

SEMMELWEIS EGYETEM
DOKTORI ISKOLA

Ph.D. értekezések

3377.

SOLTÉSZ ÁDÁM

Szív- és érrendszeri betegségek élettana és klinikuma
című program

Programvezető: Dr. Merkely Béla, egyetemi tanár
Témavezető: Dr. Németh Endre, egyetemi docens

**ANALYSIS OF THE LINK BETWEEN CLINICAL OUTCOME
AND HEMOADSORPTION APPLIED DURING
MECHANICAL CIRCULATORY SUPPORT IN HIGH-RISK
CARDIAC AND CARDIAC SURGICAL PATIENTS**

PhD thesis

Ádám Viktor Soltész

Semmelweis University Doctoral School
Cardiovascular Medicine and Research Division

Supervisor: Endre Németh, MD, Ph.D

Official reviewers: Luca Valkó, MD, Ph.D
Roland Tóth, MD, Ph.D

Head of the Complex Examination Committee: István Karádi, MD, D.Sc

Members of the Complex Examination Committee: Henriette Farkas, MD, D.Sc
Péter Andréka, MD, Ph.D

Budapest
2025

Table of Contents

List of Abbreviations	4
1 Introduction	7
1.1 Modalities of paracorporeal mechanical circulatory support systems – operates with membrane oxygenator	7
1.1.1 Cardiopulmonary bypass	7
1.1.2 Extracorporeal membrane oxygenation	8
1.2 The complex pathophysiology induced by extracorporeal mechanical circulatory support	9
1.2.1 Microcirculatory alterations in the context of end-organ perfusion and tissue oxygenation	9
1.2.2 Maladaptive inflammatory response to extracorporeal system	10
1.2.3 Extracorporeal mechanical circulatory support induced coagulopathy	10
1.3 Hemoabsorption as a blood purification technology and its potential targets	11
1.4 Characteristics of the end-stage heart failure patients in terms of heart transplantation	12
1.5 Characteristics of the patient presented with refractory cardiogenic shock	13
2 Objectives	15
2.1 Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation	15
2.2 Influence of VA-ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock	16
3 Methods	18
3.1 Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation	18
3.1.1 Study design and patients	18

3.1.2	Perioperative patient management	18
3.1.3	Intraoperative hemoabsorption treatment	19
3.1.4	Outcome parameters and measurements	21
3.1.5	Statistical analysis	22
3.2	Influence of VA–ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock	
		23
3.2.1	Patients and data collection	23
3.2.2	Venoarterial extracorporeal membrane oxygenation management	23
3.2.3	VA–ECMO integrated hemoabsorption treatment	24
3.2.4	Outcome parameters	24
3.2.5	Statistical analysis	25
4	Results	26
4.1	Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation	26
4.1.1	Study population	26
4.1.2	Severity of the hemodynamic stability and vasoregulatory dysfunction	28
4.1.3	Secondary outcomes	30
4.2	Influence of VA–ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock	
		35
4.2.1	Clinical characteristics	35
4.2.2	Primary outcomes	38
4.2.3	Secondary outcomes	39
5	Discussion	43
5.1	Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation	43
5.1.1	Control on development of the severe post–CPB vasoregulatory dysfunction and haemodynamic instability	43

5.1.2	Modulating the dysregulated post-CPB inflammatory response	44
5.1.3	Clinical effects on post-transplant complications and immunological adverse events	44
5.1.4	Relationship with 1-year survival	45
5.1.5	Limitations of the trial	46
5.2	Influence of VA-ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock	46
5.2.1	Early change of the refractory cardiogenic shock associated multiorgan dysfunction	46
5.2.2	Early change of the macro- and microhaemodynamics	47
5.2.3	Early inflammatory response	48
5.2.4	Clinical effects on the outcome of refractory cardiogenic shock	49
5.2.5	Limitations of the study	50
6	Conclusions	51
7	Summary	52
8	References	53
9	Bibliography of the candidate's publications	68
9.1	Publications included in the thesis	68
9.2	Other publications by the author	68
10	Acknowledgements	71

List of Abbreviations

Abbreviation	Definition
ACC	aortic cross clamp
ACEI	angiotensin-converting enzyme inhibitor
AKI	acute kidney injury
AMI	acute myocardial infarction
APACHE II	Acute Physiology and Chronic Health Evaluation II
ARB	angiotensin-receptor blocker
ARNI	angiotensin receptor-neprilysin inhibitor
ATG	anti-thymocyte globulin
BMI	body mass index
BRB	beta receptor blocker
CAD	coronary artery disease
CHF	congestive heart failure
CI	confidence interval
CKD	chronic kidney disease
CLD	chronic liver disease
CM	cardiomyopathy
COPD	chronic obstructive pulmonary disease
COVID-19	coronavirus disease 2019
CPB	cardiopulmonary bypass
CRP	C-reactive protein
CS	cardiogenic shock

dLVAD	durable left ventricular assist device
DM	diabetes mellitus
ECMO	extracorporeal membrane oxygenation
ECPR	extracorporeal cardiopulmonary resuscitation
eGFR	estimated glomerular filtration rate
EMB	endomyocardial biopsy
FFP	fresh frozen plasma
fHb	free haemoglobin
HCM	hypertrophic cardiomyopathy
HF	heart failure
ICU	intensive care unit
IDCM	ischaemic cardiomyopathy
IMPACT	Index for Mortality Prediction After Cardiac Transplantation
LCOS	low–cardiac–output–syndrome
MAP	mean arterial pressure
MCS	mechanical circulatory support
MMF	mycophenolate mofetil
MP	methylprednisolone
MPA	mycophenolic acid
MV	mechanical ventilation
NYHA	New York Heart Association
OHT	orthotopic heart transplantation

OR	odds ratio
PCB	per cent change in bilirubin level
PCT	procalcitonin
PLT	platelet transfusion
PRC	packed red cell
PS	propensity score
PSM	propensity score matching
PVD	peripheral vascular disease
PVR	pulmonary vascular resistance
RCT	randomized controlled trial
RO	reoperation
RRT	renal replacement therapy
SAVE	survival after venoarterial extracorporeal membrane oxygenation
SCAI	Society for Cardiovascular Angiography & Interventions
SOFA	sequential organ failure assessment
TAC	tacrolimus
TIA	transient ischemic attack
TIT	total ischaemic time
UNOS	United Network for Organ Sharing
VA-ECMO	venoarterial extracorporeal membrane oxygenation
VIS	vasoactive-inotropic score
VS	vasoplegic syndrome

1 Introduction

Since its first introduction to medical practice approximately 70 years ago, the extracorporeal mechanical circulatory support (MCS) has undergone significant progress both in the technical and the management aspects (1). These developments have contributed to the establishment of MCS as a key component (i.e. cardiopulmonary bypass, CPB) of complex cardiac surgical procedures (1). Conversely, MCS has also been integrated into multilevel treatment strategies for cardiogenic shock through various temporary paracorporeal modalities in recent years (2). Despite the significant accumulation of clinical experience and research-based knowledge regarding MCS application in the past period, there are still uncontrolled, ongoing pathophysiological issues induced by patient-device interactions (3, 4). These may act as negative contributing factors in patients' outcomes, thereby hindering the theoretically possible benefits of these modalities (3, 4). Recognising the crucial roles of the MCS modalities in patient care, the exploration of effective modulatory mechanisms / therapeutic options for these pathophysiological processes is a pivotal area of clinical research in this field.

1.1 Modalities of paracorporeal mechanical circulatory support systems – operates with membrane oxygenator

1.1.1 Cardiopulmonary bypass

Cardiopulmonary bypass (CPB) is an established extracorporeal technology that temporarily replaces the basic functions of the heart and lung, thereby maintaining systemic perfusion and gas exchange (1, 5). The technology comprises several fundamental components, including venous cannula(s) and drainage systems, a reservoir, an oxygenator, an arterial pump, an arterial line and cannula, a cardioplegia line, and at least two additional suction systems (i.e. pericardial suction and vent). (5). During CPB, the patient's right-side venous blood is completely drained into the reservoir, resulting in non-perfused pulmonary circulation (5). The volume of the drained venous blood provides the preload of the CPB, which is returned to the patient's systemic circulation by the arterial pump through the CPB membrane oxygenator (5). In terms of technical structure, the arterial pumps are predominantly roller pumps; nevertheless, new generation centrifugal pumps are also available for this purpose, providing improved hemocompatibility during CPB (5). The arterial pump is responsible for maintaining

systemic perfusion, which is defined as a non-pulsatile flow of 2.4 L/min/m² in accordance with international standards (5, 6). The hollow fibre-based membrane oxygenator is the dedicated biological surface for gas exchange (i.e. primarily for oxygen and CO₂) (5). Concurrently, the membrane oxygenator serves as the conventional location for blood temperature regulation during CPB, employing an external heater-cooler system (5). From a physiological standpoint, it means a close temperature control of the central compartment of the global blood flow over a short time interval (5). The most prevalent target temperature range is 32.0–35.0 C° (5). During CPB, the homeostatic environment is maintained by goal-directed perfusion strategy including mean arterial pressure—(MAP), DO₂— and alpha-stat pH management (6–8).

