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1. Introduction 

Thyroid cancer is the most common type of endocrine cancer, with more than 800.000 

newly registered cases in 2022 globally (1,2). Its incidence has more than doubled in the 

last 30 years in the USA (3,4). About 90% of the patients diagnosed with thyroid cancer 

have its differentiated (DTC) subtype, including, basically, the papillary (PTC) and the 

follicular (FTC) histological variants (5). For better therapeutic outcomes, the widely 

known conventional histological categorization of thyroid cancer and its subtypes is 

increasingly required to be further classified into molecular categories as well (6). 

The primary choice of treatment for thyroid cancer, if technically feasible, is its 

surgical removal by partial or total thyroidectomy, depending on the risk of recurrence 

(7,8). Based on the American Thyroid Association (ATA) guidelines, regular risk 

assessment is recommended during postoperative management to estimate therapeutic 

response and prognosis and to prevent relapse. Risk assessment should take factors like 

histological type, extrathyroidal invasion, (lympho)vascular invasion, presence of distant 

metastases, and postoperative serum marker (thyroglobulin, anti-thyroglobulin) levels 

into consideration. Prognostic value is increasingly associated with the molecular profile 

of the cancer as well (7,9–11). If the cancer falls into the intermediate-risk or high-risk 

category and contraindication is not present, post-surgical adjuvant I131 radioiodine (RAI) 

is recommended as part of the first-line treatments. RAI can be repeated several times if 

molecular or structural recurrence happens (7,12). 

In the case of therapy-refractory cancer or loss of radioiodine uptake, molecular target 

therapies can be considered as second-line options depending on the clinical setting 

(7,12–14). ATA guidelines recommend active surveillance for metastatic DTCs without 

symptoms with a diameter between 1 and 2 cm and an active intervention if the tumor 

growth rate increases. Additionally, molecular therapies can be indicated in metastatic 

DTC cases (12). Molecular therapies taking effect on the mitogen-activated protein kinase 

(MAPK) signaling pathway can sometimes even reinduce radioiodine sensitivity in 

tumors previously proved to be refractory to RAI (7,15). Besides those related to MAPK, 

other significant thyroid cancer signaling pathways include molecules such as 

phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phospholipase C (PLCγ) 

(16,17). As molecular therapies are usually highly specific, indicating them as second-

line approaches can mostly happen after successfully detecting a targetable mutation 



8 

 

within the tumor. Selective molecular therapies are associated with greater efficacy and 

a more tolerable side effect profile (18). However, in cases where a specifically targetable 

mutation cannot be found (e.g., RET), the usage of anti-angiogenic multi-kinase inhibitors 

(AAMKIs) might be a viable alternative (15). In general, if first-line approaches fail to 

achieve the therapeutic goal, and a selectively targetable mutation can be identified while 

contraindications are not present, application of the appropriate molecular therapy is the 

recommended choice of treatment; except for the BRAF inhibitors against BRAFV600E 

mutation in DTC. These usually come only after failed or contraindicated AAMKI 

treatments. It is worth mentioning that the RECIST objective response rate (ORR) and 

the progression-free survival (PFS) of lenvatinib, an AAMKI, was superior compared to 

the BRAF-selective dabrafenib ± trametinib in the SELECT study (7,15). 

Detection of several classes of gene and molecular alterations is possible such as 

hotspot mutations, copy number variations (CNV), fusion mutations, and microRNA 

(miRNA) expression differences (17,19). During our original molecular research, we 

wanted to investigate the relevance and role of frequent gene fusions as well as the 

miRNA expression patterns within PTC. 

Gene fusions basically occur when a single hybrid gene is created by the merger of 

two distinct genes after an improper chromosomal rearrangement, which causes 

chromosome segments to break and then reattach incorrectly. Defects of this kind can act 

as driver mutations and facilitate cancer development. A classic example of such a 

mutation is the Philadelphia chromosome created by the translocation of the BCR and 

ABL1 genes between chromosomes 9 and 22, leading to chronic myeloid leukemia (20). 

However, the oncogenic effect of gene fusions is evident in the case of solid tumors, like 

PTC (17). The clinically most relevant, frequently occurring, and selectively targetable 

gene alterations in thyroid cancer are the different types of BRAF, RET, NTRK, and MET 

mutations (19,21–26). An aberrant RET gene is quite frequent not only in medullary 

thyroid cancer but in DTC (~10%) as well (19,27,28). Selective RET kinase inhibitors 

targeting the signaling pathway of RET are available to use in such a mutation pattern. 

They have tolerable side effects and their efficacy, regarding paraneoplastic symptoms as 

well, is explicit. Members of the neurotrophic tyrosine receptor kinase (NTRK) gene 

family (NTRK1, NTRK2, NTRK3) can also often carry somatic mutations. In these cases, 

potential oncogenicity is mainly linked to protein fusions of tyrosine receptor kinases on 
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thyrocytes and their autonomous MAPK, PLCγ, and PI3K signaling activity, 

consequently. Potent second-line treatments in DTC counteracting the effects of NTRK 

fusions are available as well. These medications showed great therapeutic response rates 

accompanied by few side effects. In addition, they showed the ability to help tumor tissue 

regain its previously lost radioiodine uptake ability. The clinical value of inhibiting the 

molecular pathway related to MET in DTC is currently under investigation in clinical 

trials (13,15,16,24–26,28). 

Apart from gene fusions, PTC, characterized by its unique molecular signature, often 

exhibits alterations in its miRNA expression pattern as well (29–31). miRNAs form a 

special group of RNAs, being small and non-coding nucleic acids with a fine-tuning 

regulatory role in gene expression (32). Briefly, miRNAs are around 18–25 nucleotides 

in length and take effect by binding to their complementary sequences on messenger RNA 

(mRNA) transcripts, which could result either in target degradation or translational 

repression and, by that, gene silencing (33). miRNAs are considered to be quite stable 

molecules, making them accessible from a variety of biological samples such as fresh 

tissues, fine-needle aspiration biopsy (FNAB) specimens (34,35), blood samples (36,37), 

or even from formalin-fixed paraffin-embedded (FFPE) tissues (38). miRNAs represent 

a long-hidden and complex layer of gene regulation that is a crucial component in many 

physiological and pathological processes including cardiovascular diseases (e.g., cardiac 

fibrosis and cardiac hypertrophy) (39,40), microbiome homeostasis (41), diabetes 

mellitus (42,43), calcium and bone metabolism (44,45), as well as in the 

pharmacodynamics of certain drugs (46). miRNAs influence many cellular processes 

such as differentiation, proliferation, apoptosis, and metastasis development (29,47–49). 

In addition, research on the role of miRNAs in anti-cancer drug sensitivity in thyroid 

cancer has also been published (37). 

In oncology, miRNAs are receiving more and more attention due to their duality 

acting both as oncogenes and tumor suppressors (50). Emerging data suggest that 

different molecular backgrounds, including aberrant miRNA expressions, are a common 

feature of various cancers (30,51), including thyroid malignancies (52). PTC is seemingly 

well known by many clinicians and pathologists, although it is still slowly turning into a 

more heterogeneous category, which can be further divided not only into 

clinicopathological subtypes but molecular ones as well. Admittedly, some papers have 
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already been published investigating the role of miRNAs in PTC pathogenesis (19,53,54); 

however, establishing the exact depth of the correlation between specific miRNA 

expressions and the development of the disease lacks original molecular studies with 

sufficiently large control case numbers even to this day. Also, these studies provide an 

insufficient coverage of miRNA types. For instance, even The Cancer Genome Atlas 

(TCGA) project involved PTCs with only 59 matched controls for miRNA analysis and 

evaluated 1046 different miRNAs while lacking clinicopathological aspects (19). 

miRNAs’ association with the pathogenesis of other conventional thyroid cancer types 

such as follicular thyroid carcinoma (FTC), medullary thyroid carcinoma (MTC), or 

anaplastic thyroid carcinoma (ATC) has also been noticed (55). In cases when DTC was 

diagnosed, tumor development might be traced back to a DICER1 RNase IIIb hotspot 

mutation generating an unbalanced expression ratio of 5p:3p miRNAs (56). 

The link between these miRNA deviations and disease development makes specific 

miRNAs perfect candidates for being a new generation of diagnostic and prognostic 

markers of PTC. Indeed, miR-21, miR-127, miR-136, miR-146b, miR-221, and miR-222 

are frequently upregulated in PTC and are associated with a more aggressive course of 

the disease and an overall poorer prognosis (19,29,37,51,55,57–64). Also, BRAF-

targeting miR-486-5p, miR-9-5p, and miR-708-3p in PTC were previously described as 

downregulated and – in the case of miR-486-5p – associated with lymph node metastasis 

development as well as more advanced tumor stage and risk of recurrence (53). Based on 

previous findings, 5p/3p expression ratio of specific miRNAs might also play a role in 

the onset of lymph node metastases (54). Upregulation of miR-181a in thyroid cancer has 

also been identified previously (29). Moreover, expression alterations of miRNAs such 

as miR-204, miR-146b, miR-221, and miR-222 have been described in association with 

important cancer features like extrathyroidal invasion and/or metastasis development 

(29,48,63,64). Alternatively, a decrease in tumor-suppressing miRNA levels, such as let-

7, miR-125b, and miR-204-5p (19,56), has also been noted, propagating the malignant 

conversion of thyroid cells (65). Furthermore, miR-136, miR-21, and miR-127 showed 

significant correlation with the risk of persistent disease and potential relapse as well as 

with the risk categories defined by the American Thyroid Association’s (ATA) risk 

stratification system (7,66). 
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Genetic alterations, depending on their type, can be detected via multiple methods 

such as polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), 

immunohistochemistry (IHC), and next-generation sequencing (NGS). These molecular 

methods can be applied to fresh tissues and also to FNAB and FFPE specimens (17,20–

22,28,67,68). 

Compared to miRNAs, the role and importance of fusion mutations in PTC are 

already quite well understood; however, original molecular studies evaluating their 

connection to everyday clinical and histological metrics related to PTC are still much 

needed as well. With our investigations on heterogenous Hungarian PTC cohorts, we 

would like to provide a comprehensive analysis of fusion mutation occurrences and reveal 

miRNA expression differences related to the disease by applying NGS. During our 

research, on one cohort (100 patients), we evaluated the distribution of frequent fusion 

mutations in PTC determining fusion mutation–clinicopathological metric associations in 

order to point out the potential of molecular diagnostics in PTC if used more frequently, 

even in earlier stages or in special clinical scenarios. On a different cohort (118 patients), 

we compared the miRNA expression patterns of cancerous and non-cancerous thyroid 

tissue samples. 

For fusion mutation analyses, we conducted a retrograde fusion mutation screening 

in the context of 23 relevant gene fusions in the tumor samples. Then, correlations among 

molecular and clinicopathological variables of the PTC cases were calculated to find any 

underlying associations between them. 

