SEMMELWEIS EGYETEM
DOKTORI ISKOLA

Ph.D. értekezések

3142.

STOLLMAYER ROBERT

Gasztroenterologia

ciml program

Programvezetd: Dr. Molnar Béla, kutatoprofesszor, az MTA doktora

Témavezetd: Dr. Kaposi Novak Pal, egyetemi docens



Deep learning in the magnetic resonance imaging-based diagnostics of focal liver

lesions using hepatocyte-specific contrast agents

PhD thesis
Robert Stollmayer

Karoly Racz Conservative Medicine Division

Semmelweis University

Pé»&]’
7z
%
74
£
w
5
& S
g WO
Supervisor: Pl Novéak Kaposi, MD, Ph.D.
Official reviewers:

Zsuzsanna Foldes-Lénard, MD, Ph.D.

Andras Horvath, Ph.D.
Head of the Complex Examination Committee:

Béla Molnar, MD, D.Sc.

Members of the Complex Examination Committee:

Andrea Ferencz, MD, Ph.D.
Werling Klara, MD, Ph.D.
Kristof Dede, MD, Ph.D.

Budapest
2024



Table of contents

List Of abDrevIations.......cc.eecuiriiiiiiiieiieeee ettt s 2

1. Introduction (with the scientific background and the relevant literature)..................... 4
1.1. Artificial intelligence and deep 1earning ............ccoecveeviieiiieniieiienieeiece e 4
1.2. Analysis of focal liver lesions using deep learning............cccoeeeeveeerivenieeneeennnnne. 5

2 ODJECTIVES ..ttt tesite et et e et et e s bt e teeeabe e stesabeenseeeabeeseeeabeenseeenbeenseeenbeenseennseenne 8
3 MEROMAS ...ttt bt 9
3.1. Differentiation of tUMOT tYPES......ceveieiieriiieiieiieeieete ettt 9
3.1.1. Patient and MRI study S€lection............c.cecueriieriieniiiiieeieeieeeie e 9
3.1.2. Data preparation and dataset Creation ..........c.ccevueveereeeereenerieeneeneeeeneenees 10

3.2. Identification of radiological features ...........ccoeovieriiiiiienieeieie e 13
3.2.1. Clnical Dataset ..........coceeiiriiiiiriiniieieeiesieete ettt 13
3.2.2. Image Acquisition and ProCessing ...........cccvevveeeieerieeiieenieeieeie e eeee s 15
3.2.3. Deep Learning Methods .........ccueeiieiiieniiiiieiiecieee e 17
3.2.4. Statistical Evaluation..........c..coceviiiiiniiiiinieinetceeeeee e 19

A RESUILS ..ttt sttt et 20
4.1. Differentiation Of tUMOT LY PES ....ccueeruiiriiieriieeiierie ettt eiee e eiee e ebeeseeeeens 20
4.2. Identification of radiological features ...........ccevieviiierieeiiienieeiece e 24

5. DISCUSSION 1ttt sttt ettt ettt sb ettt sbe et et sbe et ea e e sbe e b e eatesbeebesatenbeensenn 34
6. CONCIUSIONS ..ttt ettt sttt et sbe ettt et e b et e sbeebesaeesaeennea 40
7. SUITITIATY .envvieeiiieeeiieeeeiieeesiteeeriteeeitee sttt eesateeeaateesabteeeabteesabeeesabeeesaseeesaseesnsseesanseesnseas 41
8. RETEICIICES ...ttt ettt ettt 42
9. Bibliography of the candidate’s publications .............ccccueevieiiieriieniieerieeieeeeeee e 47
9.1. Publications related to the present thesis...........cceeierrieniieiienie e, 47
10. ACKNOWIEAZEMENLS .....oooviiiiiiiiieiie ettt ettt et e e e saaeesae s 49



List of abbreviations

2D two-dimensional

3D three-dimensional

4D four-dimensional

Al artificial intelligence

ANN artificial neural network
AUC area under the receiver operating characteristic curve
BCE binary cross-entropy

cc. carcinoma

CLD chronic liver disease

CNN convolutional neural network
CRC colorectal cancer

CT computer tomography

DLM deep learning model

ECA extracellular contrast agent
FLL focal liver lesion

FNH focal nodular hyperplasia

GI gastrointestinal

GT ground truth

HAP hepatic arterial phase

HBP hepatobiliary phase

HCC hepatocellular carcinoma
HSC hepatocyte-specific contrast agent

LI-RADS Liver Imaging Reporting and Data System

LLM large language model

MET metastasis

MONAI  Medical Open Network for Artificial Intelligence

MRI magnetic resonance imaging
ms milliseconds

NPV negative predictive value
PPV positive predictive value
pred prediction



prob probability

PVP portal venous phase

ROC receiver operating characteristic curve
ROI region of interest

SD standard deviation

SPAIR spectral-attenuated inversion recovery
T Tesla

Tlw T1-weighted

T2W, T2w T2-weighted

TE echo time

TR repetition time

VEN transitional phase

VLM vision language model



1. Introduction (with the scientific background and the relevant literature)

1.1. Artificial intelligence and deep learning

Artificial intelligence (Al) is the field of study of algorithms mimicking human
intelligence, which encompasses a wide range of sub-fields, including machine learning
(ML), which deals with the development of learning algorithms, and deep learning (DL),
a sub-section of machine learning algorithms which are developed by mathematical
modeling of the human nervous system. DL uses artificial neural networks (ANNs) with
multiple layers to extract and compress information from their input data (1). While
simple ML algorithms are widely used in medical research among them in radiomics,
their applicability and accuracy may be limited in comparison to DL algorithms. (1).

Convolutional neural networks (CNNs) are a specialized type of ANNs developed
for image analysis, that can extract and compress features from radiological imaging data
with configurable convolutional layers. Although CNNs are inherently more complex
than traditional ML methods, their use does not require additional steps for feature
extraction (1-3).

CNNs most commonly fall into the category of supervised learning algorithms,
meaning that to be able to change the parameters of the network, an assigned ground truth
(GT) annotation is required (3). CNNs in radiology may be used for image segmentation,
classification, object detection, or image generation, among other various tasks in medical
imaging (2). Depending on the required network output, the GT annotations should also
match this output. Self-supervised and unsupervised approaches have also been explored
for radiological image analysis but have not yet reached the level of accuracy of
supervised learning methods (1,2).

Transformers are newer neural network architectures which are designed
primarily for natural language processing, due to their ability to capture global context
and long-range dependencies within data. In many cases, these have been shown to have
superior performance to CNNs in computer vision tasks (1). Large language models
(LLMs) are a recent development built on the transformer DL architecture enabling the
large-scale automatic processing of digital text. Although LLMs are still young, so-called
vision language models (VLM) have already been built on them enabling the joint
processing of medical imaging and text information (1,4). In the long run, multi-modal

large models, such as VLMs, are a goal of DL research, as well as the development of



generally adaptable, so-called foundation models which can either be used for various
tasks without modification or require minimal computation for adjustment (fine tuning)
for a specific task (1).

DL studies establishing new models usually start with data collection and
annotation steps, which is currently also the most time-consuming and difficult part of
these studies due to the low availability of high-quality clinical data (even in highly
curated datasets and repositories). Collected data is organized into a data structure that is
then used for DL model training and evaluation. This is commonly done by splitting the
data into training, validation (“tuning”), and testing partitions or by k-fold cross-
validation (usually with five folds). The data compartment used for model training can be
“enriched” via data augmentation methods, and generalization can be improved through

various regularization methods (2).

