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List of Abbreviations

AC Adenylyl cyclase
AKTA Active form of AKT
AMPK AMP-activated protein kinase
ATF4 Activating Transcription Factor 4
ATG Autophagy-related gene
ATG5t Truncated ATG5 (ATG5T)
BAX Bcl-2-associated X protein
BCL2 B-cell lymphoma 2
BCL2_BAX BCL2 and BAX complex
BCL2_PUMA BCL2 and PUMA complex
BECN1 Beclin 1
BID BH3 interacting-domain death agonist
BRN Biochemical reaction network
CA2ER Ca ion concentration in the ER
CA2IC Ca ion in the cytoplasm
cAMP Cyclic adenosine monophosphate
CAMKKβ Calcium/calmodulin-dependent protein kinase kinase 2
CHOP C/EBP homologous protein
CRN Chemical reaction network
CYTCM Cytochrome c in the mitochondria
DAPK Death associated protein kinase 1
E Error
eif2α Eukaryotic translational initiation factor 2α

EPAC Exchange protein activated by cAMP
ER Endoplasmic Reticulum
FOCTOPUS FOCusing robusT Optimization with Uncertainty-based Sampling
GA G protein subunit α

GBC G protein subunit βγ

GFP-LC3B Green Fluorescent Protein fused with LC3
GPCRA Active from of G protein-coupled receptor
H2B-RFP Histone H2B fused with Red Fluorescent Protein
IP3 Inositol trisphosphate
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JNK Jun N-terminal kinase
L-BFGS-B Limited-memory Broyden-Fletcher-Goldfarb-Shanno with bound
LC3B Microtubule-associated proteins 1A/1B light chain 3B
LC3B-II Lipidated, membrane-bound form
MAPK15 Mitogen-activated protein kinase 15
Mdm2 Mouse double minute 2
MSE Mean Squared Error
mTOR Mammalian target of rapamycin
MTORA Active mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
OA Okadaic acid
ODE Ordinary differential equation
PAS Preautophagosomal structure
PERK PKR-like endoplasmic reticulum kinase
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKA Protein kinase A
PKC Protein kinase C
PLCε Inactive Phospholipase C epsilon 1
PP2A Protein phosphatase 2A
PUMA p53 upregulated modulator of apoptosis
RAP Rapamycin
REG Regulatory protein
RHEBA Active Ras Homolog Enriched In Brain
RKD ReSpecTh Kinetic Data
RMSD Root-mean-square deviation
SERCA Sarco/endoplasmic reticulum Ca2+-ATPase
STS Staurosporine
SUE Sensitivity, parameter uncertainty, and experimental error
tBID Truncated BH3 interacting-domain death agonist
TSC 1/2 Inactive tuberous sclerosis proteins 1 and 2
ULK1 Unc-51-like autophagy-activating kinases
UPR Unfolded protein response
UVRAG UV radiation resistance-associated gene protein
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1 Introduction

Autophagy is an evolutionarily conserved cellular digestive process [1, 2], crucial for
maintaining cellular homeostasis. While there are multiple forms of autophagy including
chaperone-mediated autophagy, microautophagy, and macroautophagy, this study focuses
exclusively on macroautophagy [3], which will be referred to simply as "autophagy"
throughout this work. Autophagy is active at a basal level at all times, performing essential
functions like degrading damaged proteins and aged organelles to ensure cellular quality
control. Beyond this constant surveillance, autophagy has a major role as a key cellular
response to external and internal stimuli, including nutrient deprivation, hypoxia, infection,
or oxidative stress [1, 4, 5, 6, 7, 2]. Under these conditions, autophagy promotes cell
survival by breaking down cellular material to provide essential building blocks and energy,
or by eliminating harmful agents and damaged structures [8, 9, 10, 11]. Given its vital
roles in the maintenance of cellular homeostasis, dysfunction in autophagy is correlated
with multiple diseases, often exhibiting complex, context-dependent effects [12, 5, 13].

Research has indicated a strong correlation between irregularities in the processes of
autophagy, particularly the clearance of misfolded protein aggregates, and the pathogenesis
of major neurodegenerative diseases [14, 15, 16, 13]. Furthermore, impaired autophagy
contributes to various metabolic disorders through dysfunction in key metabolic tissues
like the liver and pancreas [17, 18, 19], and its decline is linked to aging-related conditions
such as osteoarthritis and bone loss [20]. Defects have also been linked to inflammatory
conditions, such as Crohn’s disease [21, 22, 23], muscle atrophy [24], and complex
outcomes in cardiac diseases [25, 26]. In cancers, autophagy has a dual role, serving
as a tumor suppressor mechanism during early oncogenesis while simultaneously being
exploited by established malignancies to enhance their survival, proliferation, metastatic
potential, and therapeutic resistance [27, 28, 29, 30]. This widespread involvement across
diverse pathologies underscores the considerable interest in understanding and potentially
modulating this pathway for therapeutic purposes [31].

The complexity of autophagy regulation and its multifaceted roles in disease necessitate
quantitative approaches like systems biology. While high-throughput omics methods are
powerful for revealing system components and correlations [32, 33], understanding the
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underlying dynamic mechanisms requires integrating experimental data with quantitative
mathematical models [34, 35, 36]. Analyzing the dynamical properties revealed by these
models, such as feedback controls, biological switches, and oscillations provides crucial
mechanistic insights into how autophagy is regulated, how its dysregulation contributes
to pathology, and how the system functions over time [37]. This deeper, dynamic under-
standing is invaluable for identifying effective therapeutic targets and predicting treatment
outcomes in autophagy-related diseases [38, 39]. Accordingly, this thesis employs such
a mechanistic, dynamical systems approach to investigate the core principles governing
autophagy induction.

1.1 Regulation of autophagy induction

One of the most important elements of the autophagy machinery is unc51-like autophagy
activating kinase 1/2 (ULK1/2) [11, 40]. ULK1/2 forms a complex with ATG13, ATG101
and FIP200 to control the autophagy induction [41, 40]. ULK1, recognized as an initiator
in the autophagic process, plays important roles in activation of an autophagic response
[42].

ULK1 is regulated by two important cellular growth regulators, the mammalian target
of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) (Figure 1.1) [43, 42].
The mTOR kinase forms two distinct signaling complexes, mTORC1 and mTORC2, by
associating with various companion proteins [43]. As a key nutrient sensor, mTORC1
activity integrates multiple upstream signals; it is stimulated by abundant amino acids [44]
and growth factor signaling via the phosphatidylinositol 3 kinase (PI3K)/AKT pathway
[45, 46]. Additionally, mTORC1 is activated by sufficient cellular energy levels (high
ATP/AMP ratio), phosphatidic acid produced by phospholipase D, and adequate oxygen
availability [47, 48]. mTORC1 actively promotes protein synthesis through phosphoryla-
tion of ribosomal protein S6 kinase (p70S6K1) and translation initiation factor 4E binding
protein-1 (4E-BP1) [49]. However, this activity is suppressed by the hamartin-tuberin
(TSC1/2) complex, which inhibits mTORC1 and consequently blocks protein synthesis
through de-phosphorylation of these downstream targets [49].
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Figure 1.1: Schematic representation of the AMPK–mTORC1–ULK1 regulatory network
controlling autophagy initiation. The core regulatory triangle consists of AMPK (red),
mTORC1 (green), and ULK1 (blue), with downstream ATG proteins (purple) representing
key autophagy initiation factors. Dashed arrows indicate positive regulatory interactions;
blunt-ended lines indicate inhibitory effects. Orange highlighting denotes feedback loops
identified through both experimental validation and theoretical analysis. Figure adapted
from Holczer et al.[50].

AMPK, a heterotrimeric complex, acts as a crucial sensor of cellular energy home-
ostasis. It is primarily activated by increased intracellular AMP/ATP ratios (signifying
low energy), where direct AMP binding triggers AMPK activation [8, 9, 10, 51]. AMPK
restores energy homeostasis by inhibiting energy-consuming anabolic pathways (e.g., syn-
thesis of glycogen, protein, fatty acids, and cholesterol) while promoting energy-producing
catabolic pathways (e.g., glycolysis, fatty acid β -oxidation) through the Ser/Thr phospho-
rylation of key metabolic enzymes [8, 9, 10, 51]. Increased cytosolic Ca2+ concentrations
due to ER stress result in calcium/calmodulin-dependent protein kinase kinase 2, beta
(CAMKK2/CaMKKb) to activate AMPK. AMPK directly inhibits mTORC1 activity by
phosphorylating the RAPTOR component of the mTORC1 complex [52, 53]. ULK1 is
subject to antagonistic regulation by these two kinases [54, 55, 40]. During nutrient-replete
conditions, mTORC1 suppresses the ULK complex through direct phosphorylation of
ULK1 [55, 40]. Additionally, mTORC1 can attenuate AMPK signaling, thereby preventing
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autophagy activation [51, 56]. Conversely, under conditions of energy deprivation, AMPK
becomes activated and promotes autophagic self-digestion by phosphorylating ULK1 while
concurrently inhibiting mTORC1 [55, 40]. The autophagic response is precisely calibrated
through two distinct ULK1-mediated negative feedback mechanisms. First, ULK1 can
phosphorylate and negatively regulate AMPK, thereby attenuating its own activating signal
[57]. Second, ULK1 phosphorylates the RAPTOR component of mTORC1, leading to
mTORC1 inhibition and sustained autophagy when nutrient limitation persists [58, 59].

As it can be seen, the regulation of autophagy through ULK1 is highly dependent on the
dynamic, reversible nature of protein phosphorylation [54, 60]. Counteracting these kinases
are protein phosphatases, which are essential for reversing phosphorylation and enabling
precise signal control. A pivotal phosphatase in this context is Protein Phosphatase 2A
(PP2A), a multi-subunit serine/threonine phosphatase typically comprising catalytic (C),
scaffold (A), and variable regulatory (B) subunits [61, 62]. Beyond autophagy, PP2A plays
crucial roles in maintaining broad cellular homeostasis by participating in the regulation of
the cell cycle, proliferation, cell death, and diverse signaling pathways [62, 63]. Within
the autophagy regulatory network, PP2A often acts antagonistically to mTORC1. While
mTORC1 exerts its effect on ULK1 under nutrient-rich conditions, PP2A [64, 40, 55, 65],
PP2A (frequently involving its B55-family regulatory subunit) promotes autophagy by
dephosphorylating ULK1 at distinct activating sites during starvation [62, 66]. PP2A-B55
may also facilitate autophagy by dephosphorylating other key proteins like Beclin-1 and
PHD2 [62, 63]. In addition to the established ULK1-mTORC1 double-negative feedback
loop (where active ULK1 inhibits mTORC1 via RAPTOR phosphorylation) [40, 59, 58],
a critical double-negative feedback loop also connects mTORC1 and PP2A: mTORC1
can phosphorylate and inhibit PP2A, while PP2A can inhibit mTORC1 activation by
dephosphorylating upstream activators like Akt (at Thr308) [67, 68, 69]. Furthermore,
ULK1 itself might positively influence PP2A activity, for instance by phosphorylating
regulatory subunits like striatin, thereby establishing a positive feedback loop between
ULK1 and PP2A [70].

The kinase-phosphatase balance controlling autophagy can be artificially perturbed by
specific inhibitors. Rapamycin, for instance, allosterically inhibits mTORC1 by forming a
complex with FKBP12 and the mTOR subunit [71]. This inhibition prevents downstream
signaling, such as p70S6K1 activation [71], promotes autophagy [66] , and leads to ULK1
dephosphorylation at inhibitory sites (e.g., Ser637/757) [65, 66]. Although rapamycin
treatment is reported by some studies to activate AMPK (via Thr172 phosphorylation),
which could then phosphorylate ULK1 (at Ser555) to further promote autophagy [50,
65, 72], this AMPK role is contested, with other reports indicating AMPK-independent
autophagy induction [55] or no detectable AMPK activation [73, 74]. Inhibitors can also
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target phosphatases; okadaic acid (OA) potently inhibits PP2A (and PP1 less effectively),
thereby blocking key cellular dephosphorylation events [75].

Once autophagy is activated, an isolation membrane originating from the preautophago-
somal structure (PAS) grows and curves through nucleation to form the autophagosome,
which sequesters cytoplasmic components for degradation [76, 77, 78]. This process
involves the class III phosphatidylinositol-3 kinase (PI3K) Vps34, which associates with
Vps15 on the PAS membrane. Here, Beclin-1 competes with BCL-2 for Vps34 binding:
the Beclin-1-Vps34 complex promotes autophagosome maturation, whereas Vps34-BCL-2
inhibits autophagy [79]. Maturation of the autophagosome requires two ubiquitin-like
conjugation steps [80]. First, Atg7 activates Atg12, which is then transferred to Atg10 and
covalently linked to Atg5 at Lys130. This forms the Atg5-Atg12-Atg16L complex, which
promotes membrane curvature [80]. Second, LC3B is processed from its cytoplasmic
form (LC3B-I) to the lipidated, membrane-bound form (LC3B-II), which integrates into
both sides of the double membrane [81]. LC3B-II serves as a structural component and a
receptor for selective autophagy, interacting with adaptor molecules such as p62/SQSTM1
[80]. These adaptor molecules bridge the link between ubiquitinated protein aggregates
and the autophagy machinery via dual binding domains, one for ubiquitin and one for LC3
[82, 83, 84] (Figure 1.2). This makes p62 degradation a reliable marker for autophagic
flux [80].

