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1. Introduction

Magnetic resonance imaging (MRI) with hepatocyte-specific
contrast agents (HSCs) has significantly enhanced the non-
invasive diagnosis of focal liver lesions (FLLs) due to its
superior soft tissue contrast and safety profile. Despite these
advancements, the interpretation of MRI scans remains complex
and time-consuming, often requiring the expertise of seasoned
radiologists. This thesis explores the application of deep
learning (DL) methods, particularly convolutional neural
networks (CNNs), to improve the diagnostic accuracy and
efficiency of MRI in identifying and characterizing FLLs.

Artificial intelligence (AI) and DL have transformed
various fields, including medical imaging. CNNs, a type of DL
model, have shown exceptional performance in image
classification tasks, making them ideal for analyzing MRI scans.
By training these models on a large dataset of annotated MRI
images, we aim to develop tools that can automatically
differentiate between types of FLLs and identify specific
radiological features.

2. Objectives

The primary aim of this thesis is to demonstrate the feasibility
of DL-based analysis of FLLs using HSC-enhanced MRI. The
specific objectives include:

1. To categorize FLLs into diagnostic classes
approximating the opinion of a board-certified
radiologist.

2. To evaluate the sufficiency of a single axial MRI slice
versus three-dimensional MRI images for accurate FLL
categorization.



3. To quantify the accuracy of DL models in identifying
radiological features of FLLs and compare their
performance with that of radiologists.

3. Methods
3.1. Differentiation of tumor types

A retrospective single-center study was conducted, collecting
multi-phasic MRI studies of patients with FNH, HCC, or MET.
These studies were performed using gadoxetate disodium, an
HSC, and were sourced from the institutional picture archiving
and communication system. The need for written patient consent
was waived by the Institutional Research Ethics Committee due
to the retrospective nature of the study. The MRI scans included
T2-weighted (T2w), hepatic arterial phase (HAP), portal venous
phase (PVP), and hepatobiliary phase (HBP) images. Lesions
included in the study were either histologically confirmed or
exhibited typical radiological characteristics of the given lesion
type based on the opinion of an abdominal radiologist. Patients
younger than 18 years at the time of imaging were excluded from
the study. The demographic data of patients, imaging properties
per lesion class, and details of metastatic lesion origins were
analyzed (Table 1).

MRI scans were anonymized by removing personal
identifiers such as social security numbers, birth dates, and sex.
The scans were exported as DICOM files and then processed
using 3D Slicer, an open-source medical image computing
software. The images were resampled and spatially aligned
using BSpline as a non-rigid registration method. Lesions were
annotated with cubic regions of interest (ROIs) and cropped
from the aligned MRI volumes. The cropped volumes were
converted to NIfTI format and combined into four-dimensional
(4D) input data for each lesion. These datasets were then
randomly sorted into training, validation, and test datasets, with
specific data augmentation techniques applied to enhance the
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training samples. The training and validation datasets contained
three axial slices per lesion, while the test dataset contained one
slice per lesion.

Concatenated files underwent various transformations
during the training process, including scaling image pixel
intensity and applying data augmentation techniques such as
random rotation and zooming. The images were resized to a 64
x 64 resolution and converted to tensors for model input.
DenseNet264, a 2D convolutional neural network, was trained
using these tensors. For the 3D DenseNet264 network, NIfTI
voxels were resampled to an isovolumetric shape and rescaled,
then resized to a 64 x 64 x 64 spatial resolution. These were used
as multi-channel inputs for the 3D CNN. Data augmentation
techniques and transformations were applied to the training
samples to improve generalization. Both networks were trained
for 70 epochs, and the highest-performing model weights were
selected based on the area under the receiver operating
characteristic curve (AUC).

3.2. Identification of radiological features

The second retrospective study included 99 patients who
underwent abdominal MRI with gadoxetate disodium between
September 2017 and August 2021. The Institutional Research
Ethics Committee waived the need for written consent for the
retrospective analysis. The final study cohort included 131 scans
from 99 patients, diagnosed with 105 FNHs, 121 HCCs, 121
METs, and 32 other lesions. The MRI scans were anonymized,
resampled, and coregistered to the HBP scan, with
misalignments manually corrected when necessary. Lesions
were marked and evaluated by an experienced radiologist and a
radiology resident. The dataset was split into training,
validation, and test sets for DL model training.

MRI scans were acquired using a Philips Ingenia 1.5 T
scanner and 5-20 mL of intravenous gadoxetate disodium
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contrast. The scans included T2-weighted (T2w), native T1-
weighted, arterial (HAP), portal venous (PVP), equilibrium
phase (VEN), and hepatobiliary phase (HBP) images. Each scan
was anonymized and converted to 3D NIfTT format. The HBP
scans were resampled to isotropic 1 x 1 X 1 mm voxel spacing,
and all other scans were coregistered to the corresponding HBP
scan. Lesions were cropped based on their largest diameter, with
a 2-mm-wide zone added in each direction to account for
misalignments. Lesion markers and manual corrections were
performed using 3D Slicer. The datasets were then split into
training, validation, and test sets for model training.

Multiple DL algorithms were trained using MONAI, an
open-source framework for deep learning in healthcare imaging.
DenseNet121, DenseNet169, DenseNet201, DenseNet264, and
EfficientNet models were trained with various hyperparameter
setups, including batch sizes, dropout rates, and weight decay.
The models were trained for at least 300 epochs, and the best-
performing model was defined as the one achieving the highest
mean AUC on the validation dataset. Each model was modified
to perform multi-label classification, with binary cross-entropy
(BCE) loss used for weight adjustment during training.
Occlusion sensitivity maps were generated to visualize the
importance of different image regions in the decision-making
process.

ROC analysis was performed on the test dataset to calculate
AUC values and set cut-off thresholds for each feature.
Sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and f1 scores were calculated
for each feature. Inter-rater reliability was assessed using
Cohen’s Kappa, comparing the model predictions with expert
annotations.



4. Results
4.1 Differentiation of tumor types

The 2D DenseNet model achieved the highest average AUC for
FNH (0.9900), HCC (0.9600), and MET (0.9950) after 46
epochs. The 3D DenseNet model achieved an average AUC of
0.9433, demonstrating slightly lower performance compared to
the 2D model. The evaluation metrics for both models showed
high diagnostic accuracy, with the 2D model achieving better
sensitivity and specificity across all tumor types. Attention maps
generated from the models highlighted the most important
regions for diagnosis, correlating well with radiological features.

4.1 Identification of radiological features

The EfficientNetB0 model achieved the highest validation mean
AUC (0.9147) for radiological feature identification. The model
showed excellent performance in detecting features such as
delayed phase enhancement (AUC 0.99) and iso- or
hyperintensity on the venous phase (AUC 0.98). Features like
T2 hyperintensity and washout were less accurately predicted,
with AUC values of 0.79 and 0.64, respectively. The model
demonstrated high specificity and NPV for most features,
indicating reliable exclusion of non-existent features.

5. Conclusions

DL models, particularly CNNs, show significant promise in
enhancing MRI-based diagnosis of FLLs. Both 2D and 3D
DenseNets are effective in differentiating between FLL types
using HSC-enhanced MRI. The automatic identification of
radiological features by DL models can aid clinicians in
diagnosing liver conditions with high accuracy, potentially
improving patient outcomes through more precise and timely
diagnoses. However, further studies involving larger, multi-



institutional datasets and additional lesion classes are necessary
to validate these findings and refine the models.
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