetts, USA) was used after heat-based antigen 

retrieval (24 min, 96◦C, pH 6.0). CLDN4 staining intensity was scored as 1, 2, or 3, 

equivalent to negative, moderate, and strong intensities. High CLDN4 expression was 

considered as intensity >1. 
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To perform ERCC1 staining a mouse monoclonal antibody (Mob 336-05, clone: 

8F1, dilution 1:100, Diagnostic Biosystems, CA, USA). ERCC1 staining intensity was 

scored as 1, 2, or 3, equivalent to negative, moderate, and strong intensities, while a 

percentage score was defined as 0–10%—0 Pts., 11–50%—1 Pts., 51–80% —2 Pts., and 

81–100%—3 Pts.. Then, an IHC-score was calculated by multiplying the intensity score 

and percentage score. High ERCC1 expression was considered as IHC-score >4. 

3.5 Statistical analysis 

Chi2 test for the dichotomized variables and Mann-Whitney test for the continuous 

variables were used to assess the associations between clinicopathological variables and 

molecular subtypes, gene expression signatures, baseline serum and tissue protein levels 

of SDC1 and MMP7. Overall survival (OS) and cancer-specific survival (CSS) were 

analyzed by Kaplan-Meier log-rank test and Cox regression analysis. In the survival 

analyses, patient cohorts were stratified by molecular subtypes, gene expression 

signatures, chemotherapy treatment (chemo vs non-chemo subgroups), the median gene 

expression of 12 single chemotherapy markers, and levels of serum and tissue SDC1, 

MMP7, CLDN4 and ERCC1. For multivariate analysis, Cox regression model was used 

for the parameters with a p-value of <0.05 in the univariate analysis. Gene expression 

patterns of various molecular subtypes were visualized on heatmaps (Morpheus, 

https://software.broadinstitute.org/morpheus). All statistical analyses were performed 

using the SPSS software package (IBM SPSS Statistics for Windows, version 25, IBM 

Corp., Armonk, NY). All tests with a p value of <0.05 were considered statistically 

significant. 

  

https://software.broadinstitute.org/morpheus
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4. Results 

4.1 Development of classifier methods using reduced gene sets 

As the first step, we selected markers with the highest discriminative value between 

molecular subtypes of the TCGA study (29). The marker set was completed with further 

genes to reach a better discriminating effect also for MDA, LundTax, and Consensus 

subtypes. Finally, a panel with 68 genes was defined for using molecular subtype 

classification according to the above-described four classification systems. These genes 

covered eight signatures; five tumor cell-specific and three stromal signatures. Tumor 

cell-specific signature scores were: basal/squamous (CD44, CDH3, COL17A1, KRT14, 

KRT16, KRT1, KRT5, KRT6A, KRT6B / DSC2, DSC3, DSG2, DSG3, GSDMC, PI3, 

TGM1, TP63), luminal (CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3, KRT20, 

PPARG, UPK1A, UPK2), carcinoma in situ (CIS) (CRTAC1, CTSE, MSN, NR3C1, 

PADI3), neuronal (CHGA, CHGB, ENO2, GNG4, NCAM1, PEG10, PLEKHG4B, SCG2, 

SOX2, TUBB2B), or epithelial-mesenchymal transition (EMT) (CDH2, SNAI1, TWIST1, 

VIM, ZEB1, ZEB2). Stroma-specific signatures were: p53 (ACTC1, ACTG2, CNN1, DES, 

FLNC, MFAP4, MYH11, PCP4, PGM5), extracellular matrix (ECM)/smooth muscle 

(SM) (C7, COMP, SFRP4, SGDC), immune cells (CD274, CXCL11, IDO1, L1CAM, 

PDCD1LGZ, SAA1). The CDKN2A gene was added for molecular subtyping of LundTax 

and Consensus classifications.  

 As a next step, a classifier method was developed by using publicly available data 

sets with available transcriptome-based molecular subtype information. Datasets were 

filtered for the previously selected 68 genes, and all other genes were excluded from the 

further analyses. For each 68 gene an expression score (ranging from 1 to 5) was 

calculated based on their relative gene expression in the given patient cohort. Thereby the 

samples were divided into five groups and received scores (1 – the lowest, 5 – the highest) 

according to the gene expression levels. Next, an average gene-expression score of the 

respective genes for the eight signatures (luminal, basal/squamous, neuronal, CIS, EMT, 

ECM, p53, immune) were calculated. Then, a stepwise classifications system, a so-called 

“rule set” was established for the TCGA, MDA, LundTax, and Consensus classification 

systems, respectively. Each rule set was optimized on a training cohort, by adjusting two 

parameters: 1) cut-offs for signature scores into high and low groups and 2) the sequence 

of selection steps into different subtypes. These parameters were optimized until the 
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highest overlap has been reached between the rule set-based and transcriptome-based 

classifiers. Then, the so optimized rule set-based classifiers were validated on 

independent public data sets with available transcriptome-based subtype information. 

Figure 5 summarizes the required steps to develop our classifier method using the reduced 

gene set.  

 

 

Figure 5. Overview of the steps involved in developing a classification method using reduced 

gene sets. 

For the definition of the TCGA classifier, we randomly divided the TCGA data 

set (https://tcga-data.nci.nih.gov/tcga/) into a training (n=203) and validation dataset 

(n=202) (29). For the MDA classifier, we used the GSE48075 data set as the training 

cohort (n=73) and the TCGA data set as the validation cohort (n=231) (25, 35). For the 

LundTax classifier, we used the GSE83586 dataset and divided it into a training (n=154) 

and a validation cohort (n=153) (27). Finally, for the development of Consensus 

classifier, we divided the TCGA dataset into a training (n=201) and a validation dataset 

(n=202). 

Figure 6 shows the overlaps between the original transcriptome-based classifiers 

and the rule set-based classifiers. For the TCGA classifier, our method reached a 77% 
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overlap in the training, and 79% in the validation cohort. The overlap between the rule 

set-based method for the MDA classification proved to be 81% and 76% in the training 

and validation cohorts, respectively. The overlap reached 65% and 69% in the Lund 

training and validation cohorts, while for the Consensus classifier, our method reached 

75% and 70% accuracy in the training and validation data sets (Figure 6). 

 

 

Figure 6. Overlaps between original transcriptome-based classifiers and our newly developed 

gene and rule set-based classifiers in the training and validation cohorts. Ba/Sq: Basal/Squamous, 

Ba/SCC-like: Basal/SCC-like, GU: Genomically unstable, Lum: Luminal, LumI: Luminal-

infiltrated, LumNS: Luminal non specified, LumP: Luminal-papillary, LumU: Luminal unstable, 

Mes-like: Mesenchymal-like, Ne: Neuronal, Ne-like: Neuroendocrine-like, Sc/Ne-like: Small-

cell/Neuroendocrine-like, Str: Stroma-rich, Uro-like: Urothelial-like.  
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4.2 Application of the newly developed classifier method to our institutional cohort of 

100 RC-treated BC patients 

We applied the newly developed subtype classification method to our own institutional 

cohort of 100 RC frozen MIBC tissue samples. For this, each biopsy was re-evaluated by 

a board pathologist. Only samples with more than 50% tumor cell content were processed 

for RNA isolation. After reverse transcription, cDNA samples were used for real-time 

quantitative PCR with 68 genes by using the TaqMan Array Card technology. The 

determined relative gene expression values were used for molecular subtype classification 

according to various systems (MDA, LundTax, TCGA, Consensus) applying our newly 

elaborated subtype classifier method. Subtype information was than correlated with 

clinicopathological and follow-up data. 

The main characteristics of the institutional cohort (Essen) and the examined 

publicly available datasets, such as TCGA, MDA, and Lund are summarized in Table 2. 

In our institutional cohort, the median follow-up time was 10 months with a maximum of 

186 months. The clinicopathological data of distinct cohorts are well comparable. 