Figure 1.2: Selective autophagy mediated by p62 and LC3 interaction. p62/SQSTM1 acts
as an autophagy receptor that recognizes ubiquitinated proteins through its UBA domain
and simultaneously binds to LC3 via its LIR domain. This dual interaction facilitates the
aggregation of p62-ubiquitinated protein complexes, which are then sequestered into the
forming autophagosome through LC3-mediated membrane recruitment, ultimately leading
to their degradation in the autolysosome. Figure adapted from Ichimura et al. [85].

1.2 Systems biology approach

Cellular information flows through different signaling pathways. As a signal traverses
these pathways through a series of biochemical reactions and interactions, these processes
cause dynamic changes in the concentrations of the various molecular species within
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the network, allowing signal propagation to be observed through these concentration
shifts [86]. These pathways can be considered as chemical reaction networks (CRNs),
where each node of the network is one cellular species, and the edges between the nodes
represent a biochemical reaction. Applying kinetic principles, such as mass action kinetics,
allows the translation of a CRN into a system of Ordinary Differential Equations (ODEs),
defining the rate constants and enabling the quantitative simulation of complex biochemical
pathways [87]. The versatility of CRNs for quantitative chemical process modeling [88] is
evident in its widespread application, for instance, in solid-state synthesis [89, 90], stable
isotope fractionation prediction [91], electrochemistry [92, 93, 94], homogeneous and
heterogeneous catalysis [95, 96, 97], and combustion kinetics [98].

However, a central challenge is that the rate constants and potentially other param-
eters governing these ODEs are often not well known, requiring the use of data-driven
techniques such as parameter estimation or model calibration to approximate these values
[99, 100, 101, 102, 103]. This process typically involves fitting the dynamic model (ODEs)
to time-resolved experimental measurements of observable system outputs [104, 105].
Methodologically, this requires defining a quantitative objective function, frequently de-
rived from statistical likelihood to properly account for measurement noise characteristics
that measures the discrepancy between the model simulations generated with a given
parameter set and the actual experimental data [106, 107]. Numerical optimization algo-
rithms are then employed, usually involving multiple searches from different starting points
or hybrid strategies, to identify the set of parameter values that minimizes this objective
function, representing the best agreement between the model and the data [108, 109, 103].
Even with parameter estimation, the quality of the model can be compromised by noisy
data, often from heterogeneous cell populations, which can introduce bias and overlook
cell-to-cell variability [110, 103].

Achieving reliable model calibration faces significant challenges that must be carefully
addressed [111, 103]. A fundamental challenge is parameter identifiability: parameters
can be structurally non-identifiable if redundancies or symmetries in the model structure
prevent their unique determination even with perfect data, or practically non-identifiable
if the available experimental data lacks sufficient information content to constrain their
values [112, 113, 114]. The optimization task is heavily dependent on the quality and
informativeness of the experimental data, and these challenges, identifiability, optimization
complexity, and data limitations tend to become more pronounced as the size and com-
plexity of the biochemical network model increase [110]. Nevertheless, when both the
structural properties of the network and the quality of the estimation are carefully consid-
ered through the workflow [115], these models have the potential to predict the dynamic
behavior of complex biological systems with significant accuracy [116, 87]. To address
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these challenges systematically, Villaverde et al. developed a comprehensive protocol that
integrates structural identifiability analysis, parameter optimization, sensitivity analysis,
and model validation into a unified framework (Figure 1.3), providing researchers with a
robust methodology for ODE model calibration [103].

Figure 1.3: Workflow for calibrating and validating ordinary differential equation (ODE)
models against experimental data. The process begins with input consisting of the mathe-
matical model structure, initial parameter estimates, and experimental datasets. Optimal
experimental design guides the collection of informative data to maximize parameter iden-
tifiability. The calibration workflow proceeds through four sequential steps: (1) Structural
identifiability analysis to determine whether parameters can be uniquely determined from
the available data, (2) Parameter optimization using objective function minimization in an
iterative process, (3) Sensitivity analysis to identify the most and least influential parame-
ters, and (4) Model validation through goodness-of-fit assessment and uncertainty analysis.
The output is a fully calibrated and validated model ready for predictive applications [109].

Consequently, reliable parameter estimation in complex biochemical systems neces-
sitates advanced software tools. Beyond merely solving the underlying ODE systems,
such tools must adeptly integrate diverse direct and indirect experimental data, execute
robust parameter optimization routines, and facilitate in-depth model analysis to ensure the
credibility of the resulting models. Optima++ is a software framework that provides the
capabilities needed to meet these requirements [117]. While its primary use case is in com-
bustion chemistry, its design allows for broad application across chemical kinetics [117].
As biochemical pathways are fundamentally described as Chemical Reaction Networks
(CRNs) and modelled using systems of Ordinary Differential Equations (ODEs), Optima++
is well suited for application to these biological systems. A key strength of Optima++ is
it’s FOCTOPUS global optimisation algorithm, which is specifically designed to robustly
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optimise the rate parameters of kinetic models by simultaneously fitting them to multiple
experimental data series from different sources [98]. For data handling and to ensure
the reproducibility of optimisation studies, Optima++ uses the standardised "ReSpecTh
Kinetic Data" (RKD) XML format [98, 118, 119]. These specific features, combined with
the implementation of highly efficient CRN parameter identification algorithms, make Op-
tima++ a powerful tool for addressing the quantitative complexity of biological networks
and robustly estimating their many parameters.

1.3 In-silico models of autophagy

Numerous biochemical reaction network (BRN) models have been developed to capture
complex cellular behaviors [120]. One of the most extensive in the literature is Liu et
al.’s model, featuring over 94 species and 129 reactions. This model is structured around
5 major interconnected submodules: the Apoptosis module, the Autophagy module, the
Calcium signaling module, the Inositol pathway module, and the mTOR signaling module
(as summarized in Table 1.1). These modules collectively aim to represent and investigate
the complex interplay between crucial cellular stress responses, particularly focusing on
how cells integrate various signals to modulate processes like autophagy and apoptosis.

The parameters in Liu et al.’s original model were calibrated using image-based, single-
cell experimental data obtained from Xu et al.’s study [121]. In these experiments, cells
were exposed to various stress-inducing conditions, including staurosporine (STS), ra-
pamycin, and tunicamycin (an ER stress-inducer that inhibits protein glycosylation), to
observe the differential dynamics of cellular processes, with the data series primarily
measuring cell death and autophagy levels [121]. While Liu et al. reported the estimated
parameter values derived from this calibration, crucial details for exact replication, such
as the specific initial concentrations for all 94 species and the precise sampling intervals
used for their simulations, were not fully detailed in the original publication. The initial
concentration of the species were defined randomly (presumably within plausible phys-
iological bounds), then the average of multiple simulations subsequently considered to
assess typical model behavior.

12



Table 1.1: Assessment of the five submodules in the autophagy-apoptosis computational
model. → denotes activation, ⊣ denotes inhibition [120].

Submodule Key Species Effects on Autophagy/Apoptosis Ref.
mTOR mTORC1*,

ULK1, AMPK,

TFEB

mTORC1* ⊣ autophagy (blocks

ULK1, TFEB). AMPK → au-

tophagy (inhibits mTORC1*). No

direct apoptosis effects.

[122,

53]

Calcium Ca2+(IC),

CaMKKβ ,

calpain

Ca2+(IC) → autophagy (via

CaMKKβ -AMPK). Ca2+(IC) ⊣
autophagy (via calpain cleavage).

Ca2+(IC) → apoptosis (via calpain-

Bax).

[123,

124]

Inositol cAMP, PLCε*,

IP3

cAMP ⊣ autophagy (via EPAC-

PLCε*). Indirectly → apoptosis (by

increasing Ca2+).

[125]

Autophagy Beclin-1, Atg5,

UVRAG, Bcl-2

Beclin-1, Atg5, UVRAG → au-

tophagy. Bcl-2 ⊣ autophagy. Cas-

pase cleavage of Beclin-1 ⊣ au-

tophagy, → apoptosis.

[126,

127]

Apoptosis p53, Bax, cas-

pase, PUMA

Nuclear p53 → autophagy (DRAM).

Cytoplasmic p53 ⊣ autophagy (in-

hibits AMPK). p53, Bax, PUMA →
apoptosis. Caspase ⊣ autophagy.

[128,

129]

Although Liu’s model is one of the most extensive, numerous other BCRN models in
the literature investigate mechanisms relevant to its submodules. A common challenge
in utilizing or adapting these published models lies in defining appropriate initial con-
centrations for their species, and the approaches vary. For instance, to simplify model
optimization, some studies like Dalle et al. [130] and Bagci et al. [131] defined the
initial concentrations of many species as zero, assigning non-zero values to only a select
few. Other researchers, such as Sundaramurthy et al. [132], made assumptions based on
protein function, positing higher concentrations for broadly regulating kinases compared
to those with more limited specificity. Even when a source employs artificial units, as in
the work by Tavassoly et al. [133], the underlying relationships can still be informative. In
such cases, instead of relying on absolute values which may not be directly transferable, a
strategy is to focus on the relative proportions of the species. This approach helps preserve
the intended balance and stoichiometry between different proteins within the modeled
system, allowing for meaningful comparative analysis even if the exact concentrations are
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not directly applicable.
The intricate nature of molecular cellular processes such as the regulation of autophagy,

with its extensive involvement in cellular homeostasis and numerous disease states such as
neurodegenerative diseases and cancer [134, 135], presents a significant challenge that ne-
cessitates advanced quantitative methodologies [136]. While high-throughput technologies
have greatly enhanced the ability to uncover system components and correlations, a deeper
understanding of the underlying dynamic mechanisms is crucial for effective therapeutic
intervention [137, 136]. The use of quantitative mechanistic models, such as Chemical
Reaction Networks (CRNs), provides a robust framework to dissect the complex interplay
of molecular interactions governing autophagy [137, 88]. These models allow for the
simulation and analysis of dynamic behaviors, including feedback loops and control points
within the autophagy pathway, which are often non-intuitive and difficult to predict solely
from experimental data [137]. Such mechanistic insights are invaluable for translational
medicine, offering the potential to identify novel drug targets and to simulate the effects of
therapeutic interventions in silico [138, 139].
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2 Objectives

My PhD research investigates ULK1-mediated autophagy induction using systems biology
approaches to develop comprehensive models that enhance our understanding of these
pathways. The work seeks to establish robust methodologies that enable direct applications
in translational medicine. The specific objectives are:
1. To investigate the effect of the phosphatase PP2A on ULK1-mediated
autophagy induction

1. Build a small-scale chemical reaction network (CRN) model incorporating PP2A
and its connections to ULK1 and other relevant proteins.

2. Design experiments that generate time-series data for model optimization, and
develop an effective parameter optimization strategy.

3. Analyze the dynamical characteristics of this network using the optimized model,
with particular focus on feedback mechanisms and their contribution to robust and
potentially periodic autophagy induction under various cellular conditions, including
mTORC1 inhibition and PP2A modulation.

2. To determine the minimal dynamical requirements for ULK1-
induced autophagy to oscillate

1. Address the discrepancy between our experimental observations, which reveal os-
cillatory dynamics in key autophagy proteins including ULK1, and our current
computational models, which fail to reproduce these oscillations.

2. Identify and implement the minimal dynamical requirements needed for these models
to reproduce oscillatory behavior.

3. To develop a more comprehensive, top-down modeling approach for
autophagy regulation

1. Address the limitations of previous bottom-up modeling approaches (which fo-
cused on developing highly validated but limited-scope models of specific protein
interactions) by adopting a top-down strategy.
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2. Integrate previously developed small-scale models of autophagy regulation within
a larger, more extensive biochemical reaction network framework, building upon
published complex models such as that by Liu et al.

3. Develop and implement a robust, high-throughput numerical workflow capable of
interpreting and integrating multiple data sources simultaneously from different
experimental platforms.
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3 Materials and methods

3.1 Experimental methods

This section describes the in vitro experimental methods used to examine autophagy. The
experimental methods and materials described below were performed as previously pub-
lished in our earlier works [51, 140, 54], and are presented here in detail for completeness.

3.1.1 Materials

Rapamycin (Sigma-Aldrich, St. Louis, MO, USA; R0395), okadaic acid (Sigma-Aldrich,
495604), Bafilomycin A1 (Sigma-Aldrich, M17931), DMEM—no glucose, no glutamine
(Life Technologies, Carlsbad, CA, USA; A14430-01) were purchased. All other chemicals
were of reagent grade.

3.1.2 Cell Culture and Maintenance

As model system, human embryonic kidney (HEK293T, ATCC, Manassas, VA, USA;
CRL-3216) cell line was used. It was maintained in DMEM (Life Technologies, 41965039)
medium supplemented with 10% fetal bovine serum (Life Technologies, 10500064) and 1%
antibiotics/antimycotics (Life Technologies, 15240062). Culture dishes and cell treatment
plates were kept in a humidified incubator at 37°C in 95% air and 5% CO2.

