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1. Introduction (with the scientific background and the relevant literature) 

1.1. Artificial intelligence and deep learning 

 Artificial intelligence (AI) is the field of study of algorithms mimicking human 

intelligence, which encompasses a wide range of sub-fields, including machine learning 

(ML), which deals with the development of learning algorithms, and deep learning (DL), 

a sub-section of machine learning algorithms which are developed by mathematical 

modeling of the human nervous system. DL uses artificial neural networks (ANNs) with 

multiple layers to extract and compress information from their input data (1). While 

simple ML algorithms are widely used in medical research among them in radiomics, 

their applicability and accuracy may be limited in comparison to DL algorithms. (1). 

 Convolutional neural networks (CNNs) are a specialized type of ANNs developed 

for image analysis, that can extract and compress features from radiological imaging data 

with configurable convolutional layers. Although CNNs are inherently more complex 

than traditional ML methods, their use does not require additional steps for feature 

extraction (1–3). 

CNNs most commonly fall into the category of supervised learning algorithms, 

meaning that to be able to change the parameters of the network, an assigned ground truth 

(GT) annotation is required (3). CNNs in radiology may be used for image segmentation, 

classification, object detection, or image generation, among other various tasks in medical 

imaging (2). Depending on the required network output, the GT annotations should also 

match this output. Self-supervised and unsupervised approaches have also been explored 

for radiological image analysis but have not yet reached the level of accuracy of 

supervised learning methods (1,2). 

 Transformers are newer neural network architectures which are designed 

primarily for natural language processing, due to their ability to capture global context 

and long-range dependencies within data. In many cases, these have been shown to have 

superior performance to CNNs in computer vision tasks (1). Large language models 

(LLMs) are a recent development built on the transformer DL architecture enabling the 

large-scale automatic processing of digital text. Although LLMs are still young, so-called 

vision language models (VLM) have already been built on them enabling the joint 

processing of medical imaging and text information (1,4). In the long run, multi-modal 

large models, such as VLMs, are a goal of DL research, as well as the development of 
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generally adaptable, so-called foundation models which can either be used for various 

tasks without modification or require minimal computation for adjustment (fine tuning) 

for a specific task (1). 

 DL studies establishing new models usually start with data collection and 

annotation steps, which is currently also the most time-consuming and difficult part of 

these studies due to the low availability of high-quality clinical data (even in highly 

curated datasets and repositories). Collected data is organized into a data structure that is 

then used for DL model training and evaluation. This is commonly done by splitting the 

data into training, validation (“tuning”), and testing partitions or by k-fold cross-

validation (usually with five folds). The data compartment used for model training can be 

“enriched” via data augmentation methods, and generalization can be improved through 

various regularization methods (2). 

1.2. Analysis of focal liver lesions using deep learning 

Radiological imaging as a tool for the detection and diagnosis of focal liver lesions 

(FLLs) has steadily grown worldwide in the recent years, while delays in treatment and 

unnecessary procedures and costs can only be lowered by apt and accurate diagnoses of 

these pathologies. In comparison to computer tomography (CT), magnetic resonance 

imaging (MRI) provides the most detailed non-invasive method for the characterization 

of FLLs, with specificity above 82% and sensitivity above 94%, thanks to its excellent 

soft tissue contrast, without exposure to ionizing radiation, especially when performed 

with intravenous contrast agents (5). 

Contrast agents, that are specifically designed for the imaging of physiologically 

functioning hepatocytes, such as gadoxetate disodium or gadobenate dimeglumine, have 

proven to be highly useful in the detection and differentiation of benign and malignant 

foci of the liver. These contrast agents, also called hepatocyte-specific contrast agents 

(HSCs) are taken up by hepatocytes and secreted into the bile (6). HSCs therefore can 

distinguish between liver lesions composed of normal hepatocytes and those made up of 

poorly differentiated hepatocytes or non-hepatocytic cells. Additionally, these agents 

facilitate the detection of small lesions by creating a stark contrast between the enhancing 

parenchyma and areas lacking normal hepatocytes during the hepatobiliary phase (HBP) 

(6). 
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Common focal liver lesions (FLLs) like hepatocellular carcinoma (HCC) and liver 

metastasis (MET) pose a considerable diagnostic challenge. Patients with these 

conditions often only have curative options through surgical resection or image-guided 

ablation, making early detection crucial. METs are the most frequently occurring 

malignancies in the liver, and it is reported that up to 70% of all individuals with colorectal 

cancer will develop METs at some stage during their lifetime (7).  

HSC-enhanced MRI has been shown to have the highest sensitivity (73.3%) for 

METs smaller than 10 mm in diameter among all imaging modalities, which also 

translates to a significantly better survival rate of patients imaged with MRI (70.8%) 

compared to those imaged with CT (48.1%) (8). HCC is the fifth most common solid 

malignancy worldwide, and the mortality rate from HCC is predicted to rise in the coming 

decades (9). HCC typically develops in the background of decades of chronic liver disease 

(CLD). MRI findings of an arterial-enhancing mass with subsequent washout and 

enhancing capsule on delayed interstitial phase images are diagnostic for HCC (10). Focal 

nodular hyperplasia (FNH) is the second most common benign solid FLL after 

hemangioma. FNH is a common incidental finding in imaging studies, and it is a frequent 

source of differential diagnostic dilemmas of malignant lesions. A definitive diagnosis of 

FNH can be established in patients who do not have CLD when typical features such as 

arterial phase and HBP hyperenhancement and a central scar are detected with HSC MRI 

(11). Standardized data collection and reporting systems have also been developed, such 

as the Liver Imaging Reporting and Data System (LI-RADS), to improve CT and MRI 

diagnosis by reducing variability in the interpretation of imaging studies (12). However, 

due to the complex nature of these systems, their integration into the clinical workflow 

can be cumbersome. 

AI techniques have been introduced in growing numbers to facilitate lesion 

detection and classification, assess the patients’ prognosis, or identify risk factors of FLLs 

based on imaging studies (13). Some of these studies extracted large numbers of image 

features from dynamic contrast-enhanced MRI to build mathematical models for the 

automatic classification of FLLs (14). Deep learning models (DLMs) are state-of-the-art 

image processing algorithms predominantly based on CNNs. DLMs have been tested for 

analysis of all known imaging modalities and achieved excellent results in image-based 

detection and classification of various diseases (15). A handful of studies have also 
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applied DLMs to classify FLLs in MRI images and demonstrated that the performance of 

the DLMs is excellent and comparable to the human observers’ diagnostic rate (16–19). 

Among different DLM architectures, models using 3D convolutions could be efficiently 

trained on a relatively small number of cases for differentiating between the most 

common types of FLLs (16,17).  

The processed data required for DLMs often include two-dimensional (2D) slices 

or three-dimensional (3D) image volumes; moreover, in the case of magnetic resonance 

imaging (MRI) studies, the different sequences can be condensed into a multi-channel 

input. Due to their efficiency, convolutional neural networks (CNNs) have replaced other 

ML approaches in most image classification and segmentation tasks (20,21). 

