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1. Introduction 

1.1. Epidemiology 

Lung cancer is one of the most common malignancies and the leading cause of cancer-

related deaths worldwide. According to the 2018 GLOBOCAN estimates, around 

2,094,000 new cases are diagnosed each year. In 2018, lung cancer accounted for an 

estimated 1,761,000 deaths (18.4% of all cancer-related deaths worldwide).(1-5) In 2012, 

the prevalence of lung cancer in Hungary among men and women was 109.3 and 46.5 per 

100,000 people, respectively. Notably, this number increased to 111.6 and 58.7 per 

100,000 people (men and women, respectively) in 2018.(6) 

Lung neuroendocrine neoplasms (LNENs) are a heterogeneous group of tumors that 

mostly originate from the neuroendocrine cells or also known as Kultchisky cells of the 

lung. They account for approximately 20% of primary lung cancer.(2, 7-11) According 

to the current World Health Organization (WHO) classification 4 histological types are 

distinguished. Typical carcinoids (TC) are well differentiated tumors, that account for 

1.8% of pulmonary malignancies.(12) In contrast, atypical carcinoids (AC) are 

moderately differentiated lung tumors comprising 0.2% of all lung cancers.(13, 14) 

Carcinoids usually appear between the 4th and 6th decade of life, with a median age of 45 

years. However, these tumors represent the most common primary lung neoplasms in 

children and adolescents.(15) Other histological types of LNENs (as per WHO definition) 

include large cell neuroendocrine lung cancer (LCNEC) and small cell lung cancer 

(SCLC). LCNEC account for 3% of lung cancers and represent poorly differentiated, 

high-grade tumors with complex biological features that share many similarities to 

SCLC.(16) SCLC is a heterogeneous malignancy characterized mainly by genetic 

instability, early metastasis and high proliferative activity. These tumors are frequently 

detected at an advanced stage, after several metastases have developed, making surgical 

treatment rarely feasible.(17, 18) 

Smoking is the main risk factor for LCNECs and SCLCs. Almost all of SCLC patients 

are heavy smokers; the number of never-smoker patients is estimated to be only around 

2%.(18) In contrast, our knowledge about risk factors in case of carcinoids is scarce as – 

unlike high-grade neuroendocrine tumors (NETs) – an unambiguous association with 

smoking or tobacco-related genetic alteration has not yet been proven. Interestingly, there 

is a higher incidence reported in never-smokers compared to smokers from several 
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sources. Based on literature findings the vast majority of carcinoids are sporadic 

malignancies.(19-22) 

According to our current knowledge, carcinoid tumors and more commonly typical 

carcinoids might be preceded by the hyperplasia of pulmonary neuroendocrine cells 

(PNECH) in distal airways.(23-26) The most widely accepted theory is that 

neuroendocrine cell hyperplasia and diffuse form of PNECH (DIPNECH) are a reactive 

lesion, that develops in response to certain environmental noxious stimuli or stressors. 

These causes can be underlying lung diseases, chronic inflammation, and toxic lung 

injuries.(27) In contrast, no obvious precancerous lesion has been identified in either 

LCNEC or SCLC to date. Although it should be emphasized that the rapid growth of these 

tumors makes their identification extremely difficult.(10, 18, 28, 29) 

 

1.2. Diagnosis 

Main clinical manifestations of LNENs include cough, hemoptysis, dyspnea, chest pain 

and weight loss; yet it should be highlighted that these symptoms are not specific for 

LNENs and are the same as in other types of lung cancer.(30) Regarding their 

localization, 85% of TCs and the majority of SCLCs are centrally located. These centrally 

located lesions are usually associated with obstructive symptoms related to the tumor 

mass, such as coughing, wheezing, hemoptysis, dyspnea, chest pain and recurrent lung 

infections. The appearance of ACs and LCNECs are much more common (80-90%) in 

the periphery. Peripheral tumors are often asymptomatic and are mainly detected 

incidentally. (11, 18, 31-34) Paraneoplastic syndromes (PNS) may have of diagnostic 

value in these diseases, since none of the symptoms listed above are specific for LNEN. 

These syndromes are often associated with neuroendocrine tumors and may occur in a 

significant proportion of patients.(35) Endocrine PNS are caused by the ectopic 

production of biologically active peptides (like serotonin, histamine, tachykinins, 

kallikrein, and prostaglandins) by the tumor cells, causing different symptoms, such as 

the syndrome of inappropriate antidiuretic-hormone (SIADH) and ectopic Cushing's 

syndrome (ECS). Also, neurological syndromes can be present by antibodies against 

neuronal proteins, for example Lambert-Eaton myasthenic syndrome (LEMS), which is 

the most commonly diagnosed PNS, especially in patients with SCLC. (36-39) 
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In terms of their degree of differentiation and metastatic potential, carcinoids are at the 

less aggressive end of the LNEN spectrum. These tumors are typically well differentiated 

and slow growing lesions. The metastatic rate (including lymph node metastases) for TCs 

is around 5-20%, while for ACs it can reach up to 50%. It is typical that metastasis is 

discovered up to decades after the primary tumor has appeared. Although metastases in 

ACs occur in half of cases, due to their slow growth, the vast majority of carcinoids can 

be treated very well surgically.(28, 34, 40) The highly aggressive LCNEC and SCLC are 

localized on the other side of the scale, and they are characterized by aggressive, rapid 

growth and a high propensity to metastasize (reaching up to 80% in case of SCLC). In 

LNENs the most common sites of metastasis are liver, brain, bone and adrenal gland.(18, 

34) 

After evaluating the various signs and symptoms, it is the wide range of radiological 

imaging techniques that really contribute to the primary diagnosis. Around 40% of 

LNENs are diagnosed accidentally during routine chest X-rays.(39) Radiological findings 

in LNENs are typically similar to those in other types of lung cancer. Nevertheless, it is 

important to emphasize that in SCLC and LCNEC, these tumors are often in an advanced 

stage with distant metastases at the time of diagnosis.(18, 41, 42) An important diagnostic 

method is bronchoscopy, especially for centrally located tumors. Meanwhile, the main 

sampling option peripherally located lesions is CT-guided transthoracic biopsy.(39)   

Subsequently, the final diagnosis relies on the characteristic classic light microscopic 

features of the tumor. Under the microscope, TC and AC cells are usually uniform, with 

smooth nuclear membranes, moderate eosinophilic cytoplasm, finely granular cytoplasm 

and “salt and pepper” nuclear chromatin. Cells vary in size from small to intermediate, in 

shape they are typically cuboidal, sometimes polygonal, or even fusiform. Tumor cells 

can show palisading, trabecular, spindle cell, rosette-like, papillary, glandular sclerosing, 

and even follicular patterns. The key difference between TC and AC is practically the 

number of mitoses and the presence of necrosis. In TCs, there is no necrosis and the 

number of mitoses does not exceed 2 per 2 mm2. Meanwhile, ACs have punctate necrotic 

areas and the mitotic rate is between 2 and 10 per 2 mm2. LCNECs typically exhibit 

neuroendocrine morphology, have large cell size, polygonal, moderate to abundant 

cytoplasm, coarse to vesicular nuclear chromatin and frequent nucleoli. SCLCs consists 

of small tumor cells that are round to spindled shaped, with small amount of cytoplasm, 
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fine-grained chromatin, and unremarkable or absent nuclei. These tumors used to be 

called oat cell carcinoma. Crush artifacts are fairly common, especially in small biopsy 

samples. Necrosis is as well common and often extensive. The mitotic count is typically 

very high, averaging 80 mitoses per 2 mm2 or more. In terms of immunohistochemistry 

(IHC) all 4 tumor types typically show positivity for neuroendocrine markers (CD56, 

chromogranin A and synaptophysin) and TTF-1.(8, 28) 

 

1.3. Current clinical management 

Given the well-differentiated morphology and low metastatic potential of TCs, the 5-year 

overall survival (OS) rate can reach 95%. Therefore, this tumor type is the one that we 

focus on the least in our research. ACs, which are much more likely to metastasize, have 

a 5-year OS of around 50%. TCs and ACs, on the other hand, are a particularly aggressive 

tumor types with a high malignancy potential. About 40% of LCNEC patients and a much 

higher proportion of SCLC patients usually have multiple organ metastases at the time of 

diagnosis. For patients diagnosed with LCNEC, the 5-year OS is around 20%, while for 

SCLC patients, this value does not exceed 7%. Despite the appalling survival records, the 

treatment of these malignancies has changed minimally in the last 30 years, partly due to 

their rarity and biological complexity.(18, 28, 43) 

First of all, the treatment procedures for typical and atypical carcinoids are broadly the 

same. These types of tumors can be treated very well surgically. Accordingly, if there are 

no distant metastases, surgical removal of the primary tumor is the last resort in the vast 

majority of cases. This may be a wedge resection, but in advanced cases, segmentectomy, 

lobectomy or even pulmonectomy may be considered.(44, 45) Radiotherapy is mainly 

used to relieve the pain of bone metastases and to treat brain metastases; however rarely 

it is also offered as a complementary treatment option after incomplete surgical resection 

or as palliative treatment for inoperable cases. In patients with metastatic carcinoid, 

several chemotherapy regimens have shown limited response rates. These patients are 

usually treated based on the classic SCLC treatment guidelines, specifically, with the 

combination of cisplatin or carboplatin and etoposide or temozolomide alone. Further 

potential therapeutic agents are the somatostatin analogues including octreotide and 

lanreotide, which have previously shown antitumor activity in gastrointestinal and 

pancreatic neuroendocrine tumors. Later it was found that these therapeutic agents slow 
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tumor progression and control the symptoms of carcinoid syndrome mainly in typical 

carcinoids.(46, 47) The current National Comprehensive Cancer Network (NCCN) 

guideline does not recommend the use of immunotherapeutic agents even in advanced 

stages. Although immunotherapy has shown very promising results in many tumor types, 

its applicability in carcinoids was so far investigated only in a few studies of very limited 

number and value. (40, 48, 49) 