3.1.3 SDS-PAGE and Western Blot Analysis

Cells were harvested and lysed with 20 mM Tris, 135 mM NaCl, 10% glycerol, 1% NP40,
pH 6.8. Protein content of cell lysates was measured using Pierce BCA Protein Assay
(Thermo Scientific, Waltham, MA, USA; 23225). During each procedure equal amounts
of protein were used. SDS-PAGE was done by using Hoefer miniVE ( Amersham, UK).
Proteins were transferred onto Millipore 0.45 µM PVDF membrane. Immunoblotting was
performed using TBS Tween (0.1%), containing 5% non-fat dry milk (Sigma-Aldrich,
70166) or 1% bovine serum albumin (Sigma-Aldrich, A9647) for blocking membrane and
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for antibody solutions. Loading was controlled by developing membranes for GAPDH
in each experiment. For each experiment at least three independent measurements were
carried out. The following antibodies were applied: antiLC3B (Santa Cruz Biotechnology,
Dallas, TX, USA; sc-271625), antip62 (Cell Signaling Technology, Danvers, MA, USA;
5114S), antiULK1-Ser757-P (Cell Signaling Technology, 6888S), antiULK1 (Cell Signal-
ing Technology, 8054S), antip70S6K-P (Cell Signaling Technology, 9234S), antip70S6K
(Santa Cruz, sc-9202), antiAMPK-P (Cell Signaling Technology, 2531S), antiAMPK (Cell
Signaling Technology, 2603S), antiPP2A-Tyr307-P (Sigma-Aldrich, SAB4503975), an-
tiPP2A C Subunit (Cell Signaling Technology, 2259S) and antiGAPDH (Santa Cruz, 6C5),
HRP conjugated secondary antibodies (Cell Signaling Technology, 7074S, 7076S). The
bands were visualised using chemiluminescence detection kit (Thermo Scientific, 32106).

3.1.4 Silencing with siRNA

Cells were harvested and then seeded in six-well plates (200,000 cells/well) in antibiotic-
free medium. Cells were allowed to settle overnight and transfected the next day. Lipofec-
tamine RNAi Max (Invitrogen, Waltham, MA, USA; 13778075) reagent, GIBCO™Opti-
MEM I (GlutaMAX™-I) reduced serum medium (Invitrogen, 31985070) and siRNA at a
concentration of 20 pmol/ml were used for transfection. The ULK1 and PP2ACα siRNAs
were purchased from Ambion (118259, 104510, s10957, s10958). The reagent was added
to the cells and incubated for 24 h, followed by the treatments. Silencing efficiency was
checked at protein levels.

3.1.5 Treatment with inhibitors

Table 3.1: Summary of treatments used in the studies

Substance Concentration Treatment
Time

Effect Pre-
treatment

Rapamycin 100 nM 2 hours mTORC1 inhibition No

akadaic acid
(OA)

100 nM; 175
nM

3 hours PP2A inhibition No

Bafilomycin
A1

100 nM 2 hours Autophagic flux inhi-
bition

Yes

ULK1 silenc-
ing

20 pmol/ml 24 hours ULK1 downregula-
tion

Yes

PP2A silenc-
ing

20 pmol/ml 24 hours PP2A downregula-
tion

Yes

Rap + OA 100 nM each 2h (Rap) +
3h (OA)

Combined mTORC1
and PP2A inhibition

No
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3.1.6 Statistics

For densitometry analysis Western blot data were acquired using ImageJ software. For the
phosphorylated forms of p70S6K, ULK1, PP2A, and AMPK, relative band densities were
normalized to the corresponding total protein, while LC3 II and p62 proteins’ relative band
densities were normalized to GAPDH. Then the treated data series were normalized for
each protein with its own control. For each of the experiments three independent measure-
ments were carried out. Results are presented as mean values ± S.D. and were compared
using t-Test (two sample assuming unequal variances) with Bonferroni correction (p-value
correction). Asterisks indicate statistically significant difference from the appropriate
control: ns—nonsignificant; *—p < 0.05; **—p < 0.01.

The quantitative analysis of the Western blot measurements was repeated with Azure-
Spot Pro software to check the results acquired with ImageJ. The program contains 6
different background deduction method, we used the rolling ball method with a constant
radius of 2 units. The different bands then were detected with the software’s default setting,
false detections were corrected by hand.

3.2 Computational methods

This section details the computational and mathematical modeling approaches employed
in our publications that are discussed in this thesis [54, 141, 142].

3.2.1 Dynamical Systems Analysis

To investigate the qualitative dynamic properties of the constructed ODE models, including
the existence and stability of steady states, bistability, and oscillatory behavior (limit
cycles), standard dynamical systems analysis techniques were employed using the software
package XPP-AUT [143].

Phase plane analysis was conducted on relevant two-dimensional systems or projections.
This involved plotting nullclines for the state variables (curves where a variable’s derivative
is zero, e.g., dX

dt = 0) within the phase plane. Steady states (equilibrium points) were
identified as the intersection points of these nullclines. The stability of these steady states
(e.g., stable node/focus, unstable node/focus, saddle point) was determined by analyzing
the eigenvalues of the system’s Jacobian matrix evaluated at the equilibrium point, or
inferred visually from the vector field and simulated system trajectories.

One-parameter bifurcation analysis was used to map how the system’s steady states
and/or periodic solutions (limit cycles) depend on key model parameters (bifurcation
parameters). This involved using numerical continuation algorithms, typically accessed
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via the AUTO package integrated within XPP-AUT, to track solution branches as the
bifurcation parameter was varied quasi-statically. This process allowed for the detection
of critical parameter values (bifurcation points) where the system’s qualitative behavior
changes, such as Hopf bifurcations (indicating the onset of oscillations) or saddle-node
bifurcations (associated with switches between states or hysteresis).

The specific model equations, parameter values, choice of state variables for phase
planes, and bifurcation parameters used for analyzing each distinct model are detailed in
the relevant Methods subsections below and/or in the corresponding ‘.ode‘ implementation
files available.

3.2.2 Computational Methods for PP2A-mTORC1-ULK1 Model

3.2.2.1 Mathematical Model Formulation

The model describes the interactions between mTORC1, ULK1, and PP2A, initially
considering six state variables representing the active and inactive forms of each protein.
The change in their concentrations over time was modelled assuming mass action kinetics
for the underlying activation/inactivation reactions, resulting in a system of six ODEs. This
system was reduced to three ODEs by applying conservation laws for the total amount of
each protein (mTORT ,ULK1T ,PP2AT ):

mTORT = mTORi +mTORa (3.1)

ULK1T =ULK1i +ULK1a (3.2)

PP2AT = PP2Ai +PP2Aa (3.3)

Substituting these conservation laws into the full system of ODEs yielded the following
reduced system describing the dynamics of the active forms (mTORa,ULK1a,PP2Aa):

dmTORa

dt
= kamtor · (mTORT −mTORa)

− (kimtor + kimtor1 ·ULK1a + kimtor2 ·PP2Aa) ·mTORa

(3.4)

dULK1a

dt
= (kaulk + kaulk1 ·PP2Aa) · (ULK1T −ULK1a)

− (kiulk + kiulk2 ·mTORa) ·ULK1a

(3.5)

dPP2Aa

dt
= (kapp2 + kapp21 ·ULK1a) · (PP2AT −PP2Aa)

− (kipp2 + kipp21 ·mTORa) ·PP2Aa

(3.6)
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The resulting model contains 12 unknown kinetic parameters (k...) that require estimation
from experimental data. The parameters of the model are available in the supplementary
information of the original paper [54] and online at GitHub.

3.2.2.2 Structural Identifiability Analysis

Prior to parameter estimation for the PP2A-mTORC1-ULK1 model (Eqs. 3.4-3.6), a struc-
tural identifiability analysis was conducted to determine whether the 12 unknown kinetic pa-
rameters could, in principle, be uniquely determined from the model structure and planned
measurements. This analysis was performed using the StructuralIdentifiability.jl
package in Julia [144]. The analysis requires specifying the model outputs assumed to be
measurable. In this case, the assessment was based on the assumption that measurements
corresponding to both the active and inactive forms of mTORC1, ULK1, and PP2A could
be obtained. This aligns with the experimental data collected (detailed in Section 3.1),
where quantitative Western blot time-series measured phosphorylation levels indicative
of activity (p70S6K-P for mTORC1, ULK1-Ser757-P, PP2A-Tyr307-P) as well as total
protein levels for these components. From these measurements, the concentrations or
relative activities of all six state variables (active and inactive forms) could be inferred,
fulfilling the requirements for the identifiability assessment.

3.2.2.3 Parameter Estimation

The 12 unknown kinetic parameters of the PP2A-mTORC1-ULK1 model (Eqs. 3.4-3.6)
were estimated by fitting model simulations to quantitative time-series data derived from
Western blot experiments (see section 3.1 and Results Section 4.1). Specifically, data
tracking protein phosphorylation states following short-term (1 hour) rapamycin or okadaic
acid treatment in HEK293T cells were used [54].

Parameter estimation was formulated as an optimization problem aimed at minimizing
a cost function, defined as the Mean Squared Error (MSE) between model predictions
(ysim

s, j,k(p)) and the corresponding experimental data points (yexp
s, j,k):

MSE(p) =
1

Ntotal
∑

k∈Conds
∑

s∈Specs
∑

j∈Timesk

(
yexp

s, j,k − ysim
s, j,k(p)

)2
(3.7)

Here, p represents the vector of kinetic parameters being estimated. The sums iterate
over the experimental conditions used for fitting (k ∈ Conds, i.e., rapamycin and okadaic
acid treatments), the measured species (s ∈ Specs, e.g., relative phosphorylation levels of
p70S6K, ULK1, PP2A), and the measurement time points ( j ∈ Timesk). Ntotal is the total
number of experimental data points included in the sum.
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The minimization was performed using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm with bound constraints (L-BFGS-B) [145]. Key techniques employed
during estimation included potentially using auxiliary functions (e.g., fitted cubic poly-
nomials) to represent experimental data trends within the cost function, performing the
optimization on logarithmic parameter scales (lnk), and assigning fixed values to certain
parameters representing assumed background activities based on biological reasoning [54].

3.2.2.4 Dynamical Systems Analysis

Dynamical analysis was performed using the XPP-AUT software following the methods
described in subsection 3.2.1. This included phase plane analysis to investigate bistability
(Figure 4.4) and bifurcation analysis to simulate different treatment conditions by varying
total mTORC1 (mTORT ) and PP2A (PP2AT ) concentrations. The specific reduced models
and their corresponding ‘.ode‘ file implementations are available at GitHub.

3.2.2.5 Code Availability

The code implementing the PP2A-mTORC1-ULK1 model and analyses is available at
https://github.com/eraut/pp2aMtorUlk [54].

3.2.3 Computational Methods for Autophagy Oscillation Model

3.2.3.1 Mathematical Model Formulation

To investigate the mechanisms underlying oscillatory dynamics in ULK1-dependent au-
tophagy, particularly under cellular stress, an Ordinary Differential Equation (ODE) model
was developed based on the core AMPK-mTORC1-ULK1 regulatory triangle [54]. Recog-
nizing the potential need for time delays to generate oscillations [146], the model explicitly
incorporates a hypothesized intermediary regulatory component (’REG’) that mediates a
delayed effect of AMPK.

The model tracks the dynamics of four variables representing the active forms or relative
concentrations of ULK1, mTORC1 (denoted mTOR), AMPK, and REG. Interactions are
described using first-order and Michaelis-Menten kinetics as defined in the following ODE
system:
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dULK1
dt

=
(kaulk + kaulk1 ·REG+ kaulk2 ·AMPK) · (ULK1T −ULK1)

Julk +ULK1T −ULK1

− (kiulk + kiulk1 ·mTOR) ·ULK1
Julk +ULK1

(3.8)

dmTOR
dt

= kamtor · (mTORT −mTOR)

− (kimtor + kimtor1 ·AMPK + kimtor2 ·ULK1+ kimtor3 ·REG) ·mTOR

(3.9)

dAMPK
dt

=
(kaak +STARV ) · (AMPKT −AMPK)

(Jampk +AMPKT −AMPK)

− (kiak + kiak1 ·ULK1+ kiak2 ·mTOR) ·AMPK
Jampk +AMPK

(3.10)

dREG
dt

=
(kareg + kareg1 ·AMPK) · (REGT −REG)

Jreg +REGT −REG

−
kireg ·REG
Jreg +REG

(3.11)

Here, ULK1T , mTORT , AMPKT , and REGT denote the total amounts or maximum ac-
tivities. The STARV term represents the input stress signal. The 25 kinetic parameters
(k...,J...) used were based on previous studies or estimations and are detailed in the original
paper [141], and also available at Github.

3.2.3.2 Dynamical Systems Analysis

The dynamical behavior of this model, including its propensity for oscillations, was
investigated through phase plane and bifurcation analyses using the methods described
in Section 3.2.1 with the XPP-AUT software. Specific analyses involved varying the
stress parameter (S or STARV ) and examining projections like the ULK1-AMPK phase
plane, using implementations defined in the relevant ‘.ode‘ files (e.g., ‘full_bifurcaton.ode‘,
‘mTOR_bifurcation.ode‘, ‘ULK1_bifurcation.ode‘) available at GitHub.

3.2.3.3 Global Sensitivity Analysis (GSA)

To assess the impact of parameter uncertainty on model outputs like ULK1 levels, Global
Sensitivity Analysis (GSA) was performed [147]. First-order (Si) and total (STi) Sobol
indices were calculated using the variance-based eFAST method implemented in Julia
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[148]:
Y = f (X1,X2, ...,Xn) (3.12)

Si =
VarXi(EX∼i(Y |Xi))

Var(Y )
(3.13)

STi = 1− VarX∼i(EXi(Y |X∼i))

Var(Y )
(3.14)

where Y is the model output, Xi are input parameters, and X∼i denotes all parameters
except Xi. For the analysis, parameter values were varied uniformly by ±50% around their
nominal values.

3.2.3.4 Code Availability

The mathematical models and numerical analysis codes used for this study are available on
GitHub (https://github.com/eraut/Autophagy_oscillation) [141]. Simulations
and analyses were performed using XPP-AUT and potentially other tools as required.
Protein levels/activities are given in arbitrary units (a.u).