Meanwhile, current CNN classification models have limited value in clinical 

practice as these have been trained to diagnose only a handful of liver pathologies based 

only on a small set of MRI images. Current DLMs cannot recognize many FLLs 

belonging to less common diagnoses and lesions with atypical image features or with 

post-treatment changes (22). A clinically useful DLM must be able to analyze multiple 

image sequences to identify a comprehensive set of image features that can be used for 

the characterization of FLLs and the generation of a differential diagnosis (23). For the 

transparency of the AI-driven classification process, it is essential to know how many of 

the detected image features support the diagnosis and to validate the localization of these 

features via network visualization techniques, such as activation and occlusion sensitivity 

maps. Such sophisticated models are better suited for the systematic evaluation of FLLs 

and can increase the efficiency and the reproducibility of the imaging diagnosis as well 

as facilitate and standardize the development of novel imaging methods, for example new 

MRI reconstruction methods. 
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2. Objectives 

 Considering recent advancements in abdominal radiology and radiomics the aim 

of the current thesis is to demonstrate the feasibility of DL-based focal liver lesion 

analysis using freely available open-source software. 

  The objective of the first study presented in the current study was to show that 

focal liver lesions frequently imaged using HSC MRI in the Hungarian population can 

automatically be categorized into classes approximating the opinion of a board-certified 

radiologist. Furthermore, to evaluate whether a single axial slice of an FLL contains 

enough information for this categorization in comparison to using three-dimensional 

images. 

 In our second study aimed to quantify the accuracy with which radiological 

features of FLLs can automatically be identified based on HSC MRI and to evaluate the 

agreement between the created model, a radiologist trainee, and an experienced 

abdominal radiologist.  
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3. Methods 

3.1. Differentiation of tumor types 

3.1.1. Patient and MRI study selection 

In the first retrospective single-center study multi-phasic MRI studies of patients 

with FNHs, HCCs or METs were collected. These studies were conducted using 

gadoxetate disodium, an HSC and they were collected from the picture archiving and 

communication system of our institute. The need for written patient consent was waived 

by the Institutional Research Ethics Committee (SE-RKEB 136/2019.) due to the 

retrospective nature of the study. For image acquisition between November 2017 and 

October 2020 a Philips Ingenia 1.5 T scanner (Philips Medical Systems, Eindhoven, The 

Netherlands) was used. T2-weighted (T2w) spectral-attenuated inversion recovery (also 

known as SPAIR), arterial phase (HAP), portal venous phase (PVP), and HBP scans of 

each eligible patient were collected for further analysis. Lesions that were included were 

either histologically confirmed or exhibited typical radiological characteristics of the 

given lesion type with this type of MRI examination based on the opinion of an abdominal 

radiologist. Patients younger than 18 years of age at the time of imaging were excluded 

from the study. Patient demographics, collected and analyzed lesion properties, and in the 

case of metastatic lesions the histological types of the original tumor are shown in Table 

1. 
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Table 1. Patient demographics, imaging properties per lesion class, and details of 

metastatic lesion origin. (17) 

 
 

FNH HCC MET Total 

Number of patients 42 13 14 69 

Age in years at imaging, mean ± 

SD 
45 ± 12 66 ± 5 57 ± 10 54 ± 14 

Sex     

Male 11 8 8 27 

Female 31 5 6 42 

Lesion properties     

Number 71 69 76 216 

Primary type     

     CRC   21  

     Leiomyosarcoma   18  

     GI adenocc. or 

cholangiocc. 
  15  

     Breast cc.   11  

     Pancreas cc.   7  

     Neuroendocrine ileum cc.   3  

     Papillary thyroid cc.   1  

cc.: Carcinoma; CRC: Colorectal cancer; FNH: Focal nodular hyperplasia; GI: 

Gastrointestinal; HCC: Hepatocellular carcinoma; MET: Metastasis; SD: Standard 

deviation; T: Tesla.  

3.1.2. Data preparation and dataset creation 

MRI scans were exported as DICOM files, that were anonymized to remove the 

patients' social security numbers, birth date, sex, age, body weight, and date of the 

imaging study. Anonymized PVP and HBP files were resampled and spatially aligned to 

the corresponding T2w volume using BSpline as a non-rigid registration method via 3D 
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Slicer, an open-source visualization and medical image computing software, which was 

also used for annotation, cropping using the area inside the annotation and file conversion 

(24,25). Lesions were annotated by cubic regions of interest (ROIs). The lesions were 

then cropped from the aligned HAP, PVP, HBP, and T2w volumes using the same ROI. 

The cropped volumes were converted to NIfTI (26) file format. The saved NIfTI files 

were combined into one four-dimensional (4D) input data for each lesion (Figure 1). 

Cropped lesions were randomly sorted into datasets. 10-10 lesions were added to the test 

and validation dataset from each class, and the remaining tumors were added to the 

training dataset. For the analysis of axial slices NIfTI files were sliced up into axial PNG 

images. The resulting T2w, HAP, PVP, and HBP PNG files were concatenated (Figure 2) 

using a custom-written computer program in Python. The training and validation datasets 

contained three axial slices of each lesion (i.e. three most representative axial slices of the 

lesion within the NIfTI files). The test dataset contained one slice from each lesion. 

 
Figure 1. Steps of input data preparation for the three-dimensional densely connected 

convolutional neural network. A: Three-dimensionally rendered whole volumes at the 

level of the lesion (indicated by the white frame); B: Cropped cubic volumes containing 

the lesion; C: The four cubic volumes are concatenated into one four-dimensional file; 
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each volume is represented by a different color. T2w: T2-weighted; HAP: Hepatic arterial 

phase; PVP: Portal venous phase; HBP: Hepatobiliary phase. (17) 

 
Figure 2. Illustration of multi-channel input data for the 2D-DenseNet. Colors are 

changed for the purpose of illustration. A: Cubic magnetic resonance image volumes 

containing the lesion; B: Axial slices acquired from the cropped volumes; C: The four 

axial slices are concatenated into a single image; each slice corresponds to a respective 

image. T2w: T2-weighted; HAP: Hepatic arterial phase; PVP: Portal venous phase; 

HBP: Hepatobiliary phase. (17) 

3.1.3. Data processing, training, and testing 

Concatenated files were modified via transform functions during the training 

process. Image pixel intensity was scaled between -1.0 minimum and 1.0 maximum 

values. Data augmentation transforms were applied to the training samples, including 

random rotation (70° range along two axes) and zoom (0.7–1.4 scaling) to enrich training 

data. Furthermore, the axial slices (2D images) were resized to 64 × 64 resolution. 
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Transformed images were converted to tensors, which were then fed to a DenseNet264 

that used 2D convolutional layers (27). 

In the case of the 3D-DenseNet264 network, NIfTI voxels were resampled to an 

isovolumetric shape, voxel intensities were rescaled between -1.0 minimum and 1.0 

maximum value and NIfTI files were resized to 64 × 64 × 64 spatial resolution. Input 

resolution for both 2D and 3D networks was determined through manual hyperparameter 

tuning with the intention to find the lowest image resolution that does not decrease model 

performance metrics. The four NIfTI files were concatenated (T2w, HAP, PVP, HBP) to 

be used as multi-channel input for the 3D CNN. 90° rotation along two spatial axes, 60° 

rotation (x, y axes), zoom (0.8 - 1.35), and flipping were randomly applied to the training 

samples. MR volumes were converted to 4D tensors (number of channels, x-, y- and z-

dimensions) that were used as network input. We used DenseNet264 models through the 

Medical Open Network For Artificial Intelligence (MONAI) framework (28). During the 

training of the networks categorical cross-entropy loss was used as a loss function and the 

Adam optimizer (29). Network weights were randomly initialized. Networks were trained 

for 70 epochs. The area under the receiver operating characteristic curve (AUC) was used 

for the selection of the highest performing model weights. AUC was calculated after each 

epoch, and the model with the highest average AUC value was saved as the final model. 

