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1. Introduction 
Magnetic resonance imaging (MRI) with hepatocyte-specific 
contrast agents (HSCs) has significantly enhanced the non-
invasive diagnosis of focal liver lesions (FLLs) due to its 
superior soft tissue contrast and safety profile. Despite these 
advancements, the interpretation of MRI scans remains complex 
and time-consuming, often requiring the expertise of seasoned 
radiologists. This thesis explores the application of deep 
learning (DL) methods, particularly convolutional neural 
networks (CNNs), to improve the diagnostic accuracy and 
efficiency of MRI in identifying and characterizing FLLs. 

Artificial intelligence (AI) and DL have transformed 
various fields, including medical imaging. CNNs, a type of DL 
model, have shown exceptional performance in image 
classification tasks, making them ideal for analyzing MRI scans. 
By training these models on a large dataset of annotated MRI 
images, we aim to develop tools that can automatically 
differentiate between types of FLLs and identify specific 
radiological features. 

 
2. Objectives 
The primary aim of this thesis is to demonstrate the feasibility 
of DL-based analysis of FLLs using HSC-enhanced MRI. The 
specific objectives include: 
 

1. To categorize FLLs into diagnostic classes 
approximating the opinion of a board-certified 
radiologist. 

2. To evaluate the sufficiency of a single axial MRI slice 
versus three-dimensional MRI images for accurate FLL 
categorization. 
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3. To quantify the accuracy of DL models in identifying 
radiological features of FLLs and compare their 
performance with that of radiologists. 

 
3. Methods 
3.1. Differentiation of tumor types 
A retrospective single-center study was conducted, collecting 
multi-phasic MRI studies of patients with FNH, HCC, or MET. 
These studies were performed using gadoxetate disodium, an 
HSC, and were sourced from the institutional picture archiving 
and communication system. The need for written patient consent 
was waived by the Institutional Research Ethics Committee due 
to the retrospective nature of the study. The MRI scans included 
T2-weighted (T2w), hepatic arterial phase (HAP), portal venous 
phase (PVP), and hepatobiliary phase (HBP) images. Lesions 
included in the study were either histologically confirmed or 
exhibited typical radiological characteristics of the given lesion 
type based on the opinion of an abdominal radiologist. Patients 
younger than 18 years at the time of imaging were excluded from 
the study. The demographic data of patients, imaging properties 
per lesion class, and details of metastatic lesion origins were 
analyzed (Table 1). 

MRI scans were anonymized by removing personal 
identifiers such as social security numbers, birth dates, and sex. 
The scans were exported as DICOM files and then processed 
using 3D Slicer, an open-source medical image computing 
software. The images were resampled and spatially aligned 
using BSpline as a non-rigid registration method. Lesions were 
annotated with cubic regions of interest (ROIs) and cropped 
from the aligned MRI volumes. The cropped volumes were 
converted to NIfTI format and combined into four-dimensional 
(4D) input data for each lesion. These datasets were then 
randomly sorted into training, validation, and test datasets, with 
specific data augmentation techniques applied to enhance the 
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training samples. The training and validation datasets contained 
three axial slices per lesion, while the test dataset contained one 
slice per lesion. 

Concatenated files underwent various transformations 
during the training process, including scaling image pixel 
intensity and applying data augmentation techniques such as 
random rotation and zooming. The images were resized to a 64 
× 64 resolution and converted to tensors for model input. 
DenseNet264, a 2D convolutional neural network, was trained 
using these tensors. For the 3D DenseNet264 network, NIfTI 
voxels were resampled to an isovolumetric shape and rescaled, 
then resized to a 64 × 64 × 64 spatial resolution. These were used 
as multi-channel inputs for the 3D CNN. Data augmentation 
techniques and transformations were applied to the training 
samples to improve generalization. Both networks were trained 
for 70 epochs, and the highest-performing model weights were 
selected based on the area under the receiver operating 
characteristic curve (AUC). 