3.2.4 Computational Methods for Basal State Model Calibration

The dynamics of the revised autophagy-apoptosis network model were described using
a system of ODEs based on mass action kinetics, detailed in the wrok our previous
work [142], reaction list also available at GitHub. Numerical simulations and parameter
optimization were primarily performed using the Optima++ framework [118, 117], which
interfaces with the CANTERA chemical kinetics solver [149] for ODE integration.

Optima++ minimizes a root-mean-square deviation (RMSD) type error function (E) to
quantify the difference between simulation results and reference data (in this case, the target
basal state ranges). Although originally developed for temperature-dependent combustion
kinetics involving Arrhenius parameters (k(T ) = AT n exp(−E/RT )), for these isothermal
biological simulations, the rate coefficient was treated as a single temperature-independent
value assigned to the pre-exponential factor A, with n and the activation energy EArrhenius

set to zero. Optimization was performed on the logarithm of the rate coefficients (lnA) for
efficient sampling across orders of magnitude.

3.2.4.1 Basal State Simulation and Error Quantification

To evaluate the model against the target basal state and for parameter optimization, 20
distinct initial condition sets (Ncond = 20) were generated by uniform random sampling
within physiologically plausible concentration ranges derived from literature (Supplemen-
tary Table S2). Each scenario was simulated for 24 hours. The deviation from the target

24

https://github.com/eraut/Autophagy_oscillation


basal state was quantified using the following RMSD error function (E), calculated based
on Nspec = 34 selected indicator species whose basal ranges were well-defined:

E =

√√√√ 1
Nspec ·Ncond ·Ntim

Nspec

∑
s=1

Ncond

∑
i=1

Ntim

∑
j=1

(csim
s,i (t j)− cmean

s )2

σ2
s

(3.15)

Here, csim
s,i (t j) is the simulated concentration of species s at time point t j (with Ntim = 25,

representing hourly points) for condition i. cmean
s is the center of the target basal range

for species s, and σs represents one-eighth of the width of that range (i.e., the range is
[cmean

s −4σs;cmean
s +4σs]). The species-specific error (Es) was also calculated:

Es =

√√√√ 1
Ncond ·Ntim

Ncond

∑
i=1

Ntim

∑
j=1

(csim
s,i (t j)− cmean

s )2

σ2
s

(3.16)

such that E =
√

1
Nspec

∑
Nspec
s=1 E2

s .

3.2.4.2 Sensitivity Analysis and Parameter Selection

To identify parameters most influential on the basal state, local sensitivity analysis was
performed. The rate coefficient (kn) of each of the 113 reactions was perturbed by +5%
(1.05 · kn), and the effect on simulations across all 20 conditions was computed. σ -
normalized local sensitivity coefficients (Ss,i,n) were calculated via finite differences:

Ss,i,n(t j)≈
1
σs

csim
s,i (t j;1.05 · kn)− csim

s,i (t j)

ln1.05
(3.17)

An overall impact measure (ISUE
n→s ), considering sensitivity (S), parameter uncertainty (U),

and experimental error (E) as proposed by Kovács et al. [150], was used for ranking
parameter influence:

ISUE
n→s = σn ·

√√√√ 1
Ncond ·Ntim

Ncond

∑
i=1

Ntim

∑
j=1

S2
s,i,n(t j) (3.18)

Here, σn relates to the parameter uncertainty. A uniform, large prior uncertainty corre-
sponding to fn = 4 (half-width of ±4 orders of magnitude on a log10 scale, see [151]) was
assumed for all reaction rate coefficients (kn). Based on this analysis, 101 reactions were
identified as influential and selected for optimization.
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3.2.4.3 Parameter Optimization

Parameter optimization was performed using the FOCTOPUS algorithm within Optima++
[98]. FOCTOPUS (FOCusing robusT Optimization with Uncertainty-based Sampling)
employs iterative random or Gaussian sampling within defined uncertainty ranges, focusing
the search around promising parameter sets and adjusting the sampling volume based on
finding improvements, aiming for robust convergence. The objective was to minimize the
overall RMSD error function (E, Eq. 3.15) by tuning the 101 influential rate coefficients
within their ±4 orders of magnitude uncertainty range. Due to parameters occasionally
optimizing to the edge of this large range and becoming ineffective (too slow or too
fast), the optimization involved multiple passes with manual intervention to reset specific
parameters back to sensitive ranges before restarting optimization [142].

3.2.4.4 Posterior Uncertainty Analysis

The uncertainty of the final optimized parameters was estimated using the posterior co-
variance matrix method described by Turányi et al. [118], allowing quantification of the
reduction in uncertainty achieved through the calibration process.

3.2.4.5 Software Implementation and Availability

The model simulations and analyses related to this basal state calibration were implemented
primarily using the Optima++/CANTERA framework and supporting scripts in Julia and
Python. The code implementing the revised and calibrated model is publicly available
on GitHub (https://github.com/mcsksgyrk/basal_state_calibi, accessed on 10
September 2024) [142].
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4 Results

4.1 Parameterization of a Core Autophagy Regulatory
Model using Western Blot Time-Series Data

A minimal biochemical reaction network model focusing on the mTORC1, ULK1, and
PP2A regulatory triangle was constructed and parameterized using experimental time-
series data generated by western blot [54]. These experiments involved quantitative
measurements of the phosphorylation states of key network components over time follow-
ing specific perturbations, providing the dynamic information necessary to constrain the
kinetic parameters of the proposed regulatory network.

To describe the dynamic properties of the reaction network, the interactions between
mTORC1, ULK1, and PP2A, shown schematically in Figure 4.1, were formulated as a
system of ODEs assuming mass action kinetics for the underlying chemical reactions. The
initial system considered six state variables, representing the concentrations of the active
and inactive forms of each protein. By applying conservation laws for the total amounts of
each protein (mTORC1, ULK1, PP2A), the number of ODEs was reduced to three. This
minimal model structure contains 12 kinetic parameters whose values were estimated from
experimental data.
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Figure 4.1: Wiring diagram of the core PP2A-mTORC1-ULK1 regulatory triangle model.
Interactions include mutual inhibition between mTORC1-ULK1 (a, b) and mTORC1-PP2A
(f, e), and positive feedback between ULK1-PP2A (d, c). Figure taken from our previous
work [54].

Experimental time-series data were generated to characterize the dynamics of the
mTORC1-ULK1-PP2A network following targeted perturbations shown in Supplementary
Figure S1. Quantitative measurements tracked the phosphorylation states of p70S6K
(mTORC1 activity), ULK1 (Ser757), and PP2A (Tyr307) after either mTORC1 inhibition
with rapamycin (RAP) or PP2A inhibition with okadaic acid (OA). Inhibition of mTORC1
resulted in its rapid inactivation followed by subsequent activation of both ULK1 and
PP2A (shown in Supplementary Figure S1 A, B). Conversely, inhibition of PP2A led to its
sustained inhibition, resulting in mTORC1 hyper-activation and sustained ULK1 inhibition
(shown in Supplementary Figure S1 D, E). This dataset formed the basis for parameterizing
the mathematical model described previously.

Subsequently, the parameterized model was validated against experimental conditions
that were distinct from those utilized for parameter fitting. This entailed the generation of
new experimental data through the implementation of combined treatments in HEK293T
cells, using chemical inhibitors and RNA interference (RNAi)-based gene knockdown
methodologies. The experimental outcomes were utilized solely for the validation of the
model, as it lacked prior knowledge.

Rapamycin was both combined with akadaic acid and PP2A siRNA, assuming their
effect’s magnitude differs. Inhibition via OA (resulting in functional inhibition indicated
by PP2A hyper-phosphorylation) and siRNA knockdown (resulting in 25% residual PP2A
protein), detailed in Figure 4.2 A, B. These distinct methods led to different outcomes for
ULK1 activity: OA plus rapamycin allowed ULK1 activation, whereas siRNA knockdown
plus rapamycin prevented ULK1 activation, as shown in Figure 4.2 A, B. The compu-
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tational model, parameterized only on single-inhibitor data, successfully captured this
differential response. Simulations predicted ULK1 activation under conditions mimicking
OA plus rapamycin, shown in Figure 4.2 C, but predicted sustained ULK1 inactivity under
conditions simulating siRNA knockdown, shown in Figure 4.2 D. The model’s ability to
reproduce these observed differential behavior under conditions not used for parameter
estimation provided strong validation.
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Figure 4.2: Combined down-regulation of both PP2A and mTORC1 can result in ULK1
activation. (A) HEK293T cells were treated with okadaic acid (OA), rapamycin (rap), or rap
+ OA (details in Methods). (B) PP2A was silenced (siPP2A) in HEK293T cells, then treated
with/without rap (details in Methods). Scramble siRNA (scr.) used as control. (A,B, panel
left) Immunoblots for indicated proteins. GAPDH as loading control. (A,B, panel right)
Densitometry data (n=3). Error bars: SD; ns: non-significant; * p < 0.05; ** p < 0.01 vs
appropriate control. (C, D) Computational simulations of combined treatments mimicking
OA+rap (C: PP2AT=0.1, mTORT=0.1) or siPP2A+rap (D: PP2AT=0.01, mTORT=0.1).
Relative activities shown. Figure taken from our previous work [54].

Furthermore, the interplay involving ULK1 was investigated by combining ULK1
silencing with mTORC1 inhibition (rapamycin). Experimentally, under these conditions,
PP2A remained largely inactive, as detailed in supplementary Figure S2 A, B. Computa-
tional simulations accurately predicted this outcome, showing minimal PP2A activation
shown in Figure S2 C, D. This agreement between the model prediction and the experi-
mental data for this independent condition provided additional validation for the model
parameters and structure.

29



4.2 Oscillatory Dynamics in Autophagy Induction

Building on the observation of oscillations under mTORC1 inhibition [140], the question
arose whether prolonged inhibition of the phosphatase PP2A could similarly result in
periodic dynamics of the autophagy regulatory network. To investigate this, and for com-
parison with known oscillatory behavior, HEK293T cells were treated over time courses
with either 100 nM OA for 180 min or 100 nM rapamycin for 120 min (Figure 4.3). For
both treatments shown, key indicators including mTORC1 activity (p70S6K phosphory-
lation), ULK1 status (Ser-757 phosphorylation), PP2A status (Tyr307 phosphorylation),
and autophagy markers (LC3II/I ratio, p62 levels) were monitored via immunoblotting
(Figure 4.3A, B). Additionally, for the rapamycin treatment, AMPK phosphorylation status
was tracked, reproducing the previously reported oscillatory dynamics involving these core
components (Figure 4.3B, D) [140]. Focusing on the 100 nM OA treatment (Figure 4.3A,
C), the activation state of the monitored regulatory proteins displayed a pronounced rhyth-
mic pattern, with an approximate period of 1.5 hours. The phosphorylation profiles of
p70S6K, ULK1, and PP2A oscillated over the time course. Notably, the apparent activation
of ULK1 and PP2A (indicated by decreased phosphorylation) coincided with decreased
p62 levels and increased LC3II/LC3I ratios, suggesting periodic induction of autophagy.
Conversely, mTORC1 activity peaked when ULK1 and PP2A appeared less active. These
experiments were conducted using non-synchronized cell populations to minimize potential
confounding effects from the cell cycle or circadian rhythms.
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Figure 4.3: Prolonged OA or rapamycin treatment results in distinct oscillatory dynamics
of autophagy-related proteins. HEK293T cells were treated over time with either (A)
100 nM okadaic acid (OA) for 180 min or (B) 100 nM rapamycin (rap) for 120 min.
Markers for mTORC1 activity (p70S6K-P), ULK1 phosphorylation (ULK1-757-P), AMPK
phosphorylation (AMPK-P, rapamycin panel only), PP2A phosphorylation (PP2A-P), and
autophagy (LC3I/II, p62) were assessed by immunoblotting. GAPDH was used as a
loading control. (C, D) Densitometry data corresponding to panels A and B, respectively.
Intensities of phosphorylated proteins (p70S6K-P, ULK1-757-P, AMPK-P, PP2A-P) were
normalized to their respective total protein levels (where applicable, total levels shown in
A/B) or GAPDH. LC3II and p62 intensities were normalized to GAPDH. Data represent
mean ± SD (n=3). Asterisks indicate statistically significant difference from the control (C,
time 0): ** p < 0.01, * p < 0.05. (E, F) Corresponding computational simulations showing
relative activities under simulated OA or rapamycin treatment over 3 hours, based on the
model from [54].

Interestingly, in case of prolonged treatment with even higher level of OA (175 nM
for 180 min) no periodic repeat of either mTORC1 or ULK1 was observed (Figure 4.3
B), suggesting that this above mentioned characteristic feature of the control network
was highly dependent on the level of PP2A inhibition. To further confirm that autophagy
induction has been properly achieved, the above mentioned OA treatments were combined
with a well-known autophagy inhibitor, called Bafilomycin A1 (supplementary Figure S4).
When autophagy flux was inhibited, higher levels of LC3II/GAPDH and p62/GAPDH
were obtained, confirming that autophagy functioned properly during pure OA treatment
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Supplementary Figure S3.

4.2.1 Characteristic of Autophagy Induction

The experimental results demonstrated complex dynamics, including oscillations under
specific OA concentrations. To explore the fundamental dynamical properties embedded
within the core mTORC1-ULK1-PP2A model structure that might explain such behaviors
or potential discrepancies under different conditions, phase plane analysis was employed.
This analysis investigates the model’s steady-state landscape by examining the intersections
of the nullclines (balance curves) for ULK1 and mTORC1 activity (Figure 4.4).