Regrettably, the situation is significantly more ambiguous in case of LCNEC. As these 

tumors are rare and only few randomized trials have been conducted so far, treatment 

guidelines are still highly controversial. According to the current NCCN guidelines, 

LCNECs can be treated either according to non-small cell lung cancer (NSCLC) 

treatment protocols (i.e. cisplatin or carboplatin), or according to SCLC therapeutic 

guidelines given that that both LCNEC and SCLC are high-grade neuroendocrine tumors 

with a similar clinical course.(50) For early-stage LCNEC, surgical resection is usually 

recommended.(51) Another controversial issue is radiotherapy and prophylactic cranial 

irradiation (PCI) in early stage. Despite the worse prognosis, the available evidence 

supports the use of radiotherapy according to NSCLC guidelines. Meanwhile the low 

incidence of spontaneous brain metastases (about 25%) does not justify routine PCI as in 

SCLC.(52) In contrast, SCLC regimens are more frequently used in advanced stage 

LCNEC, based on limited retrospective analyses and the 2015 American Society of 

Clinical Oncology (ASCO) recommendations.(53-57) For LCNEC, there is no clear 

NCCN guideline to date, so the immunotherapeutic approaches for this disease are still 

rather chaotic, with only a few clinical studies on their applicability. 

SCLC is a highly aggressive disease, with nearly two-thirds of patients showing 

metastatic spread outside the chest at diagnosis.(41, 58) Consequently, surgery is rarely 

performed, with about 80%-85% of patients receiving systemic therapy.(59) In rare, 

early-stage cases, lobectomy with extended lymph node dissection is preferred, often 

followed by adjuvant chemotherapy (CHT), radiation therapy (RT), and/or brain radiation 

to eliminate potential micrometastases or residual tumor cells.(60, 61) Although no 

prospective randomized trials confirm surgery's efficacy in SCLC, observational studies 

suggest that patients with more advanced stages might also benefit from curative-intent 

surgery.(62) However, these findings are debatable, and choosing between surgical and 

non-surgical approaches remains challenging for clinicians. Systemic therapy primarily 
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involves platinum-based CHT (cisplatin or carboplatin) combined with etoposide and/or 

RT. Unlike NSCLC, which is often resistant to CHT, SCLC initially responds well to 

DNA-damaging agents, with a response rate nearly double that of NSCLC.(63, 64) 

However, resistance development is almost always inevitable, and response rates to 

second-line therapy is significantly lower due to cross-resistance. Given that immune 

infiltration is often high in SCLC tumors, it is a legitimate assumption to treat patients 

with immunotherapeutic drugs. Conversely, although the addition of anti-PD-L1 

monoclonal antibodies to the standard platinum-etoposide baseline improved both 

progression-free (PFS) and OS, the response rates remained below that expected.(65-67) 

 

1.4. Immunotherapy and immune checkpoint inhibitors 

The integration of immunotherapy into clinical practice in recent years has significantly 

improved survival outcomes for patients with NSCLC.(68) However, progress in the 

clinical management of LNENs lags far behind that seen in NSCLC.(58, 69) Recently, 

there has been increasing interest in utilizing immunotherapeutic agents for advanced or 

metastatic lung carcinoids, with ongoing clinical trials exploring the efficacy of immune 

checkpoint blockade in these subtypes.(70) For other LNENs, although adding immune 

checkpoint inhibitors to standard platinum-based systemic therapy has improved survival 

outcomes for subsets of SCLC and LCNEC patients, the response rates have been lower 

than expected.(66, 71, 72) The reasons for these disappointing results are debated, but the 

tumor immune microenvironment (TIM) may play a crucial role in the effectiveness of 

immune checkpoint inhibitors.(73) Previous efforts to characterize the TIM have 

highlighted its role in cancer development and progression.(66) Moreover, a high density 

of tumor-infiltrating lymphocytes is directly associated with the benefits of 

immunotherapy in NSCLC patients and serves as a predictor of clinical outcomes.(73, 

74) The situation is much worse for LNENs, where there are very few clinical trials and 

most of the time they are grouped with other rare solid tumors. Accordingly, our 

knowledge of the impact of immunotherapy in LNENs is still very limited. 

In addition to the well-known immune checkpoint molecules like programmed cell death 

protein 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-

associated protein 4 (CTLA-4), other molecules involved in antitumor immunity are 

worth investigating.(66, 75-77) One of the four investigated molecule in our study is V-
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domain Ig suppressor of T cell activation (VISTA), a transmembrane protein that inhibits 

T cell effector function. VISTA is typically highly expressed in tumor-infiltrating 

lymphocytes, resulting in a reduced anti-tumoral immune response. High VISTA 

expression has been observed in various cancers, including melanoma, NSCLC, and 

pleural mesothelioma.(78-80) OX40L (CD252), the ligand for the OX40 (CD134) 

receptor, is generally expressed by antigen-presenting cells such as dendritic cells or 

macrophages and activated CD4 and CD8 positive T cells. Notably, studies have shown 

that agonists of OX40 and OX40L can enhance antitumoral immunity.(81, 82) The 

glucocorticoid-induced TNF receptor (GITR) is another transmembrane protein crucial 

for regulating effector T cells, and its activation can promote an antitumoral immune 

response.(83, 84)TRX-518, a GITR agonist, is already investigated in phase 1 trials with 

promising results in solid tumors.(85) The last molecule investigated by our team, is the 

T-cell immunoglobulin and mucin domain 3 (TIM3). It is an immunoregulatory protein 

found on T lymphocytes, myeloid cells, and several tumor cells including those in 

melanoma, breast, and kidney cancer. Since TIM3 suppresses antitumoral immunity and 

promotes tumor development, blocking the TIM3 pathway could be a promising 

therapeutic strategy.(86, 87) The four markers mentioned above have been used in 

preclinical models, but their presence and expression patterns have not yet been 

investigated in LNEN patients. 
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2. Objectives 

Intermediate- and high-grade neuroendocrine lung neoplasms, especially LCNEC and 

SCLC are aggressive tumors, with high metastatic potential and poor prognosis.(7, 8, 10) 

Due to the fact that they are relatively rare entities with complex biology, our knowledge 

is still very limited. Accordingly, the therapeutic arsenal has not changed significantly 

over the last 30 years.(13, 18) Although targeted therapies, and immunotherapy in 

particular, have gained ground in recent years for several malignancies, this remarkable 

progress has been somewhat lagging behind in the case of pulmonary neuroendocrine 

neoplasms.(59, 88-90) Since AC is less sensitive to currently used chemotherapeutic 

agents, while LCNEC and SCLC are sensitive but become resistant relatively quickly, 

implementing targeted- and immunotherapeutic approaches for these tumors would be 

crucial.(13, 14, 16, 18, 91) Therefore, investigating the immunological phenotypes and 

specific immune signatures, as well as the tumor immune microenvironment of surgically 

resected LNENs might be the first step to develop effective therapeutic approaches for 

these devastating diseases as soon as possible. As a result, it is expected that the efficacy 

of currently available immune checkpoint inhibitors (ICIs) will be improved and the use 

of these agents can be optimized based on TIM. In addition, our results would also 

contribute to the development of second-generation ICIs in the future.  

We also investigated whether the immune marker expression signature of different 

tumors can be used to classify a tumor into its appropriate histological category. This has 

a particularly important relevance in case of small biopsy specimens, as sometimes there 

are serious diagnostic pitfalls in establishing the accurate diagnosis by using these small 

tissue samples. Finally, in order to also provide insights into the applicability of 

immunotherapy, we also aimed to examine the expression levels and distribution patterns 

of 4 novel immunotherapeutic markers (OX40L, VISTA, TIM3, GITR) of potential 

therapeutic relevance in SCLC, AC, and LCNEC patients.  

These studies were conducted in accordance with the guidelines of the Helsinki 

Declaration of the World Medical Association and with the approval of the national-level 

Ethics Committee of each participating country (Hungarian Scientific and Research 

Ethics Committee of the Medical Research Council, ETT TUKEB 39249-2/2019/EKU 

and 52614-4/2013/EKU).   
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3. Methods 

3.1 Study population and treatment 

In our multicenter retrospective study, we have included 156 Caucasian patients with 

histologically confirmed LNENs who underwent surgical resection at one of the four 

below mentioned Central European centers between 1997 and 2021. The four centers 

were the National Korányi Institute of Pulmonology (Budapest, Hungary), the National 

Institute of Oncology (Budapest, Hungary), Medical University of Graz (Graz, Austria) 

and Palacky University Olomouc (Olomouc, Czech Republic). Of these, 26, 64, and 66 

patients were diagnosed with AC, LCNEC and SCLC, respectively. Concerning the 

enrollment period, SCLC samples originated between 1997-2020, whereas LCNEC and 

AC formalin-fixed paraffin-embedded (FFPE) blocks were all created in 2016-2021 and 

2008-2019, respectively. Clinicopathological data, including the age at the time of 

diagnosis, gender, comorbidities, and smoking history were retrospectively collected 

from the medical records of each center. Survival outcomes were provided by the 

National Health Insurance Office and Central Statistical Office. Only individuals with 

appropriate clinicopathological data and a sufficient amount of FFPE tumor tissue were 

included. Another important inclusion criterion was that only whole-tissue specimens 

were included to avoid bias due to intratumoral heterogeneity. Although not directly 

related to this study, as the boundary between TCs and ACs is sometimes very blurred, 

IHC staining was also performed in 10 TC cases, to compare them to ACs.  