1.1.2 Extracorporeal membrane oxygenation

In recent decades, extracorporeal membrane oxygenation (ECMO), particularly its venoarterial modality (VA–ECMO), has become an integral component of the treatment of refractory cardiogenic shock, with a broad spectrum of cardiac and cardiac surgical applications (9–11). Theoretically, VA–ECMO is a short-term, temporary extracorporeal MCS system that provides complete or partial cardiopulmonary support, thereby restoring macrocirculation, oxygenation and gas exchange in cases of cardiorespiratory failure that is refractory to conventional pharmacotherapy (9–11). The technical structure of the VA–ECMO circuit comprises a venous cannula for inflow, a centrifugal pump that functions by generating active venous suction and delivering blood flow, a polymethylpentene fiber membrane oxygenator, and connecting tube systems (10, 12, 13). In terms of configuration, VA–ECMO support can be performed by central cannulation (i.e. direct cannulation of the right atrium for inflow and aorta for outflow via sternotomy) or peripheral cannulation (i.e. cannulation of the right atrium for inflow and aorta for outflow via the femoral vein and artery, respectively) (10, 13). VA–ECMO operates with non-pulsatile flow characteristics providing a flow support in range of 2.0 L/min – 6.0 L/min (10, 13). Currently, there is no universally accepted guideline for the management of VA–ECMO, particularly with regard to the optimal level of haemodynamic support (10, 13). However, maintaining MAP ≥ 60 mmHg, SvO₂ ≥ 60%, and adequate tissue oxygen delivery are common goals during its application and the initial VA–ECMO flow rate recommended is typically in the range of 3.0 – 4.0 L/min (10, 13). In light of the most prevalent complications associated with VA–ECMO support,

including left ventricle overdistension, haematologic complications, peripheral vascular complications, neurological injuries, Harlequin–syndrome, and immunological complications, it is recommended to limit VA–ECMO support to a duration of 5–7 days in order to minimise adverse events and the risk of negative outcomes (10, 11, 13, 14). Within the time frame of this type of temporary MCS support (i.e. VA–ECMO), three different exit strategies can be defined clinically: i) bridge–to–recovery and VA–ECMO weaning; ii) bridge–to–bridge (i.e. durable MCS) or bridge–to–heart transplantation; iii) palliate and terminate (15).

1.2 The complex pathophysiology induced by extracorporeal mechanical circulatory support

1.2.1 Microcirculatory alterations in the context of end–organ perfusion and tissue oxygenation

Irrespective of the patients' actual haemodynamic conditions, extracorporeal MCS has been shown to be able to directly induce dysregulation in the haemodynamic coherence between the macro– and microcirculation (16). Both experimental and human clinical data confirm a significant reduction in functional capillary density during extracorporeal MCS support (16). The combined effects of non–pulsatile flow characteristics, hypothermia (even in the mild range of 34.0–35.0°C in the case of CPB), haemodilution, hyperoxemia and the amplified dysregulated inflammatory response induced by the extracorporeal circuit has been demonstrated to result in a reduction in the dimension of the endothelial glycocalyx and deterioration of endothelial regulation of the microcirculation, progressing to vasoconstrictive predominance, capillary leakage and a marked reduction in functional capillary density (16–20). Additionally, the elevated plasma free haemoglobin levels due to extravascular haemolysis (particularly in cases of longer CPB/VA–ECMO run), the consecutively depleted soluble guanylyl cyclase activity and augmented platelet aggregation within the capillary bed can further exacerbate the microcirculatory dysfunction (16). The aforementioned pathophysiological processes lead to a persistent imbalance between tissue oxygen delivery and demand, thereby facilitating the development of severe end–organ failure (16–20). In addition, these processes exert a negative influence on the normalisation of microcirculatory function subsequent to cardiogenic shock (16).

1.2.2 Maladaptive inflammatory response to extracorporeal system

The extracorporeal MCS is proven to be a strong inductor of a dysregulated inflammatory response based on the non-physiological effects of the large endothelium-free inner surface of the extracorporeal device, the non-pulsatile flow pattern and direct blood-air contact (CPB), which interact with further pathophysiological processes such as hypothermia, surgical trauma, ischemia-reperfusion injury of end-organs (during post-CPB or post-VA-ECMO initiation period) and endotoxemia originated from visceral hypoperfusion (21–24). This complex maladaptive mechanism can be characterized by early and late phases involving the overactivation of the humoral- (kinin-, complement- and cytokine cascade) and cellular (platelets, neutrophils, monocytes, dendritic cells, lymphocytes) immune response, and the endothelial system (21–24). Considering the dominant pathophysiological component and the magnitude of the consecutive endothelial injury, the extracorporeal MCS induced maladaptive inflammatory response is an independent trigger factor of the MCS associated multiorgan- and immune dysfunction as well as the development of major complications, and the adverse outcomes (23, 24).

1.2.3 Extracorporeal mechanical circulatory support induced coagulopathy

In addition to the maladaptive inflammatory response, the extracorporeal MCS also interacts with the patient's haemostasis system through complex mechanisms (25). Interestingly, the pathophysiological characteristics of the MCS associated coagulopathy can vary considerably depending on the extracorporeal MCS modality (i.e. CPB or VA-ECMO) (25). Nevertheless, it remains a significant factor in the occurrence of adverse clinical outcomes (25).

Despite of the systemic anticoagulation, the residual low-grade contact activation, CPB-related haemodilution and blood loss from the surgical field result in a combined four-domain-based impairment of the haemostasis system such as thrombocytopenia and platelet dysfunction, hypofibrinogenemia and fibrinogen dysfunction, impaired thrombin generation and hyperfibrinolysis (25–28). Of the four main pathomechanisms under consideration, hypofibrinogenemia and fibrinogen dysfunction, in addition to impaired thrombin generation, have been identified as the key factors most affected by CPB-associated coagulopathy (26, 27). In the context of post-CPB coagulopathy, it is

important to consider the adverse anticoagulant properties of protamine when present in excess to heparin, which has been demonstrated to facilitate the inhibition of platelet function, down-regulation of thrombin generation, and reduction of activation of coagulation factors V, X, and VII (29, 30). Finally, the CPB-associated coagulopathy can be further aggravated by the preexisting pharmacological effects of antiplatelet or anticoagulant agents (25).

On the other hand, VA-ECMO is characterized by longer duration of MCS, lower dose of heparin anticoagulation requirement and direct interaction with progressive amplified inflammatory processes compared to CPB (31, 32). Therefore, the effects of the ECMO circuit generated shear-stress on the blood components and the ECMO-blood interaction will be more pronounced resulting in the dominant impairment of the primary haemostasis accompanied by severe thrombocytopenia and platelet dysfunction and acquired von Willebrand syndrome extended by severe hyperfibrinolysis (31, 32). Moreover, coagulation factor XIII deficiency is present in approximately $\frac{3}{4}$ part of ECMO-supported patients (32). While the exact pathophysiological background of the acquired coagulation factor XIII deficiency of the ECMO-supported patients has not been revealed yet, it is typically linked with low fibrinogen levels and an important cofactor of severe ECMO associated coagulopathy (32). Additionally, due to the longstanding exposure to contact activation of the ECMO circuit, and the locally missing endothelial regulatory mechanisms on the extracorporeal surface, a significant complement system dysregulation can develop, which contributes to the induction of immunothrombotic processes (31, 32). Accordingly, the ECMO associated complex coagulopathy can be presented with dual simultaneous dysfunction of the haemostasis system such as haemorrhagic and prothrombotic impairments (31, 32).