Figure 4.4: The dynamical feature of PP2A-mTORC1-ULK1 regulatory triangle controlled
stress response mechanism. Phase plane diagram of PP2A-mTORC1-ULK1 regulatory
triangle (A) under physiological conditions, upon (B) rapamycin (mTORT = 0.1) or (C)
OA treatment (PP2AT = 0.3). The balance curves of ULK1 (green curve) and mTORC1
(orange curve) are plotted. Stable and unstable steady states are visualized with black
and white dots, respectively. “Non-aut. state” refers to non-autophagy state (with active
mTORC1 and inactive ULK1), while “Aut.st.” refers to “autophagy state” (with active
ULK1 and inactive mTORC1) [54].

The intersections of these nullclines indicate the system’s equilibrium points. Due
to the interplay of the positive feedback loop (ULK1 → PP2A → ULK1) and the two
double-negative feedback loops (mTORC1 ⊣ ULK1; ULK1 ⊣ mTORC1; mTORC1 ⊣
PP2A; PP2A ⊣ mTORC1), the nullclines intersect at three points under simulated phys-
iological conditions (Figure 4.4 A). Two of these intersections represent stable steady
states, separated by an unstable one. These stable states correspond to distinct cellular
conditions: a "Non-autophagy state" with high mTORC1 activity and low ULK1 activity,
and an "Autophagy state" characterized by low mTORC1 and high ULK1 activity. Under
normal conditions, the system resides in the "Non-autophagy state".

This bistable structure allows the system to function as a switch in response to strong
perturbations. Simulating mTORC1 inhibition (akin to rapamycin treatment) shifts the
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mTORC1 nullcline leftward, effectively removing the "Non-autophagy" stable state (Fig-
ure 4.4B). This forces the system into a decisive transition towards the sole remaining
stable equilibrium, the "Autophagy state". Conversely, simulating PP2A inhibition (akin to
OA treatment) preserves both stable states (Figure 4.4C); since the system originates with
high mTORC1 activity, it remains in the "Non-autophagy state" despite the perturbation.
While demonstrating the system’s capacity for decisive state changes, this switch-like
behavior between stable states does not, by itself, explain the sustained periodic oscillations
observed experimentally (subsection 4.2.3).

Therefore, this phase plane analysis confirms the core regulatory triangle’s inher-
ent capacity for bistable switching, enabling robust transitions between distinct cellular
states based on stimulus type and strength. However, this bistable characteristic alone is
insufficient to account for sustained oscillatory dynamics.

4.2.2 Requirement for Model Refinement to Explain Sustained Oscil-
lations in the AMPK-mTORC1-ULK1 Network

Although the PP2A-mTORC1-ULK1 core network exhibits bi-directionality (subsec-
tion 4.2.1), this feature alone does not account for the sustained oscillations observed
experimentally under certain conditions (subsection 4.2.3). To delve deeper into the
mechanisms required for such periodic behavior, focus shifted to the AMPK-mTORC1-
ULK1 regulatory triangle. This network shares a similar size and feedback structure to
the PP2A-containing model previously discussed. The capacity of this specific AMPK-
mTORC1-ULK1 network to generate robust limit cycle oscillations upon relevant stimuli
like nutrient stress or rapamycin treatment has been previously demonstrated and experi-
mentally validated by our group [140].

Given that the fundamental oscillatory characteristic of the AMPK-centric network
was well-established, the subsequent investigation presented in [141] utilized this frame-
work to explore the precise mechanistic requirements needed to ensure the model robustly
captures these nuanced dynamics. Initial analysis revealed that simplified representations
of the direct feedback loops within this validated AMPK-mTORC1-ULK1 network were
insufficient to consistently reproduce oscillations across all conditions. Specifically, sim-
ulations incorporating the direct AMPK ⊣ ULK1 negative feedback and the AMPK ⊣
mTORC1 double-negative feedback loop, while capable of producing oscillations under
simulated stress, failed to do so under simulated rapamycin treatment (Figure 4.5). As
shown in Figure 4.5B (lower panel), this model predicted a collapse to a stable steady state,
contradicting experimental findings.
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Figure 4.5: Dynamics of the core ULK1-mTOR-AMPK regulatory triangle. (A) Wiring
diagram of the ULK1-AMPK-mTOR regulatory network under cellular stress (upper panel,
stress = 3) or rapamycin treatment (lower panel, mTORT = 0.01). Dashed lines indicate
regulatory interactions; blocked-end lines denote inhibition. (B) Phase plane analysis
showing nullclines for ULK1 (green) and mTOR (red) under cellular stress (upper) or
rapamycin treatment (lower). Filled and unfilled circles mark stable and unstable steady
states, respectively, at nullcline intersections; grey dotted lines show system trajectories.
Throughout this figure, mTOR refers to mTORC1. Adapted from [141].

4.2.3 A Time-Delayed Negative Feedback Model Reproduces Oscilla-
tions

Simulations indicated that incorporating a time delay was sufficient to enable limit cycle
oscillations within the model system. Therefore, a time delay was introduced to the
system. There are two options for this as discussed by Holczer et al. [140]: either through
multiphosphorylation, or through an intermediary protein. We implemented the second
option by constructing a model featuring a regulatory protein (’REG’) activated by AMPK,
which subsequently promotes ULK1 activity while inhibiting mTORC1 (Figure 4.6). This
REG component mediates a delayed effect of AMPK through the negative feedback loop
influencing ULK1 (AMPK → REG → ULK1 ⊣ AMPK). Computational simulations of
this extended model demonstrated that this structure, incorporating the delayed negative
feedback and REG-mediated mTORC1 inhibition, successfully generated sustained limit
cycle oscillations (Figure 4.6). These oscillations were robust under conditions mimicking
both cellular stress and direct mTORC1 inhibition (rapamycin), aligning with experimental
observations. Furthermore, global sensitivity analysis (GSA) using the Sobol method
indicated the structural importance of this delayed feedback. The results of the GSA
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suggested that the model output (e.g., ULK1 levels, indicative of oscillatory behavior)
was most dependent on the input stress levels and the strength of the ULK1 ⊣ AMPK
interaction [141]. The parameter governing the AMPK → REG reaction also ranked
highly (fourth highest Sobol index for ULK1 level), confirming the significant impact of
this reaction, central to the delay mechanism, on the overall system dynamics, even with
loosely defined parameter values (see Supplementary Figure S5).

Figure 4.6: Time-delayed dynamics of the ULK1-mTOR-AMPK regulatory triangle with
an additional regulatory protein. (A) Wiring diagram of autophagy induction under cellular
stress (upper panel, stress = 0.5) or rapamycin treatment (lower panel, mTORT = 0.5).
Dashed lines indicate regulatory interactions; blocked-end lines denote inhibition. (B)
Phase plane analysis showing nullclines for ULK1 (green) and AMPK (blue) under cellular
stress (upper) or rapamycin treatment (lower). Unfilled circles mark unstable steady
states at nullcline intersections; grey dotted lines show system trajectories. (C) Temporal
dynamics of mTOR, AMPK, ULK1, and REG relative activities under cellular stress
(upper) or rapamycin treatment (lower). Throughout this figure, mTOR refers to mTORC1.
Adapted from [141].

4.2.4 The Delay Mechanism via REG is Essential for Oscillatory Dy-
namics

To confirm the necessity of this intermediary component and the delay it introduces,
further simulations were performed where the functional connections involving REG were
disrupted. Specifically, eliminating the positive effect of REG on ULK1 (REG → ULK1)
resulted in a failure to activate ULK1 and induce autophagy, despite AMPK activation
and mTORC1 inhibition (Figure 4.7 A). Similarly, removing the inhibitory effect of REG
on mTORC1 (REG ⊣ mTORC1) prevented the necessary downregulation of mTORC1,
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keeping both ULK1 and AMPK inactive and blocking autophagy induction (Figure 4.7B).
These results underscore that both regulatory actions of the proposed REG component are
essential for the model to exhibit the correct dynamic behavior, including oscillations and
proper autophagy activation upon stress.

Figure 4.7: Essential role of the regulatory protein (REG) in autophagy induction under
cellular stress. (A) Wiring diagram showing the effects of removing specific REG inter-
actions: REG → ULK1 activation (upper panel, k′aulk = 0) or REG ⊣ mTOR inhibition
(lower panel, k′′′imtor = 0). Dashed lines indicate regulatory interactions; blocked-end lines
denote inhibition. (B) Phase plane analysis showing nullclines for ULK1 (green) and
mTOR (red) when REG → ULK1 (upper) or REG ⊣ mTOR (lower) connections are re-
moved. Filled and unfilled circles mark stable and unstable steady states, respectively, at
nullcline intersections; grey dotted lines show system trajectories. (C) Temporal dynamics
of mTOR, AMPK, ULK1, and REG relative activities when REG → ULK1 (upper) or
REG ⊣ mTOR (lower) connections are removed. All simulations performed under cellular
stress conditions. Throughout this figure, mTOR refers to mTORC1. Adapted from [141].

4.3 Autophagy-Apoptosis Model calibration, a Top-Down
approach

The core autophagy regulatory network studied previously provides limited insight into the
broader cellular context of autophagy regulation. To address this limitation, we adopted
the comprehensive chemical reaction network model published by Liu et al. [120] as
a foundational framework for systems-level analysis [142]. However, the reproducibil-
ity of this model was hindered by the absence of publicly available source code and
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essential simulation details, particularly initial species concentrations [142]. Moreover,
simulations employing a reconstruction based on published information demonstrated an
inability to maintain a stable basal state, exhibiting inappropriate pathway activation [142].
Consequently, substantial revisions to the reaction network topology and extensive param-
eter recalibration were required to establish a reliable, reproducible, and physiologically
relevant basal state model, as detailed in the subsequent sections.

4.3.1 Defining the initial concentrations

Defining appropriate initial concentrations for the 84 model species was necessitated by
the lack of such data in the original Liu et al. publication [120]. Plausible physiological
ranges were therefore established via a literature review of comparable quantitative models
(summarized in our [142]), acknowledging the general sparsity of absolute protein concen-
tration data [142]. The target basal state was assumed to be proliferating, characterized by
active mTORC1 signaling, low constitutive autophagy, inactive apoptosis, and standard
cytoplasmic (∼ 100 nM) and ER (∼ µM) calcium levels. A standard cell volume (10−12

L) ensured unit consistency, and species lacking specific literature data were assigned a
generic 0-100 nM range. The resulting initial concentration ranges used for simulation are
shown in Supplementary Table S2.

4.3.2 Revision of Incorrect Reactions

Analysis of the reconstructed Liu et al. model identified several inconsistencies with known
biology, necessitating targeted modifications to achieve a realistic basal state simulation
[142]. The key revisions implemented were:

• Stress pathway removal: Complex ER stress signaling pathways involving PERK
and JNK were excluded to enable focused calibration of the metabolic basal state
without stress-induced perturbations.

• PKA mechanism correction: PKA’s role was corrected from autophagy promotion
to inhibition, aligning with experimental evidence on LC3 regulation. The activation
mechanism was updated to be cAMP-dependent rather than MAPK15-dependent,
with MAPK15 removed entirely from the model.

• PKC role reversal and feedback addition: PKC’s function was corrected from
autophagy promotion to inhibition, and a new feedback loop was introduced whereby
PKC regulates cAMP signaling through PLC modulation.
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• mTOR-ULK1 interaction refinement: The interaction mechanism was changed
from complex formation to direct phosphorylation, better reflecting the established
inhibitory phosphorylation of ULK1 by mTORC1.

• AKT-mTORC1 pathway correction: The erroneous reaction mTOR_ULK +
AKTA mTOR + ULKA + AKTA, which incorrectly suggested AKT inhibits
mTORC1, was removed. This corrects the directionality to reflect AKT’s established
role in activating mTORC1.

These modifications resulted in a revised network model comprising 113 reactions and 84
species shown in Figure 4.8, which formed the basis for subsequent parameter optimization
[142]. The reactions of the model are shown in Supplementary Figure 10.

Figure 4.8: Wiring diagram of the enhanced autophagy-apoptosis signaling network
model. This comprehensive network integrates key regulatory modifications described in
the main text (including refined PKA/PKC/AKT signaling roles and streamlined stress
response pathways) into the original Liu et al. framework [120], resulting in a model of
113 reactions and 84 molecular species used for basal state calibration [142]. Critical
regulatory connections within the AMPK-mTOR-ULK1 control hub are emphasized with
red connection lines. The complete mathematical formulation of all reactions, parameter
values, and kinetic equations are provided in Supplementary Figure 10, which presents the
full reaction network in detail for computational implementation and analysis.
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4.3.3 Identification and Optimization of Influential Rate Coefficients

To calibrate the revised model, influential parameters were first identified using local
sensitivity analysis (detailed in subsection 3.2.4 or in [142]). This analysis determined that
101 out of 113 reaction rate coefficients significantly impacted the simulated basal state
dynamics [142].

Subsequently, these 101 influential parameters were optimized using the Optima++
code with the FOCTOPUS algorithm [142]. The optimization aimed to minimize the
overall RMSD error (E) between simulations across 20 initial conditions and the target
basal state, tuning parameters within a ±4 orders of magnitude uncertainty range. The
iterative process successfully reduced the overall error E substantially, from an initial value
of approximately 1.3×109 down to a final value of 2.22. Species-specific errors (Es) were
also dramatically reduced; for instance, the error for the critical apoptosis regulator BAX
decreased from 2.1×1010 to 3.37 (Table 4.1).