All patients underwent lung resection surgery (lobectomy or wedge resection surgery), 

and platinum-based adjuvant CHT was applied when necessary. Systemic therapy was 

administered in accordance with the contemporary NCCN guidelines.  

 

3.2 Immunohistochemistry  

All tumor tissue samples were obtained by surgical resection. First, each sample was 

examined as part of the routine pathological check-up to define the histopathological 

diagnosis for further therapy. This was performed by a board-certified pathologist of the 

host institute according to contemporary diagnostic guidelines, using specific IHC stains 

such as chromogranin A, synaptophysin, CD56, syntaxin, and Ki-67. Of note, a small 

proportion (4.9%) of our surgically resected tissue samples were older than 15 years. 

However, the majority of antigens are well preserved over time, sometimes decreased 
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nuclear immunosignal intensity might occur in case of older FFPE blocks. (92, 93) As for 

the antibodies used for quality check of the older (>15 years) samples, we found strong 

positivity with CD56 and moderate positivity (associated with reduction of immunosignal 

intensity) with Ki-67 (Figure 1).(94, 95) Notably, expression patterns of TIM3, VISTA, 

GITR, and OX40L did not differ statistically significantly between the older (>15 years) 

and newer (≤15 years) blocks. In addition, in order to ensure the correctness of the initial 

diagnosis and to exclude cases with mixed histology (i.e., combined SCLC-LCNEC/ 

NSCLC), all hematoxylin and eosin (H&E)-stained slides were also reviewed by an 

independent pathologist prior to inclusion. In the next step, tissue sections were analyzed 

for the expression of the following 19 immunological markers: PD-L1, PD-1, CD3, CD4, 

CD8, CD27, CD47, indolamine 2,3-dioxygenase (IDO), inducible T-cell costimulator 

(ICOS), CD70, CD137, CD40, CD94/NK Group 2 Member A (NKG2A), lymphocyte-

activation gene 3 (LAG3), OX40, OX40L, V-domain Ig suppressor of T cell activation 

(VISTA), glucocorticoid-induced TNF receptor (GITR) and T cell immunoglobulin and 

mucin domain 3 (TIM3). The expression patterns of the first 15 markers (PD-L1, PD-1, 

CD3, CD4, CD8, CD27, CD47, Indolamine 2,3-dioxygenase (IDO), inducible T-cell 

costimulator (ICOS), CD70, CD137, CD40, CD94/NK Group 2 Member A (NKG2A), 

LAG3, and OX40 were examined in 26 AC, 30 LCNEC, and 29 SCLC. In our second 

cohort, the expression patterns of OX40L, GITR, TIM3, and VISTA were examined in 

26 AC 49 LCNEC and 66 SCLC. Unfortunately, due to low tissue sample size, in case of 

21 SCLCs, only VISTA staining was performed. Totally, 75 cases were overlapping 

between the two cohorts. The specific antibodies directed against these markers are 

summarized in Table 1. IHC staining was performed according to the recommended 

staining protocols. Briefly, after deparaffinization and rehydration, sections were 

incubated in a 3% H2O2 solution for 20 min, in order to reduce nonspecific background 

staining. Next, tissue samples were heated to 98.0 ◦C in a 10 mM Citrate buffer (pH = 

6.0) or 10 mM Tris-EDTA buffer (pH = 9.0) for 20 min based on the manufacturers’ 

recommendation. Slides were incubated at room temperature with Ultra V Block 

(Ultravision LP detection system, Lab Vision Corporation, Thermo Fisher Scientific Inc., 

Pittsburgh, MA, USA) for 5 min, followed by primary antibody incubation overnight at 

4 ◦C. Immunoreaction was detected by the UltraVision LP detection system (Lab Vision 

Corporation). Primary antibodies were visualized by 3-3′-diaminobenzidine (DAB) and 
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counterstained with hematoxylin. Of note, the staining protocol was validated by 

appropriate positive tissue controls. Expression of the given marker was examined 

blinded to clinical data by two experienced independent lung pathologists. All slides were 

digitally scanned using PANNORAMIC 250 Flash III (3DHISTECH Ltd., Budapest, 

Hungary); sections were examined and evaluated by using CaseViewer 2.4 (3DHISTECH 

Ltd., Budapest, Hungary). Therefore, during pathological evaluation, we determined the 

percentage of positive tumor cells in at least 20 randomly selected areas at 20x and 40x 

magnifications. Two experienced pulmonary pathologists performed the evaluation 

process, and if a discrepancy of more than 20% occurred in their results, a third pulmonary 

pathologist was also involved.  

Figure 1. Representative images of the three oldest FFPE samples stained with CD56 

and Ki-67. Images were captured with a 40x objective lens. The positive cells were 

visualized with 3-3’-diaminobenzidine (DAB), and the nuclei were labeled with 

hematoxylin. 
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Tumor cells were evaluated separately from immune cells. In the case of tumor cells, the 

ratio of positive cells to all tumor cells was also quantified. Similarly, the ratio of immune 

cells showing positive staining and the ratio of total immune infiltrates in a given sample 

was determined. It should be emphasized that manual analysis of each marker was 

preferred in this study since software-based evaluation still bears many limitations, even 

for antibodies used in routine diagnostics. Additionally, the training of AI-based 

algorithms requires a large number of „teaching” sets which were not available in our 

study.   

 

Table 1. Antibodies used for immunohistochemistry (IHC). 

Antibody Company Catalog nr. Host Dilution 
Antigen 

retrieval 

PD-1 

Abcam, 

Cambridge, 

U.K. 

ab52587 

(NAT105) 
Mouse 1:50 

Citrate 

(pH=6.0) 

PD-L1 

Abcam, 

Cambridge, 

U.K. 

ab205921 (28-

8) 
Rabbit 1:500 

Citrate 

(pH=6.0) 

CD3 

Leica 

Biosystems, 

Chicago, IL, 

USA 

PA0553 (LN10) Mouse 
Ready to 

use 

Tris-EDTA 

(pH=9.0) 

CD4 
Roche, Basel, 

Switzerland 

790-4426 

(SP35) 
Rabbit 

Ready to 

use 

AUTOMATED 

IHC 

CD8 

Dako – 

Agilent, Santa 

Clara, CA, 

USA 

M7103 

(C8/144B) 
Mouse 1:100 

Tris-EDTA 

(pH=9.0) 

CD27 

Abcam, 

Cambridge, 

U.K. 

ab131254 

(EPR8569) 
Rabbit 1:500 

Tris-EDTA 

(pH=9.0) 

CD47 

Sigma-

Aldrich, 

Burlington, 

MA, USA 

HPA044659 Rabbit 1:100 
Tris-EDTA 

(pH=9.0) 

IDO 

Thermo-

Fisher, 

Waltham, MA, 

USA 

14-9750-82 

(V1NC3IDO) 
Mouse 1:500 

Citrate 

(pH=6.0) 

ICOS 

Abcam, 

Cambridge, 

U.K. 

ab224644 

(EPR20560) 
Rabbit 1:500 

Tris-EDTA 

(pH=9.0) 
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CD70 

Thermo-

Fisher, 

Waltham, MA, 

USA 

PA5-32701 Rabbit 1:50 
Citrate 

(pH=6.0) 

CD137 

Abcam, 

Cambridge, 

U.K. 

ab232990 Rabbit 1:25 
Citrate 

(pH=6.0) 

CD40 

Abcam, 

Cambridge, 

U.K. 

ab13545 Rabbit 1:500 
Citrate 

(pH=6.0) 

NKG2A 

Thermo-

Fisher, 

Waltham, MA, 

USA 

PA5-72543 Rabbit 1:500 
Citrate 

(pH=6.0) 

LAG3 

Abcam, 

Cambridge, 

U.K. 

ab209236 

(EPR20261) 
Rabbit 1:1000 

Tris-EDTA 

(pH=9.0) 

OX40 

Thermo-

Fisher, 

Waltham, MA, 

USA 

11-1347-42 

(ACT35) 
Mouse 1:100 

Tris-EDTA 

(pH=9.0) 

OX40L 

Thermo Fisher 

Scientific, 

Waltham, MA, 

USA 

11-1347-

42/ACT35 
Rabbit 1:100 

Citrate 

(pH=6.0) 

TIM3 
Abcam, 

Boston, USA 
ab185703 Rabbit 1:100 

Citrate 

(pH=6.0) 

VISTA 

Sino 

Biological, 

Beijing, China 

13482-T24 Rabbit 1:500 
Citrate 

(pH=6.0) 

GITR 

Thermo Fisher 

Scientific, 

Waltham, MA, 

USA 

PA5-46810 Rabbit 1:100 
Citrate 

(pH=6.0) 

 

3.3 Statistical analyses 

All statistical analyses were performed in R version 4.2.1 (R Foundation for Statistical 

Computing, Vienna, Austria). 