However, the presence of pT4 tumors was higher in the Essen cohort, moreover, the 

survival was shorter in the Essen compared to the TCGA cohort. Molecular subtype 

distribution was similar between our institutional cohort and those of published reference 

cohorts (TCGA, MDA, Lund) (Table 2).  
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Table 2. Patients’ characteristics. BC: bladder cancer, LN+: lymph node metastasis, M+: distant 

metastasis, Gen: genomically, Sc/Ne-like: small-cell/neuroendocrine-like, n.a.: not available data.  

Variables   Essen TCGA  MDA  Lund 

    n (%) n (%) n (%) n (%) 

Age median [range] 65 [36-95] 69 [34-90] 69 [n.a] 70 [38-87] 

Sex (male)   69 (69) 304 (74) 54 (74) 240 (78) 

Examined BCa samples 100 408 73 307 

Stage ≤pT1 0 1 (~0.2) 10 (14) 40 (13) 

  pT2 23 (23) 123 (30) 10 (14) 126 (41) 

  pT3 45 (45) 196 (48) 25 (34) 86 (28) 

  pT4 32 (32) 59 (14) 12 (16) 28 (9) 

  pTx 0 33 (8) 16 (22) 6 (2) 

  n.a.       21 (7) 

Metastases LN+ 35 (35) 132 (32) 23 (32) 14 (~5) 

  M+ 4 (4) 11 (~3) n.a 0 (0) 

Overall survival (patients alive)         

  1 y 45 (45) 328 (81) n.a n.a 

  2 y 31 (31) 263 (65) n.a n.a 

  3 y 27 (27) 246 (60) n.a n.a 

  4 y 24 (24) 240 (59) n.a n.a 

  5 y 22 (22) 236 (58) n.a n.a 

mRNA profiling method TaqMan Array Card  Illumina HiSeq Illumina HiSeq Affymetrix HG 1.0 ST 

 TCGA       Luminal-papillary 36 (36) 141 (35) - - 

                   Luminal-infiltrated 18 (18) 76 (19) - - 

                   Luminal 4 (4) 26 (6) - - 

                   Basal/Squamous 39 (39) 142 (35) - - 

                   Neuronal 3 (3) 20 (5) - - 

 MDA         Luminal 36 (36) - 24 (33) - 

                   Basal 27 (27) - 23 (32) - 

                   p53-like 37 (37) - 26 (36) - 

LundTax    Urothelial-like 27 (42) - - 133 (43) 

  Gen. unstable 7 (11) - - 66 (21) 

                   Infiltrated - - - 6 (2) 

      Basal/SCC-like 20 (31) - - 62 (20) 

           Mesenchymal-like 5 (8) - - 16 (5) 

                   SC/Ne-like 5 (8) - - 24 (8) 

Consensus  Luminal papillary 17 (27) 127 (32) - - 

                   Luminal non specified 6 (9) 20 (5) - - 

                   Luminal unstable 10 (16) 53 (13) - - 

                   Stroma-rich 1 (~2) 45 (11) - - 

                   Basal/Squamous 29 (45) 152 (38) - - 

                   Neuroendocrine-like 1 (~2) 6 (~1.5) - - 
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Figure 7 represents the overlaps between subtypes determined by our TCGA, 

MDA, LundTax, and Consensus rule set-based classifiers in our institutional cohort. The 

CDKN2A gene expression was used for LundTax and Consensus classifications and was 

additionally measured in 64 cases when enough RNA samples remained after the first 

analysis. Thus, the LundTax and Consensus classifications included only 64 MIBC 

samples, instead of 100. According to the results of Pearson’s Chi2 test between “summa 

luminal” (combined: luminal-papillary, luminal-infiltrated, and luminal), basal/squamous 

subtypes and main clinicopathological parameters, basal/squamous subtype tended to 

more frequently occur in women (p=0.069) then in men. This is in line with the results 

of the findings of the TCGA study. The subtypes showed no associations with other 

clinicopathological parameters.  

 

Figure 7. Molecular subtypes determined by rule set-based classifiers and their distinct gene 

expression profile on our institutional cohort visualized by heatmap. Genes that are 

downregulated* in CIS. CIS: carcinoma in situ. MDA: MD Anderson, TCGA: The Cancer 

Genome Atlas. Figure 7 has been published in the article: Olah C, Hahnen C, Nagy N, et al. A 

quantitative polymerase chain reaction based method for molecular subtype classification of 

urinary bladder cancer-Stromal gene expressions show higher prognostic values than intrinsic 

tumor genes. Int J Cancer. 2022;150(5):856-867. doi:10.1002/ijc.33809 
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 The luminal-papillary and neuronal subtypes according to TCGA and Consensus 

classification proved to be prognostic. The TCGA study identified the luminal-papillary 

tumors to have the longest survival, while those with neuronal tumors had the poorest 

prognosis. Accordingly, our survival analysis confirmed the poor survival of neuronal 

tumors, however, could not confirm the favorable prognosis of luminal-papillary tumors 

(Figure 8).  

 

Figure 8. Cancer-specific survival stratified by molecular subtypes according to rule set-based 

classifiers in our institutional cohort. Basal/Sq: basal/squamous, MDA: MD Anderson, Ne-like: 

neuroendocrine-like, Sc/Ne-like: small-cell/neuroendocrine-like, TCGA: The Cancer Genome 

Atlas. Figure 8 has been published in the article: Olah C, Hahnen C, Nagy N, et al. A quantitative 

polymerase chain reaction based method for molecular subtype classification of urinary bladder 

cancer-Stromal gene expressions show higher prognostic values than intrinsic tumor genes. Int J 

Cancer. 2022;150(5):856-867. doi:10.1002/ijc.33809 

In addition to the clinicopathological parameters, the prognostic values of the 

signature scores were evaluated by Cox univariate analysis. Multivariate analyses 

included those variables with a p-value of <0.05 in the univariate analyses (Table 3A and 
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B). The presence of lymph node metastasis was associated with worse overall (OS) and 

cancer-specific survival (CSS) (p<0.001), while higher pT-stage was associated with 

poor CSS (p=0.014). Basal, squamous, luminal, EMT, and CIS signature scores had no 

impact on survival. On the other hand, the high neuronal signature was a risk factor for 

OS and CSS (p<0.001), while high ECM, immune, and p53 signatures were associated 

with longer OS (p=0.001, p=0.001, p=0.023) and CSS (p=0.002, p=0.006, p=0.004) 

(Table 3A). The multivariate analysis confirmed the presence of lymph node metastases 

and high neuronal signature score as independent risk factors for OS and CSS, (p<0.001 

and p<0.001). In addition, the high immune score was independently associated with 

prolonged OS (p=0.039), and high ECM score with better CSS (p=0.049) (Table 3B). 

 

Table 3. Cox uni- and multivariate survival analyses with dichotomized signature scores on our 

institutional cohort.  