Based on the results of previous findings, a better understanding of miRNA 

expression profiles of malignancies – including thyroid cancer – may provide insights 

into tumorigenesis and disease progression as well as potential diagnostic, prognostic, 

and therapeutic possibilities in the future (62,64). For this purpose, we conducted a 

comprehensive molecular study to detect specific miRNAs associated with PTC based on 

their expression differences between tumor sections and adjacent non-tumor tissues. We 

evaluated the miRNA profiles of 236 individual thyroid tissue samples (one cancerous 

and one healthy sample per case) and analyzed the sequencing data of the samples in the 

context of 2656 types of human miRNAs, doubling the control-matched sample size and 

more than doubling the examined miRNA cluster size compared to the TCGA study (19).  
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2. Objectives 

This thesis aims to explore the genetic and molecular underpinnings of DTC, with a 

specific focus on PTC, the most prevalent histological subtype of the disease. Our 

research investigates two critical areas: the role of fusion mutations and miRNA 

dysregulation in the pathogenesis of PTC. We believe that complementary molecular 

profiling studies in the field can improve PTC diagnostics and treatment, especially if the 

research comes with a broad clinicopathological dataset simultaneously. 

2.1. Descriptive statistics and clinicopathological correlations related to certain 

gene fusions in PTC 

We aimed to be the first to determine the overall distribution of the clinically most 

relevant (most frequent and/or therapeutically targetable) gene fusions within PTC tumor 

tissues originating from a sufficiently large Hungarian cohort. We wanted to put our raw 

molecular data into context by assigning clinicopathological values to it as well. 

2.2. The potential role of miRNAs in the development of PTC and their 

associations with certain clinical scenarios and biological conditions 

miRNA research is a rapidly growing field of oncology but it lacks thyroid cancer-

related studies. For this reason, we also aimed to perform the most comprehensive 

analysis of the miRNA expression patterns in a separate Hungarian PTC cohort. The main 

goal was to highlight the role of certain miRNAs in PTC development by identifying 

significant miRNA expression differences in cancerous thyroid tissue samples compared 

to adjacent healthy thyroid tissue. In addition, we planned to further interpret miRNA 

expression patterns in the context of large-scale international molecular datasets, 

providing a broader perspective on the role of miRNA dysregulations in PTC. Moreover, 

similarly to our fusion mutation study, we aimed to find associations between the 

miRNA-related molecular results and some clinicopathological features as well. 

With results originating from extensive datasets, we wished to underscore the 

importance of integrating molecular profiling into clinical decision-making by 

highlighting the utility of genetic data in improving cancer diagnostics and prognostics. 
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3. Methods 

3.1. Study population 

3.1.1 Study population of the fusion mutation investigation 

RNAs were isolated from tissue samples obtained from 107 consecutive patients 

previously diagnosed with papillary thyroid carcinoma (PTC) who were deemed eligible 

for the study. However, seven samples were subsequently excluded due to either 

insufficient RNA quality or incomplete clinical data. This resulted in a final cohort of 100 

samples with molecular data suitable for further analysis. The fusion mutation study 

population exhibited a marked gender disparity, with a significantly higher number of 

women (n = 71) compared to men (n = 29). 

The mean age (± SD) at diagnosis was 45 years (± 15.64 years; women: 46 ± 16.15 

years; men: 44 ± 14.52 years). 32 patients had no comorbidities aside from PTC. To 

investigate the genetic background of PTC, sequencing was performed to identify 23 

different types of fusion mutations considered highly relevant to PTC pathogenesis. In 

the fusion mutation study cohort, the analyzed samples encompassed various PTC 

subtypes, as detailed in Table 1. 

Table 1. PTC subtypes in the fusion mutation study cohort. 

PTC Subtype n = 100 

conventional 69 

follicular variant 17 

oncocytic 6 

tall cell 3 

columnar cell 2 

encapsulated conventional 1 

trabecular 1 

Warthin-like 1 
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3.1.2 Study population of the miRNA expression investigation 

miRNAs were isolated from 258 tissue samples, comprising cancerous and normal 

tissue specimens from 129 selected PTC patients. Ten tissue sample pairs were excluded 

due to inapplicable isolate specimens; the remaining ones were then forwarded to 

sequencing. The sequencing analysis examined expression patterns related to a total of 

2656 different miRNAs. During the subsequent bioinformatic assessment, one additional 

sample pair was excluded due to insufficient sequencing yield. After all necessary 

exclusions, paired tumor and control samples from a total of 118 PTC patients were 

included in the final evaluation (Figure 1). The tumor samples analyzed in the miRNA 

study comprised the following histological subtypes of PTC: conventional (n = 96), 

follicular subtype (n = 16), oncocytic (n = 4), columnar cell (n = 1), and Warthin-like (n 

= 1) (Table 2). 

 

Figure 1. This workflow diagram outlines the steps involved in the miRNA analysis of 

PTC patients. A total of 161 anonymized PTC cases from the tissue archives were 

reviewed, of which 129 were deemed eligible based on histopathological evaluation. 

Paired thyroid tissue samples, including 129 tumor and 129 control specimens, were 

collected from these cases and subsequently subjected to sectioning for further analysis. 

Tissue sections underwent miRNA isolation and RNA quality control to assess 

concentration levels, resulting in the exclusion of samples evaluated as inapplicable 
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isolate specimens. The remaining samples proceeded to sequencing, where expression 

patterns were analyzed across 2656 different miRNA types. Following sequencing, a 

bioinformatic and statistical assessment was performed on the data. During this 

evaluation, one additional sample pair (tumor and control) was excluded due to 

insufficient sequencing yield. Finally, we were able to establish those miRNAs that show 

significantly different expression patterns in PTC and non-PTC tissues related to 118 

patients in total. 

Table 2. PTC subtypes in the miRNA study cohort. The distribution of PTC subtypes in 

the studied cohort revealed that, among the 118 patients, the conventional subtype was 

the most prevalent, representing 81.36% of cases, followed by the follicular subtype, 

which accounted for 13.56% of cases. These findings underscore the dominance of the 

conventional subtype in PTC incidence while reflecting the variability in PTC 

presentations. 

PTC Subtype n = % 

Conventional 96 81.35 

Follicular subtype 16 13.56 

Oncocytic 4 3.39 

Columnar cell 1 0.85 

Warthin-like 1 0.85 

All PTC subtypes 118 100 
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3.2. Sample collection, and histopathological processing for both fusion mutation 

and miRNA expression analysis 

After preliminary filtering, a total of 100 – for the fusion mutation investigation – and 

118 – for the miRNA expression analysis – PTC tissue blocks derived from thyroid 

surgical materials, were included in our research. These samples of consecutive cases 

were collected from the histopathological archives of the Department of Internal 

Medicine and Oncology, Semmelweis University, Hungary, and the National Institute of 

Oncology, Hungary. We queried the related medical records and pathological data from 

clinical databases (e.g., eMedSolution®, MedRec®) in an anonymized manner. 

In both studies, we included the following clinicopathological data as variables: age 

at diagnosis, sex, ATA risk score, TNM stage, and cancer stage based on the 8th edition 

of the American Joint Committee on Cancer (AJCC). Exclusively in the fusion mutation 

study, additional variables were included; namely histological subclassess of PTC, 

aggressiveness of the PTC variant, R stage, tumor size, (lympho)vascular invasion, 

perineural spread, capsule invasion, extrathyroidal spread, focality, microcarcinoma 

character, cancer localization and sidedness within the thyroid lobes, preoperative 

imaging features (tumor size, sidedness, infiltrative character, lymph node involvement, 

presence of distant metastasis), type of surgical procedure performed (including lymph 

node dissection), features of indicated treatments (radioiodine, external beam radiation 

therapy (EBRT), molecular therapy, relapse after treatment (molecular and/or structural), 

complication after treatment), data from medical history (family history of thyroid 

disease, prior chemo-therapy, Hashimoto’s disease, prior hyperthyroidism or 

hypothyroidism, prior goiter, association with thyroid or parathyroid adenoma, and 

association with comorbidity clusters such as other malignancy, breast cancer, benign 

tumor, uterine myoma, diabetes, cardiovascular morbidity, respiratory disease, gastric 

acid related disorder, appendicitis, autoimmune disease, gallstones, musculoskeletal 

disorder, kidney stones, endometriosis). 

The collected tissue samples were FFPE blocks. Hematoxylin and eosin (H&E)-

stained trial sections were prepared from these blocks to confirm the presence of tumor 

tissue, verify the histological subtype, and determine the percentage of tumor volume 

within the samples by an expert pathologist. Only PTC samples with a sufficient tumor 

burden at the site of interest within the FFPE block, relative to the overall tissue volume, 
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were included for further processing. Samples containing less than 80% tumor volume 

were excluded from the subsequent analyses. 

In the case of the miRNA expression study, the involvement of non-tumor control 

samples was also required. For this purpose, we used thyroid tissues adjacent to cancer 

within the same thyroid specimens. The control samples were collected by targeting tissue 

areas as distant as technically feasible from the PTC sites, typically from the contralateral 

lobe of the thyroid, to ensure minimal contamination and reliable comparison. In miRNA 

analysis, both the tumor-containing and the normal tissue samples were dissected from 

the same surgical material, thus resulting in a double amount of tissue specimens per 

patient relative to the fusion mutation study. 

Macrodissections of the pre-selected and approved tissue blocks were performed, 

yielding 10 µm thick tissue curls, with four curls obtained per sample. These tissue curls 

were subsequently processed for molecular analysis.  

3.3. Fusion mutations in PTC: relative frequency and their correlation with 

clinicopathological characteristics and patient outcomes 

3.3.1 Molecular processing for fusion mutation detection (RNA isolation, 

quality control (QC), RNA quantification and sequencing) 

The RecoverAll™ Total Nucleic Acid Isolation Kit (Life Technologies, Carlsbad, 

CA, USA) was used for the isolation of DNA-free RNA. In short, the paraffin was 

removed with xylene and ethanol treatment. The pellets were digested with proteinase K 

solution in heat blocks for 15 minutes at 50 °C, then 15 minutes at 80 °C. Samples were 

combined with Isolation Additive, ethanol, and then RNAs were captured by the column. 

After several washes and incubation with the presence of DNAse, purified RNA was 

eluted into a 60 μL elution buffer. The concentration of the isolated RNA was measured 

with the Qubit RNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA). 

The Oncomine Focus amplicon library was prepared using the Ion AmpliSeq Library 

Kit 2.0 (Life Technologies, CA, USA); briefly, multiplex primer pools were added to 10 

ng of genomic DNA, and after reverse transcription, to 10 ng of total RNA, then amplified 

with the following PCR cycles: at 99 °C for 2 minutes, at 99 °C for 15 seconds, and at 60 

°C for 4 minutes (23 cycles), and holding on at 10 °C. Primers were partially digested 

using a FuPa reagent, then sequencing adapters were ligated to the amplicons. Agencourt 
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AMPure XP Reagent (Beckmann Coulter, CA, USA) was selected for library purification. 