Statistical evaluation is done in detail on the hold-out test dataset containing 10 lesions 

from each class. The tumor type with the highest probability, according to the last softmax 

layer of the CNNs, was selected as the predicted lesion type, encoding the predicted 

diagnosis as 1, while the predicted incorrect classes as 0. The calculation of metrics, such 

as specificity, sensitivity, f1 score, positive predictive value (PPV) and negative predictive 

value (NPV) for each class was based on these predictions. 

Classification performance is also measured using AUC values of each class, 

calculated from the softmax layer probability outputs. 95% confidence intervals are 

reported after each AUC value. To evaluate statistical significance between the test 

performance of the 2D and 3D classifiers DeLong’s test was used [14]. 

3.2. Identification of radiological features 

3.2.1. Clinical Dataset 

For our retrospective study, 99 patients were included (Table 2) who underwent 

abdominal MRI with gadoxetate disodium, an HSC, between 29 September 2017 and 11 
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August 2021, at our institution. As this is a retrospective study, the need for written patient 

consent for this retrospective analysis itself was waived by the Institutional Research 

Ethics Committee (SE-RKEB 136/2019.). However, all patients gave written informed 

consent for the MRI examination. The study was conducted in accordance with the 

Declaration of Helsinki and approved by the institutional review board of our university. 

Inclusion criteria of the study covered patients who were examined for FLLs with HSC-

enhanced MRI in our institution (134 patients, 175 examinations) using the same 1.5 T 

MRI machine, a Philips Ingenia 1.5 T scanner (Philips Medical Systems, Eindhoven, The 

Netherlands), and whose liver lesions could be unequivocally diagnosed based on 

histology sampling or typical imaging findings as it has been recommended by 

international guidelines. Exclusion criteria included age under 18 years at the time of the 

imaging, pregnancy, incomplete or inadequate quality scans, data collection errors, 

examination performed on a different MRI machine, and lesions with an equivocal 

diagnosis. Fifteen examinations were excluded as they were performed on a different 

scanner, 21 studies were excluded due to incomplete or inadequate scan quality and data 

collection errors, while 4 studies were performed on underage patients, and 4 studies did 

not contain or only contained lesions with an equivocal diagnosis. 

Table 2. Patient demographics and types of lesions analyzed in the study. Some patients 

were diagnosed with multiple lesion types; therefore, the number of included patients is 

not equal to the sum of the number of patients diagnosed with different lesion types. (30) 
 

FNH HCC MET Other All Patients 

Number of patients 52 23 17 16 99 

Male 15 16 9 6 42 

Female 37 7 8 10 57 

Average age at the time of imaging 44 64 57 53 54 

FNH: focal nodular hyperplasia, HCC: hepatocellular carcinoma, MET: liver 

metastasis. 

The final study cohort included 131 scans of 99 subjects diagnosed with 105 FNHs, 121 

HCC, 121 METs, and 32 other lesions belonging to various groups (such as hemangiomas 

and adenomas). 
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3.2.2. Image Acquisition and Processing 

All MRI scans were acquired using a Philips Ingenia 1.5 T scanner (Philips 

Medical Systems, Eindhoven, The Netherlands) and 5–20 mL intravenous gadoxetate 

disodium contrast with a dosage of 0.025 mmol/kg. The scans were performed according 

to our institutional guidelines. For the current study the T2w SPAIR, native T1-weighted 

3D mDIXON (NAT), HAP, PVP, equilibrium phase (VEN) T1-weighted 3D mDIXON, 

as well as HBP, standardly acquired at 15–20 s (HAP), 70–80 s (PVP), 2–3 min (VEN) 

and 20 min (HBP) after contrast administration, images of each lesion were collected 

from the institutional picture archiving and communications system. Both T2w and T1w 

scans were acquired in breath-hold. Standard 3D mDIXON and T2 SPAIR sequences 

were used. 3D mDIXON: 390 × 390 × 106 average image resolution, 0.942 mm × 0.942 

mm average pixel spacing, 2.5 mm average spacing between slices, 4–6 mm slice 

thickness, 5.8 ms repetition time (TR), 1.8/4.0 ms echo time (TE), 15° flip angle and 552–

616 Hz/pixel receiver bandwidth. T2 SPAIR: 398 × 398 × 100 average image resolution, 

0.935 mm × 0.935 mm average pixel spacing, 2.8 mm average spacing between slices, 3–

6 mm slice thickness, 1000–6742 ms TR, 100 ms TE, 90° flip angle, and 325–666 

Hz/pixel receiver bandwidth. 

Each scan was anonymized, and personal identifiers, such as patient name, birth 

date, social security number, and date of imaging were removed. All scans were converted 

to 3D NIfTI (26) image format, HBP scans were resampled with linear interpolation to 

isotropic, 1 × 1 × 1 mm voxel spacing, and all other scans were coregistered to the 

corresponding HBP scan. For image registration, the ITKElastix toolbox (31) was used 

with the rigid default parameter map. Misalignments resulting from image registration 

were manually corrected when necessary. Each FLL reported was marked with a single 

point marker placed in the HBP or HAP scan, and a radiologist with 13 years of 

experience in abdominal imaging marked the diameters of the lesions. Lesion smaller 

than 5 mm (largest axial diameter) were excluded from the study). Lesions were cropped 

from each scan based on their largest diameter, to which a 2-mm (2 voxels)-wide zone 

was added in each direction to account for misalignments between the 6 scans. For lesion 

marking and manual correction of misalignment 3D Slicer (24) was used. The steps of 

the analysis are shown in Figure 3. 
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Figure 3. Steps of the analysis. HSC: hepatocyte-specific contrast-enhanced, MRI: 

magnetic resonance imaging. (30) 

Cropped lesions were randomly sorted into training, validation, and test datasets 

for DLM training and testing (Table 3) in a ratio of 53:17:30. In the MRI scans of 99 

patients, the total number of focal liver lesions was 379, 202 lesions were used for 

training, 65 for validation, and 112 for testing. All scans and lesions belonging to the same 

patient were assigned to the same dataset. Each lesion was evaluated by an expert 

radiologist with 13 years of experience in abdominal imaging, as well as a radiology 

resident with 4 years of experience. Annotators had to decide whether the tumor belonged 

to the four provided tumor types: FNH, HCC, MET, or other; and whether or not the 

lesion contained the following radiological features: early (arterial phase) contrast 

enhancement, washout, delayed phase enhancement, peripheral enhancement, central 

scar, capsule, T2 hyperintensity compared to the surrounding liver tissue, iso- or 

hyperintensity compared to the surrounding liver tissue on venous phase, hypoenhancing 
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core, hemorrhage/siderosis. For AI training, the expert-reported labels were used as GT, 

as well as for results calculation. Table 3 contains the detailed distribution of expert 

annotations among datasets. The human observers had no access to the final diagnosis or 

the opinion of the other reader. The detailed distribution of the final annotations among 

datasets is shown in Table 3. 