1.2. Analysis of focal liver lesions using deep learning

Radiological imaging as a tool for the detection and diagnosis of focal liver lesions
(FLLs) has steadily grown worldwide in the recent years, while delays in treatment and
unnecessary procedures and costs can only be lowered by apt and accurate diagnoses of
these pathologies. In comparison to computer tomography (CT), magnetic resonance
imaging (MRI) provides the most detailed non-invasive method for the characterization
of FLLs, with specificity above 82% and sensitivity above 94%, thanks to its excellent
soft tissue contrast, without exposure to ionizing radiation, especially when performed
with intravenous contrast agents (5).

Contrast agents, that are specifically designed for the imaging of physiologically
functioning hepatocytes, such as gadoxetate disodium or gadobenate dimeglumine, have
proven to be highly useful in the detection and differentiation of benign and malignant
foci of the liver. These contrast agents, also called hepatocyte-specific contrast agents
(HSCs) are taken up by hepatocytes and secreted into the bile (6). HSCs therefore can
distinguish between liver lesions composed of normal hepatocytes and those made up of
poorly differentiated hepatocytes or non-hepatocytic cells. Additionally, these agents
facilitate the detection of small lesions by creating a stark contrast between the enhancing

parenchyma and areas lacking normal hepatocytes during the hepatobiliary phase (HBP)
(6).



Common focal liver lesions (FLLs) like hepatocellular carcinoma (HCC) and liver
metastasis (MET) pose a considerable diagnostic challenge. Patients with these
conditions often only have curative options through surgical resection or image-guided
ablation, making early detection crucial. METs are the most frequently occurring
malignancies in the liver, and it is reported that up to 70% of all individuals with colorectal
cancer will develop METs at some stage during their lifetime (7).

HSC-enhanced MRI has been shown to have the highest sensitivity (73.3%) for
METs smaller than 10 mm in diameter among all imaging modalities, which also
translates to a significantly better survival rate of patients imaged with MRI (70.8%)
compared to those imaged with CT (48.1%) (8). HCC is the fifth most common solid
malignancy worldwide, and the mortality rate from HCC is predicted to rise in the coming
decades (9). HCC typically develops in the background of decades of chronic liver disease
(CLD). MRI findings of an arterial-enhancing mass with subsequent washout and
enhancing capsule on delayed interstitial phase images are diagnostic for HCC (10). Focal
nodular hyperplasia (FNH) is the second most common benign solid FLL after
hemangioma. FNH is a common incidental finding in imaging studies, and it is a frequent
source of differential diagnostic dilemmas of malignant lesions. A definitive diagnosis of
FNH can be established in patients who do not have CLD when typical features such as
arterial phase and HBP hyperenhancement and a central scar are detected with HSC MRI
(11). Standardized data collection and reporting systems have also been developed, such
as the Liver Imaging Reporting and Data System (LI-RADS), to improve CT and MRI
diagnosis by reducing variability in the interpretation of imaging studies (12). However,
due to the complex nature of these systems, their integration into the clinical workflow
can be cumbersome.

Al techniques have been introduced in growing numbers to facilitate lesion
detection and classification, assess the patients’ prognosis, or identify risk factors of FLLs
based on imaging studies (13). Some of these studies extracted large numbers of image
features from dynamic contrast-enhanced MRI to build mathematical models for the
automatic classification of FLLs (14). Deep learning models (DLMs) are state-of-the-art
image processing algorithms predominantly based on CNNs. DLMs have been tested for
analysis of all known imaging modalities and achieved excellent results in image-based

detection and classification of various diseases (15). A handful of studies have also



applied DLMs to classify FLLs in MRI images and demonstrated that the performance of
the DLMs is excellent and comparable to the human observers’ diagnostic rate (16—19).
Among different DLM architectures, models using 3D convolutions could be efficiently
trained on a relatively small number of cases for differentiating between the most
common types of FLLs (16,17).

The processed data required for DLMs often include two-dimensional (2D) slices
or three-dimensional (3D) image volumes; moreover, in the case of magnetic resonance
imaging (MRI) studies, the different sequences can be condensed into a multi-channel
input. Due to their efficiency, convolutional neural networks (CNNs) have replaced other
ML approaches in most image classification and segmentation tasks (20,21).

Meanwhile, current CNN classification models have limited value in clinical
practice as these have been trained to diagnose only a handful of liver pathologies based
only on a small set of MRI images. Current DLMs cannot recognize many FLLs
belonging to less common diagnoses and lesions with atypical image features or with
post-treatment changes (22). A clinically useful DLM must be able to analyze multiple
image sequences to identify a comprehensive set of image features that can be used for
the characterization of FLLs and the generation of a differential diagnosis (23). For the
transparency of the Al-driven classification process, it is essential to know how many of
the detected image features support the diagnosis and to validate the localization of these
features via network visualization techniques, such as activation and occlusion sensitivity
maps. Such sophisticated models are better suited for the systematic evaluation of FLLs
and can increase the efficiency and the reproducibility of the imaging diagnosis as well
as facilitate and standardize the development of novel imaging methods, for example new

MRI reconstruction methods.



2. Objectives

Considering recent advancements in abdominal radiology and radiomics the aim
of the current thesis is to demonstrate the feasibility of DL-based focal liver lesion
analysis using freely available open-source software.

The objective of the first study presented in the current study was to show that
focal liver lesions frequently imaged using HSC MRI in the Hungarian population can
automatically be categorized into classes approximating the opinion of a board-certified
radiologist. Furthermore, to evaluate whether a single axial slice of an FLL contains
enough information for this categorization in comparison to using three-dimensional
images.

In our second study aimed to quantify the accuracy with which radiological
features of FLLs can automatically be identified based on HSC MRI and to evaluate the
agreement between the created model, a radiologist trainee, and an experienced

abdominal radiologist.



3. Methods
3.1. Differentiation of tumor types

3.1.1. Patient and MRI study selection

In the first retrospective single-center study multi-phasic MRI studies of patients
with FNHs, HCCs or METs were collected. These studies were conducted using
gadoxetate disodium, an HSC and they were collected from the picture archiving and
communication system of our institute. The need for written patient consent was waived
by the Institutional Research Ethics Committee (SE-RKEB 136/2019.) due to the
retrospective nature of the study. For image acquisition between November 2017 and
October 2020 a Philips Ingenia 1.5 T scanner (Philips Medical Systems, Eindhoven, The
Netherlands) was used. T2-weighted (T2w) spectral-attenuated inversion recovery (also
known as SPAIR), arterial phase (HAP), portal venous phase (PVP), and HBP scans of
each eligible patient were collected for further analysis. Lesions that were included were
either histologically confirmed or exhibited typical radiological characteristics of the
given lesion type with this type of MRI examination based on the opinion of an abdominal
radiologist. Patients younger than 18 years of age at the time of imaging were excluded
from the study. Patient demographics, collected and analyzed lesion properties, and in the
case of metastatic lesions the histological types of the original tumor are shown in Table

1.



Table 1. Patient demographics, imaging properties per lesion class, and details of
metastatic lesion origin. (17)

FNH HCC MET Total

Number of patients 42 13 14 69

Age in years at imaging, mean +
45+ 12 66+ 5 57+ 10 54+ 14

SD
Sex
Male 11 8 8 27
Female 31 5 6 42

Lesion properties

Number 71 69 76 216
Primary type
CRC 21
Leiomyosarcoma 18

Gl  adenocc. or

cholangiocc. b
Breast cc. 11
Pancreas cc. 7
Neuroendocrine ileum cc. 3
Papillary thyroid cc. 1

cc.: Carcinoma; CRC: Colorectal cancer; FNH: Focal nodular hyperplasia;, GI:
Gastrointestinal;, HCC: Hepatocellular carcinoma; MET: Metastasis;, SD: Standard

deviation; T: Tesla.