The concentration of the final library was determined by the qPCR method run by the 

QuantStudio instrument (Life Technologies, CA, USA). 

Template preparation was performed with the Ion OneTouch kit (Life Technologies, 

CA, USA) on a semiautomated Ion OneTouch instrument using an emPCR method. After 

breaking the emulsion, the non-templated beads were removed from the solution during 

the semiautomated enrichment process on an Ion OneTouch ES (Life Technologies, CA, 

USA) machine. After adding the sequencing primer and enzyme, the Ion Sphere Particle 

(ISP) beads were loaded into an Ion 520 sequencing chip, and the sequencing runs were 

performed using the Ion S5 Sequencing kit (Life Technologies, CA, USA) with 500 

flows. 

3.3.2 Data processing for gene fusion assessment and correlation analysis 

In the PTC tumor samples, we aimed to detect the presence or absence of the 

following 23 different oncogenic driver gene fusion mutations: ABL1, AKT3, ALK, AXL, 

BRAF, EGFR, ERBB2, ERG, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, MET, 

NTRK1, NTRK2, NTRK3, PDGFRA, PPARG, RAF1, RET, ROS1. 

To explore the distribution of the listed fusion gene partners compared to other gene 

partners, other fusion mutations, and fusion-negative cases, variant annotation and cloud-

based data analysis were performed using Ion Reporter 5.18 platform (Life Technologies, 

CA, USA) with pre-defined parameters followed by descriptive statistics. 

After successfully collecting molecular data, we complemented the 

clinicopathological dataset with sequencing information regarding the fusion mutation 

status for each case. Due to the large number of variables and the heterogeneity of the 

variable types within the clinicopathological dataset, which contains nominal, ordinal, 

and ratio-scale types, we applied multiple statistical tests to improve the quality of our 

multivariate analysis. 

Descriptive statistics of basic clinical data were performed using IBM SPSS 27.0 

(SPSS Inc., Chicago, IL, USA). 

Association mapping within the entire dataset (including the listed fusion mutations 

and all the clinicopathological data) could not have been achieved by conventional 

multivariate techniques. The reason is that the variables are heterogeneous in terms of 
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measurement scale. Fusion mutation-related variables are binary nominal as well as many 

other clinicopathological variables (e.g., aggressiveness, multifocality, relapse). 

However, other variables belonged to ordinal (e.g., clinical stage, TNM stage, ATA risk 

score) and ratio (e.g., age, tumor diameter) types. In the case of nominal variables (or 

binary/nominal variables), only the equality or non-equality of character states can be 

established. Arithmetic variances only make sense in the case of ratio-type variables, 

while for ordinal variables, only the sequence of states can be interpreted. Therefore, 

special methods need to be used to uncover variable associations in the most effective 

way possible. A new method, the d-correlation formula, recently published by Podani et 

al., was applied to determine correlations across mixed-type variables by reducing the 

number of dimensions of the dataset. Then, the comprehensive correlation matrix, which 

was generated by this formula, could be visualized with principal component analysis 

(PCA) with which we were able to reduce data dimensionality by identifying the most 

important patterns that describe the data variability. PCA also reorients the data into 

principal components, which are new, uncorrelated variables ordered by their importance. 

For specific subsets of data, we also performed more conventional statistical analyses 

to extend the scope of the investigation to potential correlations that were not apparent 

from PCA. For this, we mainly focused on associations of ETV6 and NTRK3 partner genes 

as they were seemingly not clustering well with other variables via PCA. Moreover, we 

assessed the relation of fusion mutation status (including general fusion mutation 

positivity and those specific fusions occurring at least six times in the dataset) to the 

patients’ age at diagnosis, and the association pattern exclusively between not fusion-

related, binary-type clinicopathological variables. For the reasons detailed above, we 

were limited in terms of effectively comparing multiple variable types with each other in 

such a way. This statistical analysis was conducted using the Python v3.8 programming 

environment. The significance of associations between fusion mutations (binary/nominal) 

and other nominal-, and ordinal-type clinicopathological variables was calculated by the 

Chi-square test (p < 0.05) using the SciPy v1.7.3 package. Associations found to be 

significant from these subsets of data were then further evaluated with logistic regression 

models to determine the strength and direction of the correlations, for binary variables 

exploiting the scikit-learn v1.2.2 package. We used multinomial logistic regression for 

not-binary nominal variables, as it handled multiple different categories of the same 
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variable better. For ordinal variables, we applied the Ordered Logit model using the 

Statsmodels package v0.13.2. 

For ratio-type variables, we first checked the normal distribution of the values. Only 

age at diagnosis showed a normal distribution, while the diameter of the tumor, the 

cumulative dose of RAI therapy, and the cumulative dose of EBRT were not-normally 

distributed. Given the size of the dataset, the evaluation of normal distribution was 

performed by the Shapiro–Wilk test. The normally distributed variable (age at diagnosis) 

was further tested for the homogeneity of variances. Next, the mean age at diagnosis was 

investigated in the context of fusion mutation status by applying an independent two-

sample t-test or, in the case of ETV6 fusion, a Welch’s t-test due to potential violation of 

the homogeneity of variances assumption. With the t-tests, we were able to determine any 

significant differences between the mean age of the fusion-positive and fusion-negative 

groups of patients. In cases of not-normally distributed variables, the Kruskal–Wallis test 

was used to determine any significant associations to fusion mutations. As no significant 

association pairs could be identified, we did not continue with a deeper analysis in this 

direction. For statistical evaluations of ratio-type variables, we applied the SciPy package 

as well. 

3.4. miRNA expression profile of PTC compared to normal thyroid tissue and its 

association with clinicopathological features, diagnostics and prognostics 

3.4.1 Molecular processing for miRNA detection (miRNA isolation, quality 

control (QC), miRNA quantification, and sequencing) 

Zymo Quick RNA FFPE kit (Zymo Research, Irvine, CA, USA) was employed for 

the isolation of miRNAs from the prepared FFPE tissue sections. The process started with 

the removal of paraffin using a proprietary deparaffinization solution, which was 

followed by rehydration of the tissue. The tissue was then subjected to proteinase K 

digestion at 55 °C for 2 hours and subsequently at 65 °C for an additional 15 minutes to 

ensure thorough lysis. After digestion, the samples were treated with RNA lysis buffer, 

which facilitated the selective binding of miRNAs to the kit’s Zymo-Spin IICR column. 

The column was then washed multiple times to remove contaminants. To ensure the 

elimination of genomic DNA, the samples were treated with DNase. Finally, the miRNAs 

were eluted in 50 μL of elution buffer. During molecular analysis, we performed RNA 
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quality assessment. Initially, we determined RNA concentrations using the Qubit™ HS 

RNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) on a Qubit™ 3.0 

fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). When necessary, the 

concentration of miRNAs was measured again using the Qubit™ microRNA Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) also on a Qubit™ 3.0 fluorometer. 

Then, we prepared miRNA libraries in the following multi-step process using 

NEXTFLEX® Small RNA-Seq Kit v4 (PerkinElmer Inc. Waltham, MA, USA). We 

started with an input of 50 ng of RNA, followed by the ligation of the NEXTFLEX® 3′ 

adenylated adapters. After that, we removed the excess 3′ adapters, then we ligated the 

NEXTFLEX® 5′ adapters. This was succeeded by the reverse transcription, first-strand 

synthesis; post-synthesis, we conducted bead cleanup, and then PCR amplification was 

performed using barcoded primers (19 cycles). Lastly, we finished the miRNA library 

preparation with size selection and cleanup. 

The next step was the quality control of the miRNA libraries involving DNA 

concentration measurement using the Quant-iT™ 1X HS dsDNA Assay Kit (Thermo 

Fisher Scientific, Waltham, MA, USA) on either a FLUOstar Omega fluorometer (BMG 

Labtech, Ortenberg, Germany) or a Qubit™ 3.0 fluorometer, along with assessment of 

the fragment sizes using the LabChip® GX Touch™ nucleic acid analyzer (PerkinElmer 

Inc. Waltham, MA, USA) with an HT DNA X-Mark Chip (CLS144006) (PerkinElmer 

Inc. Waltham, MA, USA) with the HT DNA NGS 3K Reagent Kit (PerkinElmer Inc. 

Waltham, MA, USA). 

For pooling the libraries, we calculated the molar concentrations based on the overall 

concentrations and the fragment sizes. Then, equal molar quantities were pooled from the 

libraries. The concentration of this pool was measured using the Quant-iT™ 1X HS 

dsDNA Assay Kit again and diluted to the final concentration of 2 nM. 

Finally, the sequencing was carried out on a NextSeq 2000 system (Illumina Inc., San 

Diego, CA, USA) using a P3 (1 × 50 cycles) kit. This setup allowed us to generate 2 × 40 

base pair (bp) paired-end reads. miRNAs showing expression levels below the set 

threshold of the applied NGS platform both in the PTC and control samples were 

considered as not-expressed miRNAs. During the process, we maintained the seeding 

concentration at 650 pM to ensure optimal sequencing depth and quality. 
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3.4.2 Data processing for miRNA expression profile assessment and 

correlation analysis 

The quality check of the raw reads was performed via FastQC v0.11.7 and MultiQC. 

Forward and reverse reads were merged via PEAR v0.9.11 and then quality trimmed with 

Trim Galore v0.6.10. The quality threshold was set to 30, and only reads between 18 and 

30 bp in length were used for further analysis based on the literature. One sample pair 

was removed from the analysis due to insufficient sequencing yield compared to the other 

samples. Based on recommendations, Bowtie1 v1.3.1 was used for the alignment of the 

reads to the miRBase v22.1 H. sapiens miRNA database with the following parameters: 

-n 0 -l 8 --best --strata -m 1 –no-unal. Read counts were calculated for each miRNA using 

SAMtools v1.14. 

The expression levels of miRNAs can span several orders of magnitude, making the 

direct comparison of raw data challenging and less informative. To address this, we 

presented our data using logarithmic values, specifically log2 fold change (FC) for 

expression levels and -log10P for p-values. We applied a threshold for marked differential 

expression with a minimum log2 FC of ±1 and the Benjamini–Hochberg-corrected p-

value less than or equal to 0.05. By using a logarithmic transformation, we were able to 

mitigate the impact of extreme values, create a symmetrical view of up- and 

downregulation (both of which can be relevant), and make our results more visible. We 

applied PCA as a statistical tool in miRNA analysis as well. 

Statistical analysis of the read counts was performed in the R v4.2.1 programming 

environment. Differential miRNA expression was calculated with the DESeq2 package. 