Expression levels of immune markers of the tumor cells or and the amount of immune 

infiltration, dividing the patients into low and high categories for each marker was 

performed by using the median of the measured values (for the given marker) as a cutoff 

value. Patients with a measured level not larger than the median were categorized into the 

“low” group, while patients with a measured level higher than the median were included 
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in the “high” category. Expression levels of immune-related markers were compared 

between tumors of different histological types in a pairwise manner with Wilcoxon 

signed-rank tests and Bonferroni-correction was used to adjust for multiple testing. 

Whenever at least one of the three pairwise comparisons resulted in a corrected p-value 

of 0.05 or lower, the association was considered significant.  

Hierarchical clustering of samples based on expression levels was performed with the 

Complex Heatmap R package (version 2.10.0) with the “ward.D2” clustering method 

using Eucledian-distance measure.(96) The distance matrix was calculated using 

Manhattan distance measure and the dendrograms were created using the ward:D 

clusterin method. The heatmap contains the covariates that had a non-zero coefficient 

value in at least one of the three logistic regression submodels of the fitted multinomial 

penalized linear regression model. Expression levels (x) were transformed with the log 

(1+ x) transformation to better differentiate between various color hues. 

As an exploratory approach, we additionally built a multinomial penalized linear 

regression model using the glmnet R package (version 4.1-4) to predict histological type 

by observing all measured expression levels and the amount of immune infiltration.(97) 

Penalization was necessary to avoid over-fitting due to the relatively low number of 

samples and large number of covariates. The dataset was assigned to training and test sets 

by a random 60-40% split. Missing expression levels and data on immune infiltration 

were imputed with zeros. The model was trained on the training set and hyperparameter 

tuning was performed by the default 10-fold cross-validation technique of the cv.glmnet() 

function with the family = “multinomial” setting. Model performance was measured on 

both the training and test sets, the latter of which serves as a more reliable indicator of 

goodness-of-fit. 

To investigate which expression levels of OX40L, TIM3, VISTA and GITR are most 

indicative of LNEN subtype, a principal component analysis (PCA) was performed (with 

the factoextra R package (version 1.0.7)) to find linear combinations („principal 

components”) of the measured variables (expression levels) that most effectively explain 

the variance in the data.  
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4. Results 

4.1. Patient and sample characteristics 

Clinicopathological features of included patients according to LNEN histological 

subtypes are summarized in Table 2. Most SCLC and LCNEC patients were smokers, 

whereas the majority of individuals diagnosed with AC were never-smokers. SCLC 

tumors tended to be centrally located contrasting the peripheral localization of LCNEC. 

Due to the availability of bronchoscopic findings in the majority of cases, the localization 

of the primary tumor was determined on the basis of bronchoscopical visualization.(98)  

 

Table 2. Clinicopathological characteristics of the study population. COPD, Chronic 

obstructive pulmonary disease; N/A, not available; AC, atypical carcinoid; LCNEC, large 

cell neuroendocrine lung cancer; SCLC, small cell lung cancer. 

Total number of patients 
Total AC LCNEC SCLC 

156 26 64 66 

Gender 

N/A 
10 

(6.41%) 

0  

(0%) 

7 

(10.94%) 

3  

(4.55%) 

Male 
75 

(48.08%) 

11 

(42.31%) 

32  

(50%) 

32 

(48.48%) 

Female 
71 

(45.51%) 

15 

(57.69%) 

25 

(39.06%) 

31 

(46.97%) 

Age 

N/A 
11 

(7.05%) 

0  

(0%) 

8 

(12.50%) 

3  

(4.55) 

Median 

(Range) 

65  

(33-79) 

62.5  

(33-79) 

64  

(41-78) 

65  

(44-78) 

Smoking status 

N/A 
37 

(23.71%) 

2  

(7.69%) 

14 

(21.88%) 

21 

(31.82%) 

Never 
24 

(15.38%) 

14 

(53.85%) 

6  

(9.38%) 

4  

(6.06%) 

Ex 
52 

(33.33%) 

6 

(23.08%) 

23 

(35.94%) 

23 

(34.85%) 
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Current 
43 

(27.56%) 

4 

(15.38%) 

21 

(32.81%) 

18 

(27.27%) 

COPD 

N/A 
13 

(8.33%) 

0  

(0%) 

8  

(12.5%) 

5  

(7.58%) 

No 
89 

(57.05%) 

22 

(84.62%) 

33 

(51.56%) 

34 

(51.52%) 

Yes 
54 

(34.62%) 

4 

(15.38%) 

23 

(35.94%) 

27 

(40.91%) 

Hypertension 

N/A 
13 

(8.33%) 

0  

(0%) 

8  

(12.5%) 

5  

(7.58%) 

No 
59 

(37.82%) 

10 

(38.46%) 

19 

(29.69%) 

30 

(45.45%) 

Yes 
84 

(53.85%) 

16 

(61.54%) 

37 

(57.81%) 

31 

(46.97%) 

Diabetes 

N/A 
13 

(8.33%) 

0  

(0%) 

8  

(12.5%) 

5  

(7.58%) 

No 
114 

(73.08%) 

22 

(84.62%) 

46 

(71.88%) 

46 

(69.7%) 

Yes 
29 

(18.59%) 

4 

(15.48%) 

10 

(15.63%) 

15 

(22.73%) 

Tumor localization 

(central/peripheral) 

N/A 
23 

(14.74%) 

0  

(0%) 

11 

(17.19%) 

12 

(18.18%) 

Central 
53 

(33.97%) 

13 

(50.0%) 

7 

(10.94%) 

33 

(50.0%) 

Peripheral 
80 

(51.28%) 

13 

(50.0%) 

46 

(71.88%) 

21 

(31.82%) 

Tumor localization 

(upper/lower lobe) 

N/A 
42 

(26.92%) 

0  

(0%) 

8  

(12.5%) 

34 

(51.52%) 

Upper lobe 
81 

(51.92%) 

15 

(57.69%) 

41 

(64.06%) 

25 

(37.88%) 

Lower 

lobe 

33 

(21.15%) 

11 

(42.31%) 

15 

(23.44%) 

7 

(10.61%) 
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Necrosis 

N/A 
23 

(14.74%) 

10 

(38.46%) 

8  

(12.5%) 

5  

(7.58%) 

No 
45 

(28.85%) 

6 

(23.08%) 

13 

(20.31%) 

26 

(39.39%) 

Yes 
88 

(56.41%) 

10 

(38.46%) 

43 

(67.19%) 

35 

(53.03%) 

Vascular 

involvement 

N/A 
17 

(10.90%) 

1  

(3.85%) 

8  

(12.5%) 

8 

(12.12%) 

No 
84 

(53.85%) 

15 

(57.69%) 

35 

(54.69%) 

34 

(51.52%) 

Yes 
55 

(35.26%) 

10 

(38.46%) 

21 

(32.81%) 

24 

(36.36%) 

Peritumoral 

inflammation 

N/A 
85 

(54.59%) 

18 

(69.23%) 

16 

(35.0%) 

51 

(77.27%) 

0 
57 

(36.54%) 

5 

(19.23%) 

38 

(59.38%) 

14 

(21.21%) 

1 
9  

(5.77%) 

3 

(11.54%) 

5  

(7.81%) 

1  

(1.52%) 

2 
5  

(3.21%) 

0  

(0.0%) 

5  

(7.81%) 

0  

(0.0%) 

T 

N/A 
18 

(11.54%) 

0  

(0%) 

11 

(17.19%) 

7 

(10.61%) 

1 
87 

(55.77%) 

13 

(50.0%) 

28 

(43.75%) 

46 

(69.7%) 

2 
27 

(17.31%) 

7 

(26.92%) 

13 

(20.31%) 

7 

(10.61%) 

3 
13 

(8.33%) 

2  

(7.69%) 

9 

(14.06%) 

2  

(3.03%) 

4 
11 

(7.05%) 

4 

(15.38%) 

3  

(4.69%) 

4  

(6.06%) 

N N/A 
46 

(29.49%) 

0  

(0%) 

11 

(17.19%) 

35 

(53.03%) 
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0 
64 

(41.03%) 

12 

(46.15%) 

39 

(60.94%) 

13 

(19.70%) 

1 
19 

(12.18%) 

7 

(26.92%) 

7 

(10.94%) 

5  

(7.58%) 

2 
19 

(12.18%) 

6 

(23.08%) 

3  

(4.69%) 

10 

(15.15%) 

x 
8  

(5.13%) 

1  

(3.85%) 

4  

(6.25%) 

3  

(4.55%) 

M 

N/A 
94 

(60.26%) 

10 

(38.46%) 

37 

(57.81%) 

47 

(71.21%) 

0 
2  

(1.28%) 

0  

(0.0%) 

1  

(1.56%) 

1  

(1.52%) 

1 
1  

(0.64%) 

0  

(0.0%) 

0  

(0.0%) 

1  

(1.52%) 

x 
59 

(37.82%) 

16 

(61.54%) 

26 

(40.63%) 

17 

(25.76%) 

 

 