Table 3. Distribution of lesions and characteristics among datasets. (30) 

Tumor Type Train Validation Test Total 

FNH 53 16 36 105 

HCC 62 22 37 121 

MET 72 19 30 121 

Other 15 8 9 32 

Radiological features 
    

Early enhancement 99 36 65 200 

Washout 41 8 32 81 

Delayed phase enhancement 65 28 36 129 

Peripheral enhancement 53 21 31 105 

Central scar 37 11 19 67 

Capsule 27 6 18 51 

T2 hyperintensity 88 39 42 169 

Iso- or hyperintensity on venous 

phase 

64 28 37 129 

Hypoenhancing core 110 28 50 188 

Hemorrhage/Siderosis 36 17 17 70 

FNH: focal nodular hyperplasia, HCC: hepatocellular carcinoma, MET: liver metastasis. 

3.2.3. Deep Learning Methods 

To be able to automate radiological feature generation, multiple deep learning 

algorithms were trained with different hyperparameter setups. Models implemented in 

MONAI (28), an open-source framework for deep learning in healthcare imaging were 

used. MONAI provides multiple 3D neural network implementations that can perform 

classification tasks on medical images. Each trained convolutional neural network had 6 
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input channels, one for each 32 × 32 × 32 resolution cubic input MRI scan showing the 

liver lesion. Input resolution was determined through manual hyperparameter tuning with 

the intention to find the lowest image resolution that does not decrease model accuracy. 

We trained DenseNet121, DenseNet169, DenseNet201, DenseNet264 (32), 

EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, 

EfficientNetB5, EfficientNetB6, EfficientNetB7 (33) models with various batch sizes, 

dropout rates and weight decay, among other hyperparameters. All models, including 

EfficientNets, were trained from scratch using random initialization. All models were 

trained for at least 300 epochs. Each model was modified so that its last classifier layer 

would be a sigmoid layer to be able to perform multi-label classification. Each model has 

10 probability outputs (numeric values ranging from 0 to 1), one for each radiological 

feature that it is trained to predict. By replacing (occluding) a part of the input volume 

with the mean voxel intensity of the image, the model prediction for each radiological 

feature changes. If important parts of the image are occluded, the prediction probability 

decreases, which can be visualized for each input channel and output feature. More 

negative values indicate higher importance in the decision process. This visualization 

technique will be referred to as ‘occlusion sensitivity map’. These maps can be useful for 

the interpretation of network predictions, highlighting the areas that played a more 

important role in the prediction of a feature (34). Accordingly, binary cross-entropy 

(BCE) loss was calculated and used for model weight adjustment during training. 

DenseNets were trained with dropout probabilities of 0, 0.25, 0.5, and 0.75. Each 

model was trained using an Adam optimizer (29) and a learning rate of 0.0001. All models 

were trained from scratch, without pretraining. To improve the generalizability of the 

model, different data augmentation methods (such as rotation of the images) were applied 

during training. Images were then resized to a 32 × 32 × 32 input shape. Image intensities 

were normalized and scaled between −1 and 1. The best-performing model was defined 

as the one achieving the highest mean AUC of the 10 predicted features on the validation 

dataset. During training the performance on the validation dataset was evaluated after 

every 20 epochs. Detailed evaluation of the final selected model was done on a hold-out 

test dataset (Table 3). 
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3.2.4. Statistical Evaluation 

ROC analysis was performed on the test dataset, via which AUC values were 

calculated, and cut-off values were set for each feature separately based on Youden’s 

index. At the given thresholds, sensitivity, specificity, PPV, NPV, and f1 score were 

calculated for each feature. Reported measures are calculated in comparison to the expert 

radiologist’s opinion (GT). Statistical power was calculated according to Obuchowski’s 

method using the ‘pROC’ (35,36) R package. Inter-rater reliability was calculated via 

Cohen’s Kappa between the expert opinion, annotations of a radiology resident, and the 

final selected machine learning model. 
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4. Results 

4.1. Differentiation of tumor types 

The 2D model achieved the highest average validation set AUC after 46 epochs, 

while the best average AUC value of the 3D network was reached after 62 epochs. 

Learning curves and AUC metrics for model selection are shown in Figure 4. 

 
Figure 4. Training metric curves and loss curves. The upper figure shows the area under 

the receiver operating characteristic curve (AUC) values after each training epoch of the 

two-dimensional and three-dimensional densely connected convolutional neural 

networks (DenseNets). The lower figure indicates the loss values for each training epoch 

of the two networks. 2D: Two-dimensional; 3D: Three-dimensional; AUC: Area under 

the receiver operating characteristic curve. (17) 
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These model weights were saved and then used to make test set predictions 

(Figure 5). The finalized 2D and 3D networks were evaluated on the same test set, 

consisting of 10 lesions from each tumor type. On this test dataset, the finalized 2D model 

achieved 0.9900 (0.9664–1.0000), 0.9600 (0.8786–1.0000) and 0.9950 (0.9811–1.0000) 

AUC values for FNH, HCC and MET. The average AUC was 0.9783 (0.9492–1.0000). 

The AUC of the finalized 3D model was 0.9700 (0.9077–1.0000), 0.9050 (0.7889–

1.0000) and 0.9550 (0.8890–1.0000) for FNH, HCC and MET diagnosis. The average 

AUC value was 0.9433 (0.8942–0.9924) on the test dataset (Figure 5). No statistically 

significant difference was found between the diagnostic performance of the 2D, and 3D 

classifiers based on the ROC curve comparison for the three classes (p = 0.4835 for 

FNH; p = 0.4347 for HCC; p = 0.1913 for MET). The 2D CNN achieved comparable 

results to the 3D network (Table 4). The highest diagnostic accuracy was achieved by 

both networks for FNH and MET, while both networks demonstrated lower AUC values 

for HCC (Table 4). PPV, sensitivity, f1 score, specificity and an NPV of 0.9091, 1.0000, 

0.9524, 0.9500, 1.000 values were achieved by the 2D model for FNH diagnosis. The 3D 

network performed FNH classification with similar PPV (0.9000), sensitivity (0.9000), 

f1 score (0.9000), specificity (0.9500) and NPV (0.9500) values as the 2D network. 