A    Univariate analysis Overall survival    Cancer-specific survival  

    n=100       n=100   

Variables HR 95% CI P   HR 95% CI P 

Age (>65)    1.064 0.671-1.687 0.792   0.978 0.597-1.602 0.929 

Sex (female) 1.548 0.915-2.620 0.103   1.498 0.848-2.647 0.164 

Stage (>pT3) 1.137 0.974-1.328 0.104   1.835 1.131-2.977 0.014 

Metastases                

Lymph node (LN+) 2.429 1.516-3.892 <0.001   3.004 1.823-4.950 <0.001 

Distant (M+) 1.645 0.567-4.766 0.359   1.881 0.641-5.520 0.250 

Signature scores               

Basal score (≥3) 0.893 0.571-1.399 0.622   0.761 0.472-1.227 0.262 

Squamous score (≥3) 1.059 0.679-1.652 0.800   0.980 0.610-1.573 0.993 

Basal/squamous score (≥3) 1.002 0.771-1.302 0.989   0.881 0.548-1.416 0.602 

Luminal score (≥3) 1.014 0.652-1.578 0.949   1.053 0.655-1.694 0.830 

Neuronal score (≥4.2) 9.714 3.221-29.291 <0.001   14.160 4.758-41.822 <0.001 

EMT score (≥3) 0.705 0.452-1.099 0.123   0.705 0.438-1.134 0.149 

ECM score (≥3) 0.450 0.283-0.714 0.001   0.468 0.289-0.759 0.002 

Immune score (≥3) 0.468 0.296-0.738 0.001   0.510 0.315-0.826 0.006 

CIS score (≥3) 0.841 0.540-1.310 0.444   0.811 0.503-1.309 0.392 

p53 score (≥3) 0.592 0.376-0.931 0.023   0.489 0.300-0.798 0.004 

B    Multivariate analysis               

Variables HR 95% CI P   HR 95% CI P 

Stage (>pT3) - - -   1.193 0.718-1.983 0.496 

Lymph node (N+) 2.484 1.528-4.039 <0.001   3.178 1.863-5.241 <0.001 

Neuronal score (≥4.2) 12.091 3.602-40.582 <0.001   16.376 4.852-55.276 <0.001 

ECM score (≥3) 0.607 0.362-1.019 0.059   0.551 0.305-0.997 0.049 

Immune score (≥3) 0.569 0.334-0.971 0.039   0.687 0.391-1.206 0.191 

p53 score (≥3) 0.886 0.506-1.552 0.673   0.739 0.399-1.369 0.336 
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4.3 Development of a further reduced marker set for FFPE samples 

Based on our experiences collected during the measurements detailed in 4.2 section, we 

further optimized the marker set. This improvement allowed us to reduce the marker set 

from 68 to 48 genes. Some genes were excluded, and in addition, some neuronal genes 

with lower specificity were removed and substituted with other neuronal genes based on 

literature data (36, 37). The tumor intrinsic signatures included the following genes: 

basal/squamous (CD44, CDH3, KRT14, KRT5, KRT6A / DSC2, DSG3, PI3), luminal 

(CYP2J2, ERBB2, FGFR3, FOXA1, GATA3, KRT20, PPARG, UPK1A, UPK2), 

carcinoma in situ (CRTAC1, CTSE, MSN, NR3C1), neuronal (APLP1, CHGB, ENO2, 

GNG4, MSI1, PEG10, PLEKHG4B, RND2, SV2A, TUBB2B), and epithelial-

mesenchymal transition (EMT) (CDH2, TWIST1, VIM, ZEB1), while the tumor extrinsic 

signatures the following genes: p53 (ACTC1, ACTG2, CNN1, MYH11, PGM5), 

extracellular matrix (ECM)/smooth muscle (SM) (COMP, SFRP4,  SGDC), and immune 

(CD274, CXCL11, IDO1, SAA1). The CDKN2A gene was still included in the reduced 

marker set. The change in the gene set required the adjustment the corresponding 

classifier rule sets, which resulted in a slight improvement of methodological accuracy 

(Figure 9). 

The above detailed 48-gene set was applied to the NanoString nCounter method. 

We decided to use this analytical platform, as it is also applicable to low amount and 

quality RNA samples, which is frequently true for samples isolated from FFPE tumor 

material. Figure 9 summarizes the overlaps between the original transcriptome-based and 

rule set-based classifiers with 68 and 48 genes. The TCGA, MDA, and Consensus 

classifiers with 48 genes reached similar overlaps with the original transcriptome-based 

classifiers like the rule set with 68 genes ( - 1-2%). The LundTax classifier reached higher 

overlap by the 48-gene marker set ( + 6%) (Figure 9).  

As a final step, we determined the expression values of the 48 genes in our 

institutional cohort with FFPE MIBC samples by the NanoString nCounter technique and 

identified the molecular subtypes by the rule set-based classifiers. In the following 

sections, the molecular subtyping was performed using the 48-gene marker set. 
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Figure 9. Overlaps between original transcriptome-based and rule set-based classifiers with 68-

gene and 48-gene marker sets for fresh frozen and FFPE samples. MDA: MD Anderson, Ne-like: 

neuroendocrine-like, Sc/Ne-like: small-cell/neuroendocrine-like, TCGA: The Cancer Genome 

Atlas. Figure 9 has been partly published in the article: Olah C, Szarvas T. A Panel-Based Method 

for the Reproduction of Distinct Molecular Subtype Classifications of Muscle-Invasive Urothelial 

Bladder Cancer. Methods Mol Biol. 2023;2684:27-43. doi:10.1007/978-1-0716-3291-8_2 

4.4 Application of the above developed classifier methods to our own institutional 

cohort of patients with pT3/4 or LN-positive BC, who did or did not receive adjuvant 

chemotherapy 

Our study included 160 MIBC patients who underwent RC and had a pT3/4 or LN 

positive histological finding, which represents an indication for adjuvant chemotherapy. 

None of the patients received NAC before RC. Approximately the half of these patients 

received adjuvant platinum-based chemotherapy (chemo cohort, n=81), while the other 

half of the patients refused or were ineligible to chemotherapy (non-chemo cohort, n=79). 

The chemo and non-chemo cohorts were comparable in terms of male/female ratio, stage 

at RC, the presence of lymphovascular and vascular invasion, and surgical margin. On 



 

31 
 

the other hand, the occurrence of LN positivity was higher in the chemo cohort, whil the 

median age in the non-chemo cohort (p=0.007, p=0.008, respectively, according to Chi2 

test and Mann-Whitney tests). The median OS tended to be longer for chemo patients 

compared to non-chemo patients (18.2 vs 8.2 months, p=0.069). The distribution of 

distinct molecular subtypes was similar according to each classifier system between the 

chemo and non-chemo cohorts (Table 4). 

We performed a Chi2 test to assess correlations between clinicopathological 

variables and molecular subtypes. The luminal-papillary subtype (according to TCGA 

and Consensus classifications), the luminal (according to MDA), and the urothelial-like 

(according to LundTax) were used as reference groups. The basal subtypes (according to 

the TCGA, LundTax, and Consensus classifications) occurred more frequently in women 

(p=0.018, p=0.021, and p=0.050, respectively). On the other hand, lymphovascular 

invasion was less frequent in basal and neuronal (Ne) subtypes (TCGA: p=0.018 and 

p=0.008, MDA: p=0.006, LundTax: p=0.005 and p=0.018, Consensus: p=0.066 and 

p=0.020). The occurrence of vascular invasion was significantly higher in the 

mesenchymal-like subtype (LundTax: p=0.014). The presence of LN+ was significantly 

less frequent in basal tumors according to each classifier (TCGA: p=0.020, MDA: 

p=0.008, LundTax: p=0.002, Consensus: p=0.010). 
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Table 4. Patients’ characteristics of the MIBC FFPE cohort (n=160). Ba/Sq: Basal/Squamous, 

Ba/SCC-like: Basal/SCC-like, GU: Genomically unstable, Lum: Luminal, LumI: Luminal-

infiltrated, LumNS: Luminal non specified, LumP: Luminal-papillary, LumU: Luminal unstable, 

Mes-like: Mesenchymal-like, n.a.: not available, Ne: Neuronal, Ne-like: Neuroendocrine-like, 

RC: radical cystectomy, Sc/Ne-like: Small-cell/Neuroendocrine-like, Uro-like: Urothelial-like. 