3.1.2. Data preparation and dataset creation

MRI scans were exported as DICOM files, that were anonymized to remove the
patients' social security numbers, birth date, sex, age, body weight, and date of the
imaging study. Anonymized PVP and HBP files were resampled and spatially aligned to

the corresponding T2w volume using BSpline as a non-rigid registration method via 3D
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Slicer, an open-source visualization and medical image computing software, which was
also used for annotation, cropping using the area inside the annotation and file conversion
(24,25). Lesions were annotated by cubic regions of interest (ROIs). The lesions were
then cropped from the aligned HAP, PVP, HBP, and T2w volumes using the same ROI.
The cropped volumes were converted to NIfTI (26) file format. The saved NIfTI files
were combined into one four-dimensional (4D) input data for each lesion (Figure 1).
Cropped lesions were randomly sorted into datasets. 10-10 lesions were added to the test
and validation dataset from each class, and the remaining tumors were added to the
training dataset. For the analysis of axial slices NIfTI files were sliced up into axial PNG
images. The resulting T2w, HAP, PVP, and HBP PNG files were concatenated (Figure 2)
using a custom-written computer program in Python. The training and validation datasets
contained three axial slices of each lesion (i.e. three most representative axial slices of the

lesion within the NIfTI files). The test dataset contained one slice from each lesion.

Qitenate
C

HAP —
PVP /
HBP

Figure 1. Steps of input data preparation for the three-dimensional densely connected
convolutional neural network. A: Three-dimensionally rendered whole volumes at the
level of the lesion (indicated by the white frame); B: Cropped cubic volumes containing

the lesion; C: The four cubic volumes are concatenated into one four-dimensional file;
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each volume is represented by a different color. T2w: T2-weighted; HAP: Hepatic arterial
phase; PVP: Portal venous phase; HBP: Hepatobiliary phase. (17)

A B

Slice
Concatenate
oy - \
PVP —_— /
HBP

Figure 2. Illustration of multi-channel input data for the 2D-DenseNet. Colors are
changed for the purpose of illustration. A: Cubic magnetic resonance image volumes
containing the lesion; B: Axial slices acquired from the cropped volumes, C: The four
axial slices are concatenated into a single image, each slice corresponds to a respective
image. T2w: T2-weighted; HAP: Hepatic arterial phase; PVP: Portal venous phase;
HBP: Hepatobiliary phase. (17)

3.1.3. Data processing, training, and testing

Concatenated files were modified via transform functions during the training
process. Image pixel intensity was scaled between -1.0 minimum and 1.0 maximum
values. Data augmentation transforms were applied to the training samples, including
random rotation (70° range along two axes) and zoom (0.7—1.4 scaling) to enrich training

data. Furthermore, the axial slices (2D images) were resized to 64 x 64 resolution.
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Transformed images were converted to tensors, which were then fed to a DenseNet264
that used 2D convolutional layers (27).

In the case of the 3D-DenseNet264 network, NIfTI voxels were resampled to an
isovolumetric shape, voxel intensities were rescaled between -1.0 minimum and 1.0
maximum value and NIfTT files were resized to 64 x 64 x 64 spatial resolution. Input
resolution for both 2D and 3D networks was determined through manual hyperparameter
tuning with the intention to find the lowest image resolution that does not decrease model
performance metrics. The four NIfTI files were concatenated (T2w, HAP, PVP, HBP) to
be used as multi-channel input for the 3D CNN. 90° rotation along two spatial axes, 60°
rotation (X, y axes), zoom (0.8 - 1.35), and flipping were randomly applied to the training
samples. MR volumes were converted to 4D tensors (number of channels, x-, y- and z-
dimensions) that were used as network input. We used DenseNet264 models through the
Medical Open Network For Artificial Intelligence (MONALI) framework (28). During the
training of the networks categorical cross-entropy loss was used as a loss function and the
Adam optimizer (29). Network weights were randomly initialized. Networks were trained
for 70 epochs. The area under the receiver operating characteristic curve (AUC) was used
for the selection of the highest performing model weights. AUC was calculated after each
epoch, and the model with the highest average AUC value was saved as the final model.
Statistical evaluation is done in detail on the hold-out test dataset containing 10 lesions
from each class. The tumor type with the highest probability, according to the last softmax
layer of the CNNs, was selected as the predicted lesion type, encoding the predicted
diagnosis as 1, while the predicted incorrect classes as 0. The calculation of metrics, such
as specificity, sensitivity, f1 score, positive predictive value (PPV) and negative predictive
value (NPV) for each class was based on these predictions.

Classification performance is also measured using AUC values of each class,
calculated from the softmax layer probability outputs. 95% confidence intervals are
reported after each AUC value. To evaluate statistical significance between the test

performance of the 2D and 3D classifiers DeLong’s test was used [14].

3.2. Identification of radiological features
3.2.1. Clinical Dataset
For our retrospective study, 99 patients were included (Table 2) who underwent

abdominal MRI with gadoxetate disodium, an HSC, between 29 September 2017 and 11
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August 2021, at our institution. As this is a retrospective study, the need for written patient
consent for this retrospective analysis itself was waived by the Institutional Research
Ethics Committee (SE-RKEB 136/2019.). However, all patients gave written informed
consent for the MRI examination. The study was conducted in accordance with the
Declaration of Helsinki and approved by the institutional review board of our university.
Inclusion criteria of the study covered patients who were examined for FLLs with HSC-
enhanced MRI in our institution (134 patients, 175 examinations) using the same 1.5 T
MRI machine, a Philips Ingenia 1.5 T scanner (Philips Medical Systems, Eindhoven, The
Netherlands), and whose liver lesions could be unequivocally diagnosed based on
histology sampling or typical imaging findings as it has been recommended by
international guidelines. Exclusion criteria included age under 18 years at the time of the
imaging, pregnancy, incomplete or inadequate quality scans, data collection errors,
examination performed on a different MRI machine, and lesions with an equivocal
diagnosis. Fifteen examinations were excluded as they were performed on a different
scanner, 21 studies were excluded due to incomplete or inadequate scan quality and data
collection errors, while 4 studies were performed on underage patients, and 4 studies did

not contain or only contained lesions with an equivocal diagnosis.

Table 2. Patient demographics and types of lesions analyzed in the study. Some patients

were diagnosed with multiple lesion types, therefore, the number of included patients is

not equal to the sum of the number of patients diagnosed with different lesion types. (30)
FNH HCC MET Other All Patients

Number of patients 52 23 17 16 99
Male 15 16 9 6 42
Female 37 7 8 10 57

Average age at the time of imaging 44 64 57 53 54

FNH: focal nodular hyperplasia, HCC: hepatocellular carcinoma, MET: liver

metastasis.

The final study cohort included 131 scans of 99 subjects diagnosed with 105 FNHs, 121
HCC, 121 METs, and 32 other lesions belonging to various groups (such as hemangiomas

and adenomas).
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3.2.2. Image Acquisition and Processing

All MRI scans were acquired using a Philips Ingenia 1.5 T scanner (Philips
Medical Systems, Eindhoven, The Netherlands) and 5-20 mL intravenous gadoxetate
disodium contrast with a dosage of 0.025 mmol/kg. The scans were performed according
to our institutional guidelines. For the current study the T2w SPAIR, native T1-weighted
3D mDIXON (NAT), HAP, PVP, equilibrium phase (VEN) T1-weighted 3D mDIXON,
as well as HBP, standardly acquired at 15-20 s (HAP), 70-80 s (PVP), 2-3 min (VEN)
and 20 min (HBP) after contrast administration, images of each lesion were collected
from the institutional picture archiving and communications system. Both T2w and T1w
scans were acquired in breath-hold. Standard 3D mDIXON and T2 SPAIR sequences
were used. 3D mDIXON: 390 x 390 x 106 average image resolution, 0.942 mm x 0.942
mm average pixel spacing, 2.5 mm average spacing between slices, 4—6 mm slice
thickness, 5.8 ms repetition time (TR), 1.8/4.0 ms echo time (TE), 15° flip angle and 552—
616 Hz/pixel receiver bandwidth. T2 SPAIR: 398 x 398 x 100 average image resolution,
0.935 mm x 0.935 mm average pixel spacing, 2.8 mm average spacing between slices, 3—
6 mm slice thickness, 1000-6742 ms TR, 100 ms TE, 90° flip angle, and 325-666
Hz/pixel receiver bandwidth.

