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1. Introduction  

1.1. Lung cancer epidemiology 

Lung cancer remains one of the most prominent malignancies worldwide and is 

considered the leading cause of cancer-related mortality. In Hungary, it is the most 

frequently diagnosed cancer among men and the third most common among women, 

accounting for up to 25% of all cancer cases. Annually, an estimated 7-8000 new cases 

are diagnosed, and unfortunately, 80% of these are already at an inoperable stage at the 

time of detection, thereby ruling out surgery as an option, instead necessitating systemic 

oncological treatment (1). The average age of individuals at the onset typically ranges 

between 50 and 70 years (2).  

Primary lung cancer prevention strategies emphasize the reduction or elimination of the 

risk factors. The most widely recognized predisposing factors include a family history of 

lung cancer; tobacco consumption in any form, including cigars, pipes, cigarettes, and 

secondhand smoke; exposure to other hazardous chemical substances, like radon, 

uranium, arsenic, asbestos, etc.; prior radiation therapy to the chest wall; outdoor air 

pollution, particularly from diesel exhaust; certain dietary factors, such as excessive beta-

carotene, which paired with tobacco use can increase the risk of lung cancer  (3). 

The focus of secondary prevention of lung cancer is on detecting the disease in its early 

stages when treatment is more effective and slowing down the progression of the already 

existing disease. This approach is particularly important for screening individuals 

considered high-risk, such as long-term smokers or those with exposure to harmful 

substances. One of the key components of secondary prevention is the recognition of early 

symptoms, including persistent cough, especially with changes in its character, 

hemoptysis, chest pain, difficulty breathing, and general symptoms like unexplained 

weight loss, weakness, and fatigue. On the other hand, regular monitoring of risk factors 

is also equally important.  An essential part of routine surveillance is the implementation 

of rapid diagnostic procedures when suspicious symptoms or screening results arise. 

Currently, the most effective screening method for the early detection of lung cancer is 

considered to be low-dose CT (LDCT), which can detect early-stage, asymptomatic 

lesions larger than 3 mm (4).  It is recommended for individuals over the age of 50 who 
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have a smoking history: ≥15 cigarettes/ day for 25 years or ≥10 for over 30 years, former 

smokers who quit less than 10 years ago, or have other significant risk factors (5, 6).  

For the success of secondary prevention, it is crucial to ensure proper public and patient 

education, where the at-risk populations are informed about the possibility of lung cancer 

screening and the importance of early detection (7, 8). 

 

1.2. Lung adenocarcinoma (LADC) 

Lung cancer can be classified into two main groups: non-small cell lung cancer (NSCLC), 

which accounts for nearly 85% of the cases, and small cell lung cancer (SCLC), which 

comprises the remaining 15%. LADC is the most prevalent type, as it constitutes nearly 

half of all NSCLC diagnoses. LADC can be further divided into invasive non-mucinous 

or invasive mucinous tumors. Based on the morphological phenotypes, we recognize five 

different subgroups, namely: solid, lepidic, acinar, papillary, and micropapillary (9). 

Notably, the solid and micropapillary subtypes are associated with a higher chance of 

developing early metastasis and are known to have poorer survival outcomes, whereas 

lepidic predominant adenocarcinomas generally correlate to a more favorable prognosis  

(10).  

To develop a treatment plan for lung cancer, several factors must be considered, including 

the location of the primary tumor, its histological type, and the extent of the cancer 

(including the way of the tumor’s spread), the presence of regional and distant metastases, 

and the overall health and surgical eligibility of the patient (11). The implemented therapy 

is determined by a multidisciplinary team, with consideration of the histological profile.  

Before initiating treatment, molecular testing should be completed to identify alterations 

in the key biomarkers, for example, EGFR, ALK, KRAS, ROS1, BRAF, NTRK1/2/3, 

METex14 skipping, RET, and ERBB2 (HER2). The current clinical guidelines provide 

specific recommendations for appropriate treatment if a clinically actionable biomarker 

is identified (12). 

 A proper approach can be formulated based on the TNM classification (13). In cases 

deemed operable, surgical resection remains the primary method of treatment and 

typically involves an anatomical resection of the tumor and lymph node mapping 
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according to protocol (14, 15). The subsequent oncological treatment depends on both the 

genetic profile of the tumor and the disease stage. Platinum-based chemotherapy (CHT), 

possibly combined with targeted therapies and immunotherapy, offers promising results 

and improved clinical outcomes (16, 17).  

Kirsten rat sarcoma viral oncogene (KRAS) is the most common oncogenic driver in 

NSCLC in the overall population. It most frequently occurs among the Caucasian and 

African-American patients, where it can be found in about one-third of cases (18). It is 

followed by Epidermal growth factor receptor (EGFR) mutations, which can be identified 

in about 10% to 20% of the patients (19).  Notably, in Asian populations, EGFR mutations 

are more prevalent than KRAS mutations (20, 21).  

KRAS belongs to the Ras GTPase family of proteins  (22, 23), and similarly to the other 

Ras proteins, functions as a cellular switch. Upon activation by extracellular signals, such 

as growth factors, KRAS initiates the downstream signaling pathways. KRAS exhibits a 

slow nucleotide exchange rate and weak intrinsic GTPase activity. In approximately 75% 

of KRAS mutant LADCs, there is a heterozygous loss of the wild-type allele, leaving the 

mutant allele as the only functional form of KRAS, a state similar to homozygosity. Over 

80% of KRAS mutations occur in exon 2 at codon 12, a region located near the 

nucleotide-binding pocket of the KRAS protein and adjacent to the effector protein 

switches. Among KRAS codon 12 mutations, the glycine-cysteine mutations (G12C) are 

the most common, accounting for approximately 40% of cases, followed by glycine-

valine mutation (G12V) and glycine-aspartic acid mutation (G12D), both of which 

represent around 20%. G12C and G12V mutations are more prevalent in individuals with 

a history of smoking, while the transition mutation, which results in KRAS G12D, is more 

commonly found in never-smokers (24). Importantly, G12D and G12V mutations are 

associated with chromosomal instability and deficiencies in mismatch repair mechanisms. 

Regarding treatment response, platinum-based chemotherapies are generally effective for 

KRAS-mutant tumors, with the G12V variant showing an even higher sensitivity than the 

rest. Furthermore, the G12V and G12D mutations are associated with higher levels of 

immunotherapy biomarkers, indicating a better response to immune checkpoint 

inhibitors. However, G12C mutations correlate with positive programmed death-ligand 1 

(PD-L1) expression, also suggesting a potential benefit from immunotherapy for this 

subgroup (25). Co-occurring driver mutations in LADC are relatively uncommon and 
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typically involve dual mutations of KRAS with EGFR, ALK, or BRAF. However, KRAS 

mutations most often appear as single driver mutations. Nevertheless, KRAS mutations 

frequently occur together with mutations in tumor suppressor genes such as TP53, 

STK11, and KEAP1/NFE2L2 (26), which may be associated with different tumor 

characteristics and biological behaviors (8).  

The treatment of KRAS mutant LADC remains a challenge due to the considerable 

heterogeneity of KRAS mutations, including different genotypes and possible 

commutations, all of which influence the therapeutic response and clinical outcomes. 

Recent advances have led to the development of new therapeutic options that show 

promising results for the treatment of KRAS mutant lung cancer (27).  Clinical trials have 

proved that covalent KRAS G12C inhibitors AMG510 (sotorasib) and MRTX849 

(adagrasib) demonstrate a promising efficacy in KRAS G12C mutant LADC, both of 

these inhibitors target a specific mutation in KRAS, thus providing a new, more 

personalized treatment strategy (28). 

Immunotherapy, particularly immune checkpoint inhibitors targeting the programmed 

cell death protein 1 (PD-1)/PD-L1 axis, has emerged as a promising approach for KRAS 

mutant NSCLC. The presence of an inflammatory tumor microenvironment (TIM) and 

the increased tumor immunogenicity associated with the KRAS mutation both contribute 

to the improved survival rates with the use of targeted therapies. Further ongoing studies 

are actively researching the combination of immunotherapy with other targeted treatment 

options, such as MEK and FGFR1 inhibitors, to overcome adaptive resistance and further 

enhance treatment efficacy (29). These developments underscore the need for more 

personalized approaches that also consider the biological diversity of the disease in the 

treatment of KRAS-mutant lung cancer. Current research efforts are focused on 

developing appropriate therapies by understanding the resistance mechanisms, 

optimizing combination therapies, and exploring the role of switch genes in modulating 

treatment response (30, 31).  

Previously published studies have shown the variability of existing inflammation cells 

within the cancer and proved that tumor adaptation is strongly influenced by the 

development of the surrounding TIM. The understanding of TIM leads to identifying 
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biomarkers that are capable of distinguishing patient populations that could potentially 

benefit from current immune checkpoint blockade  therapies (32). 

Among the key components regulating tumor-associated inflammatory response are the 

inflammasomes, multiprotein complexes that regulate the immune system by activating 

inflammatory cytokines and thereby influence both tumor-promoting and tumor-

suppressing pathways. They play an important role in tumor development and 

progression, and their study may contribute to the discovery of new therapeutic pathways 

to further improve treatment options.  