Table 4.1: Comparison of species-specific root-mean-square errors (one-day simulations
of 20 conditions) of the concentration-time profiles simulated with the initial and final
optimized mechanisms, sorted from highest (red) to lowest (green). Species are referred to
by their name in the model [142].

Species ini opt Species ini opt

BAX 2.09×1010 3.37 CAMKKB 2.72 2.24
BCL2_BAX 39.0 2.24 DAPK 2.63 2.63
UVG 7.85 2.39 PROCASP 2.38 2.56
BCL2 7.85 1.81 PIP2 2.46 2.32
BCL2_PUMA 7.83 2.26 AC 2.35 2.36
AKTA 7.71 2.20 CALPAIN 2.36 2.23
BEC1 7.22 2.27 GPCRA 2.34 2.34
ATG5T 7.01 1.67 GA 1.99 2.28
RHEBA 6.63 2.08 PKA 2.25 2.26
CA2IC 6.40 2.09 P53 2.24 2.24
ATG5 5.93 1.14 CA2ER 2.22 2.12
TSC 5.68 2.06 GBC 2.20 2.13
MTORA 5.44 2.60 SERCA 2.18 2.18
ULK 4.21 1.92 AMPK 2.17 2.12
IP3 4.06 2.28 CYTCM 2.05 2.03
BID 3.61 1.74 EPAC 1.84 1.84
PKC 3.21 2.53 PLCE 1.80 1.80

The resulting calibrated model accurately simulates stable homeostasis, maintaining
key species concentrations like MTORA, ULK, PROCASP, and CA2ER within their phys-
iological basal ranges over 24 hours, which stands in clear contrast to the initial model’s
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failure (Figure 4.9). Furthermore, the calibration significantly constrained the uncertainties
of many rate coefficients. Posterior analysis revealed that parameter uncertainties were
reduced to within one order of magnitude for 19 reactions, within two orders of magnitude
for 72 reactions, within three for 6 reactions, and between four and five for 1 reaction (
Table 4.2; [142]).

Table 4.2: Prior and posterior rate coefficient values and uncertainty ranges for reactions
with the most constrained rate coefficients in ascending order (green lowest, yellow highest).
The rate coefficients values for the reactions are taken in 1

s and cm3

mol·s units, respectively
[142].

# Reaction log10kini fprior log10kopt fposterior 10fposterior

73 ATG5T+BCL2→ATG5_BCL2 6.50 4.00 4.79 0.13 1.35
43 IP3→PIP2 −3.55 4.00 −5.15 0.14 1.37
104 ATG5→REF −4.55 4.00 −4.51 0.19 1.55
102 REF→ATG5 −15.55 4.00 −14.23 0.20 1.57
109 PKC+CA2IC→PKC_CA2IC 5.44 4.00 4.17 0.26 1.81
10 BCL2_BAX→BCL2+BAX −3.50 4.00 −5.76 0.26 1.84
63 MTORA→MTOR −3.55 4.00 −3.45 0.60 3.98
71 AKTA→AKT −3.53 4.00 −6.30 0.63 4.25
54 EPACA→EPAC −3.50 4.00 −4.83 0.63 4.26
18 REF→BID −17.59 4.00 −16.63 0.65 4.49
30 PUMA→REF −3.92 4.00 −4.99 0.73 5.36
29 BCL2_PUMA→PUMA+BCL2 −3.08 4.00 −3.34 0.87 7.36
69 RHEBA+MTOR→RHEBA+MTORA 6.45 4.00 8.16 0.88 7.65
28 PUMA+BCL2→BCL2_PUMA 7.22 4.00 7.91 0.89 7.70
9 BCL2+BAX→BCL2_BAX 6.54 4.00 3.18 0.94 8.77
8 P53A_BCL2→P53A+BCL2 −6.78 4.00 −6.32 0.97 9.32

44 CA2IC+CAMKKB→CA2IC+CAMKKBA 5.44 4.00 3.12 0.99 9.73
34 CA2IC+SERCA→CA2ER+SERCA 7.01 4.00 3.47 1.00 10.00
45 K+CAMKKBA→AMPKA+CAMKKBA 6.44 4.00 6.05 1.00 10.00

4.3.4 Optimized Model Validation and Parameter Constraints

The 20 concentration vs. time curves (csim
s,i (t j), j = 0 . . .24) for four key species—active

mTOR (MTORA), inactive ULK (ULK), procaspase (PROCASP), and Ca2+
ER (CA2ER)—

illustrate the performance of the calibrated model (Figure 4.9). These species were
selected for their critical roles in signaling cell growth (MTORA), autophagy activity
(ULK), apoptosis (PROCASP), and calcium homeostasis (CA2ER), which influences
both autophagy and apoptosis. The simulations clearly show that while the initial model
(red lines) predicted physiologically incorrect dynamics like mTOR inactivation and
procaspase consumption, the optimized mechanism (green lines) successfully sustains
the concentrations of these key markers within their expected basal physiological ranges
over 24 hours. Concentration profiles for all 34 monitored species are available in the
supplementary information associated with [142].
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The optimization process significantly constrained the uncertainty of many kinetic
parameters, leveraging the requirement to accurately simulate the basal state. Posterior
uncertainty analysis, using methods described by Turányi et al. [118], quantified this
refinement. Table 4.2 summarizes the results for the 19 reactions whose rate coefficients
were most constrained, achieving uncertainty bounds within one order of magnitude
(10 f posterior

< 10). As detailed in our previous work, the optimization constrained the rate
coefficients of 19, 72, 6, and 1 reactions within 0–1, 1–2, 2–3, and 4–5 orders of magnitude
uncertainty, respectively [142].

Figure 4.9: Temporal concentration profiles of key regulatory species from 20 random
initial conditions within the basal range [cmean

s ±4σs] for the initial (red) and optimized
(green) models over 24 h. Shaded areas represent cmean

s ±2σs. MTORA (active mTOR,
upper left) maintains elevated levels in the optimized model, indicating nutrient-rich
conditions. ULK (inactive ULK1, upper right) remains high, confirming autophagy
suppression. PROCASP (procaspase, lower left) stays constant, demonstrating absent
apoptotic signaling. CA2ER (ER calcium, lower right) shows proper calcium homeostasis
with characteristically high ER concentrations. The optimized model (green) successfully
maintains physiological homeostasis, while the initial model (red) fails to sustain basal
conditions. Adapted from [142].
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5 Discussion

Autophagy is an essential cellular survival mechanism activated in response to various
intracellular or extracellular stressors. Dysregulation of autophagy has been implicated in
numerous diseases, including cancer, where it exhibits a dual role, and neurodegenerative
disorders [27, 28, 29, 134, 135]. This makes autophagy a compelling target for precision
medicine [152, 153]. While high-throughput multi-omics methods generate substantial
data and have enabled significant advancements, models derived from these approaches
often struggle to accurately predict responses in small groups of individuals. This difficulty
primarily stems from the "high-dimension, low-sample-size" (HDLSS) dilemma, where
the vast number of measured variables contrasts sharply with limited data availability a
situation particularly prevalent in studies involving rare diseases [154, 155, 156]. The
challenge of high-dimension, low-sample-size (HDLSS) data underscores the limitations of
purely data-driven predictive models. In contrast, quantitative mechanistic models leverage
established biological principles and interaction networks to elucidate the underlying
dynamics of cellular systems [157]. This focus on dynamical insight offers a significant
advantage: the mechanistic framework can reduce the extensive data requirements typically
needed for model calibration and prediction, a benefit particularly relevant in data-scarce
scenarios [158, 159].

We have built upon a mechanistic modeling approach, advancing on prior autophagy
models to further investigate the detailed dynamics of ULK1-mediated autophagy induction.
Initial qualitative dynamical analyses (including bifurcation and phase plane analysis) of
the base model indicated a need for expansion to accurately capture a broader range of
molecular biological behaviors.

Consequently, this work transitioned from our group’s established reductionist strategy,
which typically examines individual molecular interactions in isolation, towards a more
integrative, top-down methodology. This involved embedding our validated small-scale
model within a more comprehensive, existing autophagy-apoptosis network. This approach
posed considerable challenges, as the target extensive model lacked readily usable parame-
terization and initial conditions, necessitating its effective reconstruction from the ground
up. To address the complexities of parameter estimation and uncertainty quantification
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for this expanded system, we leveraged the Optima++ framework. This marked a novel
application of Optima++, a framework primarily designed for combustion kinetics, to the
domain of biochemical reaction systems. The adoption of Optima++ provided signifi-
cant methodological advantages, notably its standardized XML data format (RKD) that
facilitates systematic data handling, alongside access to a range of advanced numerical
tools for optimization and analysis. As a result of this approach, the newly developed and
integrated model is now capable of simulating a homeostatic cellular state while retaining
the core mechanisms of our previous small-scale model, thus offering a more powerful
and comprehensive platform for future investigations into autophagy.

5.1 Integration of Experimental Design and Computa-
tional Modeling

A significant methodological contribution of this research is the development of a pipeline
connecting wet-lab experimental design with dry-lab computational modeling. The PP2A
study exemplifies this integrated approach, where we demonstrated that a well designed
in-vitro experiment generated time-series data can be suited for model parameterization
despite the challenges of sparse, highly noisy biological measurements. The experimental
design focused on time-course measurements capturing the phosphorylation dynamics
of key network components (p70S6K for mTORC1 activity, ULK1-Ser757, and PP2A-
Tyr307) following targeted perturbations with rapamycin or okadaic acid. With this
relatively simple approach we were able to generate Quantitative readouts. This relatively
simple approach was able to follow network state changes over time, providing essential
constraints for parameter estimation.

As part of our data processing strategy, we fitted polynomial functions to the experi-
mental time-series data, an approach known as data smoothing [160]. These continuous
polynomial functions effectively captured underlying temporal trends while mitigating the
inherent noise characteristic of western blot measurements. We then sampled from these
functions at a higher frequency than the original experimental measurements. This step
generated densely sampled pseudo-data points that not only preserved the essential under-
lying dynamics but also further reduced the impact of experimental variability. This overall
approach significantly improved the robustness of parameter estimation by providing more
consistent and refined constraints for the optimization algorithms, while ensuring fidelity to
the initial experimental observations. The statistical analysis methodology, incorporating
multiple normalization steps and replicate experiments, further helped mitigate the inherent
variability in western blot quantification, a common challenge in systems biology modeling.
By implementing independent validation experiments distinct from those used for fitting
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(combined treatments with siRNA knockdowns), the model predictive capacity was tested.
This validation strategy represents an important advance in model development practice,
as it confirms the model’s ability to predict system behaviors under conditions not used for
its parameterization.

5.2 Oscillatory Dynamics Require Time-Delayed Negative
Feedback

Dynamical analysis of the optimized model revealed that the system exhibits bistability
due to the interplay of positive (ULK1 → PP2A → ULK1) and double-negative (mTORC1
⊣ ULK1 ⊣ mTORC1, mTORC1 ⊣ PP2A ⊣ mTORC1) feedback loops. This bistable
characteristic enables robust decision-making, where rapamycin treatment forces a tran-
sition from "Non-autophagy state" to "Autophagy state" by removing the physiological
stable steady state, while OA treatment preserves bistability while preventing autophagy
activation under normal conditions.

On the contrary, we observed similar oscillatory behavior under specific concentrations
of okadaic acid (OA) treatment (e.g., 100 nM for 180 minutes), indicating a temporal
control mechanism that has not been extensively characterized. This discovery aligned
with our group’s previous experiments with rapamycin treatment [50, 140]. These findings
prompted me to conduct an extensive dynamical systems analysis on our group’s base
ULK1-mTORC1-AMPK model, which has essentially the same structure as the PP2A
model introduced here. These findings prompted an extensive dynamical systems analysis
on our group’s base ULK1-mTORC1-AMPK model, which has essentially the same
structure as the PP2A model introduced here. The dynamical system analysis showed that
the core AMPK-mTORC1-ULK1 network, despite its multiple feedback loops, cannot
sustain these oscillations without a critical additional component: a significant time delay
within a negative feedback loop.

To test our hypothesis, we introduced an intermediary regulatory protein (REG) that me-
diates certain effects of AMPK on ULK1 and mTORC1. This modified model successfully
reproduced the sustained oscillations observed experimentally under various conditions,
including starvation and rapamycin treatments, thereby aligning with a broader range of
our experimental observations. This introduced delay, in the REG-mediated pathway, is
crucial, as the periodic inactivation in the system makes it possible to switch off autophagy
when it’s no longer necessary. Global sensitivity analysis further confirmed the importance
of this delay pathway; parameters governing the AMPK-REG interaction ranked as the
fourth most significant in impacting system dynamics, surpassed in importance only by
the overall stress level and the maximum activity and concentration of AMPK.
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The biological significance of these oscillations likely relates to cellular resource allo-
cation. Periodic autophagy activation allows cells to alternate between degradation phases
(when autophagy is active) and utilization phases (when mTORC1 reactivates), enabling
efficient recycling of cellular components without overwhelming the cell’s metabolic
capacity.