 

variables   Non-chemo cohort Chemo cohort 

    n (%) n (%) 

Total number of patients   79 81 

Age at baseline median [range]   72 [48-90] 63 [39-82] 

Sex male 60 (76) 53 (65) 

  female 19 (24) 28 (35) 

Cystectomy data pT1 - 1 (1) 

  pT2 4 (5) 15 (19) 

  pT3 55 (70) 39 (48) 

  pT4 20 (25) 21 (26) 

  n.a. 0 5 (5) 

Lymphovascular invasion L0 36 (46) 39 (48) 

  L+ 43 (54) 39 (48) 

  n.a. 0 3 (4) 

Vascular invasion V0 63 (80) 56 (69) 

  V+ 16 (20) 24 (30) 

  n.a. 0 1 (1) 

Surgical margin R- 60 (76) 41 (50) 

  R+ 18 (23) 16 (20) 

  n.a. 1 (1) 24 (30) 

Lymph node metastasis at RC LN0 50 (63) 34 (42) 

  LN+ 29 (37) 47 (58) 

Number of patients died (%)   62 (78) 54 (67) 

Follow-up time in months median (range) 8.2 (0-163) 18.2 (1-157) 

Subtype class information       

TCGA  LumP 16 (20) 21 (26) 

  LumI 12 (15) 15 (18) 

  Lum 14 (18) 13 (16) 

  Ba/Sq 33 (32) 29 (36) 

  Ne 4 (5) 3 (4) 

MDA Luminal 13 (16) 23 (28) 

  Basal 28 (35) 28 (34) 

  p53-like 38 (48) 30 (37) 

LundTax Uro-like 27 (34) 33 (41) 

  GU 14 (18) 13 (16) 

  Ba/SCC-like 24 (30) 23 (28) 

  Mes-like 10 (13) 9 (11) 

  Sc/Ne-like 4 (5) 3 (4) 

Consensus LumP 21 (27) 26 (32) 

  LumNS 1 (1) 4 (5) 

  LumU 7 (9) 7 (9) 

  Stroma-rich 8 (10) 6 (7) 

  Ba/Sq 38 (48) 35 (43) 

  Ne-like 4 (5) 3 (4) 

 

   



 

33 
 

Samples were classified into molecular subtypes according to different classification 

systems (TCGA, LundTax, MDA, Consensus) by using our gene panel and classifier 

method (see section 4.3). OS analyses were performed by the Kaplan-Meier method (and 

long rank test) by plotting chemo-treated and untreated patients within each molecular 

subtype. Based on this approach, tumors with luminal-papillary subtypes (according to 

TCGA and Consensus classifications; p=0.036 and p=0.009, respectively) and urothelial-

like subtype (according to LundTax; p=0.001) classification proved to benefit from 

adjuvant chemotherapy by significant longer OS. On the contrary, the tumors with basal 

subtypes showed similar survival rates in the chemo and non-chemo groups (Figure 10), 

suggesting that tumors with basal molecular subtype are not sensitive to adjuvant 

platinum therapy.   
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Figure 10. Survival analysis curves stratified by chemotherapy (chemo vs non-chemo). The 

molecular subtypes were identified with rule set-based classifiers. Ba/Sq: Basal/Squamous, 

Ba/SCC-like: Basal/SCC-like, GU: Genomically unstable, Lum: Luminal, LumI: Luminal-

infiltrated, LumNS: Luminal non specified, LumP: Luminal-papillary, LumU: Luminal unstable, 

Mes-like: Mesenchymal-like, Ne: Neuronal, Ne-like: Neuroendocrine-like, Sc/Ne-like: Small-

cell/Neuroendocrine-like, Uro-like: Urothelial-like. Figure 10 has been published in the article: 

Olah C, Reis H, Hoffmann MJ, et al. Predictive value of molecular subtypes and APOBEC3G for 

adjuvant chemotherapy in urothelial bladder cancer. Cancer Med. 2023;12(5):5222-5232. 

doi:10.1002/cam4.5324 
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4.5 Single genes for chemotherapy prediction 

4.5.1 Discovery analysis on our institutional patient cohorts 

In addition to the 48 subtype-specific genes (see section 4.3), we selected 12 

additional potentially platinum-predictive genes for NanoString gene expression analysis. 

These genes were selected based on own, yet unpublished research (APOBEC3A, 

APOBEC3B, APOBEC3G, TOP2A, BSG, MMP7) as well as on literature data (BIRC5, 

CDK12, CLDN4, ERCC1, HMGA2 and MKI67).  

 The continuous gene expression values were correlated with clinicopathological 

variables using the Mann-Whitney test. APOBEC3G and MMP7 gene expressions were 

higher in women (p=0.017 and p=0.044, respectively). Lower MMP7 expression 

correlated with lymphovascular invasion (p=0.008), while lower gene expression values 

of APOBEC3G and MKI67 showed a correlation with surgical margin positivity (p=0.010 

and p=0.018, respectively).  

 For correlation analyses, the median gene expression values were used as a cut-

off to divide patients into marker-high and marker-low expression groups. The same 

approach was applied for the evaluation of 12 individual genes as in the case of molecular 

subtypes (section 4.4); the OS rate was directly compared between chemotherapy-treated 

and untreated patient cohorts within marker low and high subgroups (Figure 11). The 

markers can be divided into three groups:  

1) favorable factors with improved outcome in the chemotherapy cohort (APOBEC3G; 

p=0.002, CLDN4; p=0.004, ERCC1; p=0.003) (Figure 11A), 

2) risk factors with poor survival in the chemotherapy cohort (BIRC5; p=0.007, 

HMGA2; p=0.005, MKI67; p=0.002) (Figure 11B),  

3) factors with no association with the outcome (APOBEC3A, APOBEC3B, CDK12, 

BSG, MMP7, TOP2A) (Figure 11C).  
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Figure 11. Overall survival stratified by low and high gene expression values and chemotherapy 

treatments (chemo vs. non-chemo) in our institutional cohort (n=160). P-values represent OS 

difference between platinum-treated and untreated patients in the high (red) and low expression 

(blue) biomarker groups. Predictive (A) and risk (B) genes in chemotherapy-treated patients are 

grouped separately from markers not associated with patients’ survival outcome (C). Figure 11 

has been published in the article: Olah C, Reis H, Hoffmann MJ, et al. Predictive value of 

molecular subtypes and APOBEC3G for adjuvant chemotherapy in urothelial bladder cancer. 

Cancer Med. 2023;12(5):5222-5232. doi:10.1002/cam4.5324 
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4.5.2 Validation analysis in a published NAC dataset 

Next, we aimed to validate the chemotherapy predictive values of the above 

identified six genes (see section 4.5.1) on an independent publicly available transcriptome 

dataset from patients who received NAC (n=125) or upfront RC without chemotherapy 

(n=161) (Lund cohorts) (28). The high gene expression value of APOBEC3G and CLDN4 

identified patients with improved OS in the NAC (p=0.026 and p=0.025, respectively), 

but not in the upfront RC cohort (p=0.576 and p=0.493, respectively), which confirmed 

the chemotherapy predictive value of these two genes (Figures 12A and C). In addition, 

the low gene expression value of BIRC5 also identified patients with favorable OS after 

chemotherapy-treatment (p=0.032) (Figure 12E). For the NAC cohort the pathological 

complete response (pCR) rates were also available. By assessing this endpoint only 

APOBEC3G showed a significant association, as its higher levels were significantly 

correlated with higher pCR rates (p=0.028) (Figure 12B, D and F). High ERCC1 gene 

expression and low gene expressions of HMGA2 and MKI67 were associated with 

improved OS in our institutional cohort. However, in the validation (Lund) cohort, the 

opposite result was observed, as patients with low ERCC1 gene expressions tended to 

benefit from chemotherapy (p=0.052). The high gene expression values of HMGA2 and 

MKI67 tended to be associated with worse survival rates in the chemotherapy-treated 

cohort, but these associations did not reach the significance level (p=0.059 and p=0.345, 

respectively).  
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Figure 12. Overall survival stratified by low and high gene expressions in our institutional 

(n=159) and validation (Lund) (n=285) cohorts (A, C, E). Pathological response rates for NAC in 

low and high gene expression groups in the validation (Lund) cohort (B, D, F). P-values represent 

OS difference between platinum-treated and untreated patients in the subgroups with high gene 

expression (red) and low gene expression (blue) levels. Figure 12 has been published in the 

article: Olah C, Reis H, Hoffmann MJ, et al. Predictive value of molecular subtypes and 

APOBEC3G for adjuvant chemotherapy in urothelial bladder cancer. Cancer Med. 