1.3 Hemoabsorption as a blood purification technology and its potential targets

The extracorporeal hemoabsorption is a blood purification technology with confirmed adsorption capacity for cytokines, chemokines, bilirubin, myoglobin, plasma free haemoglobin, endo- and exotoxins and various pharmacological agents up to approximately 60 kDa (33–35). The hemoabsorption therapy is typically performed by a 300 mL biocompatible polystyrene divinylbenzene copolymer beads containing cartridge (34–36). The size range of the beads is between 300 and 800 μm and their pores and

channels form a composite surface of 40,000 m² for the size exclusion- and hydrophobic interaction-based adsorption (34, 36). The hemoabsorption treatment can be applied as a stand-alone or as an integrated modality (34–36). With regard to the integrated modality, the hemoabsorption cartridge is integrated into the circuit of an extracorporeal system such as continuous renal replacement therapy, CPB or ECMO (34–36).

As demonstrated in previous studies, hemoabsorption treatment has been shown to have positive effects on the haemodynamic stability and the outcome of severe sepsis in both animal studies and clinical investigations (37–39). Moreover, a most recent systematic review and meta-analysis suggested that the hemoabsorption treatment may be associated with improved short-term survival in patients with septic shock compared to standard care (40). Additionally, recent clinical investigations in the field of cardiac surgery have reported reduced sepsis related mortality, less bleeding complications related to adsorption of direct acting oral anticoagulants or P2Y12 inhibitors, and faster recovery of haemodynamics and organ function in patients undergoing complex cardiac surgeries when the hemoabsorption treatment has been applied intraoperatively (36, 41–45). Despite the increase in the number of randomized and observational studies for the evaluation of hemoabsorption in cardiac surgery over the past decade, published results remain controversial regarding clarifying the clinical utility of this intervention in terms of post-operative morbidity and mortality (35, 46).

1.4 Characteristics of the end-stage heart failure patients in terms of heart transplantation

Approximately 5% of patients who suffering from chronic heart failure (HF) will progress to advanced stage of their condition (47). Based on the most recent criteria established by the Heart Failure Association of the European Society of Cardiology for defining advanced stage HF, these patients can be characterized by the constant symptoms of severe HF (i.e. NYHA class III/IV), severely decreased exercise capacity (peak VO₂ < 12–14 mL/kg/min) and the presence of extra-cardiac organ dysfunction(s) such as renal and/or hepatic dysfunction and/or type 2 pulmonary hypertension and cardiac cachexia (47, 48). In case of further progression of the HF, the patients' haemodynamic imbalance becomes refractory to optimized HF treatment presenting hypotension, end-organ failure (i.e. type 2 cardiorenal syndrome; cardiohepatic syndrome) and intermittent or continuous

dependency on inotropic support (47–49). Additionally, the severe low–cardiac–output–syndrome (LCOS) has been identified as a significant trigger for the development of a chronic pro–inflammatory predominance (i.e. immune priming of the end–stage HF) (50). The persistent LCOS in conjunction with the pro–inflammatory priming and the consecutive extra–cardiac organ dysfunctions definitely will position the end–stage HF patients to among the ‘high risk’ candidates for orthotopic heart transplantation (OHT) or durable left ventricular assist device (dLVAD) implantation obviously influencing both the short– and long–term outcomes of these procedures (47, 51). It is important to note that in the case of a critical decline in CO and change in the LCOS associated multiorgan failure and type 2 pulmonary hypertension to irreversible/refractory phase, the end–stage HF patients may drop out from the window of a rational and successful OHT or dLVAD procedure (47).

While there has been an expansion in candidate acceptance criteria for OHT, including the ‘high–risk’ end–stage HF patients, over recent years, the multiple organ failure has been confirmed as the second most frequent cause of death in the first 30 days after OHT (52).

1.5 Characteristics of the patient presented with refractory cardiogenic shock

Cardiogenic shock (CS) is defined as a complex acute hemodynamic syndrome characterised by significant hypotension (i.e. systolic blood pressure <90 mmHg for ≥30 minutes or need for haemodynamic support to maintain systolic blood pressure ≥90 mmHg), clinical and laboratory signs of end–organ and tissue hypoperfusion and confirmed critical LCOS (i.e. cardiac index ≤2.2 L/min/m² and pulmonary capillary wedge pressure ≥15 mmHg) (53). The CS related early mortality rate as high as 40–90% depending on its aetiology and resistance to conventional pharmacotherapy (53–56). The dynamic process of CS has been refined and structured according to its severity, phenotype and aetiology, and risk modifiers (i.e. SCAI SHOCK Stage Classification) in order to facilitate the early prognostication of the ongoing CS as well as the optimized clinical decision making (57). Furthermore, the SCAI SHOCK Stage Classification may have a significant impact on the early recognition of CS refractory to conventional pharmacotherapy (i.e. SCAI SHOCK Stage D–E) (57).

The major causes of CS can be classified into acute ischaemic (i.e. AMI-related) and non-AMI-related aetiologies (i. acute-on-chronic heart failure-related cardiogenic shock; ii. post-cardiotomy cardiogenic shock; iii. non-myocardial cardiogenic shock) (53, 58). In accordance with the data published previously, a changing trend can be observed in the epidemiology of the leading CS aetiologies (58). These findings indicate the non-AMI-related aetiologies as larger group compared to the acute ischaemic aetiology (58). The predominant component of the non-AMI-related CS causes is the post-cardiotomy CS, a specific subtype among the CS aetiologies (58, 59). While the post-cardiotomy CS sharply differs from the other forms of CS with regards to its pathophysiology, the exact pathomechanisms of the post-cardiotomy CS remain poorly understood (59). In fact, the development of the post-cardiotomy CS is presumed to be the consequence of multiple interacting factors, including myocardial hibernation and stunning, dysregulated inflammatory response to CPB and ischaemia-reperfusion injury, manifesting clinically as severe left ventricle-, right ventricle- or biventricular failure (59). Acute-on-chronic heart failure-related cardiogenic shock is also a relevant subtype of the non-AMI-related CS aetiologies, accounting for almost 1/3 of CS cases (58). Finally, less frequent subtypes of CS are the pericardial disease-, valvular heart disease-, arrhythmia-, inflammatory cardiomyopathy-, peripartum cardiomyopathy-, and cor pulmonale associated cardiogenic shocks (58).

In the refractory CS stage, the persistent critical LCOS and tissue hypoperfusion accelerate the progression of multiorgan dysfunction, which will be further aggravated by microcirculatory dysfunction linked to dysregulated activation of proinflammatory cytokines, complements, and excessive release of nitric oxide (60–63). It has been established that these complex processes result in severe multiorgan failure, which has been confirmed as the primary cause of death related to refractory CS (60, 61). Over the last two decades, temporary MCS technology has become a pivotal tool in the acute care of refractory CS aiming to restore the macro- and micro-haemodynamics within a short time interval and prevent the emerging multiorgan dysfunction from progressing to an irreversible phase, whilst simultaneously reducing the mortality risk (61, 64).

2 Objectives

As outlined above, the microcirculatory dysfunction linked to interrelated complex pathomechanisms, is presumed to be the key factor of both the OHT related– and the refractory CS related multiple organ failure. Because of the complexity of the pathophysiological pathways, to date, there are no specific pharmacological treatments which have been shown to be effective for the control or prevention of severe vasoregulatory dysfunction. Consequently, experimental and human clinical research has recently focused on extracorporeal blood purification treatments as a potential tool for effectively controlling the pathophysiological environment associated with OHT– and CS.

Therefore, the aims of this thesis were the following:

- i. To assess the clinical effectiveness of the hemoadsorption treatment in controlling vasoregulatory dysfunction linked to OHT surgery applying in an intraoperative CPB setting.
- ii. To assess the clinical effectiveness of the hemoadsorption treatment in controlling multiorgan dysfunction linked to refractory CS applying in a VA–ECMO support setting.
- iii. To assess the clinical safety of the hemoadsorption treatment in terms of adverse effects such as increased risks of bleeding/thromboembolic– and immunological events.
- iv. To evaluate the link between hemoadsorption treatment and clinical outcomes in relation to high risk cardiac– and cardiac surgical patients.