The most extensively studied and characterized inflammasome is the NOD-like receptor 

family pyrin domain-containing 3 (NLRP3). NLRP3 functions as a cytosolic multiprotein 

complex that recognizes cytosolic cellular danger signals, promotes the maturation and 

secretion of proinflammatory cytokines, and has a role in mediating inflammatory 

responses.  Upon activation, NLRP3 triggers the activation of the caspase-1 enzyme, 

which in turn releases proinflammatory cytokines, including IL-1β and IL-18, leading to 

pyroptotic cell death (33). NLRP3 activity can be modulated by the use of inhibitors, 

antagonists, and monoclonal antibodies. Thus, the targeted intervention in the NLRP3 

inflammatory process could offer a new strategy in tumor treatment. 

 

1.3. Lung neuroendocrine neoplasms (LNENs)  

Neuroendocrine tumors constitute roughly 20 % of all lung cancers. LNENs originate 

from neuroendocrine cells in the lungs and are divided into four groups: typical carcinoid 

(TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC), and SCLC 

(34).  Each subtype has a distinct biological behavior, differing treatment options and 

prognosis. 

LNENs can be further classified according to their level of differentiation and 

aggressiveness (35). TCs are well-differentiated and low-grade tumors, whereas ACs are 

considered to be intermediate-grade. LCNEC and SCLC are typically poorly 

differentiated, high-grade tumors (36). Based on new molecular knowledge of LNENs, 

the World Health Organization (WHO) revised the classification of LNENs in the 5th 

edition (9, 37, 38). The Ki-67 protein is a marker for cell division activity that indicates 
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the percentage of cells in the dividing phase in the examined tumor (39). The rate of cell 

division can be used to infer the level of tumor aggressiveness, which influences the 

applied treatment strategies, as tumors with a higher Ki-67 index tend to behave more 

aggressively and require a more intensive therapeutic regime (40, 41).  

Treatment of LNENs might include surgery, chemotherapy, immunotherapy, and 

precision oncology treatments (42, 43). For localized low- or intermediate-grade LNEN, 

meaning TC or AC, the first choice is surgical treatment, which includes the anatomical 

resection with extended lymph node dissection (44). If the process is advanced, 

individually tailored, multidisciplinary treatment is recommended. Similar to treating 

SCLC, platinum-based chemotherapy is used for poorly differentiated neuroendocrine 

tumors in the form of cisplatin or carboplatin combined with etoposide or temozolomide 

(45). Additional effective therapeutic options for low-grade, metastatic LNENs include 

the administration of long-acting somatostatin analogues (SSAs), such as octreotide and 

lanreotide, or peptide receptor radionuclide therapy (PRRT) (46, 47). As an 

immunosuppressant, the mTOR inhibitor everolimus also improves outcomes in the 

treatment of advanced, progressive tumors (48-50). However, in high-grade poorly 

differentiated LNEN tumors, the use of immune checkpoint inhibitors as a monotherapy 

has shown limited success (51). Their combination with chemotherapy or targeted agents 

may overcome resistance and improve the efficacy of the therapy in selected patients. 

Preliminary evidence suggests that combination immunotherapy with nivolumab plus 

ipilimumab may enhance efficacy in treating LNENs (52). 
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2. Objectives 

In the treatment of advanced LADC, alongside the traditionally used chemotherapy and 

radiotherapy, the role of immune checkpoint inhibitors (PD-1, PD-L1) has become 

increasingly significant (53). However, the therapeutic response to these agents varies 

considerably among individuals. Consequently, there is a clear need for predictive 

markers to determine the expected therapeutic response to specific treatments (54). In 

addition to immune checkpoint inhibitors, biomarkers such as tumor mutational burden 

and microsatellite instability have emerged as effective predictors of immunotherapeutic 

response (55). Comprehensive mapping of the tumor immunogenicity and 

immunophenotype is thus essential in determining the appropriate therapeutic strategies 

(56, 57).  

Genetic mutations, such as KRAS alterations in LADC, are known to affect several 

signaling pathways and enhance cell proliferation (58). These signaling pathways also 

impact the TIM by triggering inflammatory processes (59). Different KRAS mutant 

tumors have a distinct response to immunotherapy (60, 61). A detailed analysis of the 

cytokines, regulatory proteins, and effector immune cells involved in tumor-associated 

inflammation may provide valuable insight into the relationship between inflammation 

and immunomodulation induced by KRAS mutations (62). One of the key regulators of 

the hereditary inflammatory response is the NLRP3 inflammasome, which can be 

activated through specific signaling pathways (63, 64). Overactivation of NLRP3 leads 

to increased production of pro-inflammatory cytokines. Thus, NLRP3 inhibitor therapy 

may offer a novel approach to managing KRAS mutant adenocarcinomas (33, 65). 

Typical and atypical carcinoids, although relatively rare subtypes of neuroendocrine lung 

tumors, are of growing importance (66).  TC accounts for 2% of lung tumors, while AC 

accounts for about 0.2%, but their incidence is increasing worldwide (67). TC tumors are 

generally associated with better prognosis and longer overall survival (OS) compared to 

AC tumors, which demonstrate more aggressive clinical behavior (68). In cases of 

metastatic carcinoid tumors, occurring in 10-20% of  TCs and 40-50% of ACs, 

therapeutic options remain limited, mainly due to the high resistance of these tumors to 

radiotherapy and chemotherapy (69, 70). The identification of new therapeutic targets for 

treating malignancies is therefore essential. While several clinical trials are currently 
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exploring immunotherapeutic approaches for LNEN, another cancer classified as a 

neuroendocrine tumor, these trials have thus far generated many unanswered questions 

(71-74). As a result, progress remains slower compared to the advancements seen in 

NSCLC (75, 76).  

Our study aims to explore the immunological profile and immunophenotype in relation 

to molecular characteristics and clinicopathological variables in malignant KRAS-mutant 

LADC and LNEN. 
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3. Methods  

3.1. KRAS -study  

3.1.1. Population and treatment 

This retrospective study included 87 patients diagnosed with early-stage LADC, 

classified as stage I. A to II.B, all of whom had their diagnosis histologically confirmed. 

These patients underwent surgical resection at the National Koranyi Institute of 

Pulmonology in Budapest, Hungary, between 2012 and 2017. The selection criteria 

required the presence of a presumed KRAS mutation identified through previous direct 

sequencing.  

During clinical data collection, we retrospectively processed the data obtained from the 

hospital’s medical records on the patient's age, gender, comorbidities, and smoking habits 

at the time of diagnosis. Patient identifiers were recorded to ensure that the individuals 

included remained pseudonymous.  Due to the retrospective nature of the study, informed 

consent was not required. Therefore, no signed forms were obtained from the participants. 

The study adhered to the guidelines of the Helsinki Declaration by the World Medical 

Association and received approval from the National Ethics Committee of Hungary 

(Hungarian Scientific and Research Ethics Committee of the Medical Research Council, 

ETT-TUKEB 23636-2/2018, 23636/10/2018/EÜIG).  

 

3.1.2 Immunohistochemistry (IHC) 

To analyze morphological heterogeneity, tumor tissue samples were obtained through 

surgical resection, and three tissue microarray (TMA) punctures were extracted from each 

formalin-fixed, paraffin-embedded (FFPE) block. TMA tissue cores were retrieved from 

distinct representative regions within viable tumor areas. The TMA blocks were cut into 

four-micron-thick sections and stained with hematoxylin and eosin (H&E) and alcian blue 

to highlight histological patterns.  

The extent of tumor-associated lymphocyte (TIL) and macrophage infiltration in the 

peritumoral region was assessed through immunostaining for CD3 and CD163, according 

to the scoring system established by the International TILs Working Group in 2014  (77). 

Additionally, to obtain a comprehensive overview of inflammasome expression in the 
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specimens, each slide was stained for NLRP3. The following antibodies were used for 

IHC staining: CD3 (Leica, rabbit monoclonal antibody, clone number LN10, 1:200 

dilution), CD163 (Invitrogen, rabbit monoclonal antibody, clone number MRQ-26, 1:200 

dilution), and NLRP3 (Invitrogen, rabbit monoclonal antibody, clone number SC06-23, 

1:200 dilution) (Table 1). 

 

Table 1. Antibodies used for immunohistochemistry (IHC).

 

 

All staining procedures were conducted following the manufacturer's protocols using the 

fully automated BenchMark ULTRA IHC/ISH system (Roche Diagnostics, Rotkreuz, 

Switzerland). Antibody binding was detected using the ImmPACT DAB Substrate Kit 

from Vector Laboratories, and the nuclei were counterstained with hematoxylin. All 

antibodies were validated by utilizing appropriate tissue controls. The expression levels 

of the specific markers were assessed on a categorical, semi-quantitative scale by two 

experienced pulmonary pathologists who were blinded to the clinical data. In addition to 

the analysis of tumorous lesions, one pathologically verified non-tumorous lung tissue 

core was retrieved from each patient for control purposes. We performed IHC and 

molecular analyses on both tumor and non-tumor samples. 

 

3.1.3. Molecular analyses 

We analyzed the KRAS mutation status of both tumor and associated non-tumorous 

controls using Competitive Allele-Specific (CASP) TaqMan Mutation Detection Assays 
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using real-time PCR (RT-PCR). A tumor cell-rich 2 mm cylinder, marked by the 

pathologist, was extracted from the FFPE tissue specimen using a TMA Master 

(3DHistec) tissue microblock maker. The samples were deparaffinated using 

Deparaffinization Solution from Zymo Research. DNA isolation was performed using a 

King Fisher Duo Prime (Thermo Scientific) automated nucleic acid purifier and the 

MagMAX FFPE DNA/RNA Ultra Kit (Applied Biosystems). The following seven KRAS 

mutation subtypes were consecutively investigated using the CASP TaqMan Mutant 

Allele Assay: G12D (Hs00000121_mu), G13D (Hs00000131_mu), G12V 

(Hs00000119_mu), G12R (Hs00000117_mu), G12A (Hs00000123_mu), G12S 

(Hs00000115_mu), and G12C (Hs00000113_mu). Additionally, a KRAS gene reference 

assay (Hs00000174_rf) designed for the mutation-free region of the KRAS gene was 

included for each sample. In our study, RT-PCR reactions were performed in 96-well 

plates according to the manufacturer’s protocol, which was used for the quantification of 

the mutant allele frequency in the samples. 