2023;12(5):5222-5232. doi:10.1002/cam4.5324 
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4.5.3 Protein expression of CLDN4 and ERCC1 

In a former analysis (unpublished results), the protein expression of CLDN4 and 

ERCC1 were investigated by IHC in our institutional MIBC cohort with patients who 

received postoperative chemotherapy. The examined cohort are partly overlapping with 

the IHC cohort presented in the 4.6 section. The results of CLDN4 were in accordance 

with the gene expression results, as the high CLDN4 expression was associated with 

improved OS after the chemotherapy (p=0.017) (Figure 13A). However, the results of 

ERCC1 protein expression were contrary to our current gene expression results as high 

ERCC1 protein expression tended to associate with shorter OS (p=0.061), thus showing 

similarity to the results found in the validation (Lund) dataset at gene expression level 

(Figure 13B).  

 

Figure 13. Overall survival stratified by protein expressions of CLDN4 (A) and ERCC1 (B) in 

MIBC patients treated with postoperative chemotherapy. 

 

4.6 Serum markers for chemotherapy prediction 

The analysis of chemotherapy-predictive proteins secreted in the blood may be easily 

applied into the daily clinical routine. Therefore, we aimed to examine the baseline serum 

levels of SDC1 and MMP7 in the institutional chemotherapy-treated MIBC cohort. SDC1 

and MMP7 were shown to be involved in chemotherapy resistance (38, 39), moreover 

MMP7 - a member of matrix-metalloproteinase family - is involved in the proteolytic 

ectodomain shedding of several transmembrane proteins including SDC1 (40). Therefore, 

we aimed to assess the potential platinum-predictive value of MMP7 and SDC1 in 

urothelial BC.  
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 Our institutional cohort included 52 MIBC patients, who received postoperative 

platinum therapy. Serum samples were collected directly before the first chemotherapy 

treatment and were stored at -80oC until ELISA analysis. In addition, SDC1 and MMP7 

protein expressions were assessed by IHC in FFPE tissue samples of patients who 

underwent later postoperative chemotherapy (n=72). Of note, there was no overlap 

between the patient cohorts with available serum and tissue cohorts, therefore a direct 

comparison between tissue IHC and serum ELISA results was not possible. Table 5 

summarize patients’ characteristics of the “serum” and “IHC” cohorts.  

 

Table 5. Patients’ characteristics in serum and IHC cohorts (no overlap between the two cohorts).  

Cohort Serum IHC  

Variables  n (%) n (%) 

Total number of patients 52 (100) 72 (100) 

Age at baseline median [range] 65 [41-81] 64 [37-90] 

   ≤ 65          27 (52) 37 (51) 

   > 65          25 (48) 35 (49) 

Sex     

   male 38 (73) 50 (69) 

   female 14 (27) 22 (31) 

Cystectomy data     

   pT1 1 (2) 1 (1) 

   pT2 9 (17) 16 (22) 

   pT3 21 (40) 24 (33) 

   pT4 10 (20) 13 (18) 

    n.a. 11 (21) 18 (25) 

Metastases     

   Lymph node metastasis (>2cm) 34 (65) 31 (43) 

   Distant metastasis 12 (23) 19 (26) 

   Soft tissue lesions (lung/liver) 9 (17) 28 (39) 

   Bone metastasis 3 (6) 9 (13) 

Number of patients died 31 (60) 53 (74) 

Follow-up time in months median 

[range] 
16 [2-101] 9 [1-102] 

 

The cut-off of serum SDC1 for dichotomization was determined as the upper 25th 

percentile (180 ng/mL), while the cut-off of serum MMP7 was determined at the median. 

High serum SDC1 and MMP7 levels were associated with shorter OS (p=0.004 and 

p=0.033, respectively) (Figures 14A and B). Membranous, cytoplasmic, and stromal 

SDC1 protein expressions were separately evaluated. We found no association between 
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SDC1 tissue expressions and survival outcomes (membranous SDC1: p=0.918, 

cytoplasmic SDC1: p=0.802, stromal SDC1: p=0.452). MMP7 staining was localized in 

the cytoplasm of tumor cells, and frequently showed higher expressions at the tumor-

stroma interface. High MMP7 tissue expression and serum concentration levels were 

associated with shorter OS (p=0.033 and p=0.017, respectively) (Figures 14B and C). In 

addition, we compared serum baseline levels of SDC1 and MMP7 and found higher 

SDC1 serum levels to be positively correlated with MMP7 serum concentrations 

(Spearman’s rho test; correlation coefficient: 0.326, p=0.029) (Figure 14D). 

 

Figure 14. Overall survival stratified by serum SDC1 level (A), serum and tissue MMP7 levels 

(B and C). Correlations between serum MMP7 and SDC1 levels (D). 
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5. Discussion 

In the present work, we aimed to identify platinum-predictive tissue and serum markers 

for MIBC patients. Therefore, we developed a simple, robust, and cost-effective gene 

expression-based classifier method for molecular subtyping, which has been applied to 

our own institutional cohorts of frozen (n=100) and FFPE samples (n=160), by using the 

RT-qPCR and NanoString analytical platforms. In addition, based on preliminary results 

and literature data, we selected and tested 12 single genes and two serum markers, with 

potential platinum predictive value.   

 Recently, transcriptome sequencing in various MIBC cohorts has revealed a 

molecular diversity of urothelial tumors and defined gene expression-based molecular 

subtypes with distinct clinical behaviors in terms of prognosis and therapy sensitivity. 

Due to the methodological complexity and high costs of this method, the use of molecular 

subtypes as prognostic and/or predictive factors could not spread into the clinical routine. 

However, recently new therapeutic agents have become available after a chemotherapy 

failure. Therefore, predicting patients’ platinum resistance may help to avoid unnecessary 

exposure to cytotoxic platinum treatments and thus may help to reduce the use of 

ineffective treatments leading to better patients’ prognosis.  

Several studies aimed to simplify the molecular subtyping by using gene panel- 

or IHC-based classifiers. However, these classifiers were only able to differentiate 

between the luminal and basal subtypes, mostly without correlation analysis to mRNA-

based subtypes.  

Rinaldetti et al. created a 36-gene panel that included luminal, basal, and p53-like 

gene signatures and classified basal, luminal, and “infiltrated” subtypes. Based on their 

results, luminal tumors had significantly worse CSS and OS in a MIBC cohort after RC 

(n=47) (41). A study by Kardos et al. developed a NanoString-based method using a 47-

gene set. Their panel was able to distinguish between the luminal and basal subtypes, but 

the so identified subtypes were not associated with patients’ prognosis (42). A further 

study with a reduced gene set, stratified 39 RC treated MIBC patients into luminal, 

luminal-like, basal, and basal-like subtypes, which are however not compatible with 

classes according to the original transcriptome-based classification systems.  In addition, 

authors did not find a prognostic value for their subtypes (43). 
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IHC-based studies typically apply 2-5 proteins for the identification of molecular 

subtypes. A study by Font et al. evaluated the expression of two luminal markers 

(FOXA1, GATA3) and two basal markers (KRT5/6, and KRT14) in 126 MIBC samples 

and classified them into luminal-like, basal/squamous-like, and mixed subgroups. They 

found significantly higher pathological response rate to NAC for basal/squamous-like 

tumors (31). A further IHC study stratified 106 MIBC tumors into luminal and basal 

subtypes based on the expressions of GATA3, UPK2, KRT20, KRT5/6, and KRT14 

proteins. The basal molecular subtype showed high overlap with the presence of 

squamous secondary variant histology, while the luminal molecular subtype was 

associated with pure urothelial carcinoma histology. Moreover, each tumor with 

micropapillary variant histology was classified into luminal molecular subtype, 

confirming the accuracy of molecular classification on the histological level. Of note, 

authors found no differences in patients’ survival between luminal and basal molecular 

subtypes (32). In addition, authors found tumor-associated immune cell status to have a 

major impact on CSS, as luminal and basal tumors with low immune cell infiltration had 

significantly worse survival compared luminal and basal tumors with high immune cell 

infiltration. Thus, this study by Ikeda et al. suggest that the tumor microenvironment also 

plays an important role for the survival, therefore it is necessary to distinguish additional 

subgroups within the luminal and basal subtypes based on microenvironmental factors 