The ComplexHeatmap, EnhancedVolcano, and ggplot2 packages were used for the data 

visualization. The network graph was constructed using Python’s NetworkX library. 

To highlight the potential biological and clinical implications of miRNA 

dysregulation in PTC, we performed a comprehensive KEGG pathway enrichment 

analysis using the miEAA analysis server, leveraging the miRPathDB database; in 

addition, we utilized the Gene Ontology (GO) framework to systematically categorize the 

functions of genes influenced by the differentially expressed miRNAs. The GO Resource 

is a collaborative bioinformatics tool that provides consistent descriptions of gene 

products across databases and species. It encompasses structured networks of defined 
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terms that represent gene product properties, covering biological processes, cellular 

components, and molecular functions. miEAA v2.1 was used for an over-representation 

analysis on the miRNAs with adjusted p-values less than or equal to 0.05. The analysis 

was performed on the Gene Ontology and KEGG terms available in the miRPathDB 

database via the miEAA analysis server. Only terms with at least 10 genes were surveyed, 

and they were considered significant if the FDR-corrected p-value was less than 0.01. 

3.5. Literature review 

The literature search was conducted up to 31 October 2024 using NCBI’s PubMed 

database to identify disease associations and biological interactions related to gene 

fusions and miRNAs, ensuring the inclusion of the most recent studies available in our 

work. Our goal was to select peer-reviewed articles that contained relevant information 

about the specific gene fusions and miRNAs we were studying, particularly in the context 

of human diseases. 

A variety of synonymous search terms were simultaneously employed to gather all 

the required information from the existing literature. These search terms included 

“papillary thyroid carcinoma”, “PTC”, and “thyroid carcinoma”. In the case of fusion 

mutation analysis, search terms also included “fusion mutation”, and “gene fusion” as 

well as the names of individual genes; while in the case of miRNA expression 

investigation, we searched for “miRNA”, “microRNA” and specifically the studied 

miRNAs. 

Our miRNA expression study utilized the miRBase v22.1 H. sapiens miRNA 

database for human miRNA sequence and annotation retrieval.  
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4. Results 

4.1.  Descriptive statistics and clinicopathological correlations related to certain 

gene fusions in PTC 

4.1.1 Prevalence and distribution of fusion mutations in PTC 

The sequencing data revealed the distribution of the fusion mutations of interest 

within the PTC cohort, providing a comprehensive insight into the molecular patterns 

underlying disease development, as illustrated in Figure 2. 

 

 

Figure 2. Calculated relative distribution of partner genes associated with detected driver 

fusion mutations (n = 27) in the PTC cohort without representing fusion non-carrier cases 

(n = 73). The relative frequency of occurrence was significantly different (Chi-square 

test) between RET and SQSTM1 fusions (p = 0.026) as marked (*) on the plot. The most 

frequently identified fusion genes were RET (28.57%) and NTRK3 (16.33%) and their 

common gene partners CCDC6 and ETV6, respectively. 
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Fusion mutations were identified in 27% of the analyzed samples, affecting nine 

distinct genes. The distribution of these mutations revealed the following frequencies: 

RET (28.57%), NTRK3 (16.33%), CCDC6 (16.33%), ETV6 (12.24%), MET (8.16%), 

ALK (4.08%), NCOA4 (8.16%), EML4 (4.08%), and SQSTM1 (2.04%). The most notable 

malignancies associated with these fusion genes, supported by sufficient data from the 

literature, are summarized in Table 3. (69–72). 
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Table 3. The most relevant malignancies and their associations with fusion genes 

identified in our study. 

 

4.1.2 Determination of correlations between mixed scale-type variables 

related to the fusion mutation status and clinicopathological data 

Deploying PCA (Figure 3) with d-correlation allowed for the simultaneous analysis 

of multiple variable types, including nominal, ordinal, interval, and ratio-scale data. (73). 

Each point on the PCA plot is labeled to represent specific clinicopathological variables 

or fusion mutation statuses. This approach enables the visualization of larger groups of 

variables and their distribution relative to one another. On the left side of Axis 1, therapy-

related variables are distinctly clustered with prognostic variables and those associated 

with poorer clinical outcomes, highlighting their interrelationships (7). In contrast, all 

fusion mutation-related variables are positioned on the far-right side of Axis 1, with 

many encircled by multiple clinicopathological variables. The opposite localization of 

gene fusions from therapy-related and prognostic variables suggests a negative 

correlation between these groups. Notably, common fusion partner genes, such as 

RET/CCDC6 and NTRK3/ETV6, clustered closely together, reflecting their expected co-

occurrence. (16,17,19,22). 

The presence of a fusion mutation within PTC tissue may be associated with a prior 

diagnosis of Hashimoto’s disease or endometriosis, as well as a family history of thyroid 

diseases. In the cases of RET, CCDC6, MET, EML4, and ALK, a similar clustering was 

Fusion Gene Cancer Type 

RET thyroid carcinoma, salivary intraductal carcinoma 

NTRK3 breast carcinoma, fibrosarcoma 

CCDC6 thyroid carcinoma 

ETV6 acute lymphoblastic leukemia, breast carcinoma, fibrosarcoma 

MET NSCLC 

ALK anaplastic large T-cell lymphoma 

NCOA4 prostate cancer, salivary intraductal carcinoma 

EML4 lung cancer 
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observed with each other and the type of thyroidectomy performed (near-total 

thyroidectomy, lobectomy, partial surgery with or without completion), the indication of 

radioiodine (RAI) therapy, a smaller than 1 cm tumor size in diameter during preoperative 

diagnostics with imaging techniques, a medical history of Hashimoto’s disease and 

hypothyroidism, as well as a family history of any thyroid-related disease. Furthermore, 

clustering suggests a link between SQSTM1 fusion and a medical history of 

thyroid/parathyroid adenoma, and features such as multifocality and sidedness on 

histology; links were also found between NCOA4 fusion and sex, histological features of 

two-sidedness, multifocality and microcarcinoma character, a medical history of goiter, 

and, interestingly, obstructive pulmonary disease. Interestingly, no correlation was 

observed between the investigated fusion mutation types and the patient’s age, clinical 

staging (as per the 8th edition of the AJCC), or a history of malignancies other than thyroid 

cancer, based on the d-correlation method. (74). 
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Figure 3. PCA of fusion genes and clinicopathological variables using d-correlation for 

mixed scale types. Black dots (variable positions) are labeled and color-coded (bottom 

left corner) to reflect the grouping of different individual variables into larger categories. 

Variables related to gene fusion status are indicated with red rectangles. It is well 

demonstrated that most fusion mutation-related variables tended to cluster with specific 

clinicopathological variables (middle right side). Therapy-related and prognostics-

related variables (middle left side), however, correlated negatively with gene fusions. 

4.1.3 Finding associations between NTRK3 and ETV6 fusions and 

clinicopathological variables with more in-depth analyses 

Although it is true that NTRK3 and ETV6 fusions seemingly did not cluster well with 

clinicopathological variables via d-correlation, we hypothesized that it could be due to 

the more comprehensive rather than detail-oriented nature of this method compared to 

conventional statistics. While d-correlation is highly effective for analyzing large, 

multivariate datasets, employing more traditional statistical methods can be advantageous 

when focusing on a smaller number of variables. To further explore the relationship of 

these two fusion mutations to other variables, additional analyses were conducted using 

conventional statistical approaches. This deeper investigation uncovered further potential 

associations. 
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To assess the associations between fusion mutation status and binary 

clinicopathological variables, a Chi-square test was initially performed to identify 

significant links (p < 0.05). For variables demonstrating significant associations, further 

analysis was conducted using a logistic regression model to evaluate the strength and 

direction of the relationships. Both NTRK3 and ETV6 fusion mutations exhibited a strong 

positive correlation with Hashimoto’s thyroiditis, with an approximately 13-fold and 21-

fold increased likelihood of co-occurrence, respectively, compared to other cases in the 

cohort. Additionally, ETV6 fusion was significantly associated with a history of 

endometriosis, with a more than 15-fold increased likelihood of co-occurrence, as 

illustrated in Figure 4. 

 

Figure 4. This horizontal bar chart displays the impact of carrying ETV6 and/or NTRK3 

gene fusions on having certain comorbidities. The values are derived from a logistic 

regression analysis of the ETV6 and NTRK3 gene fusion partners (independent variables) 

and those binary/nominal-type clinicopathological features (dependent variables) that 

were associated with these fusions in a significant manner (p < 0.05). The length of the 

bars depends on the strength of the associations relative to other variable constellations 

in the cohort. All links represented are above the 0-value threshold on the x-axis, 

indicating that the directions of all the correlations are positive. 

 

Statistical analyses were also conducted for non-binary/nominal variables to 

explore potential associations with the presence of NTRK3 or ETV6 fusions. These non-

binary/nominal variables examined included the histological subtype of PTC, the 

localization of cancer within the thyroid, and the type of thyroidectomy performed. 

Similar to the analysis of binary variables, a Chi-square test was conducted to evaluate 

the significance of associations with non-binary variables. Among the variables 

examined, only the type of thyroidectomy demonstrated significant associations with 
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NTRK3 and ETV6 fusions. The type of PTC surgery was categorized into three groups: 

primary (near-)total thyroidectomy, not-total thyroidectomy (lobectomy, partial 

resection), and secondary total thyroidectomy (completion after a not-total 

thyroidectomy). 

To determine which surgical procedure is the most strongly predicted by the presence 

of the two tested fusions, we applied a multinomial logistic regression model. A baseline 

surgical category (not-total thyroidectomy) was defined, and coefficients were calculated 

to assess how changes in the mutation status influenced the likelihood of other surgical 

procedure categories relative to the baseline (Figure 5). In both NTRK3 and ETV6 fusion-

positive PTC patient groups, total thyroidectomy was the most commonly performed 

surgical procedure. Interestingly, in fusion-positive groups, more patients underwent 

secondary completion surgery than primary total thyroidectomy as an initial procedure. 

NTRK3 and ETV6 gene fusions were associated with an approximately 15–33% increased 

likelihood of requiring a total thyroidectomy at some point during the course of patient 

care, with the need for secondary completion surgery being particularly pronounced. 

These results highlight the potential of preoperative genetic testing, at least for carriers of 

these mutations, to optimize surgical planning in PTC and reduce the need for 

unnecessary repeat surgeries. 