Each scan was anonymized, and personal identifiers, such as patient name, birth
date, social security number, and date of imaging were removed. All scans were converted
to 3D NIfTT (26) image format, HBP scans were resampled with linear interpolation to
isotropic, 1 x 1 x 1 mm voxel spacing, and all other scans were coregistered to the
corresponding HBP scan. For image registration, the ITKElastix toolbox (31) was used
with the rigid default parameter map. Misalignments resulting from image registration
were manually corrected when necessary. Each FLL reported was marked with a single
point marker placed in the HBP or HAP scan, and a radiologist with 13 years of
experience in abdominal imaging marked the diameters of the lesions. Lesion smaller
than 5 mm (largest axial diameter) were excluded from the study). Lesions were cropped
from each scan based on their largest diameter, to which a 2-mm (2 voxels)-wide zone
was added in each direction to account for misalignments between the 6 scans. For lesion
marking and manual correction of misalignment 3D Slicer (24) was used. The steps of

the analysis are shown in Figure 3.
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HSC enhanced MRI studies identified:
134 patients, 175 studies

\
Excluded: 44 studies

Final cohort:
99 patients, 131 studies, 379 lesions

Marker placement
u Registration,
Cropping

10110010110

00001110110 ggir:]:st:tlg:‘éation
11010011010
| Testing
Training / Validation ROC analysis
Model selection Metrics calculation

Interobserver reliability

Figure 3. Steps of the analysis. HSC: hepatocyte-specific contrast-enhanced, MRI:

magnetic resonance imaging. (30)

Cropped lesions were randomly sorted into training, validation, and test datasets
for DLM training and testing (Table 3) in a ratio of 53:17:30. In the MRI scans of 99
patients, the total number of focal liver lesions was 379, 202 lesions were used for
training, 65 for validation, and 112 for testing. All scans and lesions belonging to the same
patient were assigned to the same dataset. Each lesion was evaluated by an expert
radiologist with 13 years of experience in abdominal imaging, as well as a radiology
resident with 4 years of experience. Annotators had to decide whether the tumor belonged
to the four provided tumor types: FNH, HCC, MET, or other; and whether or not the
lesion contained the following radiological features: early (arterial phase) contrast
enhancement, washout, delayed phase enhancement, peripheral enhancement, central
scar, capsule, T2 hyperintensity compared to the surrounding liver tissue, iso- or

hyperintensity compared to the surrounding liver tissue on venous phase, hypoenhancing
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core, hemorrhage/siderosis. For Al training, the expert-reported labels were used as GT,
as well as for results calculation. Table 3 contains the detailed distribution of expert
annotations among datasets. The human observers had no access to the final diagnosis or
the opinion of the other reader. The detailed distribution of the final annotations among

datasets is shown in Table 3.

Table 3. Distribution of lesions and characteristics among datasets. (30)

Tumor Type Train Validation Test Total
FNH 53 16 36 105
HCC 62 22 37 121
MET 72 19 30 121
Other 15 8 9 32

Radiological features

Early enhancement 99 36 65 200
Washout 41 8 32 81
Delayed phase enhancement 65 28 36 129
Peripheral enhancement 53 21 31 105
Central scar 37 11 19 67
Capsule 27 6 18 51
T2 hyperintensity 88 39 42 169
Iso- or hyperintensity on venous 64 28 37 129
phase

Hypoenhancing core 110 28 50 188
Hemorrhage/Siderosis 36 17 17 70

FNH: focal nodular hyperplasia, HCC: hepatocellular carcinoma, MET: liver metastasis.

3.2.3. Deep Learning Methods

To be able to automate radiological feature generation, multiple deep learning
algorithms were trained with different hyperparameter setups. Models implemented in
MONALI (28), an open-source framework for deep learning in healthcare imaging were
used. MONALI provides multiple 3D neural network implementations that can perform

classification tasks on medical images. Each trained convolutional neural network had 6
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input channels, one for each 32 x 32 x 32 resolution cubic input MRI scan showing the
liver lesion. Input resolution was determined through manual hyperparameter tuning with
the intention to find the lowest image resolution that does not decrease model accuracy.
We trained DenseNetl21, DenseNetl69, DenseNet201, DenseNet264 (32),
EfficientNetB0O, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4,
EfficientNetBS5, EfficientNetB6, EfficientNetB7 (33) models with various batch sizes,
dropout rates and weight decay, among other hyperparameters. All models, including
EfficientNets, were trained from scratch using random initialization. All models were
trained for at least 300 epochs. Each model was modified so that its last classifier layer
would be a sigmoid layer to be able to perform multi-label classification. Each model has
10 probability outputs (numeric values ranging from 0 to 1), one for each radiological
feature that it is trained to predict. By replacing (occluding) a part of the input volume
with the mean voxel intensity of the image, the model prediction for each radiological
feature changes. If important parts of the image are occluded, the prediction probability
decreases, which can be visualized for each input channel and output feature. More
negative values indicate higher importance in the decision process. This visualization
technique will be referred to as ‘occlusion sensitivity map’. These maps can be useful for
the interpretation of network predictions, highlighting the areas that played a more
important role in the prediction of a feature (34). Accordingly, binary cross-entropy
(BCE) loss was calculated and used for model weight adjustment during training.
DenseNets were trained with dropout probabilities of 0, 0.25, 0.5, and 0.75. Each
model was trained using an Adam optimizer (29) and a learning rate of 0.0001. All models
were trained from scratch, without pretraining. To improve the generalizability of the
model, different data augmentation methods (such as rotation of the images) were applied
during training. Images were then resized to a 32 x 32 x 32 input shape. Image intensities
were normalized and scaled between —1 and 1. The best-performing model was defined
as the one achieving the highest mean AUC of the 10 predicted features on the validation
dataset. During training the performance on the validation dataset was evaluated after
every 20 epochs. Detailed evaluation of the final selected model was done on a hold-out

test dataset (Table 3).
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3.2.4. Statistical Evaluation

ROC analysis was performed on the test dataset, via which AUC values were
calculated, and cut-off values were set for each feature separately based on Youden’s
index. At the given thresholds, sensitivity, specificity, PPV, NPV, and fl score were
calculated for each feature. Reported measures are calculated in comparison to the expert
radiologist’s opinion (GT). Statistical power was calculated according to Obuchowski’s
method using the ‘pROC’ (35,36) R package. Inter-rater reliability was calculated via
Cohen’s Kappa between the expert opinion, annotations of a radiology resident, and the

final selected machine learning model.
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4. Results

4.1. Differentiation of tumor types

The 2D model achieved the highest average validation set AUC after 46 epochs,
while the best average AUC value of the 3D network was reached after 62 epochs.