(32). The LundTax IHC classifier is different from the above-described IHC-based 

methods as this aims to identify the same subtypes that were classified by transcriptome-

based classifier at the RNA level. In contrast to other classification systems, LundTax 

aimed to exclude the impact of stromal- and immune cells from the analysis and focused 

only on the expression patterns of the cancer cells. This method differentiates five 

subtypes; urothelial-like, genomically unstable, basal/SCC-like, mesenchymal-like, and 

Sc/Neuroendocrine-like, according to the LundTax mRNA-based classification system. 

The IHC-based molecular classifier is well-elaborated and described, applying a 

minimum of 13 protein markers, which makes this method hardly compatible with current 

pathological practice (27, 44). Overall, other current molecular subtype classifiers with 

reduced gene sets or protein markers are not able to reproduce the transcriptome-based 

classifications. They use a heterogeneous set of gene or protein markers, and the identified 

subtypes are mostly not compared to transcriptome-based subtypes of the same samples. 
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Therefore, the accuracy of these simplified classification methods cannot be critically 

evaluated. Therefore, the results on the prognostic and predictive values of different 

subtypes by these methods are heterogeneous and not comparable to each other.  

Our 68-gene panel-based method is the first classifier method with a reduced gene 

set that can fully reproduce the most widely used transcriptome-based classification 

systems such as the MDA, TCGA, LundTax, and Consensus. However, our marker set 

was primarily selected to recapitulate the TCGA classification, we also achieved 

relatively high overlaps between our 68-gene panel-based classification method and other 

transcriptome-based classifiers. Our method reached 78%, 81%, 67%, and 75% overlaps 

for TCGA, MDA, LundTax, and Consensus classifications systems, respectively. After 

the in silico development and validation, we applied our panel- and rule-set-based 

classification method to our institutional cohort of 100 fresh-frozen MIBC samples. For 

this, mRNA expression of 68 genes were determined by using the RT-qPCR method, 

then, samples were classified into distinct molecular subtypes. As a next step, we 

evaluated the prognostic values of TCGA, MDA, LundTax, and Consensus subtype 

classifications in our institutional cohort and found that TCGA-neuronal and luminal 

tumors have the worse survival, which is in line with the findings of the original (TCGA) 

study (29). Neuronal subtype represents only ~5% of MIBCs but has a devastating 

prognosis and poor response to NAC. On the other hand, patients with neuronal or luminal 

subtypes according to the TCGA classifier may benefit from immunotherapy, which 

makes the distinction of these subtype clinically relevant (29, 36, 45). The TCGA study 

reported favorable prognosis for luminal-papillary tumors, which was later confirmed by 

the Consensus study (29, 30). In the present study, we did not find a favorable prognosis 

for patients with luminal-papillary subtype. Consistent with our results, an independent 

study with RC-treated MIBC patients could not confirm the favorable prognosis for the 

luminal-papillary subtype (46).  

In addition to molecular subtypes, we investigated the prognostic values of 

different molecular signatures in the MIBC cohort of 100 fresh-frozen tumor samples. 

Our results revealed that stromal signature scores (genes expressed by the stromal cells), 

such as ECM, immune, and p53, were associated with improved OS and CSS. On the 

contrary, tumor intrinsic signatures (genes expressed by the tumor cells), such as luminal, 

basal, and squamous signatures showed no association with survival. Among the tumor 
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intrinsic factors, only the neuronal signature score influenced survival, which is consistent 

with the poor prognosis found for the neuronal molecular subtype. In accordance with our 

results, MIBC tumors with high numbers of tumor-infiltrating lymphocytes (inflamed 

tumors) showed better CSS compared to uninflamed tumors (47). Moreover, the 

lymphocyte infiltration was associated with molecular subtypes; the basal subtypes 

showed the highest lymphocyte infiltration, followed by the luminal-infiltrated subtype 

(47). Accordingly, the TCGA basal/squamous subtype also exhibited a high level of 

immune cell infiltration (29). A further study reported that MIBC tumors with higher 

infiltration of CD8+ cytotoxic T cells and natural killer cells had better survival outcomes 

(48). In conclusion, the ECM, immune, and p53 signatures seem to influence patients’ 

prognosis, thus the identification of smaller molecular subtypes with high stromal and 

immune cell infiltration is clinically important. 

Routine histological tumor evaluation applies FFPE tumor samples, therefore this 

type of material is widely available for retrospective clinical research other than fresh-

frozen tumor samples, which requires prospective and complicated sample logistics. 

Therefore, we aimed to transfer our rule set-based classifier method to routinely available 

FFPE samples. However, according to our technical analyses RNA samples purified from 

FFPE tissues frequently provided invalid results by the RT-qPCR method. Therefore, we 

decided to transfer gene expression analysis to the NanoString nCounter platform, which 

provided usable results also in those cases when RT-qPCR did not. As part of the 

optimization process, the panel was reduced from 68 to 48 genes, which required a 

respective adjustment of the rule sets. After this gene number reduction and rule set 

adjustment, our updated classifier method achieved similar or higher overlaps with the 

original transcriptome-based classifications than the previously used 68-gene marker set. 

Importantly, the 48-gene classifier method reached higher overlap with the LundTax 

transcriptome-based classification, than the 68-gene classifier. This result is important, as 

we plan to perform IHC-based molecular classification on our institutional cohort using 

the LundTax IHC classifier. Thereby, the LundTax subtypes identified by the gene 

expression-based and IHC-based classifiers will be directly comparable in the same 

samples.  

By using the updated 48-gene classifier, we examined the chemotherapy 

predictive values of molecular subtypes. According to literature data, the p53-like subtype 
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(MDA) is associated with chemotherapy resistance (25), while Seiler et al. found that 

only the basal subtype (as identified by the GSC classifier) benefits from a NAC by an 

OS benefit, however authors did not present data on the important and less biased 

endpoint of pathological complete response (pCR) (26). In addition, a recent study using 

the GSC classifier could only partly confirm the higher chemotherapy sensitivity of the 

basal subtype. Authors separated luminal, luminal infiltrated, basal, and claudin-low 

subtypes, which were merged in two groups; of “luminal” and “non-luminal” subgroups. 

The non-luminal group included the basal, claudin-low, and surprisingly also the luminal 

infiltrated subtypes. As a result, they described those patients with non-luminal tumors 

showed significantly longer OS after NAC compared to patients treated by upfront RC 

alone. However, a similar survival outcome was observed in patients with luminal tumors 

with and without NAC treatment (49). The Consensus study, which reanalyzed the gene 

expression results of previously published datasets containing a total number of 1750 

MIBC samples and defined the Consensus classification system, found no NAC 

predictive value for any of the subtypes (30). In contrast to the above results, a recent 

paper by Taber et al. divided patients into basal and non-basal subgroups and found that 

patients with non-basal tumors (mainly containing luminal subtypes) benefited from 

salvage platinum-based chemotherapy, while basal subtypes did not (50). In accordance 

with these results Sjödahl et al. examining the therapy predictive value of molecular 

subtypes by the LundTax classifier in a NAC-treated vs. upfront RC-treated patients 

found that tumors with luminal subtypes (such as the genomically unstable and urothelial-

like subtypes) had significantly higher pCR rates compared to basal subtypes, which was 

consistent  with the survival outcomes (28). Overall, the above presented literature data 

seem to be contradictory, however, a direct comparison of results may be difficult due to 

differences in chemotherapy setting (neoadjuvant or postoperative) or study endpoints 

(OS or pCR), and the applied subtype classification systems (MDA, LundTax, TCGA, 

GSC, Consensus).  