 

Figure 5. Using Chi-square test (p < 0.05), the type of surgical procedure performed was 

found to be significantly different when NTRK3 and/or ETV6 fusions occurred compared 
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to those cases without these fusions. This vertical bar chart of these two significant 

fusions, generated by applying multinomial logistic regression, illustrates the potential 

impact of the NTRK3 (blue column) and the ETV6 (orange column) fusion genes on 

surgical decision-making across three different categories: primary total thyroidectomy, 

not-total thyroidectomy (usually lobectomy), and secondary total thyroidectomy 

(completion of a not-total thyroidectomy). The likelihoods of the indications for total 

thyroidectomies (primary or secondary) are represented relative to not-total 

thyroidectomies (with a baseline value of 0). PTC patients with both NTRK3 and/or ETV6 

fusion mutations underwent total thyroidectomies more frequently than not-total 

thyroidectomies. The number of NTRK3 and/or ETV6 fusion-positive patients who 

needed a secondary completion surgery was greater than the number of those with 

primary total thyroidectomy increasing the risks related to the repeated procedures. 

4.1.4 Search for further links between fusion mutation status and ratio-

scale or ordinal types of clinicopathological variables 

The ratio-scale variables were initially tested for normality. Among these, only one 

variable (age at diagnosis) was found to follow a normal distribution, while the remaining 

ratio-type variables did not exhibit normality. 

Following the normality test, we assessed the homogeneity of variances for fusion-

related variables that occurred at least six times or more within the cohort. Next, 

significant differences in mean age between fusion-positive and fusion-negative patients 

were determined by applying an independent two-sample t-test for most of the fusion-

positive cases and a Welch’s t-test in the case of ETV6 fusion due to potential violation 

of the homogeneity of variances assumption. A marked difference in the mean age was 

observed between NTRK3/ETV6 fusion-positive and fusion-negative cases. These 

patients were much younger when diagnosed with PTC (mean age: 35.4 and 32.0 years, 

respectively) than those without any gene fusions (mean age: 47.8 years), as illustrated in 

Figure 6. In addition, patients’ age with a generally positive status for fusion mutations 

(mean age: 39.0 years) showed a significant difference from the fusion-negative patients’ 

age, suggesting a similar impact on the time of onset of PTC by other, less frequently 

occurring, therefore not individually included, fusion mutations as well. 
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Significant associations could not be detected with ordinal variables (clinical stages 

based on AJCC 8th edition, TNM stages, R stage, and ATA risk score) or with not-

normally distributed ratio-scale variables (tumor size under microscope, cumulative 

radioiodine dose, cumulative external beam radiation therapy dose). 

 

Figure 6. This bar chart illustrates a comparative analysis of the mean age at the diagnosis 

of PTC between patients carrying those gene fusions occurring at least 6 times in the 

cohort compared to the mean age of those patients not carrying any gene fusions. The 

height of the bars along the y-axis represents the mean age of the patients carrying gene 

fusions. The specific genes are indicated under the corresponding columns with the last 

column representing an overall positive status for any studied gene fusions (including 

those mutations with minimal occurrence as well). The red dashed line marks the mean 

age of the fusion-negative patients. All evaluated fusion mutations were associated with 

a younger age at the time of diagnosis than the age of patients without any gene fusions, 

with NTRK3, ETV6, and general fusion-positive status being significant as marked (*) on 

the plot. Data are presented as mean ± standard deviation (SD). 
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4.2. The potential role of miRNAs in the development of PTC and their 

associations with certain clinical scenarios and biological conditions 

4.2.1 Identification of individual miRNAs associated with PTC 

The descriptive analysis of miRNA expression profiles in PTC patients provided a 

detailed landscape of miRNA dysregulation of the disease. Table 4 presents the miRNAs 

with significant expression dysregulation identified through our sequencing data. 
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Table 4. The magnitude and significance of the expression deviations between tumor and 

non-tumor tissue samples corresponding to the “top 30 miRNAs”. The log2 FC indicates 

the average expression level changes in the listed miRNAs. The standard error (SE) 

reflects the variability of the log2 FC estimates. Statistical significance was assessed using 

FDR-corrected p-values, with significance set at p < 0.05. 

miRNA log2 FC SE FDR-Corrected p 

hsa-miR-21-5p 1.227 0.130 3.969 × 10−19 

hsa-miR-21-3p 1.364 0.163 3.926 × 10−15 

hsa-miR-31-3p 1.004 0.164 3.018 × 10−8 

hsa-miR-34a-5p 1.084 0.120 1.999 × 10−17 

hsa-miR-187-3p 1.005 0.176 2.520 × 10−7 

hsa-miR-221-5p 1.560 0.144 4.208 × 10−25 

hsa-miR-221-3p 1.866 0.153 8.969 × 10−32 

hsa-miR-222-5p 1.035 0.353 0.01644 

hsa-miR-222-3p 1.591 0.135 6.766 × 10−30 

hsa-miR-137-3p 1.175 0.175 9.120 × 10−10 

hsa-miR-375-3p 1.823 0.178 1.694 × 10−22 

hsa-miR-376a-5p 1.475 0.381 8.764 × 10−4 

hsa-miR-431-5p 1.189 0.209 2.520 × 10−7 

hsa-miR-511-3p 1.003 0.201 8.883 × 10−6 

hsa-miR-146b-5p 3.345 0.202 1.294 × 10−58 

hsa-miR-146b-3p 3.507 0.245 4.798 × 10−44 

hsa-miR-508-3p 1.017 0.159 5.819 × 10−9 

hsa-miR-510-5p 1.147 0.415 0.0251 

hsa-miR-514a-5p 1.229 0.350 0.0031 

hsa-miR-556-5p 1.333 0.312 1.913 × 10−4 

hsa-miR-551b-5p 2.166 0.589 0.0017 

hsa-miR-551b-3p 5.884 0.797 1.006 × 10−11 

hsa-miR-147b-3p 1.351 0.267 6.713 × 10−6 

hsa-miR-1277-5p 1.064 0.415 0.0405 

hsa-miR-514b-5p 1.245 0.278 9.230 × 10−5 

hsa-miR-4695-3p 1.034 0.389 0.0317 

hsa-miR-9983-3p 1.479 0.253 1.247 × 10−7 

hsa-miR-204-3p −1.175 0.170 2.675 × 10−10 

hsa-miR-206 −2.273 0.488 4.060 × 10−5 

hsa-miR-873-3p −1.316 0.197 9.781 × 10−10 

 

Subsequent analysis following miRNA isolation revealed significant differences 

in the expression of 30 individual miRNAs. Of these, 27 were over-represented in PTC 

compared to healthy thyroid tissue, including miR-551b-3p, miR-146b-3p, miR-9983-3p, 

miR-221-3p, miR-222-3p, and miR-375-3p. Conversely, three miRNAs were found to be 
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under-represented in PTC, namely miR-206, miR-873-3p, and miR-204-3p. As outlined 

above, the results include not only statistical significance but also individual FC values 

for each miRNA. The “top 20 miRNAs” with the highest statistical significance are 

illustrated in Figure 7. miR-551b-3p, miR-146b-3p, miR-146b-5p, miR-221-3p, miR-

375-3p, miR-873-3p, and miR-204-3p are the most noteworthy. Notably, 582 of the 

studied miRNA types were found to have no detectable expression in thyroid tissue. 

 

Figure 7. The bars of this chart present the log2 FC of the top 20 miRNAs (vertical axis) 

selected based on their significantly different expression profiles between cancer and 

control groups. Bars that extend to the right of the zero line (red) show overexpression 

of the particular miRNA in the tumor tissue, while those to the left (blue) indicate 

underexpression. 

 

The volcano plot (Figure 8) provides a clear visualization of the differential miRNA 

expression, with the extent of expression deviation (log2 FC) (horizontal axis) and the 

strength of statistical significance (-log10P) (vertical axis). miRNAs of particular interest 

– those that are both statistically significant and exhibit FC above the defined threshold 

(as detailed in Table 4) – are highlighted as red dots in the volcano plot. These are located 

in the upper left quadrant (indicating underexpression) and the upper right quadrant 

(indicating overexpression) of the figure. 



36 

 

 

Figure 8. This volcano plot illustrates the different expressions of the miRNAs. On the 

horizontal axis, the log2 FC is represented, highlighting the magnitude of expression 

deviations. The vertical axis represents the negative logarithm of the p-value (-log10P), 

reflecting the statistical significance of the expression change related to each miRNA. 

Dots positioned above the horizontal threshold line (blue and red) represent miRNAs that 

meet the significance criterion. Dots located to the right or left of the vertical threshold 

lines (red) indicate miRNAs with not only high levels of statistical significance but also 

substantial overexpression or underexpression, respectively. Dots below the horizontal 

threshold line represent miRNAs with large fold changes that are not statistically 

significant (green) or miRNAs that do not meet any of the defined threshold criteria 

(gray). 

 

Differential expression in relation to the 30 “top miRNAs” clustered together based 

on their strong significance can also be clearly seen in Figure 9 (C and D). Notably, the 

cancerous tissue samples (red group, A) exhibit pronounced overexpression or 
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underexpression of the “top miRNAs” compared to the healthy controls (blue group, A). 

Expression deviations of each “top miRNA” across all samples are represented using Z-

score color codes (B). In the heatmap, red cells indicate miRNA overexpression, while 

blue cells denote underexpression. 

 

Figure 9. In this heatmap, the rows correspond to the “top miRNAs” (n = 30) of the 

miRNA expression study, selected based on their significantly different expression levels 

between tumor (red) and control (blue) groups categorized by histopathological 

characteristics (A). Each column represents one tissue sample (n = 236) subjected to 

molecular analysis. The color intensity within each cell reflects the Z-score derived from 

the normalized number of reads aligned to significant “top miRNAs”, with more red 

shades indicating higher expression and more blue indicating a lower expression pattern 

of the particular miRNA of the row (B). Hierarchical clustering is applied to both “top 

miRNAs” and samples of the two groups, as shown by the black branches, grouping 

similar expression profiles together. The vertical dendrogram (black lines on the vertical 

axis) illustrates the hierarchical clustering of “top miRNAs”, categorizing them based on 

the similarity in their expression patterns across all samples, while the horizontal 
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dendrogram (black branches on the horizontal axis) represents the hierarchical clustering 

of samples, highlighting that the samples with similar miRNA expression profiles tend to 

fall into the same (either control or tumor) group (C, D). 

 

A comparative analysis of miRNA expression between the conventional and follicular 

subtypes within the PTC tumor cohort revealed no significant differences in the 

expression of the “top miRNAs”. Further analysis of other subtypes was not conducted 

due to their low frequency in the study population. 