During HCC classification both the 2D and 3D models reached acceptable metrics with 

PPVs of 1.000 and 0.8750, sensitivities of 0.8000 and 0.7000, f1 scores of 0.8889 and 

0.7778, specificities of 1.000 and 0.9500, lastly NPVs of 0.9091 and 0.8636. For the 

differentiation of METs from FNHs and HCCs the use of the 2D DenseNet resulted in a 

PPV of 0.9091, sensitivity of 1.000, f1 score of 0.9524, specificity of 0.9500 and NPV of 

1.000, while the 3D DenseNet achieved values of 0.7500, 0.9000, 0.8182, 0.8500 and 

0.9444 for PPV, sensitivity, f1 score, specificity and NPV respectively. On average, both 

the 2D and 3D trained models could distinguish FNHs, HCCs and METs reliably with 

PPVs of 0.9394 and 0.8417, sensitivities of 0.9333 and 0.8333, f1 scores of 0.9312 and 

0.8320, specificities of 0.9667 and 0.9167, NPVs of 0.9697 and 0.9194. 
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Figure 5. Receiver operating characteristic curves. A: Two-dimensional; B: Three-

dimensional. 2D: Two-dimensional; 3D: Three-dimensional; FNH: Focal nodular 

hyperplasia; HCC: Hepatocellular carcinoma; MET: Metastasis. (17) 

Table 4. Evaluation metrics of the two-dimensional and three-dimensional densely 

connected convolutional neural networks. (17) 
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Input data PPV Sensitivity F1 score Specificity NPV 

FNH 2D 0.9091 1.0000 0.9524 0.9500 1.0000 

3D 0.9000 0.9000 0.9000 0.9500 0.9500 

HCC 2D 1.0000 0.8000 0.8889 1.0000 0.9091 

3D 0.8750 0.7000 0.7778 0.9500 0.8636 

MET 2D 0.9091 1.0000 0.9524 0.9500 1.0000 

3D 0.7500 0.9000 0.8182 0.8500 0.9444 

Mean 2D 0.9394 0.9333 0.9312 0.9667 0.9697 

3D 0.8417 0.8333 0.8320 0.9167 0.9194 

2D: Two-dimensional; 3D: Three-dimensional; FNH: Focal nodular hyperplasia; HCC: 

Hepatocellular carcinoma; MET: Metastasis; NPV: Negative predictive value; PPV: 

Positive predictive value. 

In addition, these results are supported by the extraction of attention maps from the trained 

models using test set images. We used an open-source software (M3d-CAM) to visualize 

the most important regions for diagnosis-making (37). The extracted attention maps may 

correlate with the certainty with which a model classifies FLLs (Figure 6).  

 
Figure 6. Visualization of the attention maps compared to the hepatobiliary phase input 

images. Two-dimensional (lower row) and three-dimensional (upper row) attention maps 
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(column A-C) and hepatobiliary phase (column D) images were extracted from the 3rd 

dense block of the trained network. A-C: Two-dimensional (lower row) and three-

dimensional (upper row) attention maps; D: Hepatobiliary phase images. Column A 

contains the attention maps for focal nodular hyperplasia (FNH), column B for 

hepatocellular carcinoma, and column C for metastasis probabilities. The correct 

diagnosis is FNH in this case. Probabilities for different lesion classes are annotated 

below each attention map. The red areas are more important for the classification than 

other image regions. FNH: Focal nodular hyperplasia; HCC: Hepatocellular carcinoma; 

MET: Metastasis; HBP: Hepatobiliary phase. (17) 

 

4.2. Identification of radiological features 

After training each model with multiple hyperparameter setups, the highest 

validation mean AUC (0.9147) was achieved by the EfficientNetB0 model after 480 

epochs. In this setting, the network was trained with a batch size of 32. We provide the 

training results of the other model architectures as well in decreasing order, based on 

validation mean AUC: EfficientNetB6 (0.9033), EfficientNetB2 (0.9033), EfficientNetB3 

(0.902), EfficientNetB4 (0.8988), EfficientNetB1 (0.8922), EfficientNetB5 (0.8922), 

DenseNet121 (0.8807), DenseNet169 (0.8792), DenseNet201 (0.8733), DenseNet264 

(0.8682), EfficientNetB7 (0.856). The final EfficientNetB0 model could identify most 

features with excellent metrics when tested on the independent test dataset. Table 5 

summarizes the results for each feature, including all lesion types. The highest AUCs 

were reached for the detection of delayed phase enhancement (0.99) and iso- or 

hyperintensity on the venous phase (0.98). These features were only rarely detected as 

false positives or remained undetected. The least predictable features based on AUC were 

T2 hyperintensity (0.79), peripheral enhancement (0.74), and washout (0.64). ROC 

curves and corresponding AUC values are shown in Figure 7. 
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Figure 7. Receiver operating characteristic (ROC) curves for each feature are based on 

the test dataset predictions. The colored dots indicate the cut-off points used to calculate 

metrics for the specific feature. AUC: Area Under the ROC curve. (30) 
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Table 5. Test dataset metrics. (30) 

Radiological Features PPV NPV Sensitivity Specificity f1 AUC Power  

Delayed phase 

enhancement 

0.92 0.97 0.94 0.96 0.93 0.99 1 

Iso- or hyperintensity 

on venous phase 

0.92 0.96 0.92 0.96 0.92 0.98 1 

Central scar 0.44 0.99 0.95 0.75 0.60 0.91 1 

Capsule 0.72 0.95 0.72 0.95 0.72 0.87 1 

Early enhancement 0.87 0.75 0.80 0.83 0.83 0.86 1 

Hypoenhancing core 0.77 0.83 0.80 0.81 0.78 0.84 1 

Hemorrhage/siderosis 0.50 0.94 0.71 0.87 0.59 0.82 0.99 

T2 hyperintensity 0.78 0.79 0.60 0.90 0.68 0.79 1 

Peripheral 

enhancement 

0.51 0.93 0.87 0.68 0.64 0.74 0.98 

Washout 0.64 0.82 0.50 0.89 0.56 0.64 0.64 

Mean values 0.71 0.89 0.78 0.86 0.73 0.84 - 

SD values 0.17 0.08 0.14 0.09 0.13 0.10 - 

PPV: positive predictive value, NPV: negative predictive value, AUC: area under the 

receiver operator characteristic curve, SD: standard deviation. 

The highest and lowest PPVs were reached for delayed phase enhancement (0.92) 

and central scar (0.44) detection, while the best and worst sensitivities were for central 

scar (0.95), delayed phase enhancement (0.94), and iso- or hyperintensity on venous 

phase (0.92) vs. T2 hyperintensity (0.60) and washout (0.50). NPVs and specificities were 

higher on average (0.89, 0.86) than PPVs and sensitivities (0.71, 0,78). Apart from early 

enhancement (0.75) and T2 hyperintensity (0.79), all other NPVs were above 0.8. The 

feature with the lowest specificity was peripheral enhancement (0.68), while the most 

specific was delayed phase enhancement (0.96). As shown in Table 4, almost all feature 

AUCs were calculated with power reaching 0.98; therefore, the number of samples is 

more than sufficient to support these results. 
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Table 6. Results for annotated features: focal nodular hyperplasia. (30) 

Radiological Features True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives 

f1 

Delayed phase 

enhancement 

34 0 0 2 0.97 

Iso- or hyperintensity 

on venous phase 

34 0 0 2 0.97 

Early enhancement 32 1 2 1 0.96 

Central scar 18 0 17 1 0.67 

Washout 0 34 2 0 0 

Peripheral 

enhancement 

0 33 3 0 0 

Capsule 0 34 2 0 0 

T2 hyperintensity 0 32 0 4 0 

Hemorrhage/siderosis 0 32 4 0 0 

Hypoenhancing core 0 36 0 0 - 

 

To be able to explore the differences in predictions between the different lesion 

types, results are reported for FNHs, HCCs, and METs separately as well (Table 6, Table 

7, and Table 8). Since not all features are present in all lesion types, not all metrics can be 

calculated for all features in each case. To simplify this problem, feature predictions are 

ordered according to their respective f1 scores. To provide more details on false 

detections, non-abundant features are also listed for each lesion type. Features present in 

FNHs were generally well recognizable by the model. Features related to contrast 

enhancement that are representative of FNHs, such as early or delayed phase 

enhancement, had f1 scores above 0.95, while non-present features were rarely detected. 