Our present study is the first that assessed the platinum-predictive value of 

molecular subtypes (TCGA, MDA, LundTax and Consensus) in the adjuvant 

chemotherapy setting. We included two MIBC cohorts both with a guideline-based 

recommendation for adjuvant chemotherapy. The “chemo cohort” received platinum-

based chemotherapy within 90 days after RC, while the ”non-chemo cohort” was treated 
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only with RC without postoperative chemotherapy. Tumor samples were classified into 

molecular subtypes using our 48-gene panel-based classifier of the TCGA, MDA, 

LundTax, and Consensus classification systems. Then the therapy predictive values of 

distinct molecular subtypes were examined by comparing patients’ OS between the 

chemotherapy-treated and non-treated patients within each molecular subtype. Our results 

showed that patients with the luminal-papillary subtype (according to TCGA and 

Consensus classifications), and those with the urothelial-like subtype (according to 

LundTax classification) may benefit from adjuvant chemotherapy. In contrast, basal 

tumors (according to each classification system) did not benefit from the administration 

of adjuvant chemotherapy. These results are in line with those of published by Sjödahl et 

al. as well as by Taber et al., showing that rather luminal than basal subtypes are 

associated with platinum sensitivity in the adjuvant chemotherapy setting (28, 50).  

A further aim of the present work was to test the chemotherapy predictive value 

of 12 single and potentially platinum-predictive genes. Some of these 12 genes were 

selected based on our preliminary results; APOBECs, CLDN4, HMGA2, MKI67, and 

TOP2A (unpublished data). Further three genes were selected according to formerly 

published data by Als et al., who performed global gene expression profiling of tumor 

samples from platinum treated BC patients and identified BIRC5, BSG, and HMGA2 as 

platinum predictive genes (13). In a subsequent IHC study, we were able to validate the 

therapy predictive value of BIRC5 (protein name: Survivin), BSG (protein name: 

Emmprin), and HMGA2 (15). CDK12, ERCC1, and MMP7 were also selected based on 

literature data  (17, 51, 52). The so selected 12 genes were measured in our institutional 

cohort (chemo vs. non-chemo) using the NanoString method and those genes with 

confirmed chemotherapy predictive values were further investigated in an independent 

dataset with NAC and RC-treated patients (Lund cohorts) (28, 46). According to the 

analysis of our institutional cohorts, high APOBEC3G, CLDN4, and ERCC1 expressions 

and low BIRC5, HMGA2, and MKI67 expressions were associated with significantly 

improved survival in the chemo cohort, but not in the non-chemo cohort. The validation 

analysis on the external Lund datasets confirmed the chemotherapy predictive values of 

APOBEC3G, CLDN4, and BIRC5 in terms of OS. In addition, high APOBEC3G 

expression was associated with higher rates of pCR. 
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Claudin-4 (CLDN4) is a component of tight junction proteins, and its high 

expression was associated with local invasion, LN and distant metastasis, and 

pathological stage in chemo-naïve BC patients. In addition, the combination of CLDN4 

antibody and cisplatin decreased the growth of tumors derived from subcutaneously 

inoculated T24 BC cells in mouse models (53), which results are inconsistent with the 

outcome of our analysis. In ovarian cancer cell lines, consistent with our results, the 

knockdown of CLDN4 increased the resistance to cisplatin (54). To reveal the relation 

between chemotherapy efficacy and CLDN4, further immunohistochemical analysis of 

chemotherapy-treated tumor tissues and functional experiments on cisplatin sensitive and 

resistant BC cell lines are needed.  

Survivin is an apoptosis inhibitor. Its enhanced expression may help to avoid 

therapy-induced cell death of tumor cells and thereby may contribute to therapy resistance 

(13). In a former study, we confirmed the association between a strong Survivin 

immunostaining and shorter survival in chemotherapy-treated BC patients (15). In the 

present study, we found that a high gene expression level of Survivin, similar to the 

protein level results, is associated with inferior survival after adjuvant chemotherapy. 

In the present study, APOBEC3G was identified as platinum predictive marker in 

the adjuvant chemotherapy setting and its predictive value could be confirmed in the 

neoadjuvant setting as well. Furthermore, its elevated expression was associated with 

significantly higher pCR. APOBEC3G gene codes a cytidine deaminase, which has an 

important role in innate antiviral response. Expression analyses of APOBEC3G in various 

tumor types revealed a heterogeneous pattern, while no data are available for BC, and 

only one study assessed the expression of APOBEC3G expression in urothelial cancer 

cell lines (55). In colorectal cancer, positive APOBEC3G expression was suggested to be 

mechanistically involved in the formation of liver metastasis and was associated with a 

worse prognosis (56). In contrast, an independent study reported that high APOBEC3G 

protein expression is able to reduce the migration ability of human HCC cell line, Hep 

3B (57). In melanoma patients, high APOBEC3G gene and protein expressions were 

found to be elevated in tumor compared to benign tissue and its higher expression levels 

were associated with more favorable overall and recurrence-free survival. Furthermore, 

high APOBEC3G expression was associated with higher immune cell infiltration (58). 

Based on our results, further analysis is required to reveal the mechanistic role of 
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APOBEC3G in chemotherapy response, however, the IHC-based separation of different 

APOBEC proteins from each other represents a major challenge (59).  

The use of serum markers for chemotherapy prediction could also be easily 

integrated into the daily clinical routine. Based on former analyses and literature data, we 

selected SDC1 and MMP7 for measurement in baseline serum samples of chemotherapy-

treated MIBC patients.  

SDC1 is a transmembrane heparan sulfate proteoglycan, which is predominantly 

expressed in the epithelial cells. The members of the syndecan protein family are involved 

in cell signaling and cytoskeletal organization. SDC1 tissue expression, especially its 

intracellular localization was proved to be associated with patients’ prognosis in MIBC 

(60). Higher serum SDC1 levels were observed in patients with high-stage and high-grade 

tumors and were associated with the presence of metastasis (60). In addition, a shift in 

the intracellular localization of SDC1 from the membrane to the cytoplasm has been 

observed during the progression of BC (60, 61). This phenomenon might be associated 

with the shedding of the extracellular domain of SDC1. The shedded extracellular domain 

of SDC1 can be detected in patients’ serum samples. Yu et al. described a significantly 

higher expression of SDC1 in cisplatin resistant hepatic carcinoma cells (HepG2) 

compared to sensitive cell lines (38). In line with these results, a high stromal SDC1 

expression was associated with higher tumor-specific mortality in patients with oral 

squamous carcinoma who received NAC (62). These results led us to measure the 

pretreatment serum levels of SDC1 in BC patients who receive cisplatin-based 

chemotherapy. We found that higher SDC1 serum levels independently correlating with 

shorter OS. On the other hand, we found no correlation between membranous or 

cytoplasmatic localization of SDC1 and OS of platinum-treated BC patients. A recent 

study by Seiler et al. reported that the changes of glycosaminoglycan chains of SDC1 

may also influence BC patients’ chemotherapy sensitivity (63). Therefore, further 

analyses are needed to reveal the potential mechanistic involvement of SDC1 in platinum 

resistance to clarify, whether high SDC1 serum and/or protein expressions are predictive 

or rather prognostic in BC. 