 

3.1.4. Statistical analysis 

We used a pairwise chi-square test to examine the relationships between categorical 

variables. Since none of the results were statistically significant even before adjusting for 

multiple testing, no corrections were applied in this analysis. While expression levels 

were originally defined on a categorical scale (none/ slight, diffuse plasma staining/ 

medium plasma staining with dominant spots/ strong diffuse plasma staining), they could 

be converted into semi-quantitative numerical values (e.g., 0/1/2/3) based on their ordinal 

nature. This conversion allowed for a reassessment of relationships between different 

expression levels using Pearson correlation and between expression levels and categorical 

variables using pairwise t-tests adjusted for multiple testing with the Bonferroni 

correction. Additionally, when comparing different expression levels, a simpler 

categorization of "none" versus "any" was applied, and a Fisher’s exact test was used to 

determine whether the different types of expressions were independent. For specific 

analyses, tumor tissue cores were treated independently, even if obtained from the same 

patient. For each patient, we examined pairs of samples from the tumor and the adjacent 

nontumor environment to map their mutational status and expression levels. The samples 

from the three tumor sites were compared to the same normal sample. Survival curves for 
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different patient groups were estimated using Kaplan-Meier plots. The differences 

between the groups were analyzed using the log-rank test. OS was defined as the time in 

months from the surgical intervention to the last available follow-up or the date of death 

from any cause. R version 4.4.1 was used for all statistical analyses, and a p-value of less 

than 0.05 was considered statistically significant. 

 

3.2. LNEN- study  

3.2.1. Population and treatment 

Four Central European centers participated in the second LNEN study: the National 

Koranyi Institute of Pulmonology, Budapest, Hungary, the National Institute of Oncology, 

Budapest, Hungary; the Medical University of Graz, Austria; and Palacky University, 

Olomouc, Czech Republic. A total of 141 patients who underwent surgical resection for 

LNEN between 1997 and 2021 were examined. The distribution of patients based on 

LNEN subtypes was as follows: 66 patients had SCLC, 49 LCNEC, and 26 AC. Only 

whole tissue samples were processed to avoid bias due to intratumoral heterogeneity. 

Before inclusion in the study, all sections associated with an LNEN diagnosis had to be 

re-examined to confirm the LNEN diagnosis. A board-certified pathologist at each center 

had reviewed FFP blocks to determine whether the sample contained adequate tumor 

content, defined as more than 20% of all cells being tumorous, and thus met the inclusion 

criteria.  

All studies were conducted according to the guidelines of the World Medical Association 

Declaration of Helsinki and were approved by the respective ethics committees of each 

participating country. The national-level ethics committee of Hungary was Hungarian 

Scientific and Research Ethics Committee of the Medical Research Council, ETT 

TUKEB 39249–2/2019/EKU and 52614–4/ 2013/EKU. Patient identifiers were removed 

after collecting the clinical data to ensure the pseudonymity of the patients. 

 

3.2.2. Immunohistochemistry 

The tissue samples were analyzed for the expression of four TIM markers, namely T cell 

immunoglobulin and mucin domain 3 (TIM3), V-domain immunoglobulin suppressor of 
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T cell activation (VISTA), Glucocorticoid induced tumor necrosis factor receptor (GITR), 

and Tumor necrosis factor receptor superfamily, member 4 (OX40L). Due to the limited 

quantity of samples, only VISTA expression was measured in 21 cases of SCLC. To 

evaluate the quality and reliability of older FFPE blocks (over 15 years) from SCLC 

patients, these samples were stained with commonly used diagnostic antibodies against 

CD56 (78) and Ki-67  (79). The level of immune infiltration was assessed by examining 

CD3 expression. Immunohistochemistry staining was performed following the 

recommended protocols using the Ventana BenchMark Ultra IHC/ISH System (Roche 

Diagnostics, Basel, Switzerland). Following deparaffinization and incubation with the 

primary antibody, a secondary antibody was applied for one hour at room temperature. 

The expression levels were visualized using the Liquid DAB and Substrate Chromogen 

System, and the sections were subsequently counterstained with hematoxylin. To ensure 

the reliability of the staining protocol, human tonsils were utilized as positive tissue 

controls. All slides were digitally scanned using the PANNORAMIC 250 Flash III 

(3DHISTECH Ltd., Budapest, Hungary), and the sections were thoroughly examined and 

evaluated with CaseViewer 2.4 (3DHISTECH Ltd., Budapest, Hungary).  

It is important to provide an overview of generalized marker expression throughout the 

tumor area for effective biomarker discovery (80). Therefore, during the pathological 

evaluation, the percentage of positive tumor cells was determined in at least 20 randomly 

selected areas at 20× and 40× magnifications. Two experienced pulmonary pathologists 

undertook the evaluation process. A third pulmonary pathologist was consulted to provide 

additional insight when encountering a discrepancy greater than 20% between their 

findings. Tumor cells were evaluated separately from immune cells. 

For tumor cells, we quantified the ratio of positive cells to the total number of tumor cells. 

Similarly, we assessed the ratio of immune cells with positive staining to the total immune 

infiltrates in each sample. 

In our study, the analysis of individual markers has been carried out manually, given that 

doubts arise regarding software-based assessments even in the case of antibodies used in 

routine diagnostics. 
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3.2.3. Statistical analysis 

All statistical analyses were performed with R version 4.2.1 (R Foundation for Statistical 

Computing, Vienna, Austria). Fisher's exact tests and Kruskal-Wallis rank sum tests were 

used to assess associations between histological subtypes and clinicopathological 

characteristics, specifically for categorical and continuous variables. The Bonferroni 

method was applied to adjust for multiple comparisons. Marker expression levels and 

clinicopathological parameters were compared using Wilcoxon signed-rank tests, with 

Bonferroni correction applied. Hierarchical clustering of samples based on expression 

levels was performed using the Complex Heatmap R package (version 2.10.0). The 

distance matrix was calculated using the Manhattan distance measure, and dendrograms 

were created using the ward.D clustering method. During the statistical analysis of the 

obtained results,  Pearson correlation coefficients (R) were calculated between expression 

levels, and the Bonferroni method was used to correct p-values for multiple comparisons.  

Furthermore, we wanted to know which expression levels are the strongest indicators of 

the LNEN subtype, for which we performed principal component (PC) analysis using the 

factoextra R package (version 1.0.7). This analysis aimed to find linear combinations, 

referred to as PCs of the measured variables (expression levels), that most effectively 

explain the variance in the data. Univariate Kaplan-Meier analyses were used to 

determine the clinical factors with prognostic relevance for OS, and survival curves of 

different patient subgroups were compared using log-rank tests without adjusting p-

values for multiple testing. Patients were categorized into "low" (i.e., median or below-

median) and "high" (i.e., above-median) expressing groups based on the median 

expression value of each marker. A multivariate Cox regression model was constructed 

based on the results of the univariate analyses to evaluate the prognostic significance of 

various marker expressions. 
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4. Results 

4.1. KRAS- study 

4.1.1. Association of tumor morphology and KRAS mutational status 

Pathological evaluation of tumor cores revealed a single dominant morphological 

component in 71% of cases. As shown in Figure 1A, 47% of samples showed an acinar 

pattern, followed by solid (26%), lepidic (22%), and papillary architectures (5%). 

Notably, 23% of all tumors displayed two dominant morphological components, while 

tumors with three components occurred in 6% of cases. Next, we assessed the KRAS 

mutational status for all TMA specimens (Figure 1B). Regarding mutation subtypes, 

KRAS G12C, KRAS G12D, and KRAS G12V were the most frequently detected genetic 

alterations in our cohort, found in 33%, 25%, and 24% of all patients, and in 38%, 23%, 

and 24% of the samples, respectively. It is important to note that while the mutational 

landscape concerning KRAS mutations was mostly homogeneous across different TMA 

cores from the same tumor, there were 19 cases where the dominant mutational subtype 

varied between tumor punctures. Moreover, 14 LADC samples completely lacked any 

KRAS mutations despite the initial diagnosis of KRAS mutant LADC established by 

direct sequencing. This finding further underscores that KRAS mutant lesions might be 

highly heterogeneous, even within a single tumor.  

We also studied the distribution of KRAS mutation subtypes between the different 

morphological patterns (Figure 1C). Notably, the KRAS G12A mutation was absent in 

lepidic LADCs. In contrast, the micropapillary LADC samples did not contain wild-type 

KRAS genes or multi-hit (i.e., simultaneous multiple types of) KRAS alterations. Despite 

these obvious differences, the KRAS mutational status did not show a statistically 

significant association with the morphological growth patterns. Furthermore, the 

evaluation of mucin secretion revealed that 33.3% of tumors do not express mucin at all. 

Intracellular mucin secretion was found in 11.5% of cases, while extracellular and mixed 

mucin secretion was observed in 43.7% and 11.5% of the examined LADCs, respectively. 