2.1 Intraoperative hemoadsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation

The predominant component of post–transplant multiorgan dysfunction is severe vasoplegia and consecutive haemodynamic instability, which substantially increases the risk of developing extended multiple organ dysfunctions (65, 66). The complex pathophysiology of vasoplegic syndrome (VS) involves coexisting pathways of endogenous vasopressin depletion, dysregulated inflammatory response, and endothelial dysfunction resulting in excessive nitric oxide production and loss of vascular tone (65, 67).

Our previous observational study showed that OHT recipients who were treated with hemoadsorption intraoperatively experienced significantly reduced post-operative vasopressor requirements and favourable trends in clinical outcome (68). While the number of randomized and observational studies for the evaluation of hemoadsorption in cardiac surgery has increased in the last 10 years, published results remain controversial regarding clarifying the clinical utility of this intervention in terms of post-operative morbidity and mortality (46). Considering the unique pathophysiological environment of OHT, the presumed benefit of intraoperative hemoadsorption during CPB could be based on control of the immune system dysregulation along with endogenous vasoactive substance overproduction. To date, there have been no published randomized controlled trial (RCT) in field of OHT, which have analysed the relationship between intraoperative hemoadsorption and clinical outcome.

The aim of our proof-of-concept RCT was to compare the effects of intraoperative hemoadsorption versus standard medical care on the severity of early postoperative haemodynamic instability, frequency of postoperative organ dysfunctions, early graft rejection, and length of hospital stay in patients undergoing OHT (69).

2.2 Influence of VA-ECMO integrated hemoadsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock

Despite the application of MCS in the complex therapy of refractory CS, the survival to discharge remains 45% according to 2021 data from the Extracorporeal Life Support Registry Report summary (16). VA-ECMO is among the MCS modalities most frequently used in the acute care of refractory CS (53, 64). While VA-ECMO is effective in supporting macrocirculatory haemodynamics to rapidly normalize, the same benefit on CS-associated microcirculatory dysfunction and impaired tissue oxygen delivery remains controversial (16, 19, 70). Additionally, recent investigations have demonstrated that ineffective recruitment of functional capillary density during the early phase of VA-ECMO support can be associated with worse outcomes in refractory CS (19, 70, 71). The mechanisms that contribute to rapid recovery of persisting microcirculatory dysfunction after VA-ECMO initiation have not yet been discovered (16). However, adverse interactions of pathophysiological factors such as elevated plasma free haemoglobin

(fHb) levels, depleted soluble guanylyl cyclase activity, and concomitant increased platelet aggregation and amplified dysregulated proinflammatory response linked to the application of extracorporeal MCS can negatively influence the normalization of the microcirculatory function (16).

The aim of our retrospective observational study was to analyse the clinical impact of VA-ECMO integrated hemoabsorption in terms of early reversal of multiorgan- and microcirculatory dysfunction, and short-term clinical outcomes in patients undergoing VA-ECMO support for refractory CS (72).

3 Methods

3.1 Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation

3.1.1 Study design and patients

Our prospective, single-centred, open-label RCT was approved by the Semmelweis University Regional and Institutional Committee of Science and Research Ethics (approval number: 246/2016) and was registered at ClinicalTrials.gov (identifier: NCT03145441). To establish a homogenous study cohort, adult OHT candidates registered on the waiting list (age ≥ 18 years) with United Network for Organ Sharing (UNOS) Status 6 at the time of OHT were eligible for inclusion during the study period between April 2018 and December 2021. UNOS 6 status represents the most stable and active subgroup of OHT candidates who are treated at home within a 6-tiered risk-stratification system (73). In consideration of the clinical condition and medical urgency for OHT, UNOS 6 patients form the most homogenous low-risk OHT subgroup in the aspects to test the hypotheses of our RCT. Consequently, we excluded OHT recipients from the RCT with ‘high urgency’ status, re-transplantation, long-standing hospitalization, inotrope dependence, mechanical circulatory support, and progressive end-organ failure prior to OHT. The exclusion criteria summarize the diverse high-risk OHT recipient population with the meaning of higher risk for patient group heterogeneity and patient selection bias, particularly in case of smaller sample size. Patients who met the inclusion criteria were randomly allocated to either the control group or the hemoabsorption group according to the randomization scheme of 60 subjects (69).

3.1.2 Perioperative patient management

All patients involved in our proof-of-concept randomized trial received standardized anaesthetic, surgical and post-operative intensive care in accordance with the institutional protocol. Non-pulsatile, mild hypothermic CPB was applied for all participants using a roller-pump (SORIN C5 Perfusion System, Sorin Group Deutschland GmbH, Munich, Germany) and a membrane oxygenator (SORIN Inspire P8, Sorin Group Italia Srl, Mirandola, Italy). The clinical management of unfractionated heparin anticoagulation, haemodynamic, temperature, and metabolic targets during CPB was based on institutional standards. The basic pharmacological components of

haemodynamic management were noradrenaline as first-line and argipressin as second-line vasopressors, and dobutamine and milrinone as inotropic agents. Argipressin was indicated in cases where noradrenaline requirements were $\geq 0.3 \mu\text{g}/\text{kg}/\text{min}$. Inhalational nitric oxide was given routinely from the beginning of CPB weaning and extended for the subsequent post-CPB/post-operative period depending on actual pulmonary vascular resistance and right ventricular function. Invasive pulmonary arterial pressure monitoring was regularly continued over the first post-operative 48 hours. Cardiac allograft function follow-up was performed with echocardiography (transthoracic or transoesophageal) 24 hourly during the first 5 post-transplant days, and on a weekly basis thereafter. Immunosuppression therapy consisted of mycophenolate mofetil (MMF), methylprednisolone, anti-thymocyte globulin and tacrolimus. The institutional protocol for perioperative immunosuppression of OHT used in our trial is summarized in **Table 1**. Cardiac allograft rejection was followed up with endomyocardial biopsy (EMB) weekly during the first month after the OHT (74).

3.1.3 Intraoperative hemoabsorption treatment

In relation to patients who were randomised into the hemoabsorption group, the intraoperative hemoabsorption procedure was conducted using a CytoSorbTM 300 mL cartridge (CytoSorbentsTM, Monmouth Junction, NJ, USA) for a one-cycle treatment during the entire period of CPB. The hemoabsorption cartridge was integrated into the CPB circuit (see **Figure 1**) (69).

Table 1. *Applied immunosuppression protocol of orthotopic heart transplantation during the perioperative period and the first month postoperatively.* MMF, mycophenolate mofetil; MP, methylprednisolone; CPB, cardiopulmonary bypass; ATG, anti-thymocyte globulin; TAC, tacrolimus (69).

Time	Agent	Dose	Route of administration
60 minutes prior to surgery (premedication)			
	MMF	1.5 g	oral
Induction of anaesthesia			
	MP	500 mg	Intravenous
30 minutes after the aortic declamp (on-CPB)			

	MP	500 mg	Intravenous
Postoperative day 0			
	MP	125 mg	Intravenous
	ATG	1.5 mg/kg	Intravenous
	MMF	1.5 g	Intravenous
Postoperative day 1 – 2			
	MP	125 mg	Intravenous
	ATG	1.5 mg/kg	Intravenous
	MMF	2 x 1.5 g	Intravenous / oral
Postoperative day 3 – 4			
	MP	16 mg	oral
	MMF	2 x 1.5 g	oral
Postoperative day 5 – 9			
	MP	16 mg	oral
	MMF	2 x 1.5 g	oral
	TAC	2 x 0.05–0.1 mg/kg	oral
Postoperative day 10 – 16			
	MP	12 mg	oral
	MMF	2 x 1.0 g	oral
	TAC	2 x 0.05–0.1 mg/kg	oral
Postoperative day 17 – 30			
	MP	8 mg	oral
	MMF	2 x 1.0 g	oral
	TAC	2 x 0.05–0.1 mg/kg	oral

Figure 1. Integration method of the hemoabsorption cartridge (CytoSorbTM) into the cardiopulmonary bypass (69).