MMP7 is a member of the matrix metalloproteinases enzyme family, which has 

been proved to be associated with the degradation of extracellular matrix (ECM) 

components, and thereby linked to tumor invasion and migration (64). In our previous 
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work, MMP7 tissue gene expression was significantly higher in MIBCs compared to 

NMIBCs, with the highest levels in metastatic BC patients. Accordingly, high serum 

MMP7 levels were associated with LN positivity and shorter overall, disease-specific and 

metastases-free survival (65). Furthermore, MMP7 was identified as a chemotherapy 

predictive marker by comparative transcript profiling analysis in cisplatin sensitive versus 

resistant head-and-neck squamous cell carcinoma cell lines (39). High MMP7 tissue 

protein expression was correlated with poor treatment response and shorter OS in non-

small cell lung cancer patients who underwent platinum chemotherapy (66, 67). Similar 

results were found in progressed prostate cancer, where high baseline MMP7 serum levels 

were associated with shorter OS in patients who underwent docetaxel chemotherapy (68). 

The above results led us to examine the possible association between baseline serum 

MMP7 levels and OS in platinum-treated MIBC patients. Our results identified high 

pretreatment serum MMP7 levels to be independently associated with shorter OS in 

platinum treated MIBC patients. These results were then also confirmed in MIBC tissues, 

as strong MMP7 immunostainings were associated with a worse OS in platinum treated 

BC patients. However, our in vitro knockout analyses were not able to confirm the 

functional involvement of MMP7 in platinum resistance of BC cells. Further research 

needs to clarify whether MMP7 is a prognostic or therapy predictive marker in BC. 

However, the negative results of our in vitro analyses suggest the MMP7 is rather a 

prognostic than a predictive marker.  

Members of the MMP family are involved in many processes, including ECM 

degradation, thereby tumor invasion and migration, as well as tumor angiogenesis, cell 

proliferation, and even apoptosis. Some MMP proteins, including MMP7, are able to 

cleave the extracellular domains of other proteins. Cleavage of the extracellular domain 

of the epithelial marker E-cadherin reduces the adhesion capacity of the cell and 

contributes to cell motility. On the other hand, MMP7 can also cleave the Fas receptor 

and ligand from the cell surface, thereby inhibiting apoptosis (69). Based on these, we 

assumed the MMP7 can cleave the extracellular domain of SDC1 as well. Thus, we 

correlated the serum levels of both proteins with each other and found a significant 

positive correlation between the proteins.  
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Based on the present study conducted on retrospective cohorts of patients with 

muscle-invasive bladder cancer, the following novel findings can be reported: 

1) Tumors can be classified into different molecular subtypes using a reduced 

gene panel-based assays. RT-qPCR and NanoString-based gene expression 

analyses provide a more cost-effective and simpler method to determine 

molecular subtypes. The newly established, gene panel-based expression 

assay has also been optimized for the analysis of FFPE samples, which are the 

most commonly available specimens in clinicopathological diagnostics. 

2) The determined molecular subtypes have prognostic value; patients with 

neural subtypes show poor outcomes. 

3) The determined molecular subtypes have chemotherapy-predictive value; 

patients with luminal-papillary subtypes (TCGA and Consensus 

classifications) and urothelial subtypes (Lund Taxonomy) benefit from 

adjuvant chemotherapy. 

4) Single genes may predict patients' chemotherapy response rates. High 

APOBEC3G gene expression is associated with longer overall survival in 

patients receiving adjuvant chemotherapy, compared to patients with a 

chemotherapy indication who were treated solely with radical cystectomy. 

Additionally, patients with high APOBEC3G expression demonstrated 

inferior pathological complete response rates in a cohort treated with 

neoadjuvant chemotherapy. 

5) Serum markers for chemotherapy prediction can be easily integrated into 

routine clinical practice. High serum levels of SDC1 and MMP7 were 

associated with shorter overall survival in a cohort of patients treated with 

postoperative chemotherapy. 

6) The tissue expression of MMP7 may be used to select patients for 

postoperative chemotherapy treatment. 
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Conclusions 

In the present work, we aimed to develop a gene panel-based classifier method, 

which can be applied to a routine-compatible analytical platform and to provide robust 

results from low quality FFPE tissue samples as well. Our classifier method was able to 

accurately reproduce the most widely used mRNA-based classification systems (TCGA, 

MDA, LundTax, Consensus). Our 68-gene classifier method was tested on frozen tissue 

samples by using RT-qPCR analysis. In accordance with the published literature, we 

found that patients with neuronal and luminal subtypes had the poorest prognosis, while 

the favorable prognosis of luminal-papillary tumors could not be confirmed. In a further 

step, we optimized and reduced our panel to 48 genes and assessed the predictive value 

of molecular subtype classification for the first time in the context of adjuvant platinum 

therapy. We found that patients with luminal-papillary (according to TCGA and 

Consensus classifiers), and urothelial-like subtypes (according to LundTax classifier) 

benefited from adjuvant chemotherapy, while in contrast those patients with basal tumors 

did not.  

In addition, we assessed 12 potential chemotherapy predictive markers and 

confirmed the platinum predictive value of APOBEC3G, CLDN4, and BIRC5. In addition, 

APOBEC3G expression was significantly associated also with the pathological complete 

response rates in the neoadjuvant setting. 

 Finally, we identified high pretreatment levels of SDC1 and MMP7 as 

independent predictors of poor survival in platinum-treated MIBC patients. 

Our results suggest that determination of molecular subtypes and APOBEC3G, 

CLDN4, and BIRC5 gene expressions as well as SDC1 and MMP7 serum concentrations 

may help to improve therapeutic decision-making in MIBC. However, prospective studies 

are needed to confirm our results before their implementation into the clinical routine.  
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6. Summary 

Recently, both prognostic and predictive values of distinct molecular BC subtypes have 

been revealed. In the future, molecular subtypes may play a crucial role in the therapeutic 

decision-making of patients with MIBC. Current molecular subtyping is based on 

transcriptome sequencing, which is associated with high demands of input samples, 

technical complexity, and high costs. This technical barrier largely hindered the 

widespread adoption of the molecular classification in the daily clinical routine. 

Therefore, we aimed to develop a simple gene panel-based classification method that can 

identify molecular subtypes according to TCGA, MDA, LundTax, and Consensus 

classifications. To this aim, we developed a rule set-based classifier method, which has 

been applied to fresh-frozen MIBC samples by measuring the gene expression of 68 genes 

using RT-qPCR. Then, we classified our institutional cohort of 100 MIBC samples into 

molecular subtypes and examined their prognostic values. In line with the original studies, 

patients with neuronal subtypes had the worst survival. In addition, we found that strong 

extracellular matrix and immune cell signatures were associated with improved survival, 

suggesting that the tumor microenvironment play an important role in tumor progression. 

As a next step, the rule set-based classifier method was optimized (the marker set was 

reduced from 68 to 48 genes) and the analytical platform was transferred to the 

NanoString nCounter technology to enable the analysis of FFPE tumor samples. We then 

applied our updated rule-set-based classifier to our institutional MIBC cohort, which 

included adjuvant chemotherapy-treated and non-treated patients. Luminal-papillary 

subtype (TCGA, Consensus), and urothelial-like subtype (LundTax) were associated with 

longer survival in the chemo cohort compared to non-chemo cohort. Patients with luminal 

papillary or urothelial-like subtypes may benefit from adjuvant chemotherapy. 

Expression levels of 12 genes with potential chemotherapy predictive value were 

evaluated in our chemo and non-chemo MIBC cohorts. Patients with high levels of 

APOBEC3G and CLDN4 as well as with low levels of BIRC5 showed improved survival 

in the chemo, but not in the non-chemo cohort. These results could be confirmed in an 

external dataset. In addition, high APOBEC3G expression correlated with the 

significantly higher pCR rates in patients who received NAC. 

High baseline serum levels of SDC1 and MMP7 were associated with inferior 

survival outcomes in MIBC patients who received platinum-based chemotherapy.  
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