Central scars were common false positive detections, but mostly if the lesion was FNH 

(Figure 8). If the lesion analyzed was HCC (Table 7) or MET (Table 8), the model almost 

never predicted the presence of a central scar. 
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Figure 8. Two examples (in each column) of central scar predictions in focal nodular 

hyperplasias. Left: correct prediction, right: incorrect prediction. Upper row: native T1-

weighted (left) and T2-weighted (right) images. Rescaled voxel intensities are indicated 

on the y-axis. Lower row: occlusion sensitivity maps indicating the contribution of each 

voxel to the prediction. In the case of the T2-weighted image, the area representing the 

central scar presumably increases the probability of the identification of this feature. In 

the case of the native T1-weighted image, the areas near the central scar led to the highest 

increase in the prediction probability. GT: ground truth, prob: probability, pred: 

prediction, NAT: native T1-weighted image, T2W: T2-weighted image. (30) 
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Table 7. Results for annotated features: hepatocellular carcinoma. (30) 

Radiological Features True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives 

f1 

Capsule 13 18 1 5 0.81 

Early enhancement 19 6 1 11 0.76 

Hemorrhage/siderosis 12 14 6 5 0.69 

Washout 16 3 2 16 0.64 

Hypoenhancing core 11 12 9 5 0.61 

T2 hyperintensity 3 26 6 2 0.43 

Delayed phase 

enhancement 

0 35 2 0 0 

Peripheral enhancement 0 20 17 0 0 

Central scar 0 34 3 0 0 

Iso- or hyperintensity on 

venous phase 

0 34 2 1 0 

 

Table 8. Results for annotated features: liver metastasis. (30) 

Radiological Features True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives 

f1 

Peripheral enhancement 27 0 0 3 0.95 

Hypoenhancing core 26 0 0 4 0.93 

T2 hyperintensity 18 3 1 8 0.8 

Early enhancement 0 26 4 0 0 

Washout 0 25 5 0 0 

Central scar 0 29 1 0 0 

Capsule 0 28 2 0 0 

Hemorrhage/siderosis 0 28 2 0 0 

Delayed phase 

enhancement 

0 30 0 0 - 

Iso- or hyperintensity on 

venous phase 

0 30 0 0 - 
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Among all lesion types, HCC feature prediction yielded the least desirable results 

in this analysis as well. As reported in Table 7, diagnostically important features, namely 

washout and early enhancement, were undetected in half and nearly half of all cases. 

Features that are present in both HCCs and METs, such as peripheral enhancement 

(MET), were common false positive findings in the HCC group, but not in the MET 

group. Capsule was less difficult to detect, but peripheral enhancement was falsely 

detected in half of the analyzed cases, possibly due to the similarity between the two. 

Although hemorrhage was reported only in HCCs by the expert annotator, the algorithm 

predicted it in four cases in FNHs as well, and two cases in METs. Hemorrhage in HCCs 

remained undetected in one-third of cases, like hypoenhancing core (Table 7). Features 

related to contrast enhancement were detected less accurately in HCCs. Hypoenhancing 

core was falsely detected in nine cases and missed in five cases. The presence of other 

similar features such as early enhancement or hemorrhage might make the detection of a 

hypoenhancing core more difficult. 

The most common mistake in the case of METs was the underdiagnosis of T2 

hyperintensity (eight cases), which was most commonly marked in this group (Table 8). 

Features mostly present in FNHs were almost perfectly predicted (Table 8), while 

washout and early enhancement were the most common falsely detected features. Both 

peripheral enhancement and hypoenhancing core were identified with an f1 score above 

0.9. For an example of hypoenhancing core prediction, see Figure 9. 
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Figure 9. Examples of hypoenhancing core predictions in liver metastasis (left) and 

hepatocellular carcinoma (right). Left: correct prediction, right: incorrect prediction. 

Upper row: processed hepatocyte-specific contrast-enhanced scans. Rescaled voxel 

intensities are indicated on the y-axis. Lower row: occlusion sensitivity maps indicating 

the contribution of each voxel to the prediction. These maps indicate the prediction 

probability of the model for the hypoenhancing core feature, while the corresponding part 

of the image is replaced by the mean intensity value of the image. In the shown cases the 

image area that represents the hypoenhancing core is replaced by higher values (which 

makes the hypoenhancing core disappear), thus decreasing the probability of the 

identification of this feature. GT: ground truth, prob: probability, pred: prediction, HBP: 

hepatocyte-specific contrast-enhanced image. (30) 

Features reported in other lesion types were variably predictable (Table 8). 

Peripheral enhancement might be confused with nodular enhancement, exhibited by 
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hemangiomas, which was not explicitly analyzed, as only a low number of cases were 

available. Hypoenhancing core represents a similar case, as both cysts and hemangiomas 

may mislead the model predictions due to their enhancement characteristics. 

Table 8. Results for annotated features: other lesions. (30) 

Radiological Features True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives 

f1 

T2 hyperintensity 4 2 0 3 0.73 

Hypoenhancing core 3 2 3 1 0.6 

Early enhancement 1 6 1 1 0.5 

Delayed phase 

enhancement 

0 8 1 0 0 

Peripheral enhancement 0 2 6 1 0 

Central scar 0 7 2 0 0 

Iso- or hyperintensity on 

venous phase 

0 8 1 0 0 

Washout 0 9 0 0 - 

Capsule 0 9 0 0 - 

Hemorrhage/siderosis 0 9 0 0 - 

 

Cohen’s Kappas scores for each feature in each combination are reported in (Table 

9). The mean Kappa score was 0.60 for the agreement between the predictive model and 

the expert, similar to novice opinion compared to model predictions, indicating moderate 

reliability. In the case of delayed phase enhancement and venous phase iso- or 

hyperintensity, the agreement was almost perfect (> 0.8). Even the worst feature 

predictions (central scar, peripheral enhancement, capsule) showed moderate agreement 

(> 0.4) with the expert opinion. Features that were less accurately predicted by the 

network were also subject to disagreement between the two human observers. Central 

scar, for example, was more frequently identified by both the model and the radiology 

resident, while only moderate agreement was observable in the case of washout in all 

three comparisons. 
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Table 9. Interobserver agreement between the three observers, measured by Cohen’s 

Kappa. (30) 

Radiological Features Model vs. Expert Model vs. 