Learning curves and AUC metrics for model selection are shown in Figure 4.
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Figure 4. Training metric curves and loss curves. The upper figure shows the area under
the receiver operating characteristic curve (AUC) values after each training epoch of the
two-dimensional and three-dimensional densely connected convolutional neural
networks (DenseNets). The lower figure indicates the loss values for each training epoch
of the two networks. 2D: Two-dimensional; 3D: Three-dimensional; AUC: Area under

the receiver operating characteristic curve. (17)
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These model weights were saved and then used to make test set predictions
(Figure 5). The finalized 2D and 3D networks were evaluated on the same test set,
consisting of 10 lesions from each tumor type. On this test dataset, the finalized 2D model
achieved 0.9900 (0.9664—-1.0000), 0.9600 (0.8786—1.0000) and 0.9950 (0.9811-1.0000)
AUC values for FNH, HCC and MET. The average AUC was 0.9783 (0.9492—-1.0000).
The AUC of the finalized 3D model was 0.9700 (0.9077-1.0000), 0.9050 (0.7889—
1.0000) and 0.9550 (0.8890—-1.0000) for FNH, HCC and MET diagnosis. The average
AUC value was 0.9433 (0.8942-0.9924) on the test dataset (Figure 5). No statistically
significant difference was found between the diagnostic performance of the 2D, and 3D
classifiers based on the ROC curve comparison for the three classes (p = 0.4835 for
FNH; p = 0.4347 for HCC; p = 0.1913 for MET). The 2D CNN achieved comparable
results to the 3D network (Table 4). The highest diagnostic accuracy was achieved by
both networks for FNH and MET, while both networks demonstrated lower AUC values
for HCC (Table 4). PPV, sensitivity, fl score, specificity and an NPV of 0.9091, 1.0000,
0.9524, 0.9500, 1.000 values were achieved by the 2D model for FNH diagnosis. The 3D
network performed FNH classification with similar PPV (0.9000), sensitivity (0.9000),
fl score (0.9000), specificity (0.9500) and NPV (0.9500) values as the 2D network.
During HCC classification both the 2D and 3D models reached acceptable metrics with
PPVs of 1.000 and 0.8750, sensitivities of 0.8000 and 0.7000, f1 scores of 0.8889 and
0.7778, specificities of 1.000 and 0.9500, lastly NPVs of 0.9091 and 0.8636. For the
differentiation of METs from FNHs and HCCs the use of the 2D DenseNet resulted in a
PPV 0f 0.9091, sensitivity of 1.000, f1 score of 0.9524, specificity of 0.9500 and NPV of
1.000, while the 3D DenseNet achieved values of 0.7500, 0.9000, 0.8182, 0.8500 and
0.9444 for PPV, sensitivity, f1 score, specificity and NPV respectively. On average, both
the 2D and 3D trained models could distinguish FNHs, HCCs and METs reliably with
PPVs 0f 0.9394 and 0.8417, sensitivities of 0.9333 and 0.8333, f1 scores of 0.9312 and
0.8320, specificities of 0.9667 and 0.9167, NPVs of 0.9697 and 0.9194.
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Figure 5. Receiver operating characteristic curves. A: Two-dimensional; B: Three-
dimensional. 2D: Two-dimensional; 3D: Three-dimensional;, FNH: Focal nodular

hyperplasia; HCC: Hepatocellular carcinoma; MET: Metastasis. (17)

Table 4. Evaluation metrics of the two-dimensional and three-dimensional densely

connected convolutional neural networks. (17)
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Input data PPV Sensitivity F1 score Specificity NPV

FNH 2D 0.9091 1.0000 0.9524 0.9500 1.0000
3D 0.9000 0.9000 0.9000 0.9500 0.9500
HCC 2D 1.0000 0.8000 0.8889 1.0000 0.9091
3D 0.8750 0.7000 0.7778 0.9500 0.8636
MET 2D 0.9091 1.0000 0.9524 0.9500 1.0000
3D 0.7500 0.9000 0.8182 0.8500 0.9444
Mean 2D 0.9394 0.9333 0.9312 0.9667 0.9697
3D 0.8417 0.8333 0.8320 0.9167 0.9194

2D: Two-dimensional; 3D: Three-dimensional; FNH: Focal nodular hyperplasia;, HCC:
Hepatocellular carcinoma; MET: Metastasis, NPV: Negative predictive value; PPV:

Positive predictive value.

In addition, these results are supported by the extraction of attention maps from the trained
models using test set images. We used an open-source software (M3d-CAM) to visualize

the most important regions for diagnosis-making (37). The extracted attention maps may

correlate with the certainty with which a model classifies FLLs (Figure 6).
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Figure 6. Visualization of the attention maps compared to the hepatobiliary phase input

images. Two-dimensional (lower row) and three-dimensional (upper row) attention maps
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(column A-C) and hepatobiliary phase (column D) images were extracted from the 3rd
dense block of the trained network. A-C: Two-dimensional (lower row) and three-
dimensional (upper row) attention maps; D: Hepatobiliary phase images. Column A
contains the attention maps for focal nodular hyperplasia (FNH), column B for
hepatocellular carcinoma, and column C for metastasis probabilities. The correct
diagnosis is FNH in this case. Probabilities for different lesion classes are annotated
below each attention map. The red areas are more important for the classification than
other image regions. FNH: Focal nodular hyperplasia;, HCC: Hepatocellular carcinoma;
MET: Metastasis; HBP: Hepatobiliary phase. (17)

4.2. Identification of radiological features

After training each model with multiple hyperparameter setups, the highest
validation mean AUC (0.9147) was achieved by the EfficientNetBO model after 480
epochs. In this setting, the network was trained with a batch size of 32. We provide the
training results of the other model architectures as well in decreasing order, based on
validation mean AUC: EfficientNetB6 (0.9033), EfficientNetB2 (0.9033), EfficientNetB3
(0.902), EfficientNetB4 (0.8988), EfficientNetB1 (0.8922), EfficientNetB5 (0.8922),
DenseNet121 (0.8807), DenseNet169 (0.8792), DenseNet201 (0.8733), DenseNet264
(0.8682), EfficientNetB7 (0.856). The final EfficientNetBO model could identify most
features with excellent metrics when tested on the independent test dataset. Table 5
summarizes the results for each feature, including all lesion types. The highest AUCs
were reached for the detection of delayed phase enhancement (0.99) and iso- or
hyperintensity on the venous phase (0.98). These features were only rarely detected as
false positives or remained undetected. The least predictable features based on AUC were
T2 hyperintensity (0.79), peripheral enhancement (0.74), and washout (0.64). ROC

curves and corresponding AUC values are shown in Figure 7.
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ROC curves for each feature
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Figure 7. Receiver operating characteristic (ROC) curves for each feature are based on
the test dataset predictions. The colored dots indicate the cut-off points used to calculate

metrics for the specific feature. AUC: Area Under the ROC curve. (30)
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Table 5. Test dataset metrics. (30)

Radiological Features PPV NPV Sensitivity Specificity fl AUC Power
Delayed phase 0.92 0.97 0.94 0.96 093 09 1
enhancement

Iso- or hyperintensity 0.92 0.96 0.92 0.96 092 098 1
on venous phase

Central scar 044 099 0.95 0.75 0.60 091 1
Capsule 0.72 095 0.72 0.95 0.72 087 1
Early enhancement 0.87 0.75 0.80 0.83 0.83 086 1
Hypoenhancing core  0.77 0.83 0.80 0.81 0.78 084 1
Hemorrhage/siderosis 0.50 0.94 0.71 0.87 0.59 0.82 0.99
T2 hyperintensity 0.78 0.79 0.60 0.90 0.68 0.79 1
Peripheral 0.51 0.93 0.87 0.68 0.64 0.74 098
enhancement

Washout 0.64 0.82 0.50 0.89 0.56 0.64 0.64
Mean values 0.71 0.89 0.78 0.86 0.73 0.84 -
SD values 0.17 0.08 0.14 0.09 0.13 0.10 -