4.2. The expression pattern of the investigated markers by tumor cells 

Representative IHC images of immune-related markers according to each LNEN subtype 

are shown in Figure 2, whereas images of the four novel immunotherapeutic targets are 

presented in Figure 3.  First of all, in order to investigate the key differences of immune-

related markers in their IHC expression, we evaluated markers with available expression 

levels in at least one of the LNEN subtypes for at least one patient. The following eight 

markers were included in the comparative analysis: PD-1, PD-L1, CD47, IDO, CD70, 

CD137, CD40, and NKG2A. Except for PD-L1, where expression levels were 

ubiquitously low and resulted in a similar expression pattern across all histological 

subgroups (only 5 positive cases were found in the LCNEC cohort, median: 0.0), the 

expression patterns and of the other markers showed a different distribution in at least 

one of the three groups (Figure 4A). Specifically, NKG2A and CD40 expressions were 

significantly higher (p<0.05) in tumor cells of AC samples compared to the LCNEC and 

SCLC specimens (the median of NKG2A expressions were 0.015, 0.01, and 0.01 in AC, 
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LCNEC, and SCLC samples, respectively. The median CD40 expressions were 0.275, 

0.1, and 0.1 in AC, LCNEC, and SCLC samples, respectively). CD47 expression was the 

highest in SCLC samples (vs. LCNEC and AC, medians were 0.25 vs. 0.035 vs. 0, 

respectively). LCNEC tumors expressed both PD-1, CD70, and CD137 at a significantly 

higher degree than tumors with other histological types (p<0.05). We also evaluated the 

differences and similarities in case of the four immunotherapeutic markers (Figure 5A), 

and we found, that OX40L expression of AC tumor cells were significantly lower than in 

SCLC tumors (p<0.001). Meanwhile, ACs tended to demonstrate significantly higher 

tumor cell GITR expression levels than SCLC or LCNEC tumors (p<0.001). Of note, 

tumor cell GITR expression was also considerably higher in SCLC than in LCNEC 

(p=0.011). As for TIM3, its TC expression was significantly higher in ACs (vs. LCNEC 

and SCLC tumors; p=0.047 and p<0.001, respectively). No significant differences were 

observed for VISTA expression.  
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Figure 2. IHC staining of formalin-fixed, paraffin-embedded AC, LCNEC and 

SCLC samples with immune-related markers. The representative images were 

captured with a 40x objective lens. The positive cells were visualized with DAB and the 

nuclei were labeled with hematoxylin. Black arrows point at examples of positive tumor 

cells. AC, atypical carcinoid; DAB, 3-3’-diaminobenzidine; LCNEC, large cell 

neuroendocrine carcinoma; SCLC, small cell lung cancer. 

 

 

Figure 3. IHC staining of formalin-fixed, paraffin-embedded AC, LCNEC and 

SCLC samples with the four novel immunotherapeutic markers. Representative 

images for tumor cells with positive staining were captured with 40x objective lens. 

Positive cells were visualized with 3-3’-diaminobenzidine (DAB), and the nuclei were 

labeled with hematoxylin. Scale bar: 50 μm. AC, atypical carcinoid; LCNEC, large cell 

neuroendocrine carcinoma; SCLC, small cell lung cancer. 
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Figure 4. A) Expression levels of preselected immune-related markers by tumor cells 

in different LNEN subtypes. The color-filled curves show the estimated normalized 

probability density function of the data. Colors indicate the three LNEN subtypes, 

whereas the short vertical black lines mark the individual samples. We studied 8 markers 

among the 15 markers which had available expression levels in at least one of the LNEN 

subtypes for at least one patient. Green: SCLC, small cell lung cancer; red: LCNEC, large 
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cell neuroendocrine cancer; yellow: AC, atypical carcinoid. Bonferroni-adjusted 

significant differences are marked with an asterisk (*). (B) Expression levels of different 

immune-related markers by immune cells according to the three LNEN subtypes. 

The filled curves show the estimated normalized probability density function of the data. 

Colors indicate the three LNEN subtypes; the short vertical black lines mark the 

individual samples. The first graph represents the level of immune infiltration in general. 

Colors indicate different LNEN subtypes, short vertical black lines mark individual 

samples. Green: SCLC, small cell lung cancer; red: LCNEC, large cell neuroendocrine 

carcinoma; yellow: AC, atypical carcinoid. Bonferroni-adjusted significant differences 

are marked with an asterisk (*). 
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Figure 5. Expression levels of potential immunotherapy targets by tumor cells (A) 

and immune cells (B) in different LNEN subtypes. The color-filled curves show the 

estimated normalized probability density function of the data. Overlayed box plots 

demonstrate the same distributions, box edges represent the first (Q1) and third (Q3) 

quartiles, with the inner line showing the median value. Whiskers extend to 1.5-times the 

interquartile range (IQR = Q3-Q1). Samples outside this range (outliers) are marked by 

black dots. Only significant p-values are shown. Colors indicate the three LNEN 

subtypes, Green: AC, atypical carcinoid; yellow: LCNEC, large cell neuroendocrine lung 

cancer; orange: SCLC, small cell lung cancer. 

 

4.3. Unsupervised hierarchical clustering of LNEN according to the expression 

patterns of immune-related and immunotherapeutic target markers by tumor cells 

As shown in Figure 6A, unsupervised hierarchical clustering based on the IHC expression 

of the immune-related markers of the TIM separated the samples of different histological 

subgroups fairly well. We found that tumor cell CD40 expression was generally higher 

in AC tumors (vs. LCNEC and SCLC specimens) whereas high CD47-expressing tumor 

cells were characteristic for SCLC. CD137 expression by tumor cells was the highest in 

LCNEC specimens. These results are in line with the above-discussed findings of 

pairwise comparisons.  

We also examined, whether LNEN subtypes can be distinguished solely by their tumor 

cell VISTA, GITR, OX40L, or TIM3 expression. As shown in Figure 7A, although cluster 

analysis differentiated three distinct subgroups with divergent immunologic phenotypes, 

these clusters did not conclude with the histological subtypes.  
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Figure 6. (A) Hierarchical clustering of LNENs based on the tumor cell expression 

of immune-related markers. The color bar scale indicates the expression levels of the 

selected markers (PD-1, CD47, PD-L1, IDO, CD70, CD137, CD40, NKG2A). LCNEC, 

large cell neuroendocrine lung cancer; SCLC, small cell lung cancer; AC, atypical 

carcinoid. (B) Hierarchical clustering based on the expression pattern of immune-

related markers defined by the immune cells. The color bar scale indicates the 

expression levels of the selected markers. LCNEC, large cell neuroendocrine lung cancer; 

SCLC, small cell lung cancer; AC, atypical carcinoid. (C) Heatmap of the expression 

levels of different markers in tumor and immune cells. The heatmap contains the 

covariates that had a non-zero coefficient value in at least one of the three logistic 

regression submodels of the fitted multinomial penalized linear regression model. 
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Expression levels (x) were transformed with the log (1+ x) transformation to better 

differentiate between various color hues. Rectangles indicate the variables included in the 

model (red: positive coefficient, black: negative coefficient). LCNEC, large cell 

neuroendocrine carcinoma; SCLC, small cell lung cancer; AC, atypical carcinoid.  

 

 

Figure 7. Hierarchical clustering of LNEN subtypes based on tumor cell (A) and 

immune cell (B) VISTA, OX40L, GITR and TIM3 expression. The color bar scale 

indicates the expression levels of the selected markers. (C) Heatmap of marker 

expression levels as defined by both tumor cells and immune cells. (D) Heatmap of 
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the average tumor cell and immune cell marker expression levels for each subtype. 

LCNEC, large cell neuroendocrine lung cancer; SCLC, small cell lung cancer; AC, 

atypical carcinoid. 

 

4.4. The expression pattern of markers defined by immune cells varies across 

LNEN subtypes 

First, in order to obtain a comprehensive overview of the TIM concerning each 

histological subtype, we compared the levels of immune infiltration (i.e., tumor-

infiltrating lymphocytes) across the different subgroups (Figure 4B). The abundance of 

immune infiltrates was similar in SCLC and LCNEC samples, but notably lower in AC 

specimens (p<0.001). Likewise, individual expressions of other immune-related markers 

such as PD-1, ICOS, CD27, CD4, and CD8 were also significantly lower in AC tumors 

(vs. SCLC and LCNEC specimens). Of note, immune cell expressions of CD27, LAG3, 

OX40, CD40, and CD8 were highest in LCNEC samples and only these tumors expressed 

PD-L1. 

In case of therapeutic target markers ACs expressed significantly lower levels of immune 

cell VISTA (p<0.001) and GITR (p=0.002) than LCNEC or SCLC tumors (Figure 5B). 

Meanwhile, TIM3 expression by immune cells was significantly lower in SCLCs 

compared to ACs (p<0.001) or LCNECs (p<0.001). 

 To examine the immunologic landscape within different carcinoid tumor types, we 

performed immunohistochemical stainings on ten additional typical carcinoid samples. 

Figure 8 shows the representative images of immune-related markers in the case of typical 

carcinoid tumors compared to atypical carcinoids. Figure 9A shows the markers’ 

expression levels by tumor cells in typical- vs. atypical carcinoids. Out of the 15 initial 

markers, we studied eight markers which had available expression levels in at least the 

typical or atypical carcinoid subtype of at least one patient. Based on the p-values of the 

Wilcoxon rank sum test after Bonferroni-correction, median expressions were 

significantly different between typical and atypical carcinoid cases in case of PD-1 

(p=0.013), PD-L1 (p=0), IDO (p=0.00003), CD70 (p=0.00014), and NKG2A 

(p=0.00093). Figure 9B shows the expression levels of the 15 markers by immune cells. 