Novice 

Novice vs. Expert 

Delayed phase 

enhancement 

0.90 0.76 0.82 

Iso- or hyperintensity on 

venous phase 

0.88 0.73 0.77 

Capsule 0.67 0.51 0.76 

Early enhancement 0.62 0.59 0.82 

Hypoenhancing core 0.60 0.54 0.83 

T2 hyperintensity 0.52 0.52 0.81 

Hemorrhage/siderosis 0.50 0.42 0.76 

Central scar 0.48 0.68 0.66 

Peripheral enhancement 0.45 0.36 0.79 

Washout 0.41 0.53 0.59 

Mean values 0.60 0.56 0.76 

SD values 0.16 0.12 0.07 

SD: standard deviation. 
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5. Discussion 

FLLs are common findings during liver imaging, and the differentiation of benign 

and malignant types of FLLs is a significant diagnostic challenge, as imaging signs may 

overlap between different pathologies which can substantially alter the therapeutic 

decision. Therefore, precise and reproducible differential diagnosis of FLLs is critical for 

optimal patient management. Today, the most accurate imaging modality to diagnose 

FLLs is multi-phase dynamic contrast-enhanced MRI. Extracellular contrast agents 

(ECAs) are commonly used to perform multi-phase dynamic post-contrast MRI studies 

to differentiate between lesions based on their distinct contrast enhancement patterns, 

such as HAP hyper-enhancement or washout in the PVP (5). In comparison to ECAs, 

HSCs are taken up by hepatocytes and (in part) excreted through the biliary tract; thus, 

they can better differentiate between those lesions that consist of functionally active and 

impaired hepatocytes or those that are extrahepatic in origin (38). This behavior of HSCs 

is utilized for making a distinction between FNH and hepatocellular adenoma, or to detect 

small foci of HCC and MET within the surrounding liver parenchyma (39,40). 

In the current study, we evaluated different AI models on liver MRI images for the 

prediction of FLLs compiled from three different types of lesions, namely FNHs, HCCs 

and METs. To ensure that the models could achieve the highest possible prediction rate, 

we narrowed down our data collection to only those four MRI sequences that provided 

the highest tissue contrast compared to the neighboring parenchyma or depicted 

distinctive imaging features of the lesion types. For the same reason, we used only HSC-

enhanced scans for the analysis. We collected post-contrast images from HAP, PVP and 

HBP, and a T2w SPAIR image in the case of each lesion. A similar image analysis strategy 

was used by Hamm et al (16), who predicted 494 FLLs from six categories, including 

simple cyst, cavernous hemangioma, FNH, HCC, intrahepatic cholangiocarcinoma, and 

colorectal cancer METs using a 3D CNN model. The authors used HAP, PVP and delayed 

venous phase MRI images for the classification of the FLLs. They reported that the CNN 

model demonstrated 0.92 accuracy, 0.92 sensitivity and 0.98 specificity. The disadvantage 

of this study compared to ours was that it did not include HBP images, with only ECA 

images used for the MRI scans. 

There are a handful of studies that included conventional ML methods and 

achieved reasonably good results. Wu et al (41), for example, extracted radiomics 
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features from non-enhanced multi-parametric MRI images of FLLs and used them in ML 

models to differentiate between hepatic haemangioma and HCC. The final classifier 

achieved an AUC of 0.89, a sensitivity of 0.822 and a specificity of 0.714. Jansen et al 

(14), in their 2019 paper, used traditional ML methods for the same problem achieving 

an average accuracy of 0.77 for five major FLL types. 

Our models' performance in the test set was comparable to those from previous 

publications, as the AUC, sensitivity and specificity were excellent for both the 2D 

(0.9783, 0.9333 and 0.9667 respectively) and 3D (0.9433, 0.8333 and 0.9167 

respectively) architectures, which demonstrates the robustness of our data collection and 

analysis. 

The quality and quantity of input data are pivotal when training neural networks. 

MRI liver tumor analysis using DL methods has steeply increased, but there is evidence 

lacking to support the use of 2D or 3D data. The additional dimension in 3D network 

inputs makes them computationally more demanding and the different data augmentation 

methods and hyperparameters must be well chosen to avoid artifacts. Our study supports 

the results of Wang et al (23) and Hamm et al (16), emphasizing the need for multi-

channel input volumes in order to achieve better accuracy. In contrast to these approaches, 

we have also utilized HBP images, thereby increasing the number of input channels to 

four in order to improve accuracy and additionally trained 2D CNNs, proving them to be 

just as effective classifiers as 3D models. 

The selected architecture of the DL model can substantially alter classification 

accuracy. It is a novelty of our analysis that compared to previous examinations we 

utilized a DenseNet architecture. DenseNets contain multiple dense blocks, where each 

layer is connected with the residuals from previous layers. DenseNets require fewer 

trainable parameters at the same depth than conventional CNNs, as newly learned features 

are shared through all layers (27). Our results are among the first to indicate that this 

highly efficient network design can enhance the performance of AI models for the 

classification of multi-parametric MRI images of FLLs. 

Our first study's limitations are the low number of patients involved, the 

retrospective nature of the study, that it was conducted within a single institute, and thus 

lack of external evaluation. Additionally, a patient-level data split, instead of lesion level 

split, would have increased the independence of the test dataset samples. Further 
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improvement may be achieved by additional data collection (including additional lesion 

classes) and the use of more MRI volumes and different data augmentation methods as 

well as the use of pre-trained networks. Classification should also possibly be extended 

to more lesion classes. 

Our second study explores our findings on how DLMs may perform on a small, 

single-institutional dataset concerning a complex reporting task. Several research groups 

have reported excellent results on the automatic, DLM-based multi-label classification of 

various types of FLLs, but these put more emphasis on predicting lesion class and less 

emphasis on mimicking the human observers (16,17,19,42). More interpretable methods 

have been described in radiology in general, the most obvious one being chest X-ray 

reporting using deep learning methods, where multiple findings have to be identified in 

parallel by the AI (43). While chest X-ray interpretation is among the most advanced 

research areas in deep learning radiomics, other examination types and areas with less 

frequently performed studies and much more complex reporting tasks lack sufficient 

proof for the application of AI methods. Research on radiological feature descriptors is 

also of importance as many of the lesions are multifocal, many types may be found 

parallel, and histological confirmation cannot be acquired in all cases, thus, a certain 

diagnosis may not be possible (and necessary) for all lesions. Additionally, the described 

features allow a much broader extension of applications, since each may allow the user 

to draw different conclusions, such as whether tumor recurrence is observable 

(enhancement) or whether the malignant transformation of a regenerative nodule has 

occurred. Additionally, these models reproducibly give the same output on the same input 

images and because of this they can be used a metrics during research projects. 

These are partly the reasons why the main emphasis of the second study is on 

radiological feature identification. Although the classification of different FLLs based on 

the identified features could seem like a straightforward task, various challenges promote 

it to a research topic on its own. While the majority of the lesions evaluated in our study 

fell into three main lesion types, the liver is host to one of the largest varieties of focal 

pathologies; as such, it would be worth examining diagnostic algorithms built upon the 

present feature identifier in a more detailed manner. As such, they should be evaluated on 

a larger variety of pathologies. There are multiple lesion types, for example, 

cholangiocellular carcinoma, that are not present in the current dataset, but in future 
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studies should be evaluated, considering their clinical importance. Apart from this, further 

evaluation in this direction could be carried out in multiple ways that did not fit within 

the scope of the current manuscript. A classifier model could be built solely for the 

diagnosis of FLLs, as well as by reusing the currently presented feature identifier, for 

example, via transfer learning. In this case, the training of the model would be guided to 

take into account the radiological features identifiable by human observers, apart from 

deep features. The diagnosis of the tumor could also be based on the probabilities of the 

predictions for each feature. In this case, the top-N features would be used to create an 

algorithmic approach for diagnosis making. Our current interpretation of the feature 

detector partly opposes this approach, as the predictions of the model are evaluated based 

on the calculated optimal cut-off values. Apart from these, there could be other ways to 

create a diagnostic model that integrates the feature identifier for better interpretability. 