Additionally, mucin secretion was not influenced by KRAS mutational status. 
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Figure 1. Morphological and mutational features of surgically resected LADC 

samples. (A) Histological growth pattern of included samples. Patients are represented as 

columns, while their three separate tumor tissue cores (i.e., TMAs #1, #2, and #3) are 

arranged as rows. Three distinct tumorous TMA cores were analyzed from each surgically 

resected LADC. (B) Heatmap of KRAS mutation status of different samples with regards 

to morphological features such as tumor content, growth pattern, mucus secretion, 

inflammation, and NLRP3, CD3, CD163, and PD-L1 expression. Patients are represented 

as columns, with the tumor samples belonging to each patient indicated as thin stripes 

within these. The color bar scale indicates the expression levels of the selected markers. 

14 out of 87 patients had KRAS wild-type tumors across all three tumor tissue cores. 

Additionally, 12 more patients had at least one tumor tissue core identified as KRAS wild-

type. This adds up to a total of 57 KRAS wild-type tumor tissue cores out of the total of 

261 examined tumor tissue cores (three per patient). These KRAS wild-type samples are 

marked in grey in the "KRAS status row" of the corresponding heatmap (C) Association 

of dominant growth pattern and KRAS mutational status of surgically resected LADC 
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tumor tissue cores. Tumor tissue cores were treated independently, even if they were 

obtained from the same patient. LADC, lung adenocarcinoma; HPF, high power fields; 

Mut, mutated; wt, wild-type; TMA, tissue microarray. 

 

As shown in Figure 2, patients with KRAS wild-type tumors tended to have better 

survival outcomes than those with specific KRAS mutations, yet differences in median 

OS did not reach statistical significance (p=0.138). Tumors that exhibited heterogeneous 

KRAS mutational status across different tissue cores were linked to improved survival 

(vs. homogenous tumors; median OSs were 52 months vs. 39 months, respectively; 

p=0.081), with borderline significant statistical outcomes. Given the relatively small 

cohort size, results related to OS should be interpreted with caution. 

 

 

Figure 2. Kaplan-Meier estimates for OS according to (A) KRAS mutational status 

and (B) KRAS mutational status-related tumor heterogeneity. Heterogeneous tumors 

were defined as LADC samples with a heterogeneous KRAS mutational landscape across 

different tumor tissue cores. Survival data was not available in 18 cases. OS, overall 

survival. 

 

4.1.2. NLRP3 expression is associated with increased immune infiltration  

The morphological growth patterns of the examined LADCs did not appear to influence 

the distribution of NLRP3 when the surgically resected specimens were categorized 

according to the predefined NLRP3 expression subgroups (Figure 3A). However, when 

NLRP3 expression was evaluated on a semi-quantitative scale, solid LADCs 

demonstrated significantly higher levels of NLRP3 compared to acinar samples (p=0.001) 

(Figure 3B). Although the PD-L1 group showed no correlation with tumor morphology 
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(Figure 3C), when evaluating PD-L1 expression on a continuous scale, we observed that 

PD-L1 expression was significantly higher in tumor tissue cores with solid morphology 

than in those with acinar (means: 14.6% vs. 4.4%, t-test adjusted p-value: 0.007) or lepidic 

growth patterns (means: 14.6% vs. 1.6%, t-test adjusted p-value: 0.002) (Figure 3D). 

Representative IHC images of NLRP3, CD3, CD163, and PD-L1 expression are shown 

in Figure 4.  

 

Figure 3.  Association of NLRP3 and PD-L1 expression with tumor morphology in 

LADC tumor tissue cores. Distribution of growth patterns according to (A) NLRP3 and 

(C) PD-L1 subgroups. (B) NLRP3 and (D) PD-L1 expression on a semi-quantitative scale 

across different morphology groups.  
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Figure 4. IHC staining of formalin-fixed, paraffin-embedded LADC samples with 

markers of the immune microenvironment (NLRP3, CD3, CD163, and PD-L1). The 

representative images were captured with a 40x objective lens. The positive cells were 

visualized with 3-3′-diaminobenzidine (DAB), and the nuclei were labelled with 

hematoxylin. IHC, immunohistochemistry; LADC, lung adenocarcinoma; HPF, high 

power field. 

 

 

The abundance of CD3 T lymphocytes, defined as the number of CD3 cells per high 

power field (HPF) according to NLRP3 expression, is illustrated in Figure 5A. Notably, 

a statistically significant weak positive linear correlation between CD3 and NLRP3 

expression on a semi-quantitative scale (R = 0.31, p < 0.0001) was found, as shown in 

Figure 4B. We categorized the samples into groups based on the expression (or lack of it) 

of CD3 and NLRP3 and discovered that NLRP3-expressing LADC samples most 

frequently exhibited detectable CD3 expression (p < 0.0001, Figure 5B). In contrast, 

tumors without NLRP3 expression displayed a CD3-depleted phenotype. Regarding 

macrophage abundance, the number of CD163 cells per HPF was considerably higher in 

samples with NLRP3 plasma staining than those lacking NLRP3 expression, as indicated 

in Figure 5C. We also observed a statistically significant positive linear correlation 
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between CD163 and NLRP3 expression (Figure 5D). In addition, LADC samples 

expressing NLRP3 generally tended to also express CD163. 

 

 

 

 

Figure 5. NLRP3 is associated with immune infiltration as defined by CD3 and 

CD163 expressions. (A) CD3 expression across different NLRP3-expressing groups in 

tumor tissue cores. (B) Correlation between NLRP3 and CD3 expression on semi-

quantitative scales combined with a Fisher’s exact test. (C) CD163 expression across 

different NLRP3-expressing groups in tumor tissue cores. (D) Correlation between 

NLRP3 and CD163 expression on semi-quantitative scales combined with a Fisher’s 

exact test. HPF, high power field. 

 

 

Moreover, we also found that LADC samples showing NLRP3 expression tended to have 

CD163 expression as well. PD-L1 expression was generally higher in tumor tissue cores 

with medium or strong NLRP3 staining; however, no statistically significant associations 

were found between PD-L1 expression and NLRP3, CD3, and CD163 levels (Figure 6). 
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Figure 6. PD-L1 expression across different (A) NLRP3, (B) CD3, and (C) CD163 

expression subgroups. HPF, high power field. 

 

4.1.3. Relation between KRAS mutational subtype and NLRP3 expression 

As shown in Figure 7A, the most frequently detected KRAS mutation subtype in both 

NLRP3 expressing and NLRP3 non-expressing tissue cores was KRAS G12C. However, 

the second most common KRAS mutation subtype differed between the two groups, with 

KRAS G12V found in NLRP3 expressing tumors and KRAS G12D in NLRP3 non-

expressing tumors. However, Figure 7B also shows that we did not find a statistically 

significant correlation between KRAS mutation subtypes and NLRP3 expression when 

examining expression levels on a semiquantitative scale. PD-L1 expression was not 

associated with KRAS mutation status (Figure 7C and 7D). 
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Figure 7. Comparative analysis of KRAS mutational landscape and NLRP3 and PD-

L1 expression in surgically resected LADC tumor tissue cores. KRAS mutational 

subtypes with regards to (A) different NLRP3 subgroups and (B) NLRP3 expression on 

a semi-quantitative scale. NLRP3 expression data were not available in 2 KRAS wild-

type tissue cores. Distribution of KRAS mutation subtypes according to (C) PD-L1 

subgroups and (D) PD-L1 expression on a semi-quantitative scale. Colors indicate 

different mutational statuses. LADC, lung adenocarcinoma. 

 

4.1.4. KRAS mutation- and NLRP3 expression-based comparison of tumorous and 

adjacent non-tumorous tissue cores 

We conducted a comparison between tumor tissue samples and non-tumorous control 

tissue sourced from the same patient. Each patient had a single non-tumorous tissue core 

and three paired sections of tumorous tissue analyzed. Although non-tumorous tissue 

specimens generally lack oncogenic driver mutations, we found that 20 out of 83 non-

tumorous lung tissues (24.1%) exhibited KRAS mutations. Importantly, nearly half of the 

tumor tissue samples with the KRAS G12D mutation displayed a corresponding KRAS 

G12D mutation in their paired non-tumorous tissue samples (Figure 8A). Notably, nine 

tumor samples (3.61%) presented with wild-type KRAS status, while their corresponding 



29 
 

non-tumorous counterparts' cores revealed mutations in the KRAS gene. NLRP3 staining 

was observed in only a few cases of non-tumorous samples, and even in the cases where 

NLRP3 expression was noticeably higher, it did not alter the level measured in tumor 

tissue. This may indicate no close relationship between NLRP3 expression levels in tumor 

and non-tumorous tissues (Figure 8B). Most control samples displayed medium-level 

CD3 expression, while those with low CD3 expression tended to have a corresponding 

low-to-medium abundance of CD3 T cells in the associated tumors (Figure 8C). In tumor 

samples characterized by high CD3 expression, the corresponding non-tumorous 

specimens consistently demonstrated at least a medium level of CD3 expression, with a 

count of 3 to 10 cells per HPF. When examining CD163 macrophages, a statistically 

significant but weak positive linear correlation emerged between the tumor and non-

tumorous lesions’ expression levels (R = 0.16, p = 0.01; Figure 8D). 
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Figure 8. KRAS mutation status and inflammatory characteristics of tumorous and 

adjacent non-tumorous tissue cores. (A) Association between the tumorous and non-

tumorous tissue cores' KRAS mutational status. Interestingly, nine tumor samples (bottom 

row) had wild-type KRAS status, while their paired non-tumorous tissue core displayed 

KRAS mutation. (B, C, D) Comparative analysis of tumorous and non-tumor tissue cores 

with regards to (B) NLRP3, (C) CD3, and (D) CD163 expression. All panels treat "sample 

pairs" as units, whether represented as points on scatter plots or numbers in cells. A 

"sample pair" is defined as the normal sample and the tumor sample from a specific 

patient. Most patients had one normal sample (Nor1) and three tumor tissue cores (Tu1, 

Tu2, Tu3), resulting in three "sample pairs" (i.e., Nor1-Tu1, Nor1-Tu2, Nor1-Tu3). 