PPV positive predictive value, NPV:

receiver operator characteristic curve, SD: standard deviation.

negative predictive value, AUC: area under the

The highest and lowest PPVs were reached for delayed phase enhancement (0.92)

and central scar (0.44) detection, while the best and worst sensitivities were for central

scar (0.95), delayed phase enhancement (0.94), and iso- or hyperintensity on venous

phase (0.92) vs. T2 hyperintensity (0.60) and washout (0.50). NPVs and specificities were

higher on average (0.89, 0.86) than PPVs and sensitivities (0.71, 0,78). Apart from early

enhancement (0.75) and T2 hyperintensity (0.79), all other NPVs were above 0.8. The

feature with the lowest specificity was peripheral enhancement (0.68), while the most

specific was delayed phase enhancement (0.96). As shown in Table 4, almost all feature

AUCs were calculated with power reaching 0.98; therefore, the number of samples is

more than sufficient to support these results.
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Table 6. Results for annotated features: focal nodular hyperplasia. (30)
Radiological Features True True False False f1

Positives ~ Negatives  Positives  Negatives

Delayed phase 34 0 0 2 0.97
enhancement

Iso- or hyperintensity 34 0 0 2 0.97
on venous phase

Early enhancement 32 1 2 1 0.96
Central scar 18 0 17 1 0.67
Washout 0 34 2 0 0
Peripheral 0 33 3 0 0
enhancement

Capsule 0 34 2 0 0
T2 hyperintensity 0 32 0 4 0
Hemorrhage/siderosis 0 32 4 0 0
Hypoenhancing core 0 36 0 0 -

To be able to explore the differences in predictions between the different lesion
types, results are reported for FNHs, HCCs, and METs separately as well (Table 6, Table
7, and Table 8). Since not all features are present in all lesion types, not all metrics can be
calculated for all features in each case. To simplify this problem, feature predictions are
ordered according to their respective fl scores. To provide more details on false
detections, non-abundant features are also listed for each lesion type. Features present in
FNHs were generally well recognizable by the model. Features related to contrast
enhancement that are representative of FNHs, such as early or delayed phase
enhancement, had f1 scores above 0.95, while non-present features were rarely detected.
Central scars were common false positive detections, but mostly if the lesion was FNH
(Figure 8). If the lesion analyzed was HCC (Table 7) or MET (Table 8), the model almost

never predicted the presence of a central scar.
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Figure 8. Two examples (in each column) of central scar predictions in focal nodular
hyperplasias. Left: correct prediction, right: incorrect prediction. Upper row: native T1-
weighted (left) and T2-weighted (right) images. Rescaled voxel intensities are indicated
on the y-axis. Lower row: occlusion sensitivity maps indicating the contribution of each
voxel to the prediction. In the case of the T2-weighted image, the area representing the
central scar presumably increases the probability of the identification of this feature. In
the case of the native T1-weighted image, the areas near the central scar led to the highest
increase in the prediction probability. GT: ground truth, prob: probability, pred:
prediction, NAT: native T1-weighted image, T2W: T2-weighted image. (30)
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Table 7. Results for annotated features: hepatocellular carcinoma. (30)

Radiological Features True True False False f1
Positives  Negatives  Positives ~ Negatives
Capsule 13 18 1 5 0.81
Early enhancement 19 6 1 11 0.76
Hemorrhage/siderosis 12 14 6 5 0.69
Washout 16 3 2 16 0.64
Hypoenhancing core 11 12 9 5 0.61
T2 hyperintensity 3 26 6 2 0.43
Delayed phase 0 35 2 0 0
enhancement
Peripheral enhancement 0 20 17 0 0
Central scar 0 34 3 0 0
Iso- or hyperintensity on 0 34 2 1 0
venous phase
Table 8. Results for annotated features: liver metastasis. (30)
Radiological Features True True False False f1
Positives  Negatives  Positives ~ Negatives
Peripheral enhancement 27 0 0 3 0.95
Hypoenhancing core 26 0 0 4 0.93
T2 hyperintensity 18 3 1 8 0.8
Early enhancement 0 26 4 0 0
Washout 0 25 5 0 0
Central scar 0 29 1 0 0
Capsule 0 28 2 0 0
Hemorrhage/siderosis 0 28 2 0 0
Delayed phase 0 30 0 0 -
enhancement
Iso- or hyperintensity on 0 30 0 0 -

venous phase
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Among all lesion types, HCC feature prediction yielded the least desirable results
in this analysis as well. As reported in Table 7, diagnostically important features, namely
washout and early enhancement, were undetected in half and nearly half of all cases.
Features that are present in both HCCs and METs, such as peripheral enhancement
(MET), were common false positive findings in the HCC group, but not in the MET
group. Capsule was less difficult to detect, but peripheral enhancement was falsely
detected in half of the analyzed cases, possibly due to the similarity between the two.
Although hemorrhage was reported only in HCCs by the expert annotator, the algorithm
predicted it in four cases in FNHs as well, and two cases in METs. Hemorrhage in HCCs
remained undetected in one-third of cases, like hypoenhancing core (Table 7). Features
related to contrast enhancement were detected less accurately in HCCs. Hypoenhancing
core was falsely detected in nine cases and missed in five cases. The presence of other
similar features such as early enhancement or hemorrhage might make the detection of a
hypoenhancing core more difficult.

The most common mistake in the case of METs was the underdiagnosis of T2
hyperintensity (eight cases), which was most commonly marked in this group (Table 8).
Features mostly present in FNHs were almost perfectly predicted (Table 8), while
washout and early enhancement were the most common falsely detected features. Both
peripheral enhancement and hypoenhancing core were identified with an f1 score above

0.9. For an example of hypoenhancing core prediction, see Figure 9.
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Figure 9. Examples of hypoenhancing core predictions in liver metastasis (left) and
hepatocellular carcinoma (right). Left: correct prediction, right: incorrect prediction.
Upper row: processed hepatocyte-specific contrast-enhanced scans. Rescaled voxel
intensities are indicated on the y-axis. Lower row: occlusion sensitivity maps indicating
the contribution of each voxel to the prediction. These maps indicate the prediction
probability of the model for the hypoenhancing core feature, while the corresponding part
of the image is replaced by the mean intensity value of the image. In the shown cases the
image area that represents the hypoenhancing core is replaced by higher values (which
makes the hypoenhancing core disappear), thus decreasing the probability of the
identification of this feature. GT: ground truth, prob. probability, pred: prediction, HBP:
hepatocyte-specific contrast-enhanced image. (30)

Features reported in other lesion types were variably predictable (Table 8).