5.3 From Minimal Models to Comprehensive Networks

To extend our investigations into a broader cellular context, we developed a more compre-
hensive autophagy-apoptosis model. This work was initially based on the model proposed
by Liu et al. [120]; however, significant modifications and an entirely new parameter
estimation were necessitated due to the unavailability of their source code and protein
concentrations used, which prevented reproduction of their published results. A primary
objective for our revised baseline model was to achieve stable homeostatic behavior under
unperturbed conditions, as the model with the published parameter values converged rapidly
towards apoptotic states irrespective of initial conditions. This extensive recalibration
and development process aimed to establish a foundational resource for studying broader
cellular decision-making. The resulting model, containing parameters derived from its 113
reactions, presented a significant optimization challenge due to its high dimensionality. To
address this, we first established a plausible initial concentration range and sampling strat-
egy for each species by integrating methods and simplifications from published models of
similar biological processes. Following this, and prior to full optimization, local sensitivity
analysis was employed to pragmatically reduce dimensionality. This analysis identified 101
influential parameters using the SUE impact measure, which effectively ranked parameter
influence by considering sensitivity, initial uncertainty, and experimental error factors.
For the subsequent high-dimensional parameter optimization, we adopted an innovative
approach by transferring methodologies from combustion kinetics. Specifically, we uti-
lized the Optima++ FOCTOPUS (FOCusing robusT Optimization with Uncertainty-based
Sampling) algorithm, employing the Cantera solver. This cross-disciplinary application of
the Optima++ framework, originally designed for combustion kinetics, proved effective for
this biological system, successfully managing the complex parameter space and dramati-
cally reducing the overall Root Mean Square Deviation (RMSD) error from approximately
1.3×109 to 2.22.

Particularly noteworthy in our calibration pipeline was the rigorous posterior uncer-
tainty analysis performed on the optimized parameters. This quantified the reduction in
parameter uncertainty achieved through calibration, thereby providing a more robust foun-
dation for future model iterations by explicitly characterizing the confidence associated
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with each parameter. For instance, this analysis revealed that parameters related to 19
reactions could be constrained to within one order of magnitude ( fposterior < 1), while
others remained less certain. Such findings offer invaluable guidance for designing targeted
experimental studies aimed at further model refinement. These thorough posterior investi-
gations were especially crucial given the sheer volume of initially unknown parameters
and the inherent uncertainties regarding exact cellular protein concentrations.

This work provides comprehensive documentation of the model development process,
including detailed specifications of initial concentration ranges, reaction modifications, and
optimization procedures. The complete computational implementation is made available
through GitHub repositories:

• https://github.com/mcsksgyrk/basal_state_calibi

• https://github.com/eraut/pp2aMtorUlk

• https://github.com/eraut/Autophagy_oscillation

to ensure reproducibility and enable extension by other researchers. This open access
approach facilitates model reuse and validation within the systems biology community.

5.3.1 Future Directions

While the current model accurately simulates basal autophagy behavior, realizing its full
predictive capabilities for autophagy regulation across diverse cellular stress conditions
necessitates further development. A primary challenge in this endeavor is achieving high
certainty in parameter estimation, a task which requires extensive quantitative data and
rigorous calibration procedures [137]. Ongoing refinement efforts are therefore focused
on expanding the model’s predictive scope beyond these initial homeostatic scenarios. A
cornerstone of this advancement is the systematic compilation of experimental data from
numerous literature sources into the standardized "ReSpecTh Kinetic Data" (RKD) XML
format. This structured data curation represents a significant methodological improvement,
essential for facilitating more robust parameter optimization and rigorous validation of com-
plex biological models, particularly when employing advanced computational frameworks
for systems biology.

Using this structured database, we plan to optimize the model to reproduce multiple ex-
perimental conditions, particularly focusing on rapamycin treatment and various starvation
protocols. The approach presented in this thesis offers unique advantages for this ongoing
work, as the Optima++ framework can simultaneously utilize multiple XML data sources
for simulations and parameter fitting. This capability provides a robust platform for model
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evolution, where reactions can be added or removed while maintaining the model’s ability
to reproduce previously validated behaviors.

A particularly valuable aspect of this methodology is that after modification of the
reaction network, the model can be re-optimized using the exact same initial concentration
ranges and measurement data. This ensures that features and behaviors validated in
earlier iterations are preserved in subsequent model versions. Such continuity in model
development is essential for gradually building more comprehensive representations of
complex biological systems without sacrificing previously achieved accuracies.

The extension of the model to simulate stress responses will provide deeper insights
into autophagy regulation under pathological conditions. By incorporating data from
diverse experimental paradigms into a unified modeling framework, we aim to develop a
more integrative understanding of how the autophagy-apoptosis decision network functions
across different cellular contexts and stress conditions. This work will further strengthen
the model’s utility for predicting therapeutic interventions in autophagy-related diseases
and provide a more comprehensive platform for investigating the complex dynamics of
cellular stress responses.
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6 Conclusions

This thesis has investigated ULK1-mediated autophagy regulatory mechanisms using
systems biology approaches, effectively addressing the objectives outlined for this research.

• A small-scale chemical reaction network model was developed incorporating PP2A
and its connections to ULK1 and mTORC1, capturing essential regulatory inter-
actions within this network. The approach integrated classical molecular biology
methods with computational modeling in a complementary manner. Structural iden-
tifiability analysis guided experimental design, ensuring model identifiability, and
these targeted experiments enabled determination of previously unknown reaction
rates.

• This work established that highly variable western blot data can provide sufficient
constraints for parameter estimation when combined with appropriate experimental
design and data processing strategies. Experimental time-series tracking phosphory-
lation states of key network components (p70S6K, ULK1-Ser757, PP2A-Tyr307)
following rapamycin or okadaic acid treatments provided essential constraints for
parameter optimization. The model’s predictive capability was validated using inde-
pendent experiments not included in the parameter fitting process, following rigorous
model development protocols.

• Model analysis revealed the necessity of an intermediary regulatory component
(REG) for oscillatory autophagy dynamics. Systematic disruption of REG’s dual
functions abolished both oscillations and proper autophagy induction, with the
system settling into inappropriate steady states. Global sensitivity analysis using
the Sobol method confirmed the structural importance of this delay mechanism,
identifying AMPK-REG interactions among the most influential parameters for
system dynamics. These findings suggests that biologically realistic autophagy
models require additional state variables beyond the core AMPK-mTORC1-ULK1
network to capture the temporal complexity observed experimentally.

• An open-source, comprehensive autophagy-apoptosis model was developed through
extensive modification of Liu et al.’s framework [120], necessitated by the original
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model’s lack of reproducibility due to missing source code and initial concentra-
tions. The reconstructed model achieves stable homeostatic behavior under basal
conditions.

• To address the complexity of this 113-reaction network, physiologically plausible
concentration ranges were established by integrating data from multiple published
models. This work pioneered the application of Optima++ to biochemical reaction
networks, transferring advanced computational methods from combustion kinetics to
systems biology. Local sensitivity analysis using the SUE impact measure identified
101 influential parameters from the full parameter space. Subsequent optimization
with the FOCTOPUS algorithm achieved a dramatic reduction in RMSD error from
1.3×109 to 2.22.

• This systematic calibration approach constrained 19 key reaction parameters to
within one order of magnitude without requiring direct experimental measurements
for this foundational phase. These parameter bounds provide essential guidance for
future experimental design and targeted model refinement toward clinically relevant
applications.

The comprehensive documentation of all model implementations, including detailed speci-
fications of concentration ranges, reaction modifications, and analysis procedures, follows
the new standards for reproducibility in computational science. The methodological frame-
work developed here creates a foundation for future translational applications. However,
achieving clinical relevance will require systematic integration of quantitative experimental
data and validation across diverse physiological and pathological conditions. All models
and analysis tools are publicly available in GitHub repositories, ensuring accessibility and
enabling the broader scientific community to build upon this work.
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7 Summary

In this PhD thesis, we contributed significant insights into the dynamical regulation of
ULK1-mediated autophagy induction through innovative systems biology approaches.

We developed an experimental-computational pipeline that utilizes noisy western blot
time-series data for parameter estimation in dynamic models. This methodology enabled us
to construct a chemical reaction network model incorporating PP2A, ULK1, and mTORC1
interactions that successfully predicted cellular responses to treatments not used in our
parameterization.

We made important discoveries about autophagy oscillations, observing periodic ac-
tivation at specific concentrations of rapamycin and okadaic acid. Through phase plane
analysis, we demonstrated that models without time delay could not reproduce these dy-
namics. We proved this by incorporating an intermediary regulatory component mediating
some of AMPK’s effects on both ULK1 and mTORC1, establishing that AMPK had to
exert part of its regulatory influence through this intermediary protein for the system to
exhibit oscillations.

To extend our compuatational domain, we developed a comprehensive autophagy-
apoptosis model by extensively modifying an existing framework from Liu et al. We
applied state-of-the-art computational methods and tools to address the complex challenges
of biological systems modeling. We repurposed the Optima++ computational framework
for biochemical reaction networks, using Optima++ for the first time outside of combustion
kinetics. Our approach combined local sensitivity analysis using the SUE impact measure
to identify influential parameters, which we then optimized using the advanced FOC-
TOPUS algorithm. We established a new standard for utilizing multiple data sources in
biochemical reaction network parameter optimization through the standardized ReSpecTh
XML format, enabling systematic compilation and integration of experimental data from
diverse literature sources.

These mechanistic insights provide a foundation for understanding autophagy dysregu-
lation in diseases such as cancer, neurodegeneration, and metabolic disorders, potentially
informing future therapeutic interventions targeting this crucial cellular process.
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Holczer, M. ; Hajdú, B. ; Lőrincz, T. ; Szarka, A. ; Bánhegyi, G. ; Kapuy, O.
A double negative feedback loop between MTORC1 and AMPK kinases guarantees
precise autophagy induction upon cellular stress
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 20 : 22 Paper: 5543 ,
17 p. (2019)
IF: 4.556
DOI: 10.3390/ijms20225543

68



10 Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Orsolya Kapuy, for her
guidance, patience, and unwavering support throughout my doctoral journey. Her expertise
and insights have been invaluable to this research.

I am grateful to the members of the Kapuy Lab for their collaboration and stimulating
discussions. Special thanks to my colleagues Marianna Holczer and Margita Márton for
their experimental contributions and thoughtful feedback.

I would like to express my sincere gratitude to Dr. Tibor Nagy for his exceptional
guidance and expertise in computational frameworks and mathematical modeling. His
insights into parameter optimization techniques and reaction kinetics were instrumental in
the development of our novel methodological approaches.

I also wish to thank the Department of Molecular Medicine at Semmelweis University
for providing an excellent academic environment and research facilities.

Finally, I extend my heartfelt thanks to my family and friends for their encouragement
and moral support throughout my studies.

This research was supported by Richter Gedeon Talentum Fundation.

69



Supplementary materials
Supplementary figures

Figure S1: Experimental characterization and model simulation of mTORC1-ULK1-
PP2A network response to mTORC1 and PP2A inhibition. HEK293T cells were treated
over time with either 100 nM rapamycin (Rapa, top row) or 100 nM okadaic acid (OA,
bottom row). (A, D) Immunoblots showing the time-dependent phosphorylation status
of markers for ULK1 (ULK1-757-P), PP2A (PP2A-P), and mTORC1 (p70S6K-P), along
with total protein levels. GAPDH was used as a loading control. (B, E) Densitometry
data representing the relative intensity of ULK1-757-P normalized to total ULK1, PP2A-P
normalized to total PP2A, and p70S6K-P normalized to total p70S6K. Data are from three
independent measurements. Error bars represent standard deviation; asterisks indicate
statistically significant difference from the control (time 0): ns—nonsignificant; *—p <
0.05; **—p < 0.01. In (C) and (F), the concentration changes of mTORC1, PP2A, and
ULK1 over time are shown during the simulation with the optimized models[54].
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Figure S2: Combined down-regulation of mTORC1 and ULK1 can result in PP2A in-
hibition. ULK1 was silenced in HEK293T cells, then cells were treated with/without
100 nM rapamycin for 2 h. The silencing was checked by using a scramble siRNA. (A)
The markers of ULK1 (ULK1-757-P), PP2A (PP2A-P) and mTORC1 (p70S6K-P) were
followed by immunoblotting. GAPDH was used as loading control. (B) Densitometry
data represent the intensity of ULK1-757-P normalized for total level of ULK1, PP2A-P
normalized for total level of PP2A and p70S6K-P normalized for total level of p70S6K.
For each of the experiments, three independent measurements were carried out. Error bars
represent standard deviation asterisks indicate statistically significant difference from the
control: ns—nonsignificant; *—p < 0.05; **—p < 0.01. The computational simulation
is determined upon two different types of ULK1 silencing combined with rapamycin
treatment: (C) (ULK1T = 0.01, mTORT = 0.1) and (D) (ULK1T = 0.3, mTORT = 0.1).
The relative activity of mTORC1, PP2A, ULK1 is shown. Figure taken from our previous
work [54].
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Figure S3: High concentration Okadaic Acid treatment does not induce oscillatory protein
dynamics. (A) HEK293T cells were treated over time with 175 nM okadaic acid (OA)
for 180 min. Markers for mTORC1 activity (p70S6K-P), ULK1 phosphorylation (ULK1-
757-P), PP2A phosphorylation (PP2A-P), and autophagy (LC3I/II, p62) were assessed
by immunoblotting. Total protein levels and GAPDH were used as loading controls.
(B) Densitometry data corresponding to panel A. Intensities of phosphorylated proteins
(p70S6K-P, ULK1-757-P, PP2A-P) were normalized to their respective total protein levels.
LC3II and p62 intensities were normalized to GAPDH. Data represent mean ± SD (n=3).
Asterisks indicate statistically significant difference from the control (time 0): ** p < 0.01,
* p < 0.05; ns: non-significant. Figure taken from our previous work [54].
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Figure S4: Analysing OA induced autophagy activation in the presence of an autophagic
flux inhibitor. HEK293T cells were pre-treated without/with Bafilomycin A1 (100 nM Baf
for 2 hours) followed by OA (100 nM and 175 nM for 3 hours) and rapamycin (100 nM
for 2 hours). (A) The autophagy (LC3, p63) markers were followed by immunoblotting.
GAPDH was used as loading control. (B) Densitometry data represent the intensity of
LC3II and p62 normalized for GAPDH. For each of the experiments, three independent
measurements were carried out. Error bars represent standard deviation asterisks indicate
statistically significant difference from the control: ns – nonsignificant; * - p < 0.05; ** -
p < 0.01. Figure taken from our previous work [54].
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Figure S5: Total Sobol indices of ULK1 model output. The results suggest that the stress
level has the most impact on the ULK1 levels (parameter denoted with S. Then the AMPK
inhibition by ULK1 (kiak1), total possible AMPK levels (AMPKT) and the activation of
REG by AMPK (kareg1). Figure taken from our previous work [141].