Therefore, the numbers on the heatmaps do not sum up to either the total number of 

patients or the total number of individual tissue cores. HPF, high power field. 

 

4.2. LNEN- study 

4.2.1. Patient and sample characteristics 

Patients in our LNEN study were analyzed according to clinicopathological 

characteristics, which are presented in Table 2, organized by subgroups. The majority of 

SCLC and LCNEC patients were active smokers, while the majority of patients diagnosed 

with AC were never smokers (p<0.001). According to the location of the tumor nest in 

the lung, we observed that SCLC tumors were more often located in the central part, while 

LCNEC tumors tend to be located peripherally (p < 0.001). We used univariate models to 

examine different clinicopathological factors to better understand the survival outcomes. 

Factors such as diabetes, histological subtype, vascular involvement, and T and N stages 

were proven to be significant for survival outcomes. The conducted quality check on older 

FFPE samples (over 15 years old) found strong positivity with CD56 and moderate 

positivity with Ki-67. However, the expression patterns of TIM3, VISTA, GITR, and 

OX40L did not differ statistically between the older samples (>15 years) and the newer 

ones (≤15 years). 

Table 2. Clinicopathological characteristics of the study population. Statistically 

significant p values are marked with bold.  
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Total AC  LCNEC SCLC p-value 

Total number of patients 
141 26 49 66  

Gender 

N/A 9 0 6 3 0.7711 

Male 66 

(50%) 

11 

(43.2%) 

23 

(53.3%) 

32 

(50.8%) 

Female 66 

(50%) 

15 

(57.7%) 

20 

(46.5%) 

31 

(49.2%) 

Age 

N/A 10 0 7 3 0.3332 

Median 

(Range) 

65 (33-

79) 

62.5 (33-

79) 

64.5 (41-

78) 

65 (44-

78) 

Smoking status 

N/A 36 2 13 21 <0.0011 

Never 21 

(20.0%) 

14 

(58.3%) 

3 (8.3%) 4 (8.9%) 

Ex 44 

(41.9%) 

6 

(25.0%) 

15 

(41.7%) 

23 

(51.1%) 

Current 40 

(38.1%) 

4 

(16.7%) 

18 

(50.0%) 

18 

(40.0%) 

COPD 

N/A 13 0 8 5 0.0491 

No 77 

(60.2%) 

22 

(84.6%) 

21 

(51.2%) 

34 

(55.7%) 

Yes 51 

(39.8%) 

4 

(15.4%) 

20 

(48.8%) 

27 

(44.3%) 

Hypertension 

N/A 12 0 7 5 0.4951 

No 55 

(42.6%) 

10 

(38.5%) 

15 

(35.7%) 

30 

(49.2%) 

Yes 74 

(57.4%) 

16 

(61.5%) 

27 

(64.3%) 

31 

(50.8%) 

Diabetes 

N/A 12 0 7 5 0.4951 

No 104 

(80.6%) 

22 

(84.6%) 

36 

(85.7%) 

46 

(75.4%) 

Yes 25 

(19.4%) 

4 

(15.4%) 

6 (14.3%) 15 

(24.6%) 

Tumor localization 

(central/peripheral) 

N/A 22 0 10 12 <0.0011 

Central 51 

(42.9%) 

13 

(50.0%) 

5 (12.8%) 33 

(61.1%) 

Peripheral 68 

(57.1%) 

13 

(50.0%) 

34 

(87.2%) 

21 

(38.9%) 

Tumor localization 

(upper/lower lobe) 

N/A 41 0 7 34 0.3331 

Upper 

lobe 

72 

(72.0%) 

15 

(57.7%) 

32 

(76.2%) 

25 

(78.1%) 

Lower 

lobe 

28 

(28.0%) 

11 

(42.3%) 

10 

(23.8%) 

7 

(21.9%) 
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Necrosis 

N/A 22 10 7 5 0.3331 

No 43 

(36.1%) 

6 

(37.5%) 

11 

(26.2%) 

26 

(42.6%) 

Yes 76 

(63.9%) 

10 

(62.5%) 

31 

(73.8%) 

35 

(57.4%) 

Vascular 

involvement 

N/A 16 1 7 8 0.7711 

No 77 

(61.6%) 

15 

(60.0%) 

28 

(66.7%) 

34 

(58.6%) 

Yes 48 

(38.4%) 

10 

(40.0%) 

14 

(33.3%) 

24 

(41.4%) 

Peritumoral 

inflammation 

N/A 84 18 15 51 0.3101 

0 43 

(75.4%) 

5 

(62.5%) 

24 

(70.6%) 

14 

(93.3%) 

1 9 

(15.8%) 

3 

(37.5%) 

5 (14.7%) 1 (6.7%) 

2 5 (8.8%) 0 (0.0%) 5 (14.7%) 0 (0.0%) 

T 

N/A 16 0 9 7 0.2271 

1 82 

(65.6%) 

13 

(50.0%) 

23 

(57.5%) 

46 

(78.0%) 

2 25 

(20.0%) 

7 

(26.9%) 

11 

(27.5%) 

7 

(11.9%) 

3 8 (6.4%) 2 (7.7%) 4 (10.0%) 2 (3.4%) 

4 10 

(8.0%) 

4 

(15.4%) 

2 (5.0%) 4 (6.8%) 

N 

N/A 43 0 8 35 0.2271 

0 53 

(54.1%) 

12 

(46.2%) 

28 

(68.3%) 

13 

(41.9%) 

1 19 

(19.4%) 

7 

(26.9%) 

7 (17.1%) 5 

(16.1%) 

2 19 

(19.4%) 

6 

(23.1%) 

3 (7.3%) 10 

(32.3%) 

x 7 (7.1%) 1 (3.8%) 3 (7.3%) 3 (9.7%) 

M 

N/A 84 10 27 47 0.9001 

0 2 (3.5%) 0 (0.0%) 1 (4.5%) 1 (5.3%) 

1 1 (1.8%) 0 (0.0%) 0 (0.0%) 1 (5.3%) 

x 54 

(94.7%) 

16 

(100.0%) 

21 

(95.5%) 

17 

(89.5%) 

COPD, Chronic obstructive pulmonary disease; N/A , Not available; AC, atypical 

carcinoid; LCNEC, large cell neuroendocrine lung cancer; SCLC, small cell lung cancer.  
1 Fisher’s Exact Test for Count Data (adjusted for multiple comparisons),  
2 Kruskal-Wallis rank sum test (adjusted for multiple comparisons). 
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4.2.2. Distribution pattern of immunologic markers by tumor cells  

We evaluated the differences and similarities among four immunotherapeutic markers and 

discovered that the expression of OX40L in AC tumor cells was significantly lower than 

in SCLC tumors (p < 0.001). In contrast, ACs exhibited substantially higher tumor cell 

GITR expression levels than SCLC or LCNEC tumors (p < 0.001). Additionally, GITR 

expression in SCLC tumor cells was notably higher than in LCNEC (p = 0.011).  TIM3 

expression in tumor cells was significantly higher in ACs compared to both LCNEC and 

SCLC tumors (p = 0.047 and p < 0.001, respectively). No significant differences were 

observed in VISTA expression. We performed unsupervised hierarchical clustering to 

determine whether LNEN subtypes could be distinguished solely based on their tumor 

cells’ VISTA, GITR, OX40L, or TIM3 expression. The cluster analysis identified three 

subgroups with distinct immunologic phenotypes; however, these clusters did not 

correspond to the histological subtypes.  

During the analysis of tumor cell marker expression, we found that grade 2 tumors 

generally showed higher GITR (p = 0.028) and TIM3 (p = 0.03) expression than grade 3 

tumors. When examining smoking habit as a clinicopathological characteristic and GITR 

expression in tumor cells, it was revealed that the expression level was higher in never-

smokers than in current smokers (p = 0.046); however, this could be explained by the 

individual smoking habits of LNEN patients. 

 

4.2.3. Distribution pattern of immunologic markers by immune cells  

We considered it important to understand the immune landscape of each LNEN subtype, 

and for this purpose, we examined the CD3 expression of the tumors. The abundance of 

immune cells was comparable in LCNEC and SCLC samples; however, it was 

significantly lower in LADC tumors (p<0.001). Additionally, ACs exhibited substantially 

lower levels of the immune checkpoint markers VISTA (p<0.001) and GITR (p= 0.002) 

compared to LCNEC and SCLC tumors. In contrast, TIM3 expression in immune cells 

was significantly lower in SCLC compared to both AC (p<0.001) and LCNEC tumors 

(p<0.001). Cluster analysis was unable to differentiate the LNEN subtypes based solely 

on the expression levels of VISTA, GITR, OX40L, or TIM3 in immune cells. Among the 

clinicopathological characteristics, we examined the relationship between the location of 
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the tumor within the lung and the degree of immune infiltration, which showed that 

centrally located tumors generally exhibited significantly lower levels of immune 

infiltration (p < 0.001), and their immune cells showed lower VISTA and TIM3 

expression than peripherally located tumors (p < 0.001). Considering the necrotic content 

of the tumors, we concluded that necrotic tumors exhibited significantly higher immune 

infiltration than non-necrotic lesions (p=0.027). Tumors with high peritumoral 

inflammation demonstrated increased immune infiltration compared to those with 

medium or low levels of peritumoral inflammation. 