 
3.2. Identification of radiological features 
The second retrospective study included 99 patients who 
underwent abdominal MRI with gadoxetate disodium between 
September 2017 and August 2021. The Institutional Research 
Ethics Committee waived the need for written consent for the 
retrospective analysis. The final study cohort included 131 scans 
from 99 patients, diagnosed with 105 FNHs, 121 HCCs, 121 
METs, and 32 other lesions. The MRI scans were anonymized, 
resampled, and coregistered to the HBP scan, with 
misalignments manually corrected when necessary. Lesions 
were marked and evaluated by an experienced radiologist and a 
radiology resident. The dataset was split into training, 
validation, and test sets for DL model training. 

MRI scans were acquired using a Philips Ingenia 1.5 T 
scanner and 5–20 mL of intravenous gadoxetate disodium 
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contrast. The scans included T2-weighted (T2w), native T1-
weighted, arterial (HAP), portal venous (PVP), equilibrium 
phase (VEN), and hepatobiliary phase (HBP) images. Each scan 
was anonymized and converted to 3D NIfTI format. The HBP 
scans were resampled to isotropic 1 × 1 × 1 mm voxel spacing, 
and all other scans were coregistered to the corresponding HBP 
scan. Lesions were cropped based on their largest diameter, with 
a 2-mm-wide zone added in each direction to account for 
misalignments. Lesion markers and manual corrections were 
performed using 3D Slicer. The datasets were then split into 
training, validation, and test sets for model training. 

Multiple DL algorithms were trained using MONAI, an 
open-source framework for deep learning in healthcare imaging. 
DenseNet121, DenseNet169, DenseNet201, DenseNet264, and 
EfficientNet models were trained with various hyperparameter 
setups, including batch sizes, dropout rates, and weight decay. 
The models were trained for at least 300 epochs, and the best-
performing model was defined as the one achieving the highest 
mean AUC on the validation dataset. Each model was modified 
to perform multi-label classification, with binary cross-entropy 
(BCE) loss used for weight adjustment during training. 
Occlusion sensitivity maps were generated to visualize the 
importance of different image regions in the decision-making 
process. 

ROC analysis was performed on the test dataset to calculate 
AUC values and set cut-off thresholds for each feature. 
Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and f1 scores were calculated 
for each feature. Inter-rater reliability was assessed using 
Cohen’s Kappa, comparing the model predictions with expert 
annotations. 
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4. Results 
4.1 Differentiation of tumor types 
The 2D DenseNet model achieved the highest average AUC for 
FNH (0.9900), HCC (0.9600), and MET (0.9950) after 46 
epochs. The 3D DenseNet model achieved an average AUC of 
0.9433, demonstrating slightly lower performance compared to 
the 2D model. The evaluation metrics for both models showed 
high diagnostic accuracy, with the 2D model achieving better 
sensitivity and specificity across all tumor types. Attention maps 
generated from the models highlighted the most important 
regions for diagnosis, correlating well with radiological features. 
 
4.1 Identification of radiological features 
The EfficientNetB0 model achieved the highest validation mean 
AUC (0.9147) for radiological feature identification. The model 
showed excellent performance in detecting features such as 
delayed phase enhancement (AUC 0.99) and iso- or 
hyperintensity on the venous phase (AUC 0.98). Features like 
T2 hyperintensity and washout were less accurately predicted, 
with AUC values of 0.79 and 0.64, respectively. The model 
demonstrated high specificity and NPV for most features, 
indicating reliable exclusion of non-existent features. 
 

5. Conclusions 
DL models, particularly CNNs, show significant promise in 
enhancing MRI-based diagnosis of FLLs. Both 2D and 3D 
DenseNets are effective in differentiating between FLL types 
using HSC-enhanced MRI. The automatic identification of 
radiological features by DL models can aid clinicians in 
diagnosing liver conditions with high accuracy, potentially 
improving patient outcomes through more precise and timely 
diagnoses. However, further studies involving larger, multi-
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institutional datasets and additional lesion classes are necessary 
to validate these findings and refine the models. 
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