3.1.4 Outcome parameters and measurements

The primary outcome of our randomised trial was early post-operative haemodynamic instability quantified by the vasoactive inotropic score (VIS), frequency of VS and length of vasopressor need. VIS was calculated according to the formula: $VIS = \text{dopamine dose } (\mu\text{g}/\text{kg}/\text{min}) + \text{dobutamine dose } (\mu\text{g}/\text{kg}/\text{min}) + 100 \times \text{adrenaline dose } (\mu\text{g}/\text{kg}/\text{min}) + 10 \times \text{phosphodiesterase inhibitor dose } (\mu\text{g}/\text{kg}/\text{min}) + 100 \times \text{noradrenaline dose } (\mu\text{g}/\text{kg}/\text{min}) + 10\,000 \times \text{vasopressin dose } (\text{U}/\text{kg}/\text{min})$ (75) based on the mean doses in the post-operative first 24 h for each agent. VIS was considered as 'high' if values ≥ 30 points, representing a higher risk for unfavourable outcomes (76). Quantitative criteria of VS were mean noradrenaline requirements $\geq 0.3 \mu\text{g}/\text{kg}/\text{min}$ and need for argipressin supplementation at any dose to achieve a MAP $> 60 \text{ mmHg}$ assessed over the first 24 h (69).

Secondary outcome parameters were defined as the inflammatory response characterized by a 72-hour change in procalcitonin (PCT) and C-reactive protein (CRP) levels; duration of mechanical ventilation (MV); surgery associated bleeding and reoperation for bleeding; frequency and severity of acute kidney injury (AKI) classified by applying the KDIGO creatinine-based definition criteria for the first 5 post-operative

days (77); 24-h per cent change in bilirubin level using the equation: $PCB = ([\text{post-CPB 24-hour bilirubin level (mg/dL)}] - [\text{pre-operative bilirubin level (mg/dL)}])/[\text{pre-operative bilirubin level (mg/dL)}] \times 100$, frequency of early sepsis screened for in the first 5 post-operative days; length of ICU and hospital stay; intraoperative change in mycophenolic acid (MPA) plasma concentration; early allograft rejection; 30-day mortality rate and 1-year survival. Biomarkers of inflammatory response and creatinine clearance as well as the total bilirubin serum concentration were quantified using standard validated laboratory measurements. MPA (active metabolite of MMF) was quantified by particle-enhanced turbidimetric inhibition immunoassay (PETINA, Siemens Dimension® System MPAT, Siemens Healthcare GmbH, Erlangen, Germany; detection limit <0.1 µg/mL) (69).

3.1.5 Statistical analysis

Because of the lack of published RCTs performed in OHT patients with a similar primary outcome, no formal sample size calculation was performed. Based on our regular OHT activity we assumed that including 60 patients (30 per group) in a study over 3 years would be feasible.

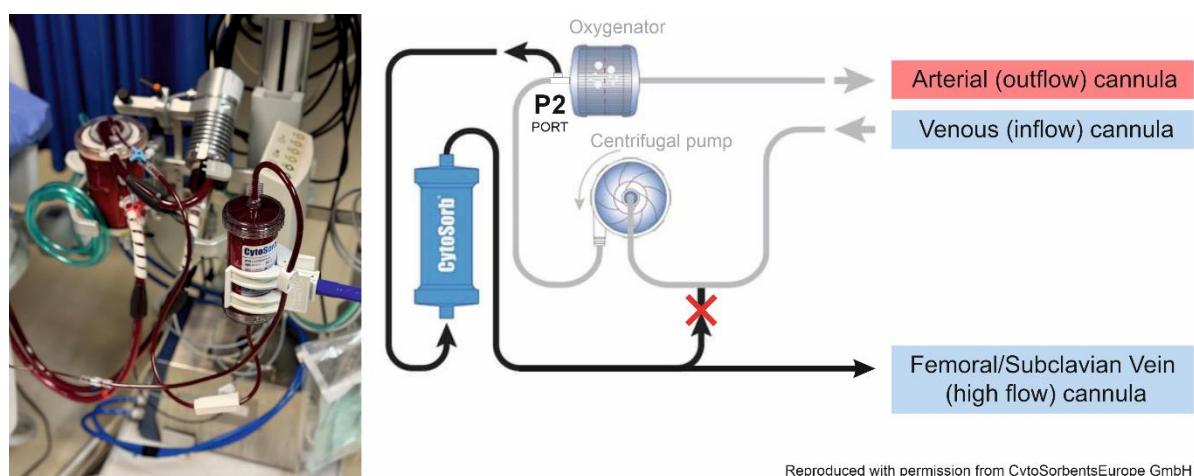
All statistical tests were performed using IBM SPSS Statistics for Windows, version 28.0.1.0 (IBM Corp., Armonk, NY, USA). Continuous variables were tested with the Shapiro–Wilk test for normality. Descriptive statistics of data were displayed as median [interquartile range], mean \pm standard deviation, and number of patients and frequency where appropriate. Mann–Whitney U test, two–sample t–test, χ^2 test or Fisher’s exact test were performed for the univariate analysis of group comparisons. The comparative analyses of within–subjects changes in the cohort were accomplished with the Wilcoxon signed–rank test. To evaluate the impact of intraoperative hemoadsorption on the early post–operative VS a multivariate, logistic regression, backward elimination, likelihood–ratio method was performed. One year follow–up was completed for all participants and included an estimated one–year survival using the Kaplan–Meier method. Equality testing of survival curves was accomplished with a log–rank test applying the Mantel–Cox method. Statistical significance was defined as a P value of 0.05 in all tests (69).

3.2 Influence of VA–ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock

3.2.1 Patients and data collection

Our observational study was approved by the Regional and Institutional Committee of Science and Research Ethics (approval number: 72/2022) (72).

This study analysed retrospectively collected clinical data of adult patients supported with VA–ECMO due to refractory cardiogenic shock between 1 January 2012 and 31 December 2020. Clinical characteristics, follow-up, and outcome data, along with acute physiology and chronic health evaluation II (APACHE II) (78), sequential organ failure assessment (SOFA) (79), and survival after venoarterial extracorporeal membrane oxygenation (SAVE) scores (80), arterial and venous blood gas variables obtained from the digital databases of the Cardiovascular Critical Care Unit and the Hospital Healthcare System, as well as data from individual treatment charts (intensive care observational charts) were collated. Patients who died within 72 h or did not develop vasoplegic syndrome were excluded from the extended analyses. Over the screened period there were no relevant changes in the indication criteria for VA–ECMO support and all patients received standardized intensive care of VA–ECMO management (72).


3.2.2 Venoarterial extracorporeal membrane oxygenation management

VA–ECMO support was provided using the Medos Deltastream System (Medos Medizintechnik AG, Stolberg, Germany). Patients received peripheral (i.e., femoral) or central cannulation for the VA–ECMO circuit according to the aetiology of the refractory CS. Peripheral VA–ECMO circuit was extended by a femoral distal perfusion catheter in all cases. Initial VA–ECMO support was adjusted to achieve blood flow rates of 3.0–4.0 L/min, which was supplemented by an additional 500 mL/min if hemoabsorption treatment was also introduced. After the completion of 3–5 days of optimized VA–ECMO support, all patients received standardized stepwise VA–ECMO weaning (200–300 rate/minute decrease 12–24 hourly up to 2.0 L/minute flow support depending on cardiac performance and hemodynamic response) for the subsequent days in accordance with the institutional protocol. Patients were candidates for VA–ECMO explantation after successful weaning, including a 24-hour period on low flow support (2.0 L/minute). In

case of persistent MCS dependence, patients were converted to a mid-term MCS device (72).

3.2.3 VA-ECMO integrated hemoabsorption treatment

Patients were candidates for hemoabsorption treatment if they presented with vasoplegia syndrome, defined as a norepinephrine requirement $\geq 0.3 \mu\text{g}/\text{kg}/\text{min}$ and the need for argipressin at any dose, 4–6 hours after VA-ECMO initiation, despite combined haemodynamic resuscitation. Hemoabsorption was performed using CytoSorbTM 300 mL cartridge (CytosorbentsTM, Monmouth Junction, NJ, USA) incorporated into the VA-ECMO circuit for a 72-hour continuous treatment in total (Figure 2) (72).

Reproduced with permission from CytoSorbentsEurope GmbH

Figure 2. Integration method of the hemoabsorption cartridge (CytoSorbTM) into the VA-ECMO system; "Semmelweis method" The inflow line of the hemoabsorber cartridge is connected pre-membrane to the P2 port of the oxygenator, while the outflow line is attached to a high flow femoral/subclavian vein cannula. This approach of the hemoabsorber cartridge integration promotes to minimize the hemoabsorption shunt and to achieve the highest volume of clearance. (72, 81).