4.2.2 Evidence for a general difference in miRNA expression patterns 

between tumor-containing and tumor-free thyroid tissue samples 

Through PCA analysis of miRNA expression profiles, we identified distinct patterns 

that clearly differentiate between control and tumor samples. The PCA plot (Figure 10) 

(A) includes all evaluated miRNAs and demonstrates that the first two principal 

components (PC1 and PC2) account for a substantial portion of the variance within the 

dataset (44.27% and 17.78%, respectively). The scatterplot of control samples (red) and 

tumor samples (blue) along the axes reveals a discernible, though partially overlapping, 

distribution, suggesting a subtle relationship between miRNA expression patterns and 

tumor status. However, when the analysis is refined to focus exclusively on miRNAs with 

significant expression differences, PCA reveals a much clearer distinction between the 

control and tumor groups, as demonstrated by the plot (Figure 10) (B). In this refined 

analysis, PC1 alone captures a remarkable 86.07% of the variance, highlighting its strong 

explanatory power in distinguishing between the control and tumor groups. Here, the 

separation between the red and blue dots is much more pronounced, indicating that the 

miRNAs identified as significant could serve as robust biomarkers for PTC. PCA proves 

to be a valuable tool for visualizing the extensive dataset, effectively presenting the 

distinct miRNA expression landscapes between PTC and healthy thyroid tissue in a clear 

and transparent manner. 
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Figure 10. Comparative PCA of miRNA expressions in tumor and control samples. In 

plot (A), a PCA of all miRNA expressions tested is shown, with the horizontal axis 

representing principal component 1 (PC1), which accounts for 44.27% of the variance, 

and the vertical axis representing principal component 2 (PC2), accounting for 17.78% 

of the variance. Variables of the control group are marked in red and the tumor group in 

blue, indicating moderate separation along PC1, suggesting differential expression 

patterns between the two states. Plot (B) however displays a PCA focused exclusively on 

miRNA expressions found to be significant previously, with PC1 explaining a dominant 

86.07% of the variance and PC2 accounting for 12.14%. Here, the separation between the 

two groups is more pronounced along PC1, indicating an explicit distinction in the 

expression profiles. The juxtaposition of these two plots highlights that specific miRNAs 

(marked as significant) contribute mostly to the molecular variance between the tumor 

and non-tumor conditions. The comparison illustrates the utility of focusing on significant 

miRNAs for a more targeted understanding of the molecular background of PTC. 

4.2.3 Determination of associations between miRNA expressions and states 

of pre-selected clinicopathological variables 

In our extensive analysis of miRNA expression data, we identified a total of 352 

significant (p < 0.05) miRNA expression differences between different states of the 

examined clinicopathological variables – such as age, sex, ATA risk score, as well as 

TNM and AJCC (8th edition) stages – of the study cohort. We investigated the miRNA 

expression deviations and their connections to clinicopathological variables in the cases 

of both tumor and adjacent healthy control tissues. 
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Notably, 36 of the miRNA expression deviations pertained to tumor samples, 

while the majority, 316, were related to control samples. Our analysis also revealed a 

quite balanced distribution in the context of the direction of miRNA expressions, with 

165 links being caused by miRNA overexpression and 187 by underexpression. 

Furthermore, 31 of these “miRNA expression–state of variable” associations were highly 

intense, exhibiting extreme log2 FC values either above 10 or below -10, as labeled 

explicitly in Figure 11. Among these stronger associations, it is worth highlighting those 

miRNAs with the most prominent links to ATA risk: miR-6880-5p (direct, in tumor), 

miR-6753-5p (inverse, in tumor), miR-3648 (inverse, in control), and miR-6862-3p 

(inverse, in control); and those showing link to TNM score: miR-6753-5p (inverse, in 

tumor), miR-6805-5 (inverse, in control), miR-519c-3 (inverse, in control), and miR-

6862-3p (inverse, in control). Note that downregulation of miR-6862-3p in healthy 

thyroid tissue adjacent to PTC is associated with greater ATA risk score, TNM score, and 

clinical stage as well. 
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Figure 11. Triple circle network graph illustrating the most relevant miRNA expression 

differences between certain states of the examined clinicopathological variables such as 

age, sex, ATA risk, and stages (TNM and AJCC 8th edition) (middle circle, black nodes). 

Differentially expressed miRNAs within the control samples are represented as blue 

nodes (outermost circle), whereas they are indicated as red nodes in the context of tumor 

samples (innermost circle). All red and blue nodes represent a significant change (p < 

0.05) in miRNA expression in relation to at least one clinicopathological variable. The 

significant associations are indicated by lines, with blue indicating negative changes and 

red indicating positive changes in miRNA expressions. The color gradient of the lines 

from blue to red represents the log2 FC of miRNA expressions, with darker shades 

representing greater expression differences and thus stronger links. To provide a clear and 

uncluttered visual representation of the network structure, the graph is devoid of any node 

labels related to associations with log2 FC values between 10 and −10. 

4.2.4 A look for molecular similarities between other mapped miRNA 

expression patterns and PTC's own 

The KEGG pathway (75,76) and Gene Ontology (77–79) analyses revealed a set of 

molecular and biological processes heavily enriched in conjunction with the significant 

miRNAs. The results suggest an underlying complex network of miRNA-mediated 

regulations that extends beyond the PTC pathogenesis. The enrichment of certain 

pathways, such as those related to cancer signaling, underscores the potential roles the 

investigated miRNAs may play in the development of PTC and probably thyroid cancer 

in general. It also highlights the functional consequences of miRNA dysregulation 

(Figure 12). 

In addition, overlaps with pathways implicated in other diseases provide insights into 

a likely shared molecular origin of the pathogenesis and could be the basis of future 

research. 
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Figure 12. KEGG and Gene Ontology (GO) enrichment analyses (ORA – over-

representation analysis) based on statistically significant (p ≤ 0.05) miRNAs of this study. 

Associations were found between the miRNA expression patterns in PTC marked as 
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significant and the molecular patterns of pathways (A) listed in the KEGG database as 

well as biological processes (B), cellular components (C), and molecular functions (D) 

listed in the GO database. Based on the strength of significance, the plot visualizes the 

“top 20 molecular patterns” of the KEGG and GO databases showing potential 

correlations with PTC. Each bar represents a pathway, a biological process, a cellular 

component, or a molecular function of these databases (vertical axes), with the length of 

the bar reflecting the significance level of the possible association with PTC as indicated 

by the -log10 of the adjusted p-value (padj) (horizontal axes). The color gradient conveys 

the padj, transitioning from yellow (less significant) to dark purple (more significant). 

The data suggest that these molecular patterns (A–D) may be influenced by the same 

miRNAs as the development and/or progression of PTC. 

4.3. An outlook toward merely the clinicopathological links of the PTC cohort 

regardless of genetic alterations 

Variables followed our clinical expectations in general: smaller PTCs underwent 

relapse fewer times than bigger ones, PTCs with more advanced histological features 

relapsed more frequently than their counterparts, etc. Interestingly, though, molecular 

therapies were usually indicated in a more advanced disease state of being after a relapse, 

showing thyroid capsule-, extrathyroidal-, and/or lymphovascular invasion, or with the 

need for external beam radiation therapy (EBRT) as represented in Figure 13. This 

observation greatly contrasts the fact that fusion mutations, which are frequent targets of 

these therapies, showed rather negative correlations with the same clinicopathological 

variables via the d-correlation method. This finding suggests that these patients might 

benefit from earlier molecular diagnostics – even in less advanced stages of the disease – 

during their medical management and, if feasible, the earlier initiation of molecular target 

therapies. 
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Figure 13. Heatmap listing significant associations between binary-type 

clinicopathological variables (x-axis and y-axis) of the PTC study cohort. The color scale 

illustrates the direction of the correlations ranging from strongly positive correlations 

(red) to strongly negative correlations (blue). Empty (white) cells mark no significant 

associations. Significant associations mostly tend to occur as clinically expected (e.g., 

strong positive correlation between lymphovascular invasion and lymph node dissection 

surgery). Medical indication of molecular therapies explicitly correlated with variables, 

such as relapse, thyroid capsule invasion, extrathyroidal extension, (lympho)vascular 

extension, or need for EBRT, usually related to a more advanced state of illness. 
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5. Discussion 

Despite being a well-researched topic, the exact pathogenesis of PTC remains 

unknown, with most of the current, mutation-based models providing only a partial 

understanding of the disease (80). Our results not only enhance our understanding of 

PTC’s molecular foundations but also illuminate the possibilities of gene fusions and 

miRNAs as novel therapeutic targets and biomarkers. 

5.1. Underscoring the presence of relevant fusion mutations in a comprehensive 

Hungarian PTC cohort 

In our comprehensive studies on PTC cohorts, we found that 27% of the PTC 

patients carried a fusion mutation within their tumor tissue. The frequent occurrence of 

fusion mutations highlights the relevance of screening for them more often in everyday 

clinical practice. This is amplified by the fact that the fusion proteins originating from the 

majority of the detected driver mutations, namely those of RET, NTRK3, CCDC6 (when 

co-occurs with RET), and MET, can be effectively targeted with small tyrosine kinase 

inhibitors (TKIs) in thyroid cancer (24–26). 

In the TCGA study, fusion mutations occurred in 15.3% of the cases. (19). Another 

study from 2017 detected fusion mutations in only 7.97% of the PTC cases (23). 

However, a recent study discovered fusion mutations in 29.86% of advanced DTC cases, 

which is quite similar to our results (21). Plus, the finding that RET-related fusion 

mutations are the most common in our fusion mutation study is consistent with the recent 

literature data (22). 

5.2. Confirming and better understanding the role of individual miRNAs in PTC 

development 

The role of miRNAs in the development of PTC is rather complex, but associations 

with many signaling molecules such as tumor protein p53 (TP53) (30), cyclin-dependent 

kinase inhibitor 1B (CDKN1B) (30) insulin-like growth factor binding protein 5 

(IGFBP5) (81), transforming growth factor beta (TGF-β) (82), zinc and ring finger 3 

(ZNRF3) (62), the RB1 gene (29), as well as serum thyroglobulin (Tg) (36) levels are 

assumed. So, it is not surprising that insights into non-conventional tumor formation 

caused by miRNA regulatory mechanisms on gene expression are necessary to be 

deepened for the improvement of cancer diagnostics and therapeutics (83,84). Therefore, 
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we also identified 30 miRNAs that showed significant up- or downregulation in PTC 

compared to healthy thyroid tissue. This was demonstrated via PCA which showed a clear 

separation of cancer versus healthy tissues based on their miRNA expression patterns. 

This not only reinforces the validity of the recognized “top miRNAs” as promising 

biomarkers but also suggests their utility in distinguishing between different stages or 

subtypes of PTC. The overlaps in PCA plots indicate a complex interplay of miRNAs, 

which may reflect the heterogeneity of the disease as well as the relevance of a pattern-

based approach during the analysis instead of the evaluation of individual miRNA 

quantities. 

In the widely known and robust TCGA study, 484 individual PTC cases were 

involved. However, even the TCGA study lacks clinicopathological aspects in contrast to 

our investigations. Moreover, for miRNA analysis, it applied only around half as many 

matched controls and examined miRNA types as we did.  