We found a significant difference between typical- and atypical carcinoid cases in case 

of CD4 (p=0.00016) and PD-L1 (p=0.00012) expression levels.  
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Figure 8. Immunohistochemical stainings of formalin-fixed paraffin-embedded 

typical carcinoid samples with immune-related markers compared to atypical 

carcinoids. The representative images show the immunohistochemical stainings of CD3, 

CD4, CD8, CD27, CD40, CD47, CD70, CD137, ICOS, IDO, LAG3, NKG2A, OX40, 

PD-1, and PD-L1. Images were captured with a 40x objective lens. The positive cells 

were visualized with DAB and nuclei were labeled with hematoxylin. Black arrows point 

at representative positive tumor cells. AC, atypical carcinoid; DAB, 3-3’-

diaminobenzidine; TC, typical carcinoid 
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Figure 9. Expression levels of immune-related markers by tumor cells (A) and 

immune cells (B) in typical and atypical carcinoid samples. The color-filled curves 

show the estimated normalized probability density function of the data. Colors indicate 

the typical carcinoid and atypical carcinoid subtypes, whereas the short vertical black 

lines mark the individual samples. The figures also depict the p-values of Bonferroni-

corrected Wilcoxon rank sum test. yellow: AC, atypical carcinoid; NS, not significant; 

Blue: TC, typical carcinoid 

 

4.5. Unsupervised hierarchical clustering of samples according to the immune cell-

based TIM 

As shown in Figure 6B, LNEN samples can be separated fairly well based on the immune 

cell expression of the examined immune-related markers. AC tumors tended to be less 
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immunogenic than SCLC and LCNEC tumors and the expression levels of CD3, CD8, 

CD27, and CD4 were also significantly lower in this histological subtype. Differences 

concerning the immune cell-based expression levels compared to the immune-related 

marker expression pattern of the tumor cells were less evident between the other two 

histological subtypes (SCLC and LCNEC). Nevertheless, immune cell expressions of 

CD27 and CD40 were higher in LCNEC samples (vs. SCLC).  

As an additional insight, we aimed to interpret model coefficients. Given that the 

multinomial model effectively consists of three separate penalized logistic regression 

submodels, their covariates can be used to differentiate between samples belonging to the 

given histological type and samples not belonging to that type. To this end, we plotted 

the expression and immune infiltration patterns of all samples in the dataset ordered by 

histological type (Figure 6C) and added a black or red border to covariates that had a 

negative or positive coefficient in the given submodel, respectively. These results imply 

that greater tumor cell CD70 and CD137 expression and higher immune cell CD27, 

LAG3, OX40, PD-L1, and CD40 expression were measured in our LCNEC samples 

compared to the AC and SCLC cohort. The SCLC cohort was characterized by high 

expression levels of CD47 and low levels of IDO in tumor cell as well as by a generally 

high expression level of ICOS in immune cells compared to the AC and LCNEC groups. 

The AC group showed small amounts of immune infiltrates, high expression levels of 

CD40 and NKG2A by tumor cells and low expression levels of CD4 and ICOS by 

immune cells compared to LCNEC and SCLC samples. 

It has become clear, that based on a cluster analysis was not able to distinguish LNEN 

subtypes based solely on VISTA, GITR, OX40L, or TIM3 expression by immune cells 

(Figure 7B).  

Finally, a principal component analysis was performed, which revealed, that ACs can be 

distinguished from both LCNEC and SCLC tumors based on their immune cell and tumor 

cell marker expression. In this context, ACs express high levels of tumor cell TIM3 and 

GITR, and low levels of immune cell GITR; both tumor cells and immune cells of SCLCs 

express high levels of GITR, and their immune cells express low levels of TIM3; and 

immune cells of LCNECs express high levels of GITR and TIM3. The trends for 

expression levels of each sample, grouped by their histologic subtype, are shown in Figure 
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7C. Figure 7D highlights the average expression pattern for each type, underlining 

previous observations of the most typical features. 

 
4.6. Overall immunological phenotype distinguishes LNEN tumors 

Over the course of our two projects, a total of 19 immune markers were investigated. 

Expression pattern of 15 immune-related markers (PD-1, CD27, CD4, CD47, ICOS, 

LAG3, OX40, PD-L1, IDO, CD70, CD137, CD3, CD40, NKG2A, CD8) and 4 novel 

immunotherapeutic targets (OX40L, GITR, TIM3, VISTA) was analyzed in a 

representative number of AC, LCNEC, and SCLC samples. Since 69 cases of the first 

patient cohort overlapped with the second cohort, the datasets were merged in order to 

examine whether the overall marker expression distinguishes LNEN subtypes. 

Unsupervised clustering revealed unique marker expression patterns in the different 

histological samples. Importantly, the results demonstrate that the applied immune-

related markers are highly effective in classifying tumors into their respective subgroups 

(Figure 10A). Figure 10B demonstrates the average expression patterns of examined 

markers with regard to LNEN subtypes. 

 

 

Figure 10. (A) Hierarchical clustering of LNENs based on the TC expression of 

immune-related markers. The color bar scale indicates the expression levels of CD137, 

CD27, CD3, CD4, CD40, CD47, CD70, CD8, GITR, ICOS, IDO, LAG3, NKG2A, 

OX40, OX40L, PD-1, PD-L1, TIM3, VISTA. (B) Heatmap of the average TC 
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expression levels of the selected immune-related markers. LCNEC, large cell 

neuroendocrine carcinoma; SCLC, small cell lung cancer; AC, atypical carcinoid 

 
4.7. Multinomial penalized linear regression model predicts the LNENs’ 

histological subtype 

In order to evaluate whether the histological subtypes could be defined based on the TIM, 

a multinomial penalized linear regression model was used. The fitted model was able to 

predict the histological type of the LNEN with an overall accuracy of 90% in the training 

set and 77% overall accuracy in the test set. See Figure 11 for confusion matrices and 

additional performance metrics. 

As an additional insight, we aimed to interpret model coefficients. Given that the 

multinomial model effectively consists of three separate penalized logistic regression 

submodels, their covariates can be used to differentiate between samples belonging to the 

given histological type and samples not belonging to that type. To this end, we plotted 

the expression and immune infiltration patterns of all samples in the dataset ordered by 

histological type (Figure 6C) and added a black or red border to covariates that had a 

negative or positive coefficient in the given submodel, respectively. These results imply 

that greater tumor cell CD70 and CD137 expression and higher immune cell CD27, 

LAG3, OX40, PD-L1, and CD40 expression were measured in our LCNEC samples 

compared to the AC and SCLC cohort. The SCLC cohort was characterized by high 

expression levels of CD47 and low levels of IDO in tumor cell as well as by a generally 

high expression level of ICOS in immune cells compared to the AC and LCNEC groups. 

The AC group showed small amounts of immune infiltrates, high expression levels of 

CD40 and NKG2A by tumor cells and low expression levels of CD4 and ICOS by 

immune cells compared to LCNEC and SCLC samples.  
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Figure 11. Performance metrics of the multinomial penalized linear regression 

model on the training (A) and test (B) sets. Confusion matrices show the number of 

samples having a given histological type (columns) that had been categorized to a specific 

type by the model (rows). Blue colors indicate correct predictions (diagonal elements), 

while shades of red show the number of misclassified samples (off-diagonal elements). 

Various performance metrics are shown for each histological subtype separately. Higher 

values along with darker shades of red indicate better performance. For all misclassified 

samples in the test set, the true histological type corresponded with the second-best option 

based on predicted probabilities and the maximum predicted probability was generally 

low in these cases, indicating that even though misclassification occurs, it is not done 

with high confidence. These results, although not exceptionally impressive from a 
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machine learning viewpoint, indicate that a larger available patient cohort could highly 

improve model performance and could provide a method for the accurate prediction of 

histological type based on expression levels, which signifies the presence of a distinctive 

relationship between histological type and expression levels of tumor samples.      
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5. Discussion 

Over the last 20 years of lung cancer research, it has become clear that understanding the 

different aspects of TIM is of clinical importance, as immune cells can have a major 

impact on tumor fate at different stages of the disease.(99-101) A precise understanding 

and description of these mechanisms is essential to improve the efficacy of targeted 

therapies and immunotherapy. Immunotherapy represents an effective weapon in the 

treatment of NSCLC patients(102); however, its exact role and mechanism of action in 

LNENs is not yet fully understood. Accordingly, in order to gain insight into potential 

biomarkers and pave the way for future immune checkpoint inhibitor-based strategies, 

there is an urgent need to study the TIM of these tumors.(101, 103) Accordingly, we 

investigated the immunological landscape of LNENs by assessing the expression patterns 

of 15 immune-related markers and 4 novel immunotherapeutic markers in surgically 

resected AC, LCNEC and SCLC tumors.  

In recent years, significant progress has been made in identifying potential predictive and 

prognostic biomarkers in LNENs, though only a few have been proposed in clinical 

practice. Among these, the expression of CD44, the presence and degree of spread 

through air spaces (STAS), the deletion of chromosome 11q (11q22.3-q25), and 

mutations in the multiple endocrine neoplasia type 1 (MEN1) gene have been reported to 

negatively impact prognosis in AC tumors.(104-108) Similarly, the Orthopedia 

Homeobox Protein (OTP) has emerged as a promising marker for pulmonary carcinoids. 