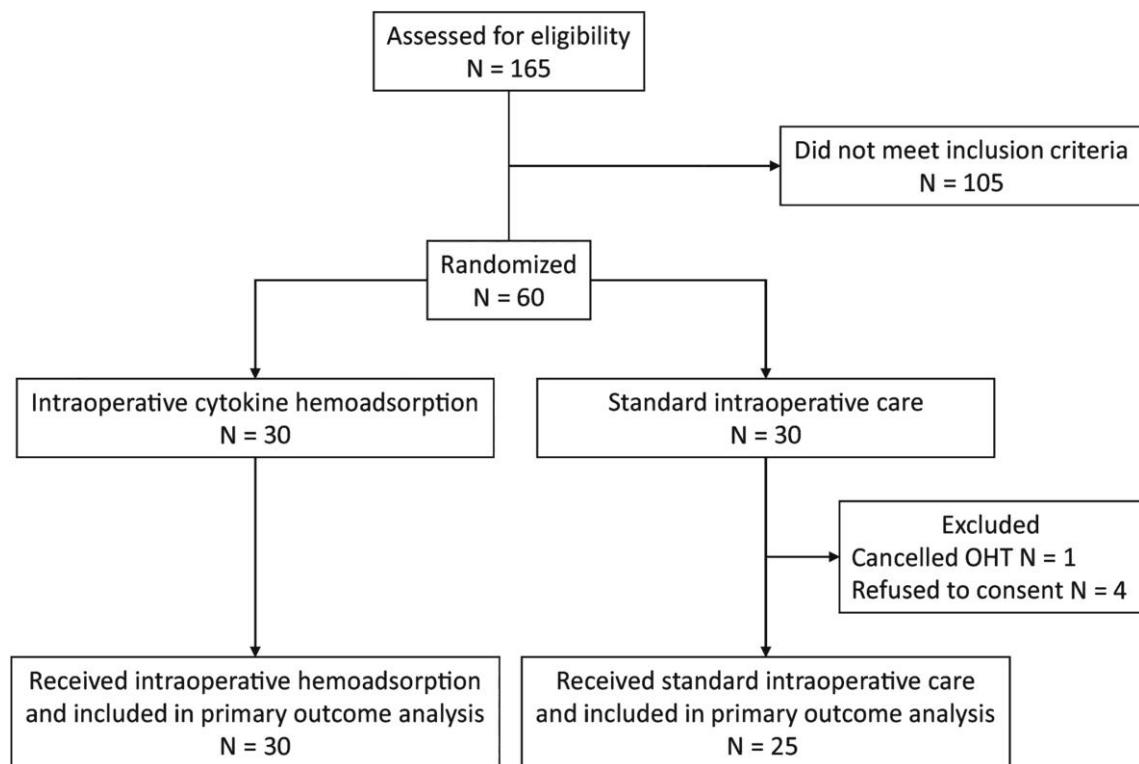
3.2.4 Outcome parameters

The primary outcomes of this study were the change in SOFA score after 72 hours of VA-ECMO run and in-hospital mortality.

Secondary outcome parameters were defined as early metabolic stability, change in microcirculatory function described by the $P_{(v-a)}\text{CO}_2$ gap ($P_{(v-a)}\text{CO}_2$ gap = $P_v\text{CO}_2 - P_a\text{CO}_2$), inflammatory activity characterized by C-reactive protein (CRP) and white

blood cell (WBC) count, hemodynamic stability described by VIS (75) based on the actual doses of each adjusted agent in a time frame of the first 72-hour VA–ECMO support, major complications associated with refractory CS and VA–ECMO support, intensive care unit and hospital stay, and 90-day survival (72).

3.2.5 Statistical analysis


The statistical analyses of this study were performed with IBM SPSS Statistics for Windows, version 27.0 (IBM Corp., Armonk, NY, USA) and R–statistics for Windows, version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). Descriptive statistics of data were presented as mean \pm standard deviation, while categorical variables were displayed as the number of patients and frequency. We performed a 1:1 match, nearest neighbour method propensity score matching (PSM) with a calliper width of 0.2 (82) using the logistic regression estimation algorithm with adjusted covariates from the APACHE II and SOFA scores, average ECMO flow, and postcardiotomy aetiology of refractory CS. The comparative analyses of continuous and categorical variables, including within–subjects changes in the matched cohort, were accomplished with the paired t–test and McNemar test, where appropriate. We completed 90–day follow–up for all included patients and estimated the 90–day survival for the two matched groups using the Kaplan–Meier method. The equality testing of survival curves was performed with the stratified log–rank test involving the quintiles of the estimated propensity scores as strata (83, 84). Statistical significance was defined at the 0.05 level in all tests (72).

4 Results

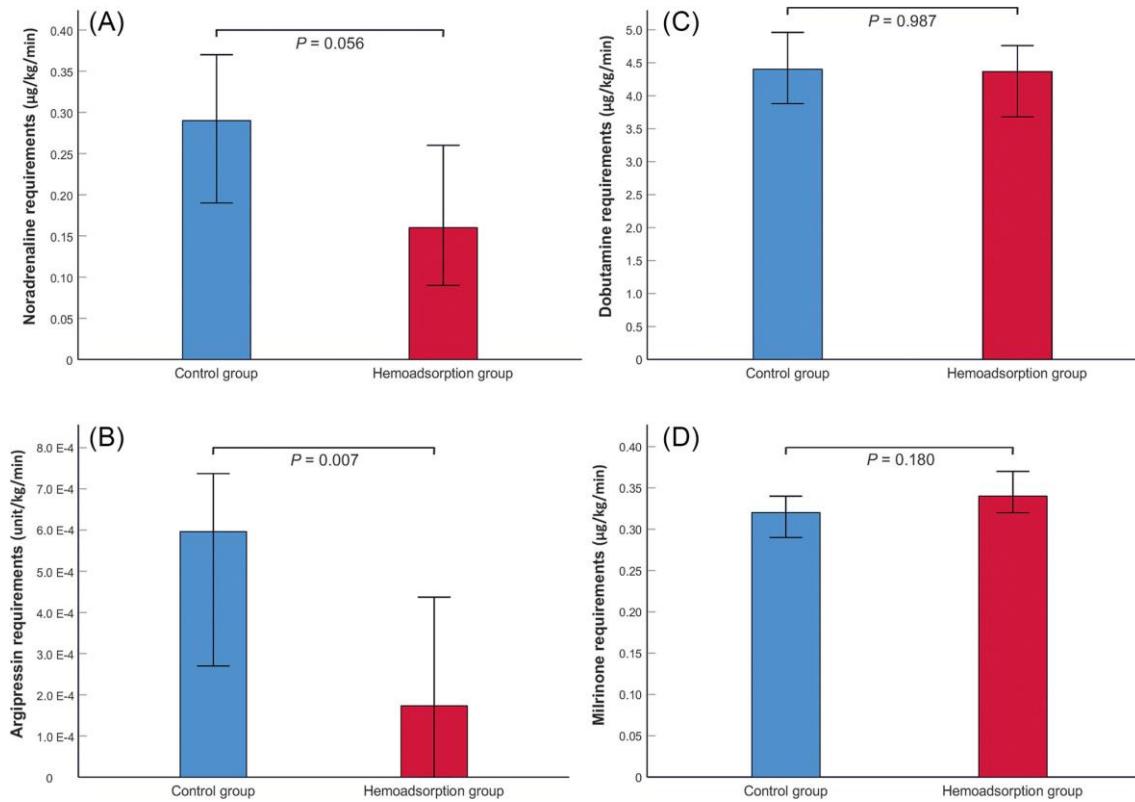
4.1 Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation

4.1.1 Study population

During the study period, 165 patients were assessed for eligibility. Sixty patients were randomized to the control ($N = 30$) and hemoabsorption ($N = 30$) groups, but five patients from the control group had to be excluded. The reasons for exclusion and details of the study flowchart are summarized in **Figure 3**. Baseline clinical characteristics and intraoperative factors were similar in both groups (**Table 2**); however, the pre-transplant use of amiodarone was less frequent in the control group than in the hemoabsorption group. The demographic and baseline characteristics are depicted in **Table 2** (69).

Figure 3. Patient selection flowchart. OHT, orthotopic heart transplantation (69).