Note that our miRNA expression study is the first to describe the association of PTC 

with the overexpression of miR-9983-3p, miR-4695-3p, miR-1277-5p, miR147b-3p, 

miR-511-3p, and miR-137-3p, although most of them have been previously mentioned in 

the context of other malignant diseases (85,86). In the case of miR-9983-3p and miR-

147b-3p, however, there is very little historical evidence regarding their roles in any 

cancer. Interestingly, miR-551b-3p was overexpressed almost 60-fold in our cancer 

samples compared to adjacent healthy thyroid tissue, suggesting its prominent oncogenic 

role in PTC, unlike in other cancer types discussed in previous research. Indeed, previous 

papers have reported on the irregular expression of miR-551b-3p in PTC (87,88). It is 

noteworthy, however, that miR-551b-3p has been formerly recognized rather as a tumor 

suppressor in malignancies, such as gallbladder or gastric cancers (89,90). It is also worth 

mentioning that in these studies (87–90), the number of patients involved was much lower 

(n = 42–60) than in our own investigation. Based on these studies, miR-551b-3p was 

found to be underexpressed in these malignancies in contrast to our own results in PTC. 

This observation underscores the dynamic nature of miRNA function, wherein certain 

miRNAs may manifest either oncogenic or tumor-suppressive properties depending on 

the specific malignancy under consideration. In agreement with previous data, we also 

confirmed the overexpression of miR-21, miR-221, miR-222, and miR-146b, among 

others (58,91). Dysregulation of these miRNAs, recognized as among the most 
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established ones in thyroid cancer, continues to be implicated in the molecular landscape 

of PTC (59). miR-146b has been previously associated with epithelial–mesenchymal 

transformation and the rather invasive features of PTC (62).  

In addition, not yet published associations between the miRNA pattern of PTC and 

other physiological events, biological processes, and diseases were revealed as well. For 

this, and to put our results into a broader context, we conducted an extensive enrichment 

analysis of miRNA expression profiles in PTC using both the KEGG pathway and GO 

term annotations. Our findings reveal a significant correlation between the dysregulated 

miRNAs and various biological pathways and processes that may contribute to the 

development of PTC and/or to the coincidence of comorbidities with similar molecular 

backgrounds. In this regard, among other diseases and gene functions, we were able to 

demonstrate remarkable similarities between the miRNA pattern of PTC and that of 

prostate cancer, HTLV-infection, HIF-1 signaling, negative regulation of gene 

expression, as well as cellular responses to growth factor stimulus, and to organic 

substances. Furthermore, based on our data comparison with GO cellular component 

database, miRNA dysregulation in PTC seems to be mostly influenced by the molecular 

changes of the protein-containing complexes and the cytosol, as well as enzyme binding 

and transcription factor binding mechanisms. 

5.3. Emphasizing the promising aspects of the molecular diagnostics if integrated 

more explicitly into the everyday clinical practice 

Although the initial detection of the disease as well as its treatment options are already 

quite advanced with low rates of recurrence and complications, further improvement in 

the follow-up of the patients could still be achieved (92). For example, the currently used 

circulating biomarkers in DTC diagnostics and surveillance like Tg levels have 

limitations, especially in the presence of Tg antibodies (TgAb), which can heavily 

compromise the accuracy of Tg measurements (93). This is why novel circulating 

biomarkers for diagnostics and surveillance are keenly researched (36,37), with thyroid 

stimulating hormone receptor (TSHR) mRNA, Tg mRNA, and certain miRNAs as 

candidates (93). mRNAs are inherently unstable molecules, and the sensitivity of 

circulating mRNAs is dependent on the timing of blood sampling; in addition, the 

specificity of Tg mRNA can easily be influenced by non-thyroid origins of the molecule 
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and/or technical difficulties of the measurement (93). This is not a problem for miRNAs 

however. In this sense, the inclusion of specific miRNA expressions in the risk assessment 

might be worth considering. Mainly because, in clinical practice, disease management is 

heavily dependent on risk assessments such as the ATA risk stratification system. Its 

latest version already takes the BRAFV600E mutation into account to estimate the chance 

of disease recurrence (7). However, it lacks the inclusion of other genetic alterations and 

miRNA expression deviations, both of which could largely alter the long-term outcome 

of each clinical setting. For example, our studies highlight that gene fusions correlate 

rather negatively with the ATA risk score and most of the classical metrics used to 

calculate it. Moreover, oncogenic cellular pathways related to gene mutations can be 

effectively targeted by TKIs. In fact, having a targetable mutation is clearly accompanied 

by the advantage that additional therapeutic options are available for the particular patient. 

Also, some miRNAs such as miR-146b, miR-203a, miR-204, miR-221, or miR-222 are 

already suggested to be potential prognostic indicators (36,61,94,95), although available 

data in this regard are still controversial (96). Interestingly, the latest studies on miRNAs 

suggest that underlying correlations with BRAF mutations themselves are possible as well 

(58,62). Given their potential, part of our research aimed to detect and analyze the 

expression levels of a wide range of miRNA types in PTC, both in tumor tissues as well 

as in their adjacent healthy-tissue counterparts from the same patient’s thyroid. We 

established two subcohorts of identical size (tumor and control) and performed the same 

molecular analysis on each of them. With this approach, we were able to identify PTC-

specific miRNAs expressed in significantly higher or lower amounts than in the control 

samples. This is consistent with previous findings in which miRNAs acted as promising 

diagnostic biomarkers distinguishing thyroid cancer from benign thyroid disease or 

healthy controls (36,37,61,63,97). By comparing the molecular dynamics within the same 

thyroid source tissue, we also had the opportunity to eliminate most of the biases related 

to patient selection and sample processing. 

5.4. Finding those clinicopathological constellations in which molecular 

alterations are more frequent or relevant 

As a crucial part of our studies, we analyzed molecular data (both miRNA expression 

and fusion mutation-related) in the context of everyday clinicopathological variables. 

Unlike in the fusion mutation study, in the case of the miRNA expression study, we 
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performed an analysis with the involvement of fewer clinicopathological variables; and 

evaluated associations between clinicopathological states of variables and the expression 

levels of the studied miRNAs. It is important to note that in the miRNA expression study, 

we were able to check the molecular profile and the relations to the clinicopathological 

variables of not only the PTC cancer tissues themselves but the adjacent, pathologically 

intact tissues as well. On the other hand, in the fusion mutation study, we only analyzed 

cancerous tissue, however, we more heavily focused on a broader understanding of the 

clinicopathological associations in certain molecular settings, requiring the involvement 

of more types of clinicopathological data. 

We identified 352 significant “miRNA expression–state of variable” links, of which 

31 were highly suggestive of being caused by underlying correlations between certain 

miRNA expression patterns and the presence of the different clinicopathological states 

such as those related to ATA risk (miR-6880-5p, miR-6753-5p, miR-3648, and miR-

6862-3p), TNM score (miR-6753-5p, miR-6805-5, miR-519c-3, and miR-6862-3p), and 

clinical stage (miR-6862-3p). It is striking that miR-6862-3 underexpression in the 

healthy adjacent thyroid tissue was pronounced related to all these three above-mentioned 

variables. This underscores the notion that some miRNAs might have a role in the 

development of PTC, its clinical behavior, and the prognosis of the disease through direct 

or indirect effects (e.g., expression dysregulation facilitated by age or sex). 

The association between clinicopathological features and fusion mutations has been 

previously studied in PTC. For instance, a meta-analysis showed that NTRK3-fused PTC 

cases had an increase in disease aggressiveness and a shorter PFS when compared to 

NTRK1-fused PTC cases (98). The possible associations between fusion mutations and 

RAI refractoriness have also been studied previously (21,99). Another study also reported 

that RET-rearranged tumors are more likely to have an advanced disease state compared 

to BRAF-mutant and RAS-mutant PTC cases (100). In our fusion mutation study, the most 

optimal way to illustrate the relation between a large number of measures and the gene 

fusion-related variables seemed to be the application of a PCA. However, as the study 

involved multiple variable types, comparing them simultaneously was a relatively 

complex task and required a special approach. Therefore, we decided to use a novel 

statistical framework, named d-correlation, which calculates the matrix correlation based 

on semi-matrices derived for all pairs of observations (73). d-correlations showed us that 
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the observed gene fusions mainly cluster with each other but also with some other 

clinicopathological variables. PTC patients with comorbidities like endometriosis or 

Hashimoto’s thyroiditis or those with a family history of any thyroid disease have a 

greater chance of a positive fusion mutation status in general. Thyroid disease in the 

patient’s family, Hashimoto’s disease, and hypothyroidism, as well as the type of 

thyroidectomy, the need for indicating RAI, and smaller tumor size clustered quite well 

with gene fusions related to RET, CCDC6, MET, EML4, and ALK. Moreover, the patient’s 

sex, comorbidities such as goiter and obstructive pulmonary disease, or histological 

features like microcarcinoma, two-sidedness, and multifocality tended to cluster with the 

NCOA4 fusion gene. SQSTM1 fusion also clustered well with multifocality and with a 

medical history of thyroid/parathyroid adenoma. Oddly, d-correlation did not reveal any 

marked associations with clinicopathological variables in the context of NTRK3 and 

ETV6 fusions, which mutations, on the other hand, clustered very well together. This is 

consistent with the observation that NTRK3-ETV6 fusion pairs were particularly frequent 

in the cohort. Due to this discrepancy, we would have liked to investigate the correlation 

pattern of these two fusion genes separately, as well as apply more detailed, conventional 

statistical methods this time. As a result of these methods, we identified some additional 

associations both in the case of NTRK3 and ETV6. PTC patients with a history of 

Hashimoto’s disease showed a positive correlation of having NTRK3 and/or ETV6 fusion 

mutations as well. Additionally, ETV6 positively correlated with the medical history of 

endometriosis. Moreover, total thyroidectomy was significantly more often indicated than 

not-total thyroidectomy in groups carrying NTRK3 and/or ETV6 fusions. Plus, compared 

to the number of primary total thyroidectomies, significantly more patients needed a 

secondary completion of an initially subtotal thyroidectomy with these mutation statuses. 

This means that NTRK3 and ETV6 fusions might be causally related to the extent of the 

tumor mass, and a primary total thyroidectomy might be more beneficial over a subtotal 

one for those patients having either NTRK3 or ETV6 fusion mutation within their PTC 

tissue. This approach could help prevent secondary surgeries and complications related 

to them. We also found that the patients’ age at the time of diagnosis was much younger 

in fusion-positive PTC cases relative to those without any fusions. This observation was 

proven to be significant in the context of NTRK3 and ETV6 fusions and fusion mutation 

positivity in general, suggesting the importance of molecular diagnostics in younger-than-
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average PTC patients. This finding, suggesting that fusion mutation frequency is age-

dependent in PTC, is concordant with previous results in the literature (21,101). 