 

4.2.4. Correlation between the expression patterns of immune-related markers 

defined by tumor cells and immune cells 

The expression of tumor cell OX40L and TIM3 was positively correlated with VISTA 

expression, showing correlation coefficients of R = 0.4928 (p < 0.0001) and R = 0.3083 

(p = 0.0245) (Figure 9). A positive linear correlation was observed between tumor cell 

TIM3 and GITR expressions, with R = 0.4658 (p< 0.0001). We also found that the 

expression of GITR in immune cells correlated with GITR expression in tumor cells and 

with OX40L expression in immune cells, yielding correlation coefficients of R = 0.5416 

(p = 0.0233) and R = 0.5678 (p = 0.011), respectively.  

To evaluate the impact of VISTA, OX40L, GITR, and TIM3 expressions on CD3 

distribution, we correlated immune cell CD3 expression with both immune cell and tumor 

cell expressions of the markers above (Figure 10). None of the examined immunotherapy 

targets were significantly associated with CD3 expression. A trend toward a positive 

linear correlation was observed between immune cell GITR and VISTA expression. 
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Figure 9.  Correlation between tumor cells and immune cells, VISTA, OX40L, GITR, 

and TIM3 expression. Only associations that remained significant after Bonferroni 

correction are shown. All p-values are adjusted for multiple comparisons. Results were 

obtained for a filtered dataset, including samples with an immune infiltration of 10% or 

larger, indicated with „(filt)”. If the observed correlation remained significant on the 

filtered dataset, the results are highlighted in orange. On panels with multiple marker 

colors, orange indicates samples for which immune infiltration exceeded 10%. 
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Figure 10.  Correlation patterns between tumor cell and immune cell VISTA, OX40L, 

GITR, and TIM3 expression and immune cell CD3 expression in surgically resected 

LNENs. 

 

4.2.5. LNEN subtype-specific immunological landscape examined by PC analysis 

PC analysis revealed that the first three PCs account for 72% of the variance in the data. 

However, further investigations showed that PC1 did not effectively separate patients 

based on the LNEN subtype. As a result, we projected all data points and original 

variables into the space defined by PC2 and PC3 (see Figure 11). As shown, with the use 

of PC analysis, ACs can be distinguished from LCNECs and SCLCs based on their 

immunological and tumor cell marker expression. Specifically, we observed the following 

trends: (1) ACs display high levels of tumor cell markers TIM3 and GITR while showing 

low levels of immune cell GITR; (2) both tumor cells and immune cells of SCLCs exhibit 

high levels of GITR, but their immune cells have low levels of TIM3; and (3) immune 

cells of LCNECs show high expression levels of both GITR and TIM3.  

 



38 
 

 

Figure 11. Principal component analysis of LNEN marker expression. ACs can be 

distinguished from LCNEC and SCLC tumors based on their immune cell and tumor cell 

marker expression. ACs express high tumor cell TIM3 and GITR levels and low immune 

cell GITR levels. Tumor cells and immune cells of SCLC lesions express high levels of 

GITR, and their immune cells express low levels of TIM3. Percentage values on axis 

labels indicate the percentage of explained variance by the principal component. Immune 

cells of LCNEC tumors express high levels of GITR and TIM3. AC, atypical carcinoid; 

LCNEC, large cell neuroendocrine lung cancer; SCLC, small cell lung cancer; and PC, 

principal component. 

 

4.2.6. Association between immune marker expression levels and survival 

Patients were categorized into low- and high expressing groups based on the median 

expression levels of four examined immune related markers. Although the expression 

levels of tumor cell markers did not significantly influence OS, patients with high tumor 
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cell TIM3 expression showed a tendency toward improved survival outcomes compared 

to those with low tumor cell TIM3 levels (p=0.08) (Figure 12/A). The expression of 

infiltrating immune cells did not demonstrate significant prognostic implications either. 

Regarding immune cell marker expression, we observed that high TIM3 expression was 

associated with significantly improved survival outcomes compared to low TIM3 

expression (p=0.021). In contrast, low GITR expression in immune cells was correlated 

with an increased OS, approaching statistical significance (p=0.064) (Figure 12/B). 

Additionally, we conducted a multivariate Cox regression analysis to identify the clinical 

parameters influencing OS (Figure 13). Among all examined parameters, diabetes 

(p=0.003), histological type (AC vs. LCNEC, p=0.061; AC vs. SCLC, p=0.016), and 

tumor grade (p=0.045) were found to influence OS independently. Notably, the 

independent prognostic relevance of immune cell TIM3 and GITR expression remained 

borderline significant (p= 0.057 and p= 0.071, respectively). 



40 
 

 

Figure 12. Kaplan-Meier estimates for OS concerning tumor cell (A) and immune cell  

(B) VISTA, OX40L, GITR, and TIM3 expression. 
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Figure 13. Multivariate Cox-regression model for OS. The outcomes are presented as 

hazard ratios (HR) and their corresponding 95% confidence intervals (CI). N indicates 

the number of samples belonging to a given category. P-values show the significance of 

the associations.  
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5. Discussion 

5.1. KRAS- study 

Based on their growth pattern, LADCs are classified by the WHO into five groups: 

lepidic, acinar, papillary, solid, and micropapillary (9). These distinct morphological 

growth patterns can occur in combination. However, the dominant pattern determines the 

tumor grade and clinical management (81). Lepidic adenocarcinoma is considered a low-

grade (grade I) lesion, characterized as a slow-growing, non-invasive tumor, in which 

cancer cells proliferate along intact alveolar structures without invading surrounding 

tissues  (82). This subtype is typically associated with early-stage disease and the best 

prognosis among LADC subtypes. Given their less aggressive nature, these tumors are 

often curable with surgical anatomical resection alone, and additional treatments such as 

chemotherapy and targeted therapy are usually not necessary unless the disease is in an 

advanced stage (83).  

Acinar and papillary adenocarcinomas represent moderate-risk tumors and are classified 

as intermediate grade (grade II). Acinar tumors exhibit glandular structures, while the 

papillary tumors form finger-like projections (84, 85). These subtypes are more invasive 

than lepidic adenocarcinomas but less aggressive than the solid or micropapillary forms. 

Surgical resection remains the primary treatment, yet in case of lymph node involvement, 

adjuvant platinum-based chemotherapy is frequently recommended (86). Patients with 

EGFR or ALK mutations may also benefit from targeted therapies (87, 88).  

Solid and micropapillary tumors are classified as highly invasive, high-grade (grade III) 

tumors and are prone to early metastatic spread, particularly to lymph nodes and distant 

organs (89, 90). Micropapillary adenocarcinomas consist of clusters of tumor cells 

floating within alveolar spaces, whereas solid adenocarcinomas are characterized by the 

absence of glandular differentiation, and grow in dense sheets or nests. Micropapillary 

LADCs are known to commonly exhibit mutations in the KRAS, EGFR, and BRAF genes  

(91). These patterns are linked to poor prognosis and high recurrence rates, requiring 

aggressive multimodal treatment. For resectable tumors, surgical excision is still 

performed, however, it is almost always followed by adjuvant chemotherapy to reduce 

the risk of recurrence.  Immuno- and targeted therapies may also be applied if they are 

indicated based on molecular profiling. Radiation therapy might also be considered in 
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cases with positive surgical margins or lymph node metastases. Several studies have 

demonstrated that the presence of high-grade histological components is associated with 

a worse prognosis and reduced OS in LADCs  (92, 93).  Thus, early detection of these 

aggressive features is particularly important due to their affinity for developing therapy 

resistance, likelihood of relapse, and more frequent metastasis. Accurate and timely 

diagnosis can help establish an appropriate personalized treatment strategy. 

In our patient cohort, histological heterogeneity was observed in approximately one-third 

of the analyzed specimens, with two cases showing more than two distinct histological 

components. The acinar growth pattern was the most frequently identified subtype, 

appearing in nearly half of the samples, followed by solid and lepidic morphologies. 

Solitary papillary structures were rare, accounting for only 5% of cases. The high-grade 

patterns, such as solid and micropapillary components, are strongly associated with 

higher rates of lymphovascular invasion and distant metastasis, even their minor presence 

within a tumor warrants careful evaluation during risk stratification and treatment 

planning (10, 91, 94). These results highlight the need to consider secondary aggressive 

components during histopathological evaluation, as their presence can significantly 

influence tumor progression and clinical outcome. 

The relationship between KRAS mutation subtypes and tumor differentiation remains 

unclear. While only approximately 30% of LADCs harbor detectable KRAS mutations, 

their presence has been consistently associated with a poorer prognosis and reduced OS 

(95-97). KRAS mutations predominantly occur in codons 12, 13, and 61, leading to amino 

acid substitutions that influence binding affinities in signaling effector molecules and 

promote tumorigenic pathways.  Among these, the KRAS G12C mutation, resulting from 

a glycine-to-cysteine transversion at codon 12, is particularly common in smoking-

associated LADC (98, 99). In our study cohort, the KRAS G12C mutation was 

predominant, followed by KRAS G12D and KRAS G12V. In two cases, we detected two 

simultaneous mutations. We also identified KRAS G12D, KRAS G12S, KRAS G12R, 

and KRAS G12A variants. However, due to the limited sample size, rare coexisting 

mutations, such as KRAS G12R/ G12D or KRAS G12S/ G12A, could not be assessed. 