Table 2. Demographic and baseline characteristics of the study population. Data are presented as median [interquartile range], mean \pm standard deviation and number of patients (frequency). N=55. ^aCKD was defined as estimated glomerular filtration rate <60 ml/min/1.73 m². ^bTIT corresponds the ischaemic time of the donor heart. BMI, body mass index; DM, diabetes mellitus; CKD, chronic kidney disease; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; BRB, beta receptor blocker; PVR, pulmonary vascular resistance; IMPACT, Index for Mortality Prediction After Cardiac Transplantation; eGFR, estimated glomerular filtration rate; CRP, C-reactive protein; PCT, procalcitonin; IDCm, ischaemic cardiomyopathy; HCM, hypertrophic cardiomyopathy; CM, cardiomyopathy; ACC, Aortic cross-clamp; CPB, cardiopulmonary bypass; TIT, total ischaemic time (69).

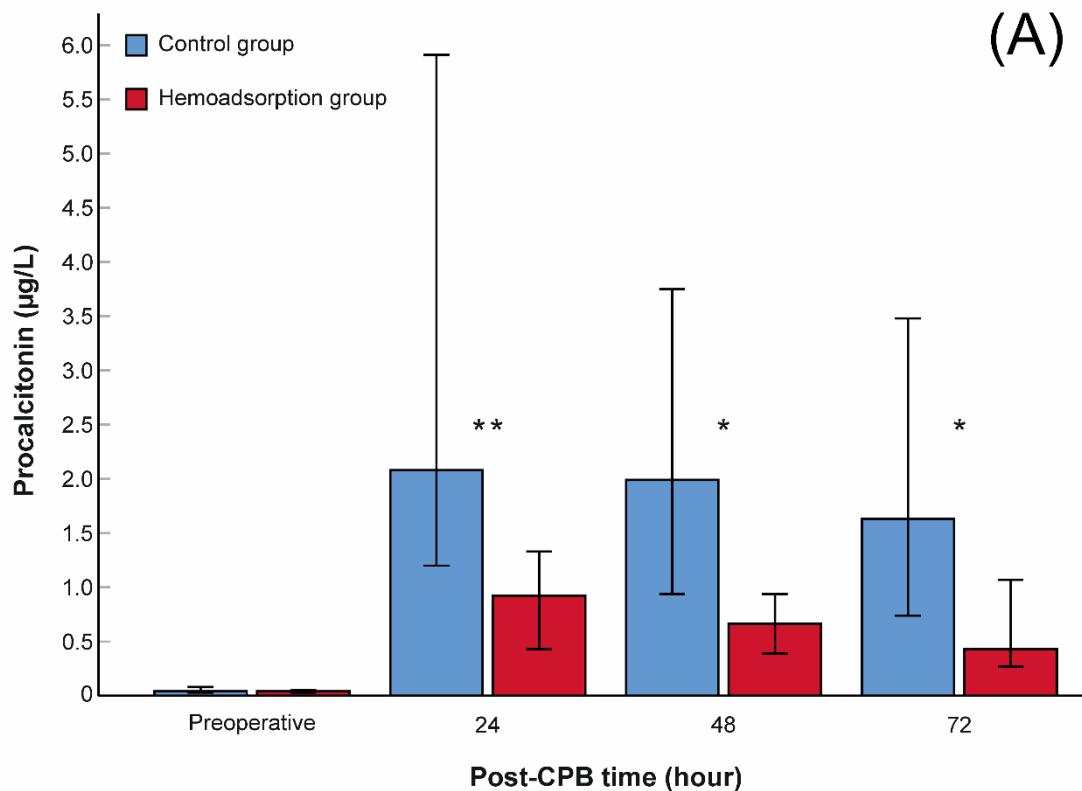

	Control group N=25	Hemoabsorption group N=30	P
Preoperative variables			
Recipient age, year	56 [48–60]	56 [47–61]	0.839
Donor age, year	46 \pm 9	41 \pm 11	0.355
BMI, kg/m ²	26.9 \pm 4.8	25.4 \pm 3.3	0.084
Female sex, n	10 (40.0%)	15 (50.0%)	0.458
DM, n	6 (24.0%)	5 (16.7%)	0.521
CKD, n ^a	10 (40.0%)	13 (43.3%)	0.803
Chronic anaemia, n	10 (40.0%)	9 (30.0%)	0.437
ACEI / ARB, n	10 (40.0%)	18 (60.0%)	0.140
ARNI, n	9 (36.0%)	12 (40.0%)	0.761
BRB, n	21 (84.0%)	28 (93.3%)	0.394
Amiodarone, n	3 (12.0%)	11 (36.7%)	0.061
PVR, Wood unit	2.4 [1.2–3.5]	2.7 [1.9–4.4]	0.257
IMPACT score, point	4 [2.5–5.0]	4 [2.0–7.0]	0.892
Creatinine, μ mol/L	104.0 [82.5–149.5]	105.5 [80.3–132.8]	0.742
eGFR, ml/min/1.73 m ²	64.2 [42.4–73.6]	61.5 [46.9–76.5]	0.813
Haemoglobin, g/dL	13.4 \pm 1.9	13.0 \pm 1.3	0.068
Bilirubin, mg/dL	0.56 [0.34–0.98]	0.69 [0.37–0.83]	0.919

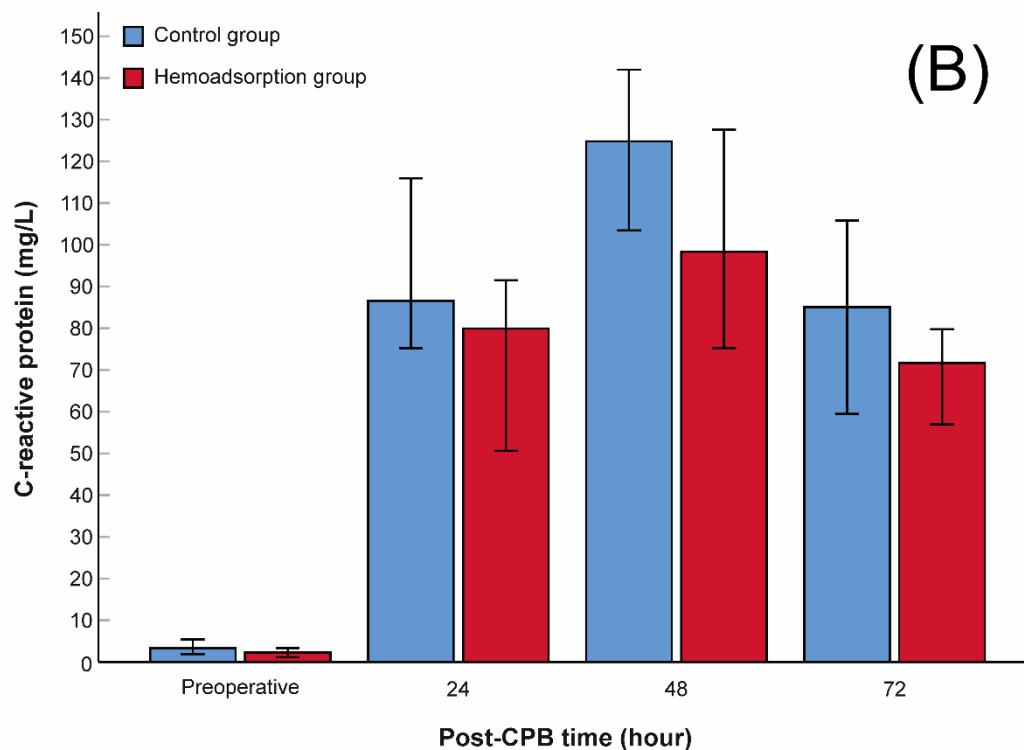
CRP, mg/L	3.3 [1.8–7.3]	2.3 [0.9–4.8]	0.151
PCT, μ g/L	0.04 [0.03–0.09]	0.04 [0.02–0.07]	0.463
White cell count, G/L	8.2 [6.2–9.7]	8.0 [7.0–9.2]	0.980
Aetiology of end-stage heart failure			
IDCM, n	8 (32.0%)	8 (26.7%)	0.665
HCM, n	1 (4.0%)	3 (10.0%)	0.617
Idiopathic CM, n	12 (48.0%)	15 (50.0%)	0.883
Other, n	4 (16.0%)	4 (13.3%)	1.00
Intraoperative factors			
ACC time, min	50 [41–79]	72 [43–86]	0.375
CPB time, min	129 [104–169]	133 [116–154]	0.819
TIT, min ^b	173 \pm 41	152 \pm 45	0.484