Because of this, the automatic classification of focal liver lesions lies outside the scope 

of the current paper. 

Abdominal imaging studies, such as HSC MRI, are less frequently approached in a similar 

manner due to the higher cost of imaging, the complexity of the task, the smaller amount 

of available data, and the more variable agreement on radiological feature abundance 

among professionals, as well as the need for more time-consuming data preparation and 

analyses. Most papers use some form of deep learning interpretation method, such as 

attention maps, to try to find explanations for classification predictions, while direct 

feature predictions have rarely been the focus of research. Wang et al., in their 2019 study, 

were among the first to use CNNs for focal liver lesion feature identification (23). The 

reported model was able to correctly identify radiological features present in test lesions 

with 76.5% PPV and 82.9% sensitivity, which is similar to our results, though their 

method was built on a precious lesion classifier, from which feature predictions were 

derived. Our study deliberately avoided the diagnosis of lesions and focused solely on 

feature identification. Sheng et al. also used deep learning to predict radiological features 

based on gadoxetate disodium-enhanced MRI, dedicated to LI-RADS grading in an 

automated and semi-automatic manner. They reported AUCs of 0.941, 0.859, and 0.712 

(internal testing) for arterial phase enhancement, washout, and capsule prediction. The 

model was also tested on an external test set, achieving AUCs of 0.792, 0.654, and 0.568, 

respectively (44). Though they evaluated fewer features, similarly to our findings, arterial 
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phase enhancement was more accurately predictable than washout and capsule, both of 

which are challenging for the AI to predict. The results of Wang et al. also led to a similar 

conclusion, as arterial phase hyperenhancement and delayed phase hyperenhancement, 

among others, just as according to our results, were well predictable features, while 

others, such as central scar and washout, were especially difficult to accurately predict 

(23). Central scar and washout were also difficult to identify and were quite often false 

positive findings; furthermore, in our experience, circle-like features such as peripheral 

enhancement, which might be confused with capsule by the model, were just as common 

false positive findings. The difficulty in the detection of these features is consistent with 

previous research on gadoxetate disodium, as HCC indicative features, such as capsule 

and washout, are less distinguishable using gadoxetate disodium than with extracellular 

contrast agents (45). Delayed phase enhancement, which is related to the hepatocyte-

specific nature of gadoxetate disodium, was an accordingly straightforward prediction. 

In the current study various occlusion sensitivity maps are shown that attempt to visually 

explain the decision-making process of the neural network classifier. The maps can be 

helpful in explaining the decision-making process even in a very complex task and can 

draw attention to erroneous decision-making that may be based on, for example, image 

artifacts or non-task-related image areas. The modification of the padding value from the 

image mean intensity to specific values depending on scan type and predicted radiological 

feature may be a promising direction for further investigation. 

As mentioned previously, features on which there might be disagreement between 

expert radiologists as well (e.g., central scar) are more difficult to build a model upon. In 

the future, it is possible that more thorough curation of training data based on the opinions 

of multiple experts would be necessary to optimize these methods. A promising research 

direction would be a more detailed examination of how each image, their quality, and the 

reported expert consensus could be used to construct balanced, high-quality datasets that 

are more representative of radiological liver lesion features. The current study has 

additional limitations. It was retrospectively conducted within a single institute, and only 

a small number of patients were included. To mitigate the consequences of these 

problems, further multi-institutional studies are needed. Additional methods, such as 

transfer learning with other, similar, multi-modal datasets may be used in addition to the 

previously mentioned dataset reannotation. Further data augmentation methods, such as 
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random cropping, also must be evaluated. Splitting the model into multiple feature 

predictors based on conflicting features and corresponding scans may also be examined 

as a potential solution for inaccurate predictions (e.g., T2 hyperenhancement and 

hypoenhancing core). Apart from these, the tested methodology has the potential to aid 

less experienced radiologists or other clinicians in understanding and interpreting HSC 

MRI of FLLs in an automated, controllable manner by providing predictions of 

radiological features in a few seconds. 
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6. Conclusions 

Based on our studies, we can state that routinely acquired radiological image 

materials can be used for analysis with AI methods, such as CNNs. According to our 

results, densely connected CNNs trained on multi-sequence MRI scans can be promising 

new alternatives to single-phase approaches; furthermore, the use of multi-dimensional 

input volumes can help the AI-based diagnosis of FLLs. According to our results, 3D and 

2D DenseNets can reach similar performance in the differentiation of FLLs based on MRI 

images. 

Based on our findings regarding the automatic identification of radiological 

features in focal liver lesions AI model predictions are reliable, and they could provide 

descriptions of radiological features present in FLLs, putting more weight on the 

exclusion of a feature and allowing false positive predictions depending on the type of 

lesion and features present. Mistakes may partly be due to human uncertainty or the lack 

of consensus among experts on the definition of a given radiological feature, not to 

mention various imaging artifacts and image processing errors that may make proper 

predictions more difficult. 

Altogether DL-based approaches could aid clinicians and medical researchers, 

especially when large quantities of images need to be processed or an automatically 

utilizable reference is required. 
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7. Summary 

 The current thesis discusses the development and evaluation of recently 

introduced deep learning (DL) methods for the automated classification and description 

of focal liver lesions (FLLs) based on magnetic resonance imaging (MRI) using 

hepatocyte-specific contrast agents (HSCs). As the first study of its kind in Hungarian 

literature, it demonstrates that convolutional neural networks (CNNs) can effectively 

differentiate focal nodular hyperplasia (FNH), hepatocellular carcinoma (HCC), and liver 

metastases (MET) based on both two-dimensional (2D) and three-dimensional (3D) 

information. Furthermore, various radiological features of focal liver lesions are 

automatically identifiable by CNNs, such as DenseNets and EfficientNets. These 

advancements enable the development of downstream imaging methods, particularly in 

deep learning reconstruction, which requires the definition of a ground truth/reference to 

which a generated image is compared. 

The study methodology involved the manual collection and preparation of large 

quantities of MRI data. Data processing includes anonymization, resampling, and 

alignment of MRI scans, followed by the creation of training, validation, and test datasets. 

All architectures were employed within the MONAI framework for analysis and custom 

written computer code was written by our research group for both analyses. 

Our first study found that both 2D and 3D CNNs effectively differentiate between 

FNH, HCC, and MET with AUCs above 0.90. In our second study EfficientNetB0 was 

identified as the top-performing model for radiological feature identification, achieving 

the highest validation mean AUC (0.9147) after 480 epochs. 

The integration of such models into clinical practice faces challenges, such as the 

need for larger, multi-institutional datasets and further validation studies as well as more 

detailed large scale data annotation.  

Our research concludes that DL techniques, particularly CNNs, are promising 

tools for enhancing MRI-based diagnosis of FLLs. The use of HSC-enhanced MRI 

combined with advanced DL models shows high diagnostic accuracy, aiding early and 

precise diagnosis of liver conditions. In summary, this dissertation demonstrates 

significant advancements in applying DL to medical imaging, providing a robust 

framework for future research and clinical integration in diagnosing focal liver lesions.  
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