Peripheral enhancement might be confused with nodular enhancement, exhibited by
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hemangiomas, which was not explicitly analyzed, as only a low number of cases were
available. Hypoenhancing core represents a similar case, as both cysts and hemangiomas
may mislead the model predictions due to their enhancement characteristics.
Table 8. Results for annotated features: other lesions. (30)

Radiological Features True True False False f1

Positives  Negatives  Positives ~ Negatives

T2 hyperintensity 4 2 0 3 0.73
Hypoenhancing core 3 2 3 1 0.6
Early enhancement 1 6 1 1 0.5
Delayed phase 0 8 1 0 0
enhancement

Peripheral enhancement 0 2 6 1 0
Central scar 0 7 2 0 0
Iso- or hyperintensity on 0 8 1 0 0
venous phase

Washout 0 9 0 0 -
Capsule 0 9 0 0 -
Hemorrhage/siderosis 0 9 0 0 -

Cohen’s Kappas scores for each feature in each combination are reported in (Table
9). The mean Kappa score was 0.60 for the agreement between the predictive model and
the expert, similar to novice opinion compared to model predictions, indicating moderate
reliability. In the case of delayed phase enhancement and venous phase iso- or
hyperintensity, the agreement was almost perfect (> 0.8). Even the worst feature
predictions (central scar, peripheral enhancement, capsule) showed moderate agreement
(> 0.4) with the expert opinion. Features that were less accurately predicted by the
network were also subject to disagreement between the two human observers. Central
scar, for example, was more frequently identified by both the model and the radiology
resident, while only moderate agreement was observable in the case of washout in all

three comparisons.
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Table 9. Interobserver agreement between the three observers, measured by Cohen's

Kappa. (30)
Radiological Features Model vs. Expert  Model vs. Novice vs. Expert
Novice

Delayed phase 0.90 0.76 0.82
enhancement

Iso- or hyperintensity on 0.88 0.73 0.77
venous phase

Capsule 0.67 0.51 0.76
Early enhancement 0.62 0.59 0.82
Hypoenhancing core 0.60 0.54 0.83
T2 hyperintensity 0.52 0.52 0.81
Hemorrhage/siderosis 0.50 0.42 0.76
Central scar 0.48 0.68 0.66
Peripheral enhancement 0.45 0.36 0.79
Washout 0.41 0.53 0.59
Mean values 0.60 0.56 0.76
SD values 0.16 0.12 0.07

SD: standard deviation.
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5. Discussion

FLLs are common findings during liver imaging, and the differentiation of benign
and malignant types of FLLs is a significant diagnostic challenge, as imaging signs may
overlap between different pathologies which can substantially alter the therapeutic
decision. Therefore, precise and reproducible differential diagnosis of FLLs is critical for
optimal patient management. Today, the most accurate imaging modality to diagnose
FLLs is multi-phase dynamic contrast-enhanced MRI. Extracellular contrast agents
(ECAs) are commonly used to perform multi-phase dynamic post-contrast MRI studies
to differentiate between lesions based on their distinct contrast enhancement patterns,
such as HAP hyper-enhancement or washout in the PVP (5). In comparison to ECAs,
HSCs are taken up by hepatocytes and (in part) excreted through the biliary tract; thus,
they can better differentiate between those lesions that consist of functionally active and
impaired hepatocytes or those that are extrahepatic in origin (38). This behavior of HSCs
is utilized for making a distinction between FNH and hepatocellular adenoma, or to detect
small foci of HCC and MET within the surrounding liver parenchyma (39,40).

In the current study, we evaluated different Al models on liver MRI images for the
prediction of FLLs compiled from three different types of lesions, namely FNHs, HCCs
and METs. To ensure that the models could achieve the highest possible prediction rate,
we narrowed down our data collection to only those four MRI sequences that provided
the highest tissue contrast compared to the neighboring parenchyma or depicted
distinctive imaging features of the lesion types. For the same reason, we used only HSC-
enhanced scans for the analysis. We collected post-contrast images from HAP, PVP and
HBP, and a T2w SPAIR image in the case of each lesion. A similar image analysis strategy
was used by Hamm et al (16), who predicted 494 FLLs from six categories, including
simple cyst, cavernous hemangioma, FNH, HCC, intrahepatic cholangiocarcinoma, and
colorectal cancer METs using a 3D CNN model. The authors used HAP, PVP and delayed
venous phase MRI images for the classification of the FLLs. They reported that the CNN
model demonstrated 0.92 accuracy, 0.92 sensitivity and 0.98 specificity. The disadvantage
of this study compared to ours was that it did not include HBP images, with only ECA
images used for the MRI scans.

There are a handful of studies that included conventional ML methods and

achieved reasonably good results. Wuet al (41), for example, extracted radiomics
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features from non-enhanced multi-parametric MRI images of FLLs and used them in ML
models to differentiate between hepatic haemangioma and HCC. The final classifier
achieved an AUC of 0.89, a sensitivity of 0.822 and a specificity of 0.714. Jansen et al
(14), in their 2019 paper, used traditional ML methods for the same problem achieving
an average accuracy of 0.77 for five major FLL types.

Our models' performance in the test set was comparable to those from previous
publications, as the AUC, sensitivity and specificity were excellent for both the 2D
(0.9783, 0.9333 and 0.9667 respectively) and 3D (0.9433, 0.8333 and 0.9167
respectively) architectures, which demonstrates the robustness of our data collection and
analysis.

The quality and quantity of input data are pivotal when training neural networks.
MRI liver tumor analysis using DL methods has steeply increased, but there is evidence
lacking to support the use of 2D or 3D data. The additional dimension in 3D network
inputs makes them computationally more demanding and the different data augmentation
methods and hyperparameters must be well chosen to avoid artifacts. Our study supports
the results of Wang et a/ (23) and Hamm et al (16), emphasizing the need for multi-
channel input volumes in order to achieve better accuracy. In contrast to these approaches,
we have also utilized HBP images, thereby increasing the number of input channels to
four in order to improve accuracy and additionally trained 2D CNNs, proving them to be
just as effective classifiers as 3D models.

The selected architecture of the DL model can substantially alter classification
accuracy. It is a novelty of our analysis that compared to previous examinations we
utilized a DenseNet architecture. DenseNets contain multiple dense blocks, where each
layer is connected with the residuals from previous layers. DenseNets require fewer
trainable parameters at the same depth than conventional CNNs, as newly learned features
are shared through all layers (27). Our results are among the first to indicate that this
highly efficient network design can enhance the performance of AI models for the
classification of multi-parametric MRI images of FLLs.

Our first study's limitations are the low number of patients involved, the
retrospective nature of the study, that it was conducted within a single institute, and thus
lack of external evaluation. Additionally, a patient-level data split, instead of lesion level

split, would have increased the independence of the test dataset samples. Further
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improvement may be achieved by additional data collection (including additional lesion
classes) and the use of more MRI volumes and different data augmentation methods as
well as the use of pre-trained networks. Classification should also possibly be extended
to more lesion classes.

Our second study explores our findings on how DLMs may perform on a small,
single-institutional dataset concerning a complex reporting task. Several research groups
have reported excellent results on the automatic, DLM-based multi-label classification of
various types of FLLs, but these put more emphasis on predicting lesion class and less
emphasis on mimicking the human observers (16,17,19,42). More interpretable methods
have been described in radiology in general, the most obvious one being chest X-ray
reporting using deep learning methods, where multiple findings have to be identified in
parallel by the Al (43). While chest X-ray interpretation is among the most advanced
research areas in deep learning radiomics, other examination types and areas with less
frequently performed studies and much more complex reporting tasks lack sufficient
proof for the application of Al methods. Research on radiological feature descriptors is
also of importance as many of the lesions are multifocal, many types may be found
parallel, and histological confirmation cannot be acquired in all cases, thus, a certain
diagnosis may not be possible (and necessary) for all lesions. Additionally, the described
features allow a much broader extension of applications, since each may allow the user
to draw different conclusions, such as whether tumor recurrence is observable
(enhancement) or whether the malignant transformation of a regenerative nodule has
occurred. Additionally, these models reproducibly give the same output on the same input
images and because of this they can be used a metrics during research projects.