No statistically significant correlations were identified upon analysis between KRAS 

mutational status and histological growth patterns.  
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Notably, samples with lepidic morphology, which accounted for approximately one-fifth 

of all analyzed cases, did not contain KRAS G12A mutations. Additionally, the 

micropapillary growth pattern was not observed in any of the tumors with wild-type 

KRAS or multiple KRAS mutations. Previous reports have shown conflicting evidence 

regarding the existence of a significant association between KRAS mutations and LADC 

histology (100-102). These discrepancies underscore the need to explore molecular 

relationships between specific genetic mutations, dominant histological patterns, and 

patient prognosis to improve treatment strategies. 

To more accurately map the tumor landscape and assess intratumoral heterogeneity, we 

analyzed three separate tumor tissue samples and one adjacent non-tumorous sample from 

each patient. In nineteen cases, we detected significant differences between tumor 

samples from the same patient regarding the dominant KRAS mutation, indicating 

substantial genetic variability. Interestingly, nine tumor tissue cores did not carry KRAS 

mutations, whereas the paired non-tumor tissue core contained a KRAS mutation. These 

results suggest significant variability in the distribution of KRAS mutations within and 

around tumors. Further research is needed to better understand the potential effects of the 

adjacent, non-tumorous lung tissue. 

These discrepancies in mutational status across various tissue samples from the same 

patient raise critical questions about the reliability of diagnostic results and determining 

the most effective therapeutic option. In our study, we processed surgically removed 

tissue samples that contained the entire tumor and the adjacent surrounding tissue, 

allowing for a larger sample volume, thereby increasing diagnostic accuracy. By contrast, 

routine clinical KRAS mutation analyses most often rely on biopsy samples taken during 

bronchoscopy or CT-guided sampling. These smaller samples are taken from limited 

tumor regions and might not accurately capture the full extent of the tumor’s 

heterogeneity. Additionally, multiple biopsy sampling is not standardized in clinical 

settings. Thus, resulting in less accurate findings regarding the determination of 

intratumoral heterogeneity (103, 104).  

Patients with LADC harboring specific KRAS mutations, particularly KRAS G12C, have 

shown responsiveness to targeted therapies with selective inhibitors, such as sotorasib and 
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adagrasib. Therefore, individuals with a KRAS G12C-positive mutation are eligible for 

these targeted treatments (105).  

In contrast, patients with other KRAS mutations, for whom targeted therapies are not yet 

available, remain reliant on the treatment with traditional chemotherapy (106). However, 

due to potential intratumoral heterogeneity, accurately defining the best diagnostic 

approach and identifying the optimal therapeutic strategy can be challenging. 

Peritumoral inflammation varies across stages of tumor development and affects the 

tumor progression and invasion. Chronic inflammation can create a tumor-promoting 

microenvironment by activating the innate immune system and is, therefore, widely 

recognized as an important element of tumorigenesis (107). Tumor cells are constantly 

exposed to external and internal cytosolic stimuli, which can trigger acute and chronic 

inflammatory responses by activating several intracellular signaling pathways, including 

the caspase-1 inflammasome pathway (108).  

Interleukin-1β (IL-1β) mediated inflammation inhibits the antitumor immune response, 

thus contributing to tumor growth and tumor progression  (109). NLRP3 is a cytosolic 

multiprotein complex that detects microbial motifs, endogenous danger signals, and 

environmental irritants. In lung tumors, NLRP3 activation results in the release of pro-

inflammatory cytokines such as IL-1β, thereby playing a prominent role in tumor- 

associated inflammation (110, 111). In vitro studies, using lung tumor cell lines, have 

demonstrated elevated NLRP3 expression, suggesting a potential role in modulating 

tumor behavior and immune interactions (112). Tengesdal et al. investigated NLRP3 

expression in vitro and in vivo melanoma models, revealing that NLRP3 activation led to 

inflammation-mediated immunosuppression via IL-1β signaling and enhanced 

inflammasome production (113). Increased production of IL-1β in the peritumoral 

environment is known to promote the expansion of myeloid-derived suppressor cells, 

which leads to the inhibition of natural killer (NK) cells and CD8 T-cell activity, further 

contributing to the regression of the antitumor immune response (114-116). 

In agreement with these findings, another study analyzing lung cancer tissue specimens 

and cell lines identified significant upregulation of NLRP3 gene expression in LADC  

(117). During histopathological analysis of LADC samples, it was observed that NLRP3 

expression levels were higher in high-grade tumors, suggesting a possible association 
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between NLRP3 activity and a more aggressive tumor phenotype (112). Our study also 

revealed elevated NLRP3 expression in high-grade tumor components, particularly in 

solid histological patterns compared to acinar growth patterns, as assessed using a semi-

quantitative evaluation scale. Given that solid histology is associated with poorer 

prognosis and increased tumor aggressiveness, these findings suggest that NLRP3-driven 

inflammasome activation may play a role in promoting more invasive and treatment-

resistant tumor phenotypes (118). 

Moreover, we found a positive correlation between NLRP3 expression and increased 

immune infiltration within the TIM. Tumors with higher NLRP3 activity expression also 

showed higher expression levels of the T-cell marker CD3 and macrophage marker 

CD163, indicating an enhanced immune system involvement in these cases. These 

findings are consistent with previous research that demonstrated how NLRP3 activation 

can recruit and modulate immune cell populations, which may contribute to immune 

evasion and tumor progression (119). Despite the increased expression of immune 

markers, the tumorous and non-tumorous tissues showed a similar trend, complicating 

the distinction between tumor-specific immune response and systemic inflammation. In 

light of this, when developing immune-targeted therapies, it should be considered that 

immune response modulation affects not only the tumor but also the surrounding healthy 

tissue. 

In our studies, we found no significant correlation between increased NLRP3 expression 

and KRAS mutation status, suggesting that NLRP3 activation and the resulting 

inflammasome activity may operate independently of KRAS-driven oncogenic signaling, 

reinforcing that tumor-promoting inflammation can arise through multiple mutation-

independent mechanisms. The literature on the relationship between the inflammatory 

marker NLRP3 and tumor processes remains divided, with some studies suggesting that 

NLRP3 promotes a pro-inflammatory microenvironment conducive to tumor progression, 

while others propose that it may play a role in enhancing antitumor immunity (120, 121). 

These results highlight a need for further research to clarify how NLRP3 influences 

immune regulation and tumor progression. Nevertheless, the observed correlation 

between elevated NLRP3 expression and increased immune cell infiltration is clinically 

significant. Chronic inflammation is a well-known contributor to tumor progression 
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(122), and our findings indicate that NLRP3 activity may play a role in recruiting and 

regulating the functionality of immune cell populations within the TIM. 

Targeting the NLRP3 inflammasome is a promising, newly emerging therapeutic strategy. 

NLRP3 inhibitors, initially developed for inflammatory diseases,  are now gaining 

interest among researchers for their potential to limit the tumor growth associated with 

inflammation (123). By blocking NLRP3-related inflammatory pathways, these agents 

may reduce the cancer-promoting effects of long-term inflammation, offering a new 

treatment option for inflammation-driven LADCs. 

While our study provides valuable insight into the role of NLRP3 in LADC, it also has 

some limitations. Firstly, due to the retrospective nature of the study, clinical and follow-

up data were not available for all included cases, limiting our ability to correlate the 

molecular findings with patient outcomes. Conducting a prospective study with 

longitudinal follow-up and clinical outcome assessments would improve the reliability of 

these observations. Furthermore, the patient cohort size is small for some results to reach 

statistical significance. Our hypothesis-generating outcomes presented in this study 

require further preclinical and clinical validation through larger studies with proper 

follow-up.   

 

5.2. LNEN- study  

The immune infiltration within the tumorous and peritumoral regions is pivotal in shaping 

malignant lesions’ progression and the clinical outcomes of the patients (124, 125). The 

tumor immune microenvironment and the intricate interactions between tumor cells and 

the infiltrating immune cells are critical determinants of treatment response, particularly 

in targeted therapies and immunotherapy. Therefore, a deeper understanding of TIM 

dynamics is essential for developing more effective treatment protocols and optimizing 

patient specific therapeutic strategies (126, 127). 

In this context, we explored the immunological landscape of LNENs by evaluating the 

expression patterns of four novel immunotherapeutic markers (VISTA, OX40L, GITR, 

TIM3) in surgically resected AC, LCNEC, and SCLC tumors. Given the limited 

availability of predictive and prognostic biomarkers in neuroendocrine neoplasms, 



48 
 

identifying reliable molecular markers remains a significant challenge. Orthopedia 

Homeobox Protein (OTP) has emerged as a potential prognostic marker for pulmonary 

carcinoids among the promising candidates. Furthermore, OTP and the adhesion 

molecule CD44 have both been proposed as biomarkers with prognostic value. However, 

the impact of these factors on OS and the efficacy of immunotherapy remains a subject 

of debate (128-130). 