Basal model details

The calculations were carried out in mol
cm3 , thus the rate coefficients values for the first and

second order reactions are taken in 1
s and cm3

mol∗s units, respectively [142].

DS+P53 k1−→ P53A+DS

P53A k3−→ MDM2+P53A

MDM2 k5−→∅

MDM2+P53A k7−→ MDM2

P53A+BAX k9−→ BAXA+P53A

P53A k11−−→ P53A+BAX
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P53A+BCL2
k13−−⇀↽−−
k15

P53A_BCL2

BCL2+BAX
k17−−⇀↽−−
k19

BCL2_BAX

BAXA k21−−→ BAX

BAX k23−−→∅

BAXA+CYTCM k25−−→ BAXA+CYTC

UVG+BAX
k27−−⇀↽−−
k29

UVG_BAX

CALPAINA+BID k31−−→ CALPAINA+TBID

TBID k33−−→∅

∅ k35−−→ BID

TBID+CYTCM k37−−→ TBID+CYTC

CYTC k39−−→∅

CYTC+PROCASP k41−−→ CYTC+CASP

CASP+PROCASP k43−−→ 2CASP

CASP+BID k45−−→ TBID+CASP

DS+DAPK k47−−→ DS+DAPKA

DAPKA k49−−→ DAPK

P53A+AMPKA k51−−→ P53A+AMPK

P53A k53−−→ P53A+PUMA

PUMA+BCL2
k55−−⇀↽−−
k57

BCL2_PUMA

PUMA k59−−→∅

DAPKA+BEC1_BCL2 k61−−→ DAPKA+BEC1+BCL2

TG+SERCA
k63−−⇀↽−−
k65

TG_SERCA

CA2IC+SERCA k67−−→ CA2ER+SERCA

CCH+PLCE k69−−→ PLCEA

EPACA+PLCE k71−−→ EPACA+PLCEA

PLCEA k73−−→ PLCE

PLCEA+PIP2 k75−−→ PLCEA+ IP3
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IP3R+ IP3
k77−−⇀↽−−
k79

IP3R_IP3

CA2ER+ IP3RIP3
k81−−→ CA2IC+ IP3R_IP3

IP3R_IP3+PHAG k83−−→ IP3R_IP3

IP3 k85−−→ PIP2

CA2IC+CAMKKB k87−−→ CA2IC+CAMKKBA

AMPK+CAMKKBA k89−−→ AMPKA+CAMKKBA

CA2IC+CALPAIN k91−−→ CA2IC+CALPAINA

CALPAINA k93−−→ CALPAIN

CALPAINA+GA k95−−→ GAA+CALPAINA

AC+GAA
k97−−⇀↽−−
k99

AC_GAA

ACGAA
k101−−→ ACGAA +CAMP

CAMP k103−−→∅

CAMP+EPAC k105−−→ CAMP+EPACA

EPACA k107−−→ EPAC

GAA k109−−→ GA

GABC+GPCRA k111−−→ GAA+GBC+GPCRA

GA+GBC k113−−→ GABC

RAP+MTOR
k115−−⇀↽−−
k117

MTOR_RAP

RAP+MTORA
k119−−⇀↽−−
k121

MTOR_RAP

AMPKA+MTORA k123−−→ AMPKA+MTOR

MTORA k125−−→ MTOR

MTORA+AMPKA k127−−→ MTORA+AMPK

ULKA+MTORA k129−−→ MTORA+ULK

ULKA+MTORA k131−−→ MTOR+ULKA

AMPKA+TSC k133−−→ AMPKA+TSCA

RHEBA+TSCA k135−−→ RHEB+TSCA

RHEBA+MTOR k137−−→ RHEBA+MTORA
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RHEB k139−−→ RHEBA

AKTA k141−−→ AKT

AKTA+TSCA k143−−→ AKTA+TSC

ATG5T+BCL2
k145−−⇀↽−−
k147

ATG5_BCL2

CALPAINA+ATG5 k149−−→ CALPAINA+ATG5T

CALPAINA+BEC1 k151−−→ CALPAINA

IP3R+BCL2
k153−−⇀↽−−
k155

IP3R_BCL2

BEC1+BCL2
k157−−⇀↽−−
k159

BEC1_BCL2

ULKA k161−−→ ULKA+PHAG

AMPKA+ULK k163−−→ AMPKA+ULKA

AMPK+NS k165−−→ AMPKA+NS

AMPKA k167−−→ AMPK

ULKA k169−−→ ULK

AMPKA+ULKA k171−−→ AMPK+ULKA

PHAG+BEC1 k173−−→ PREAUT+BEC1

PHAG+BEC1_UVG k175−−→ PREAUT+BEC1_UVG

BEC1A+UVG
k177−−⇀↽−−
k179

BEC1_UVG

∅ k181−−→ BEC1

PHAG k183−−→∅

ATG5+PHAG k185−−→ ATG5+AUT

AUT k187−−→∅

AUT+NS k189−−→ AUT

AUT+DS k191−−→ AUT

∅ k193−−→ PHAG

PREAUT k195−−→∅

P53A k197−−→ P53A+DRAM

DRAM k199−−→∅
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DRAM+PREAUT k201−−→ DRAM+AUT

∅ k203−−→ ATG5

ATG5T k205−−→∅

ATG5 k207−−→∅

CAMP+PKA k209−−→ PKAA+CAMP

PKAA+PHAG k211−−→ PKAA

PKAA k213−−→ PKA

PKC_CA2IC+PLCEA k215−−→ PLCE+PKC_CA2IC

PKC+CA2IC k217−−→ PKCCA2IC

BEC1+ULKA k219−−→ BEC1A+ULKA

INSULIN+PI3K k221−−→ PI3KA+ INSULIN

PI3KA k223−−→ PI3K

PI3KA+AKT k225−−→ AKTA+PI3K

Table S1: List of the species found in the models, and their full names [142].

Short Notation Full Name
AMPK AMP-activated protein kinase
nS Nuclear Stress
AMPKa Active AMP-activated protein kinase
mTORa Active mammalian target of rapamycin
mTOR mammalian target of rapamycin
mTOR_ULK mTOR ULK complex
ULKa Active Unc-51 like autophagy activating kinase
ULK Unc-51 like autophagy activating kinase
phag Phagophore
TSC Tuberous sclerosis complex
TSCa Active tuberous sclerosis complex
RHEBa Active Ras homolog enriched in brain
RHEB Ras homolog enriched in brain
BEC1 Beclin-1
preAUT Pre-autophagosome
BEC1_UVG Beclin-1 UVRAG complex
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Table S1: List of the species found in the models, and their full names [142].

Short Notation Full Name
UVG UV radiation resistance-associated gene
BEC1c Cytosolic Beclin-1
cytc Cytochrome c
ATG5 Autophagy-related protein 5
AUT Autophagosome
eS ER Stress
PERK Protein kinase R-like endoplasmic reticulum kinase
PERKa Active PERK
ATF4a Active Activating Transcription Factor 4
ATF4 Activating Transcription Factor 4
dS DNA Stress
DAPK Death-associated protein kinase
DAPKa Active death-associated protein kinase
EPACa Active exchange protein directly activated by cAMP
PLCe Phospholipase C epsilon
PLCea Active phospholipase C epsilon
PIP2 Phosphatidylinositol 4,5-bisphosphate
IP3 Inositol trisphosphate
Ca2er Endoplasmic reticulum calcium ion
IP3R_IP3 IP3 receptor IP3 complex
Ca2ic Intracellular calcium
SERCA Sarcoplasmic/endoplasmic reticulum calcium ATPase
Bax Bcl-2-associated X protein
Baxa Active Bcl-2-associated X protein
IP3R IP3 receptor
IP2 Inositol bisphosphate
IP Inositol phosphate
Ins Insulin
CaMKKb Calcium/calmodulin-dependent protein kinase kinase beta
CaMKKba Active calcium/calmodulin-dependent protein kinase kinase b
BCL2 B-cell lymphoma 2
IP3R_BCL2 IP3 receptor BCL2 complex
BEC1_BCL2 Beclin-1 BCL2 complex
BCL2p Phosphorylated BCL2
Calpain Calpain
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Table S1: List of the species found in the models, and their full names [142].

Short Notation Full Name
Calpaina Active calpain
Ga G protein alpha subunit
Gaa Active G protein alpha subunit
ATG5t truncated ATG5
ATG5_BCL2 ATG5 BCL2 complex
Bid BH3 interacting-domain death agonist
tBid Truncated Bid
AC Adenylate cyclase
AC_Gaa Adenylate cyclase G protein alpha subunit complex
cAMP Cyclic adenosine monophosphate
EPAC Exchange protein directly activated by cAMP
G G protein
AC_Ga Adenylate cyclase G protein alpha subunit complex
Gabg G protein alpha, beta, gamma subunits
GPCRa Active G protein-coupled receptor
Gbg G protein beta and gamma subunits
BCL2_Bax BCL2 Bax complex
p53m Mitochondrial p53
UVG_Bax UVG bound to Bax
caspase Procaspase
caspasea Cleaved caspase
JNKa Active c-Jun N-terminal kinase
p53c Cytosolic p53
p53a Active p53
Mdm2 Mouse double minute 2 homolog
p53_BCL2 p53 BCL2 complex
DRAM DNA damage-regulated autophagy modulator
PUMA p53 upregulated modulator of apoptosis
PUMA_BCL2 PUMA BCL2 complex
TFEBi Inactive transcription factor EB
TFEB Transcription factor EB
PI3K Phosphoinositide 3-kinase
PI3Ka Active phosphoinositide 3-kinase
AKT Protein kinase B
AKTa Active protein kinase B
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Table S1: List of the species found in the models, and their full names [142].

Short Notation Full Name
JNK c-Jun N-terminal kinase
MAPK15 Mitogen-activated protein kinase 15
MAPK15a Active mitogen-activated protein kinase 15
PKA Protein kinase A
PKAa Active protein kinase A

Initial protein concentrations

Table S2: Initial species concentration ranges in nM [142]

species min max source

AC 100 400 [161, 162]
AC_Ga 0 100 assumed
AC_Gaa 0 100 assumed
AKT 0 100 [163, 164]
AKTa 50 200 [163, 164]
AMPK 187.5 750 [130, 165]
AMPKa 0 100 [130, 165]
ATG5 100 400 [166]
ATG5_BCL2 0 100 assumed
ATG5t 15 60 assumed
AUT 0 100 [167]
BCL2 25 100 [168, 169]
BCL2_Bax 10 40 [168]
BCL2_PUMA 25 100 [168]
BEC1 50 200 [133]
BEC1_BCL2 0 100 assumed
BEC1_UVG 0 100 assumed
Bax 10 40 [168, 169]
Baxa 0 0 [168, 169]
Bid 10 40 [168, 169]
Ca2er 500 2000 [170, 171, 172]
Ca2ic 50 200 [170, 171, 172]
CaMKKb 50 200 [170]
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CaMKKba 0 100 [170]
Calpain 10 40 [173]
Calpaina 0 100 [173]
DAPK 50 200 [133]
DAPKa 0 100 [133]
DRAM 0 100 [133]
EPAC 5 20 assumed
EPACa 0 100 assumed
GPCRa 5 20 [174]
Ga 5 20 [174, 175, 171]
Gaa 0 100 [174, 175, 171]
Gabc 0 100 [174, 175, 171]
Gbc 5 20 [174, 175, 171]
IP3 65 260 [170]
IP3R 5 20 [170]
IP3R_BCL2 0 100 assumed
IP3R_IP3 0 100 assumed
MDM2 0 100 [176, 177]
P53a_BCL2 0 100 assumed
PLCea 0 100 [170]
PLCe 5 20 [170, 172, 178]
PIP2 250 1000 [170]
PKA 75 300 [162]
PKAa 0 100 assumed
PUMA 0 100 assumed
RHEB 0 100 assumed
RHEBa 150 600 assumed
SERCA 0 100 [170]
TSC 112.5 450 [130, 165]
TSCa 0 100 [130, 165]
ULK 35 140 [167]
ULKa 0 100 assumed
UVG 50 200 assumed
UVG_Bax 0 100 assumed
cAMP 0 100 [161, 162]
casp 0 0 assumed
cytc 0 100 [168, 169]
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cytcm 10 40 [168, 169]
mTOR 0 100 [130, 133]
mTORa 187.5 750 [130, 133]
mTORa_ULK 0 100 assumed
mTORa_ULKa 0 100 assumed
p53 12.5 50 [176, 177]
p53a 0 100 assumed
phag 0 100 assumed
preAUT 0 100 assumed
procasp 12 48 [168, 179]
tBid 0 100 [168]
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