Both OTP and CD44 have been highlighted as potential prognostic markers; however, 

their exact impact on OS and the efficacy of immunotherapy remains controversial.(109, 

110) 

LCNEC has also been subject to recent genomic and transcriptomic analyses, leading to 

the identification of two distinct subgroups. Type I LCNEC tumors share similarities with 

the classic variant of SCLC, characterized by alterations in Retinoblastoma 1 (RB1) and 

Tumor Protein p53 (TP53). Conversely, type II LCNEC resembles NSCLC and is 

frequently associated with alterations in Serine/threonine Kinase 11 (STK11), Kelch-like 

ECH Associated Protein 1 (KEAP1), and Kirsten Rat Sarcoma Virus (KRAS). These 

findings support the theory that LCNEC represents a heterogeneous group or “a mixed 

basket” of tumors with different origins.(111-113) Furthermore, a high Ki-67 

proliferation index has been linked to worse PFS and OS in the majority of LNENs.(114) 
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SCLC was traditionally considered a homogeneous disease characterized by a single 

morphological type. The most recent profiling studies have provided a framework to 

differentiate biologically distinct SCLC subtypes based on the expression of specific 

transcription factors: Achaete-Scute Homologue 1 (ASCL1), Neurogenic Differentiation 

Factor 1 (NEUROD1), POU Class 2 Homeobox 3 (POU2F3), and Yes-Associated Protein 

1 (YAP1).(18, 58, 90) These biologically specific subgroups exhibit significant 

differences in their morphological features, growth properties, proteomic alterations, and 

prognosis. This newfound understanding underscores the heterogeneity within SCLC, 

challenging the previous notion of its homogeneity.(115-117) 

These molecular insights have significant clinical implications, as they reveal the 

underlying complexity of LNENs and highlight the need for personalized therapeutic 

strategies. The identification of distinct subgroups within SCLC and LCNEC, based on 

specific molecular alterations, paves the way for more targeted and effective treatments, 

ultimately improving patient outcomes. As research continues to evolve, the precise role 

of these biomarkers in guiding therapeutic decisions and predicting prognosis will 

become clearer, offering hope for better management of patients with LNENs. 

We employed unsupervised hierarchical clustering to effectively categorize samples from 

different LNEN subtypes based on the expression patterns of immune-related markers. 

Notably, our study presents the largest immune panel evaluated in these malignancies to 

date. NKG2A is an immune checkpoint molecule that signals repeated stimulation and 

cell division, but its expression by tumor cells is highly variable. Specifically, several 

tumor cells, especially in AC samples, exhibited NKG2A positivity. This finding holds 

potential clinical relevance as several antibodies targeting NKG2A are currently 

undergoing clinical trials.(118) 

CD47, known for its overexpression in various malignancies such as breast cancer, 

pancreatic cancer, and NSCLC, plays a role in transmitting anti-phagocytic signals, 

thereby helping tumor cells evade the immune response.(119-122) High CD47 expression 

correlates with shortened PFS and OS in advanced-stage NSCLC patients.(123) In line 

with these observations, we found that CD47 is expressed in a significantly higher amount 

of SCLC cases. 

CD40, another immune-related marker, is expressed in multiple cancers, including 

melanoma, colon, prostate, breast, and lung cancer. Its expression is associated with 
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improved survival in lung cancer, and it enhances the anti-tumor immune response in 

melanoma patients.(124, 125) Our study found that high CD40 expression by tumor cells 

was detected in ACs. 

CD137 is a potent immune-modulating molecule that promotes anti-tumor immunity 

through interactions with antigen-presenting cells.(126) Based on our results, CD137 

expression was not significantly different in the three tumor types. Publicly available 

datasets, such as GEPIA2 and TIMER 2.0, also support the notion that high CD137 

expression is a favorable prognostic factor in melanoma and HER2+ breast cancer.(127, 

128) 

CD8+ T lymphocytes, known for their cytotoxic activity against malignant cells, have 

shown varying prognostic significance across different studies. Kawai et al. reported a 

survival benefit in stage IV NSCLC patients with high CD8+ T-cell presence, whereas 

other studies have linked high CD8+ levels to unfavorable survival rates.(129-131) In our 

study, high CD8+ expression by immune cells was detected in SCLC cases and tended to 

be a negative prognostic factor in LNEN patients, contrasting with findings from Wang 

et al., who observed improved PFS and OS in LNEN patients with high CD8+ TILs.(132) 

This discrepancy may be due to demographic differences, as Wang's study focused on 

Asian individuals, potentially differing significantly from our predominantly Caucasian 

cohort. 

LAG-3, a novel immune checkpoint molecule that suppresses T cell activation and 

cytokine secretion, shows promise in cancer immunotherapy when targeted alongside 

other checkpoints.(133) Although its expression in various malignancies like SCLC, 

hepatocellular carcinoma, gastric cancer, ovarian cancer, and renal cell carcinoma is well-

documented, its prognostic value remains controversial.(134, 135) Our study found that 

in LNEN patients LCNEC immune cells expressed statistically significant levels of 

LAG3. 

Lastly, ICOS, which enhances CD4+ T cell-mediated immunosuppression, represents a 

promising alternative target in cancer immunotherapy.(136) Indeed, early-phase clinical 

trials have shown that ICOS agonist monoclonal antibodies exhibit promising antitumor 

activity, especially when combined with other immune checkpoint inhibitors like anti-

PD-1 agents.(136, 137) ICOS expression correlates with improved survival outcomes in 

skin melanoma, head and neck squamous cell carcinoma, and lung adenocarcinoma. 
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However, high ICOS expression is associated with poorer prognosis in low-grade glioma 

and uveal melanoma.(138) In our study, ICOS expression was the lowest in AC 

specimens (and high ICOS expression emerged as a negative prognosticator), suggesting 

that AC tumors might have a less favorable immunological environment and may not be 

suitable candidates for immunotherapy. 

Regarding to novel immunotherapeutic targets, VISTA is a membrane protein typically 

expressed by myeloid cells, granulocytes, and T cells, serving as a negative checkpoint 

ligand for antigen-presenting cells and T cells.(139) Studies on various cancers, including 

lung, kidney, colorectal, endometrial, and ovarian, have shown VISTA expression in 

lymphocytes within the tumor microenvironment and by tumor cells.(140, 141) Its 

prognostic significance is often controversial: high VISTA expression correlates with 

improved OS in epithelioid mesothelioma but worse outcomes in colorectal tumors.(142-

144) Our study found no significant impact of VISTA on OS, though immune cells in 

LCNEC and SCLC expressed VISTA more than in AC tumors. This suggests that VISTA 

may inhibit T lymphocyte function, reducing antitumor response and making it a potential 

treatment target.(139) Murine models have shown that VISTA inhibition increases T 

lymphocyte numbers and enhances their function. A phase 1 clinical trial is currently 

evaluating the efficacy of an anti-VISTA monoclonal antibody (JNJ-61610588) in 

various solid tumors. Additionally, another ongoing multicenter study is examining the 

long-term effects of CA-170, a PD-L1/PD-L2 and VISTA inhibitor, in solid tumors and 

lymphomas. These studies aim to determine whether targeting VISTA can improve 

immune response and patient outcomes in various malignancies.(139, 145-148) 

The OX40 ligand (OX40L) is an immune checkpoint modulator primarily found on 

activated antigen-presenting cells (APCs), dendritic cells, B cells, and macrophages.(149) 

Its interaction with OX40 enhances the survival of CD4+ and CD8+ cells, boosting 

tumor-specific responses of effector T cells and counteracting the suppressive effects of 

regulatory T cells (Tregs).(150) A recent study on NSCLC revealed that elevated OX40L 

expression is associated with increased CD4+ infiltration and improved OS.(151) Similar 

findings have been reported in studies on SCLC, melanoma, and pancreatic ductal 

adenocarcinoma.(152, 153) Our findings did not show significant survival benefits 

associated with OX40L expression, which could be partly due to the small sample size. 

We did observe that AC tumor cells expressed OX40L at lower levels than other LNEN 
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tumor cells. Interestingly, in our previous study on LNENs, we found no significant 

differences in OX40 expression across histological subtypes, suggesting that OX40 and 

OX40L may have independent expression patterns.(154) Importantly, recent in vivo 

studies indicate that both agonistic and antagonistic therapies targeting the OX40-OX40L 

interaction could be promising therapeutic options.(81, 149, 150) 

GITR, a costimulatory cell surface receptor, is an attractive target for immunotherapy due 

to its significant role in activating effector T cells.(155) Primarily expressed on T cells 

and natural killer (NK) cells, GITR enhances the immune system's anti-tumoral response 

by stimulating T lymphocyte activity and inhibiting regulatory T cells (Tregs). The first 

clinical trial of the GITR agonist TRX518 in solid tumors began in 2018. Despite 

combining TRX518 with PD-1 and PD-L1 inhibitors, the trial showed only modest 

survival benefits and did not meet primary endpoints.(83, 84, 156, 157) However, several 

ongoing studies continue to investigate GITR targeting(158, 159). Increased GITR 

expression has been identified as a positive prognostic factor in endometrial carcinoma 

and head and neck tumors but is associated with worse outcomes in renal carcinoma.(156-

158) In our cohort, GITR was expressed to a greater degree by AC tumor cells than 

LCNEC and SCLC tumor cells, and immune cells in ACs expressed significantly less 

GITR compared to LCNEC and SCLC tissue samples. Notably, the impact of GITR 

expression on tumor-infiltrating immune cells changes over time. Initially, GITR 

activation inhibits Tregs, leading to increased immune infiltration. However, as time 

progresses, GITR activation exerts the opposite effect, ultimately inhibiting the antitumor 

immune response.(83, 155, 160-162) In our previous study, we observed that AC tumors, 

which typically have the highest GITR expression, had significantly lower levels of 

tumor-infiltrating CD8+ and CD3+ lymphocytes compared to LCNEC and SCLC tumors 

with high GITR expression.(154) Regarding survival, low GITR expression in the tumor 

environment showed a borderline significant trend towards improved survival, a trend 

that persisted in the Cox regression model. 