Additionally, fusion mutations are more commonly found in pediatric patients; moreover, 

these mutations are associated with a younger age in adults, as well as in pediatric PTC 

patients (21,101). It is important to note that the average age in our whole cohort was 

consistent with the literature data (102).  

As a side analysis on the fusion mutation cohort, we also evaluated the relation of 

clinicopathological variables relative to each other without taking fusion mutations 

themselves into account. In this respect, we analyzed 35 different clinicopathological 

variables commonly documented when managing PTC patients (7,74). Most of the 

associations discovered were unsurprising from a clinical point of view. However, the 

indication of molecular therapies showed a positive correlation with variables generally 

linked to a more advanced cancer, like the need for EBRT as well as the tendency of 

relapse, invasion of the thyroid capsule, the extrathyroidal space, or the surrounding small 

vessels. Despite this, advanced disease-related variables correlated rather negatively with 

the presence of targetable fusion mutations in our study via the d-correlation method. 

Contrary to the literature, this indicates that molecular therapies might have a role in 

earlier stages of the disease, and reserving them only for advanced scenarios might not 

benefit the patients overall since the molecular targets of most of these treatments prefer 

to occur in seemingly more peaceful PTCs (15).  
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6. Conclusions 

Using Hungarian PTC cohorts, our studies provide valuable insights into the 

prevalence and distribution of fusion mutations as well as the differences in miRNA 

expression profiles related to the disease. Fusion mutations were identified in 27% of the 

cases, and our results provided strong evidence that the miRNA expressions differ in 

PTC-containing and non-tumorous areas of the thyroid gland by a significant margin. The 

most commonly affected driver genes were RET and NTRK3, however, only nine distinct 

types of fusion genes could have been detected. This emphasizes the relatively narrow 

mutation spectrum of PTC concerning fusion mutations. Note that our miRNA-related 

results originated from the largest dataset of this kind, including original molecular data, 

matched controls, and the most comprehensive set of analyzed miRNAs. 

Our results suggest that the identified genetic alterations might play a significant 

role in the pathogenesis of the disease and contribute to the development of different 

clinicopathological states, underscoring the value of integrating genetic profiling into 

routine thyroid cancer diagnostics. Our investigations also highlighted fundamental 

similarities between the molecular patterns of other biological processes and that of PTC. 

Interestingly, links between the expression levels of some miRNAs and values related to 

disease advancement (ATA risk, TNM, and clinical stage) can be found not only when 

analyzing PTC tissue itself but for the histopathologically healthy adjacent tissue as well.  

The mapped associations generated by the applied statistical methods 

(conventional statistics and PCA powered by the d-correlation) revealed potential causal 

links of molecular alterations with clinicopathological characteristics (73). For instance, 

RET and CCDC6 fusions clustered with variables such as type of thyroidectomy, the need 

for RAI therapy, smaller tumor size, Hashimoto’s disease, and hypothyroidism. MET, 

EML4, and ALK fusions also clustered with similar variables, along with the family 

history of thyroid diseases in general. NCOA4 and SQSTM1, however, showed a quite 

different association pattern. NCOA4 fusion was associated with patients’ sex, 

multifocality, microcarcinoma character, medical history of goiter, and obstructive 

pulmonary disease, while SQSTM1 fusion was linked with multifocality and medical 

history of thyroid or parathyroid adenoma. Further, the more conventional statistical 

analyses identified significant associations of NTRK3 and ETV6 fusions with 

Hashimoto’s disease, plus in the case of ETV6, with endometriosis. Both NTRK3 and 
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ETV6 fusions were more commonly associated with the need for total thyroidectomy or 

secondary completion surgeries, suggesting a causal relationship with the indication 

algorithms of the different surgery types and highlighting the potential benefits of 

preoperative genetic testing of this kind. Moreover, patients with fusion mutations were 

diagnosed at a significantly younger age, particularly those with ETV6 fusions. This 

underlines the importance of early molecular diagnostics in younger-than-average PTC 

patients to fine-tune treatment decisions. Interestingly, analysis of clinicopathological–

clinicopathological variable pairs raised the possibility that initiating molecular target 

therapies might be advantageous even in clinically less advanced stages, contrary to the 

actual clinical practice (15). 

Most of the time, miRNAs labeled as significant were rather overexpressed in 

PTC cancer tissue; however, some of them showed a significantly reduced expression in 

PTC. Strangely, 582 miRNAs showed no expression in either tumor or control samples; 

however, these miRNAs could still turn out to be clinically significant in future studies 

of other types of thyroid cancer such as follicular, medullary, anaplastic, or even non-

invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). As 

shown in the cases of miR-221 and miR-222, miRNAs have an effect on the thyroid 

stroma not only when cancer develops but also in other diseases with more benign 

behavior, such as multinodular goiter (63). In previous studies, miR-222-3p expression 

in thyroid cancer was also associated with immune microenvironment regulation (103). 

The evidence of an underlying interplay of certain miRNAs with the tumor environment 

and immune cells is emerging, however, comprehensive, in-depth studies regarding the 

miRNA-immune axis in thyroid cancer are still needed. For instance, PD-L1, a predictive 

biomarker related to immune response and cancer immunotherapy, has recently been 

reported to be associated with PTC (104).  

Beyond the traditional options, future treatments for PTC are likely to focus on 

personalized medicine based on the molecular profile of the tumor. This includes 

expanding the use of targeted therapies tailored to specific genetic mutations found in 

PTC or even exploiting the molecular pathways related to miRNAs. Additionally, further 

combining molecular therapies with standard treatments, such as RAI, may help 

overcome RAI resistance more frequently, potentially improving treatment efficacy and 

patient outcomes. Apart from therapy, our studies contribute to advanced diagnostics by 
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helping to understand the underlying connections between the genetic landscape of PTC 

involving clinicopathological metrics of everyday clinical practice as an extra layer of 

complexity. Based on our results, a more widespread use of molecular testing (for both 

gene fusions and miRNA expression discrepancies) could enhance diagnostic precision 

and optimize treatment plans for PTC. In addition, our data can serve as a foundation for 

further, clinically highly relevant research in the field. For example, it would be worth 

investigating the potential of all the PTC-related miRNAs of our study as possible liquid 

biopsy biomarkers resulting from the serum as it is already successfully presented with a 

few miRNAs in PTC as well as with other markers in other malignancies (38,105,106). 

This could help improve PTC diagnostics as a routine laboratory test and could also 

provide a joint molecular diagnostic methodology for parallel research on different cancer 

types. 

To the best of our knowledge, no study in the literature has analyzed the associations 

between clinicopathological variables and fusion mutations or miRNA expressions in 

PTC in such a comprehensive manner. It should be noted, however, that our studies have 

limitations. First and foremost, we utilized tissue samples retrospectively from existing 

histological archives. Hotspot mutations and CNVs were not involved in this study. 

Additionally, individual cellular pathways related to the detected fusion mutations were 

not investigated due to the limited amount of samples in the tissue archives suitable for 

sufficient quality molecular processing. Plus, individual miRNA functions and their exact 

roles in molecular pathways were not investigated; we only compared expression 

deviations of each miRNA between cancerous and healthy thyroid tissues. Also, we did 

not consider miRNA relations to mutational data such as BRAFV600E. We corrected our 

miRNA-related results for a limited amount of clinicopathological data, such as age, sex, 

ATA risk score, and stage, compared to our gene fusion-related dataset for which we 

analyzed many more additional variables as well. Besides, our studies focused on 

individual miRNA expression variations and did not investigate inter-miRNA 

interactions or the combined effects of the miRNAs on PTC development. In fact, we 

recognize that our study lacks functional validation experiments (in vivo and/or in vitro) 

which would be crucial for gaining a deeper understanding of the relation between PTC 

pathogenesis and the identified differentially expressed miRNAs. 
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In addition, our results would be more reliable if repeated measurements had been 

taken on the samples. Moreover, a replacement of FFPE tissue samples with fresh tissues 

could have improved the quality of sequencing. An even larger sample size could have 

contributed to validating the suspected but not significantly confirmable associations 

emerging during our studies. Furthermore, the statistical power to detect genetic 

alterations across less common PTC subtypes – such as oncocytic, columnar cell variant, 

etc. – was limited and could have also been improved with a larger cohort. However, this 

was mainly due to the relatively high prevalence of the conventional subtype and a 

relatively low occurrence of other histological variants, which is consistent with other 

population-level observations (107,108). In addition, we focused on a limited number of 

gene fusions, potentially missing the broader landscape of genetic alterations. Lastly, 

patient selection biases might have affected our results as all of our patients were 

Caucasians living in Eastern–Central Europe. Lastly, a later extension of our investigation 

to multiple centers would definitely help verify our conclusions by avoiding potential 

patient selection biases from the same geographical region. 
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7. Summary 

PTC, the most common subtype of thyroid cancer, exhibits unique molecular and 

genetic alterations that are crucial to its pathogenesis and prognosis. Despite its generally 

favorable outcomes due to effective treatments such as thyroidectomy and RAI therapy, 

PTC often necessitates second-line therapies in cases where complete eradication of the 

tumor is challenging. Molecular profiling, particularly the identification of miRNA 

dysregulations and gene fusion mutations, has emerged as a promising possibility for 

refining diagnostic, prognostic, and therapeutic approaches to the disease. 

In our studies, we employed advanced molecular diagnostics, mainly NGS, to 

comprehensively investigate miRNA expression patterns and fusion mutations and their 

relation to other clinically measurable variables in PTC. Through the analysis of 118 

thyroid tissue sample pairs originating from PTC patients, we identified 30 significantly 

dysregulated miRNAs, including upregulated miRNAs such as miR-551b, miR-146b, 

miR-221, miR-222, and miR-375, as well as downregulated ones like miR-873 and miR-

204. Pathway enrichment analyses revealed links between these miRNA deviations and 

critical biological processes, such as cellular responses to growth factor stimuli and HIF-

1 signaling. Furthermore, our research uncovered 352 associations between certain 

miRNAs and clinicopathological variables, emphasizing their potential as biomarkers for 

PTC diagnosis, prognosis, and even therapeutic targeting. 

In parallel, we analyzed fusion mutations in 100 different PTC samples applying NGS 

again. Fusion mutations were detected in 27% of cases, involving nine gene types, such 

as RET, and NTRK3. Notable associations were identified between certain fusions and 

clinicopathological factors. For instance, certain fusions were linked to the patients’ age, 

the size of the tumor, the type of thyroid surgery, or other elements in the medical history. 

Our findings provide a deeper understanding of the molecular mechanisms driving 

PTC, offer potential biomarkers in diagnostics and prognostics, and highlight the value 

of integrating molecular profiling into routine PTC management. Our data could benefit 

surgical planning and other therapeutic strategies. These results support the need for the 

earlier molecular profiling of PTC patients. Together, these approaches have the potential 

to contribute to personalized medicine and improve clinical outcomes overall. 
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