One of the examined biomarkers, VISTA, is a membrane protein primarily expressed by 

myeloid cells, granulocytes, and T cells, and functioning as an inhibitory immune 

checkpoint regulator for antigen-presenting cells and T cells (131). The prognostic 

significance of VISTA expression remains controversial; it is associated with improved 

OS in epithelioid mesothelioma but correlated with worse survival outcomes in colorectal 

tumors (132-134). In our study, VISTA expression did not significantly impact OS, but 

its expression was notably higher in immune cells within LCNECs and SCLCs than in 

adenocarcinomas. This suggests that VISTA may contribute to immune suppression in 

highly malignant lesions by inhibiting T cell function, thereby reducing the antitumor 

response. As a result, VISTA may serve as a potential immunotherapeutic target in these 

aggressive cancers.  

Likewise, we evaluated OX40L, an immune checkpoint modulator that is primarily 

expressed on activated antigen-presenting cells, including dendritic cells, B cells, and 

macrophages (135). Its interaction with OX40, expressed on T cells, enhances CD4 and 

CD8 T cell survival, thereby boosting tumor-specific effector T cell responses while 

simultaneously counteracting the suppressive effects of regulatory T cells (Tregs) (136). 

A recent study on NSCLC demonstrated that elevated OX40L expression correlates with 

increased CD4 T cell infiltration and improved OS (137). Similar findings have been 

reported in SCLC, melanoma, and pancreatic ductal adenocarcinoma, highlighting its 

potential prognostic and therapeutic significance (138, 139). In our study, OX40L 

expression was not significantly associated with survival outcomes, which may, in part, 

be attributed to the limited sample size. However, we observed that AC tumor cells 

exhibited lower OX40L expression than other LNEN subtypes. Interestingly, in our 

working group's previous study on LNENs, we did not detect significant differences in 

OX40 expression across histological subtypes, suggesting that OX40 and OX40L may 

exhibit independent expression patterns (140). 
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GITR is a costimulatory receptor expressed on T cells and NK cells, playing a crucial role 

in effector T cell activation (141). Given its ability to enhance anti-tumor immunity, GITR 

is a promising immunotherapeutic target. Preclinical models show that GITR activation 

boosts T cell responses while inhibiting Treg function, and several clinical trials are 

currently evaluating GITR-targeted therapies (142, 143). In our study, GITR expression 

varied by LNEN subtype. AC tumor cells showed higher GITR levels than LCNEC and 

SCLC tumor cells. In contrast, immune cells within ACs exhibited significantly lower 

GITR levels than those in LCNEC and SCLC tumors. This observation suggests that the 

tumor histology type and the immune cell infiltration patterns may influence GITR 

expression. Furthermore, the effects of GITR on tumor-infiltrating immune cells appear 

to be time dependent. Initially, GITR activation suppresses Treg function, promoting 

immune infiltration. However, prolonged GITR stimulation may ultimately suppress 

antitumor immunity (144-148). Our research group’s previous study further supported 

this, showing that AC tumors, despite high GITR expression, had fewer CD8 and CD3 

tumor-infiltrating lymphocytes than LCNEC and SCLC tumors, where GITR expression 

was highest (140). From a prognostic perspective, our analysis found that low GITR 

expression in the TIM was associated with a borderline significant trend toward improved 

survival. This pattern remained consistent in Cox regression models. These findings 

highlight the complex role of GITR in tumor immunity and its potential as a therapeutic 

target in LNENs. 

Lastly, TIM3 is a negative immune checkpoint regulator primarily expressed on natural 

killer cells and macrophages. While unbound TIM3 enhances T cell activation, its 

engagement upon activation leads to immune suppression, inhibition of anti-tumor 

immune responses, and poorer prognosis (149-151).  Preclinical studies have 

demonstrated that dual blockade of TIM3 and PD-1 induces tumor regression, and several 

clinical trials are currently investigating TIM3-targeted therapies in solid tumors (149, 

150, 152, 153). In our study, TIM3 expression was higher in both tumor cells and immune 

cells of ACs compared to LCNEC and SCLC tumors. From a clinical perspective, 

elevated TIM3 expression in both tumor cells and immune cells was associated with a 

trend toward improved survival. TIM3 expression did not emerge as an independent 

prognostic factor in our multivariate analysis. Despite this, the high TIM3 expression in 

AC tumors suggests that it may serve as a potential subtype-specific immunotherapeutic 
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target. Further investigations are required to determine whether TIM3 blockade could 

enhance immune responsiveness in AC patients and improve immunotherapy efficacy in 

LNENs. 

LNENs exhibit highly diverse immune phenotypes, with the expression of VISTA, 

OX40L, GITR, and TIM3 playing a critical role in modulating the tumor immune 

microenvironment through complex and time-dependent regulatory mechanisms (144, 

146, 147, 149-151, 153-158). These dynamic interactions should be carefully considered 

when evaluating their impact on intratumoral immune cell distribution and antitumor 

immune responses. Despite the insights gained from this study, several limitations must 

be acknowledged. A small subset (4.9%) of surgically resected tissue samples was older 

than 15 years, which may have affected sample integrity and biomarker stability. 

Additionally, due to the study's retrospective nature, clinical and follow-up data were 

unavailable for all cases, limiting our ability to draw definitive conclusions regarding 

prognostic implications.  Although our study comprises a relatively large collection of 

rare tumors, the cohort size remained insufficient to achieve statistical significance in 

specific analyses. Furthermore, the study is mainly descriptive and hypothesis-generating 

rather than confirmatory, as the direct effects of immunotherapeutic agents on LNEN 

immune modulation could not be assessed.  

  



51 
 

6. Conclusions 

The aim of our first study was to characterize the role of the NLRP3 inflammasome in 

KRAS mutant LADCs. We attempted to map the relationship between the TIM and 

inflammatory signaling pathways. We observed significant differences in clinical 

behavior among the five subtypes of LADCs.  Concerning the KRAS mutations, G12C 

was the most common in our cohort, followed by G12D and G12V. We compared different 

subtypes of LADC based on KRAS mutations, which showed significant intratumor 

variability. In nineteen KRAS G12C mutant patients, different tissue samples from the 

same tumor harbored distinct mutational profiles, indicating that there is a high level of 

genetic heterogeneity within the tumor.  

Our results revealed a significant relationship between NLRP3 expression and immune 

cell infiltration. Increased NLRP3 levels were associated with enhanced immune 

responses, and thus, part of the tumor’s immune system. Additionally, we analyzed the 

relationship between NLRP3 levels and specific KRAS mutant variants. However, we did 

not find a statistically significant correlation between them. Thus, it is likely that 

inflammatory pathways are formed independently of KRAS-associated tumor 

development. These findings underscore the potential of targeting the NLRP3 

inflammasome as a novel therapeutic strategy for patients with LADC. 

Our second study provided valuable insights into the immunophenotypic diversity of 

LNENs. We identified distinct immunological profiles by examining the expression 

patterns of four novel immunotherapeutic markers, namely VISTA, OX40L, GITR, and 

TIM3, across different LNEN subtypes. TIM3 expression was significantly elevated in 

AC, while GITR expression was most pronounced in SCLC and LCNEC. Immune cell 

infiltration differed among LNEN subtypes. Lower levels of immune markers observed 

in AC may indicate that their tumor immune environment is more immunosuppressive. 

Survival outcomes were better in the case of TIM3 expression, suggesting that TIM3 may 

be a potential prognostic biomarker in LNENs. Together, these results highlight the need 

for a subtype-specific immunotherapeutic approach and further investigation into the 

efficacy of immune checkpoint inhibitors targeting TIM3, GITR, and VISTA.    
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7. Summary 

Our work emphasizes the complexity of LADC and LNENs. It highlights the importance 

of histological diversity, genetic variability, inflammation, and the dynamics of the 

immune microenvironment. The initial study focused on the heterogeneity of LADC, 

examining the KRAS mutation status, its relationship with histopathological growth 

patterns, and the role of NLRP3 inflammasome activation in the immune response. 

In our analysis, 19 cases exhibited significant intratumoral heterogeneity in KRAS 

mutations, indicating genetic variability within the tumor. According to the growth 

pattern, it can be said that KRAS G12C mutations were present in lepidic LADC, while 

wild-type KRAS gene mutations were absent in micropapillary LADC. Nevertheless, we 

did not find a significant correlation between KRAS mutations, histological growth 

patterns, and mucin secretion. Beyond histological and genetic analysis, we explored the 

expression of the inflammatory factor NLRP3 and its relationship with immune cell 

infiltration and the TIM. Our findings indicate that high NLRP3 expression is associated 

with an inflammatory microenvironment and increased immune cell infiltration, yet no 

significant correlation was observed between NLRP3 expression and KRAS mutational 

status. 

In the second part of our research, we analyzed the expression of four immunotherapeutic 

markers (VISTA, OX40L, GITR, TIM3) in LNENs to gain deeper insights into the tumor 

immune microenvironment and potential therapeutic targets. Our findings reveal distinct 

patterns of immune checkpoint expression across LNEN subtypes, with ACs exhibiting 

high TIM3 expression in tumor cells. In contrast, we observed an increase in GITR 

expression in ACs and SCLCs. In the case of OX40L, the highest values were observed 

in SCLCs. In ACs, as intermediate-grade malignant tumors, the expression levels of 

OX40L, VISTA, and GITR were also significantly lower. All these results may indicate 

significant differences in immune regulation between specific subtypes. These extensive 

results contribute to a better understanding of immune modulation in pulmonary 

malignancies and provide a foundation for future targeted immunotherapeutic strategies. 
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