TIM3, primarily expressed on NK cells and macrophages, was the final protein examined 

in our study. As a negative regulator of T cells, TIM3 induces immunosuppression and 

inhibits anti-tumor immunity, making it a potential target for inhibition.(86, 87, 163) 

Blocking both TIM3 and PD-1 has shown to cause tumor regression in preclinical models, 

and several clinical trials are investigating TIM3 inhibition in solid tumors.(158, 164, 
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165) Our findings revealed that both tumor cells and immune cells expressed TIM3 more 

in AC tumors than in LCNEC and SCLC tumors. Clinically, high TIM3 expression by 

tumor cells and immune cells was generally associated with improved survival. However, 

patients with AC tumors typically had a better prognosis than those with other LNENs, 

and TIM3 expression could not be confirmed as an independent prognostic factor in our 

multivariate model. Nevertheless, the high expression of TIM3 in AC tumors suggests 

that it could be a promising subtype-specific immunotherapeutic target for AC patients. 

In recent years, targeting the PD-1/PD-L1 axis has revolutionized the treatment landscape 

for many solid tumors, including melanoma, urothelial carcinoma, and NSCLC.(166) 

However, the success seen with immune checkpoint inhibitors in these cancers has not 

been replicated in LNENs. Neuroendocrine tumors, particularly those with AC histology, 

generally exhibit low PD-L1 expression.(48, 167, 168) In the rare instances where PD-

L1 expression is observed, it has been associated with improved survival in both LCNEC 

and SCLC patients.(168, 169) Our results confirmed low or absent PD-L1 expression in 

LNENs. Specifically, PD-L1 was only present in a subset of LCNEC tumors and was 

absent in both SCLC and AC samples. Similarly, tumor cell PD-1 expression was low 

across all three LNEN subtypes, while immune cells exhibited slightly higher expression 

levels. Importantly, neither PD-1 nor PD-L1 expression significantly impacted survival 

in our cohort. Given the much lower PD-L1 expression in these tumors compared to 

NSCLC and the lack of correlation with immune checkpoint inhibitor efficacy, alternative 

predictive biomarkers are needed for LNENs. Potential alternatives include tissue-based 

tumor mutation burden (TMB) and the tumor's inflammatory phenotype, which may offer 

more promising insights in these cases.(88, 115) 

Despite the distinct expression patterns of VISTA, OX40L, GITR, and TIM3, cluster 

analysis did not distinguish between LNEN subtypes. However, when we supplemented 

our current results with findings from an overlapping cohort (154), it became clear that 

LNEN tumors exhibit widely different immune phenotypes. Notably, AC tumors were 

found to be the least immunogenic among the LNENs studied, despite having the highest 

expression of TIM3 and GITR in tumor cells. These immune profiles can aid in 

diagnosing specific histologic subsets and predicting potential therapeutic responses to 

immune checkpoint blockade. It is important to consider that the expression of VISTA, 

OX40L, GITR, and TIM3 regulates the tumor immune microenvironment through 
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complex, time-dependent processes.(80, 81, 83, 84, 86, 87, 148, 155, 161, 163, 164, 170) 

These factors should be taken into account when assessing their impact on intratumoral 

immune cell distribution and antitumor response. 

Recent reports suggest a molecular link between low- and high-grade NENs.(113, 171, 

172) Alcala et al. identified a subgroup of atypical carcinoids, termed supracarcinoids, 

which display a carcinoid morphological pattern but possess molecular characteristics 

similar to LCNEC.(171) Additionally, various studies indicate that LNENs are not 

monolithic entities; combined neuroendocrine carcinomas can contain both SCLC and 

LCNEC components, or even AC elements.(101, 113, 173, 174) This supports the 

concept of lineage plasticity in these tumors. Beyond specific genes influencing 

neuroendocrine differentiation and morphology, the immune system might also impact 

tumor fate.(101, 173, 174) Our study’s unsupervised clustering, using an immune panel, 

successfully differentiated tumor samples of different histologies, despite a small study 

population. This finding further underscores the potential role of the immune system in 

influencing tumor fate. However, no definitive conclusions regarding LNEN tumor 

transition can be drawn from our results. Further investigation is needed to explore the 

biological characteristics, molecular profiles, and clinical behavior of these tumors to 

better understand their transitions and lineage plasticity. 

Our work has certain limitations that need to be addressed in future settings. Although we 

managed to collect a relatively large number of surgically treated LNEN samples ideal 

for profiling studies, the overall size of the study cohort remained small. Additionally, the 

retrospective design limited the collection of clinicopathological variables in most cases. 

Moreover, our study is not suited to examine the direct effects of immunotherapy, as we 

only included surgically treated patients where ICIs are not part of the standard care. 

Nevertheless, our findings may be hypothesis-generating and provide a framework for 

future validation studies. Another limitation is the inclusion of SCLC patients over a 

relatively long period. Although FFPE blocks are well-preserved, some older blocks 

might show decreased nuclear immunosignal intensity.(92, 93) Despite obtaining positive 

staining with quality check antibodies (CD56 and Ki-67) (94, 95) in the three oldest 

blocks, weaker-than-expected Ki-67 staining rates suggest potential signal reduction in 

some cases.  
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This study is more descriptive and hypothesis-generating than evidence-based, as we did 

not focus on the mechanism of the four selected proteins but aimed to provide insight into 

the targetability of these tumors with ICIs from a pathological perspective. The analysis 

of surgically removed whole tissue sections and randomly selected areas in each sample 

helped counterbalance some limitations, providing a comprehensive overview of the 

tumors' immunologic landscape while considering the potential confounding effects of 

tumoral heterogeneity. 
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6. Conclusions 

Our study is among the first to investigate the specific aspects of TIM in surgically 

resected LNENs, using a large panel of immune-related markers. We report that LNENs 

have widely divergent immunologic profiles and the expression pattern of investigated 

markers varies significantly within the different histological subtypes. These LNEN-

specific immune signatures might be a valuable resource for the development of future 

immune checkpoint inhibitor-based therapeutic strategies.  

By investigating the expression pattern of potential immunotherapy targets in 

intermediate- and high-grade LNENs, the current multicenter study aimed to aid the 

future implementation of novel immunotherapeutic approaches. We report that high 

tumor cell TIM3 expression is characteristic of AC tumors, whereas elevated GITR levels 

in tumor cells could be found in both ACs and SCLCs. OX40L expression by tumor cells 

is the highest in SCLCs and the lowest in ACs. Immune cell infiltration is the least 

pronounced in AC lesions, and immune cell VISTA and GITR expressions are also 

considerably lower in these intermediate-grade malignancies. Altogether, these results 

might open alternative diagnostic approaches and new immunotherapeutic horizons in 

these hard-to-treat malignancies.  
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7. Summary 

Intermediate-, and especially high-grade neuroendocrine lung neoplasms are aggressive 

tumors, with high metastatic potential and poor prognosis. Due to their relative rarity and 

complex biology, our knowledge of these entities remains very limited. In the last few 

years, molecular studies have shed more light on these tumors, thus bringing us closer to 

understand their development and behavior. However, there are still many gaps in our 

knowledge regarding their treatment; consequently, the therapeutic arsenal has not 

changed significantly over the past 30 years. Therefore, it is of utmost importance to 

understand the microenvironment of LNENs, map their TIM, and thereby identify 

potential therapeutic targets for future investigations. To answer these questions, we 

examined surgically resected histological samples from a total of 156 patients diagnosed 

with LNENs (26 AC, 64 LCNEC and 66 SCLC). A total of 19 immune markers (PD-L1, 

PD-1, CD3, CD4, CD8, CD27, CD47, IDO, ICOS, CD70, CD137, CD40, NKG2A, 

LAG3, OX40, VISTA, OX40L, GITR and TIM3) were used to explore the tumor immune 

profile.  

Our results show a significantly different immune marker expression pattern between 

these 3 tumor types. Based on this, a well-matched immune marker profile allows a good 

differentiation between LNENs. The immunological landscape of AC tumors is sparse 

whereas the majority of highly aggressive LCNEC and SCLC samples are dominated by 

high expression of immunological markers. In case of the 4 novel immunotherapeutic 

targets, we have found that ACs have high TIM3 tumor cell expression, GITR is highly 

expressed in both AC and SCLC tumor cells, while OX40L is most highly expressed in 

SCLC tumor cells.  

Ultimately, since our results provide a deeper understanding of the immunologic nature 

of these tumors, they represent an important first step towards the development of 

effective and appropriate immunotherapeutic strategies and immunotherapy-based 

clinical trials for these deadly diseases.  
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