These are partly the reasons why the main emphasis of the second study is on
radiological feature identification. Although the classification of different FLLs based on
the identified features could seem like a straightforward task, various challenges promote
it to a research topic on its own. While the majority of the lesions evaluated in our study
fell into three main lesion types, the liver is host to one of the largest varieties of focal
pathologies; as such, it would be worth examining diagnostic algorithms built upon the
present feature identifier in a more detailed manner. As such, they should be evaluated on
a larger variety of pathologies. There are multiple lesion types, for example,

cholangiocellular carcinoma, that are not present in the current dataset, but in future

36



studies should be evaluated, considering their clinical importance. Apart from this, further
evaluation in this direction could be carried out in multiple ways that did not fit within
the scope of the current manuscript. A classifier model could be built solely for the
diagnosis of FLLs, as well as by reusing the currently presented feature identifier, for
example, via transfer learning. In this case, the training of the model would be guided to
take into account the radiological features identifiable by human observers, apart from
deep features. The diagnosis of the tumor could also be based on the probabilities of the
predictions for each feature. In this case, the top-N features would be used to create an
algorithmic approach for diagnosis making. Our current interpretation of the feature
detector partly opposes this approach, as the predictions of the model are evaluated based
on the calculated optimal cut-off values. Apart from these, there could be other ways to
create a diagnostic model that integrates the feature identifier for better interpretability.
Because of this, the automatic classification of focal liver lesions lies outside the scope
of the current paper.

Abdominal imaging studies, such as HSC MRI, are less frequently approached in a similar
manner due to the higher cost of imaging, the complexity of the task, the smaller amount
of available data, and the more variable agreement on radiological feature abundance
among professionals, as well as the need for more time-consuming data preparation and
analyses. Most papers use some form of deep learning interpretation method, such as
attention maps, to try to find explanations for classification predictions, while direct
feature predictions have rarely been the focus of research. Wang et al., in their 2019 study,
were among the first to use CNNs for focal liver lesion feature identification (23). The
reported model was able to correctly identify radiological features present in test lesions
with 76.5% PPV and 82.9% sensitivity, which is similar to our results, though their
method was built on a precious lesion classifier, from which feature predictions were
derived. Our study deliberately avoided the diagnosis of lesions and focused solely on
feature identification. Sheng et al. also used deep learning to predict radiological features
based on gadoxetate disodium-enhanced MRI, dedicated to LI-RADS grading in an
automated and semi-automatic manner. They reported AUCs of 0.941, 0.859, and 0.712
(internal testing) for arterial phase enhancement, washout, and capsule prediction. The
model was also tested on an external test set, achieving AUCs 0f 0.792, 0.654, and 0.568,

respectively (44). Though they evaluated fewer features, similarly to our findings, arterial
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phase enhancement was more accurately predictable than washout and capsule, both of
which are challenging for the Al to predict. The results of Wang et al. also led to a similar
conclusion, as arterial phase hyperenhancement and delayed phase hyperenhancement,
among others, just as according to our results, were well predictable features, while
others, such as central scar and washout, were especially difficult to accurately predict
(23). Central scar and washout were also difficult to identify and were quite often false
positive findings; furthermore, in our experience, circle-like features such as peripheral
enhancement, which might be confused with capsule by the model, were just as common
false positive findings. The difficulty in the detection of these features is consistent with
previous research on gadoxetate disodium, as HCC indicative features, such as capsule
and washout, are less distinguishable using gadoxetate disodium than with extracellular
contrast agents (45). Delayed phase enhancement, which is related to the hepatocyte-
specific nature of gadoxetate disodium, was an accordingly straightforward prediction.
In the current study various occlusion sensitivity maps are shown that attempt to visually
explain the decision-making process of the neural network classifier. The maps can be
helpful in explaining the decision-making process even in a very complex task and can
draw attention to erroneous decision-making that may be based on, for example, image
artifacts or non-task-related image areas. The modification of the padding value from the
image mean intensity to specific values depending on scan type and predicted radiological
feature may be a promising direction for further investigation.

As mentioned previously, features on which there might be disagreement between
expert radiologists as well (e.g., central scar) are more difficult to build a model upon. In
the future, it is possible that more thorough curation of training data based on the opinions
of multiple experts would be necessary to optimize these methods. A promising research
direction would be a more detailed examination of how each image, their quality, and the
reported expert consensus could be used to construct balanced, high-quality datasets that
are more representative of radiological liver lesion features. The current study has
additional limitations. It was retrospectively conducted within a single institute, and only
a small number of patients were included. To mitigate the consequences of these
problems, further multi-institutional studies are needed. Additional methods, such as
transfer learning with other, similar, multi-modal datasets may be used in addition to the

previously mentioned dataset reannotation. Further data augmentation methods, such as
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random cropping, also must be evaluated. Splitting the model into multiple feature
predictors based on conflicting features and corresponding scans may also be examined
as a potential solution for inaccurate predictions (e.g., T2 hyperenhancement and
hypoenhancing core). Apart from these, the tested methodology has the potential to aid
less experienced radiologists or other clinicians in understanding and interpreting HSC
MRI of FLLs in an automated, controllable manner by providing predictions of

radiological features in a few seconds.
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6. Conclusions

Based on our studies, we can state that routinely acquired radiological image
materials can be used for analysis with Al methods, such as CNNs. According to our
results, densely connected CNNs trained on multi-sequence MRI scans can be promising
new alternatives to single-phase approaches; furthermore, the use of multi-dimensional
input volumes can help the Al-based diagnosis of FLLs. According to our results, 3D and
2D DenseNets can reach similar performance in the differentiation of FLLs based on MRI
images.

Based on our findings regarding the automatic identification of radiological
features in focal liver lesions Al model predictions are reliable, and they could provide
descriptions of radiological features present in FLLs, putting more weight on the
exclusion of a feature and allowing false positive predictions depending on the type of
lesion and features present. Mistakes may partly be due to human uncertainty or the lack
of consensus among experts on the definition of a given radiological feature, not to
mention various imaging artifacts and image processing errors that may make proper
predictions more difficult.

Altogether DL-based approaches could aid clinicians and medical researchers,
especially when large quantities of images need to be processed or an automatically

utilizable reference is required.
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7. Summary

The current thesis discusses the development and evaluation of recently
introduced deep learning (DL) methods for the automated classification and description
of focal liver lesions (FLLs) based on magnetic resonance imaging (MRI) using
hepatocyte-specific contrast agents (HSCs). As the first study of its kind in Hungarian
literature, it demonstrates that convolutional neural networks (CNNs) can effectively
differentiate focal nodular hyperplasia (FNH), hepatocellular carcinoma (HCC), and liver
metastases (MET) based on both two-dimensional (2D) and three-dimensional (3D)
information. Furthermore, various radiological features of focal liver lesions are
automatically identifiable by CNNs, such as DenseNets and EfficientNets. These
advancements enable the development of downstream imaging methods, particularly in
deep learning reconstruction, which requires the definition of a ground truth/reference to
which a generated image is compared.

The study methodology involved the manual collection and preparation of large
quantities of MRI data. Data processing includes anonymization, resampling, and
alignment of MRI scans, followed by the creation of training, validation, and test datasets.
All architectures were employed within the MONALI framework for analysis and custom
written computer code was written by our research group for both analyses.

Our first study found that both 2D and 3D CNNs effectively differentiate between
FNH, HCC, and MET with AUCs above 0.90. In our second study EfficientNetB0O was
identified as the top-performing model for radiological feature identification, achieving
the highest validation mean AUC (0.9147) after 480 epochs.

The integration of such models into clinical practice faces challenges, such as the
need for larger, multi-institutional datasets and further validation studies as well as more
detailed large scale data annotation.

Our research concludes that DL techniques, particularly CNNs, are promising
tools for enhancing MRI-based diagnosis of FLLs. The use of HSC-enhanced MRI
combined with advanced DL models shows high diagnostic accuracy, aiding early and
precise diagnosis of liver conditions. In summary, this dissertation demonstrates
significant advancements in applying DL to medical imaging, providing a robust

framework for future research and clinical integration in diagnosing focal liver lesions.
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