4.1.2 Severity of the hemodynamic stability and vasoregulatory dysfunction

Patients in the hemoabsorption group had significantly lower VIS than patients in the control group during the first post-operative 24 h (median VIS: 27.2 [14.6–47.7] vs. 41.9 [22.4–63.2], $P = 0.046$, respectively). Among the dominant components of VIS, there was a tendency of lower dose of vasopressors in the hemoabsorption group compared to controls, which reached a statistically significant difference in the case of argipressin (Figure 4). However, the median dose of inotropes did not differ between the groups (Figure 4). According to the a priori definition, the observed rate of VS was 48.0% (12 patients) in the control group versus 20.0% (6 patients) in the hemoabsorption group, $P = 0.028$. Additionally, the frequency of extreme noradrenaline demand (i.e. $\geq 0.5 \mu$ g/kg/min) during the first post-transplant 24 h was significantly lower in patients from the hemoabsorption rather than the control group: 3.3% (1 patient) versus 24.0% (6 patients), $P = 0.039$, respectively. Similarly, patients in the control group experienced a longer median length of vasopressor support compared to subjects in the hemoabsorption group: 3.0 [1.5–5.0] days versus 2.0 [1.0–4.0] days, $P = 0.046$, respectively. In a multivariate logistic regression model, patients who received intraoperative hemoabsorption had a 6.4-fold lower odds ratio for developing early post-operative VS

($P = 0.029$) than those who received standard intraoperative care. The independent predictors of the early post-operative VS are presented in **Table 3** (69).


Figure 4. Major components of vasoactive inotropic score during the first 24 h after orthotopic heart transplantation. Noradrenaline (A); Argipressin (B); Dobutamine (C); Milrinone (D). N=55. Data are presented as medians and 95% confidence intervals (69).


Table 3. Independent predictors of early postoperative vasoplegic syndrome. Multivariable logistic regression, backward elimination likelihood-ratio, N=55. Adjusted covariates in the regression model: intraoperative hemoabsorption treatment; female sex; chronic kidney disease; angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker treatment pre-transplant; amiodarone treatment pre-transplant; preoperative pulmonary vascular resistance > 3.0 Wood units; CPB ≥ 180 minutes. OR, odds ratio; CI, confidence interval; CPB, cardiopulmonary bypass (69).

Variable	OR	95% CI	P
Intraoperative hemoadsorption	0.156	0.029–0.830	0.029
Preoperative amiodarone therapy	6.315	1.032–38.630	0.046
CPB \geq 180 minutes	25.776	2.089–318.016	0.011

4.1.3 Secondary outcomes

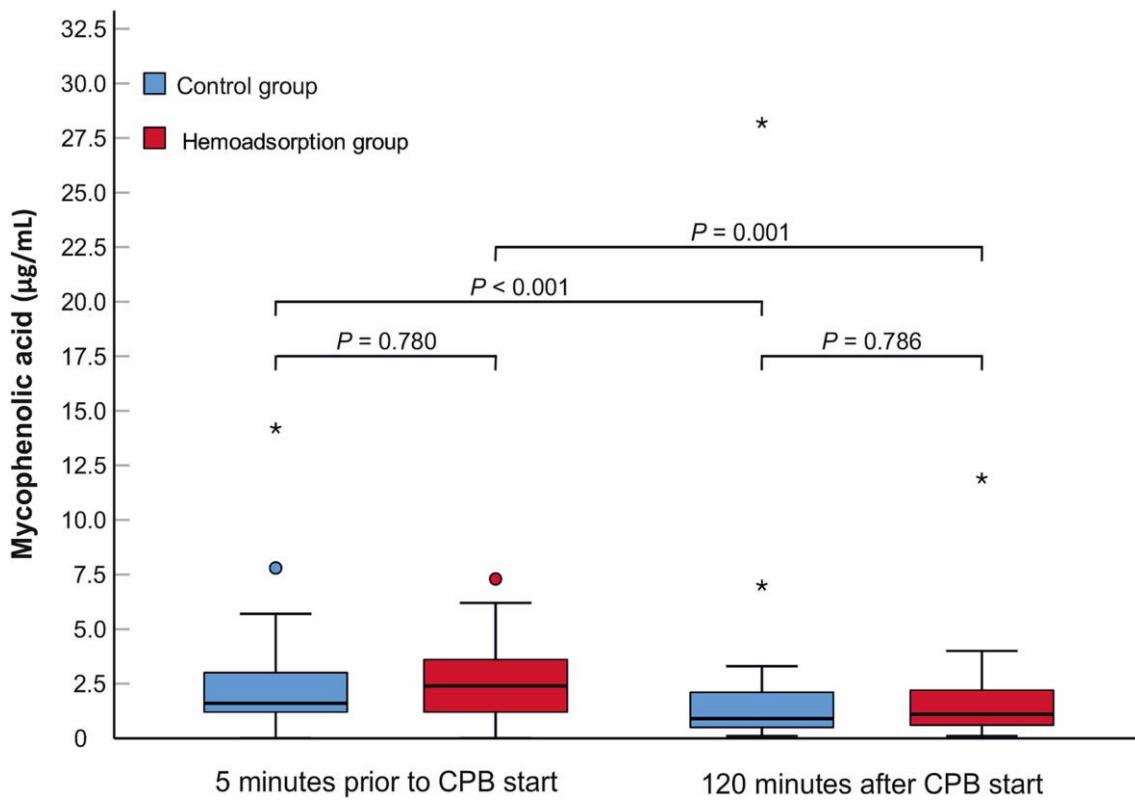
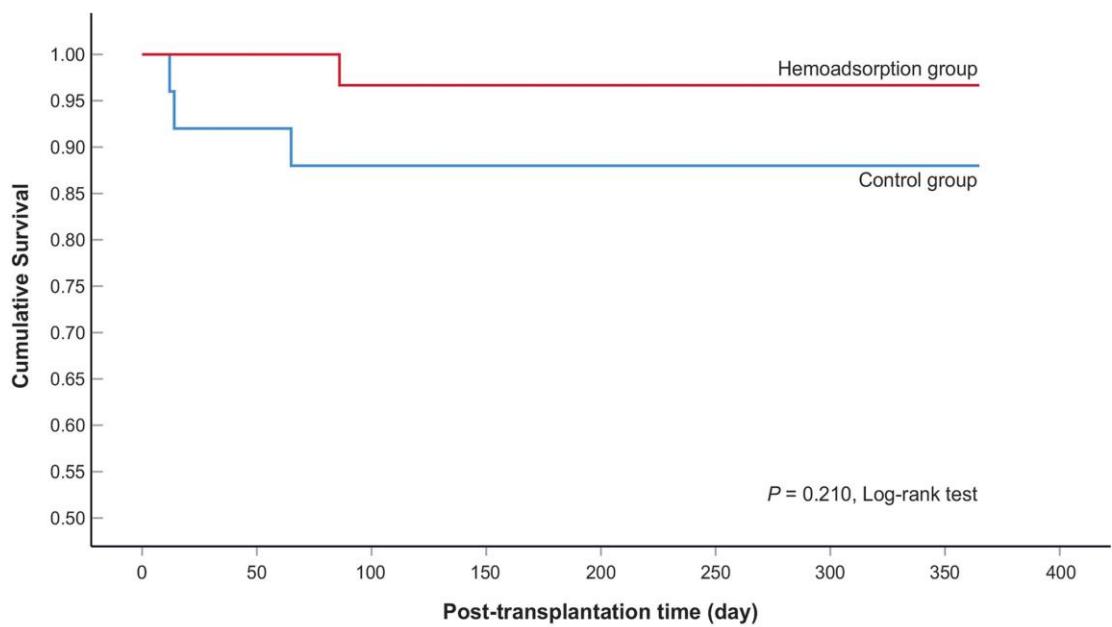

PCT and CRP levels showed a marked increase post-operatively with their peaks at 24 hours and 48 hours, respectively (Figure 5). Interestingly, PCT concentrations were significantly lower at each time point of the 72-h observation period in the hemoadsorption group compared to controls (Figure 5). However, CRP concentrations did not differ between the groups (Figure 5) (69).

Figure 5. Post-transplant changes in procalcitonin (A) and C-reactive protein (B). N=55. Data are presented as medians and 95% confidence interval. * $P < 0.05$; ** $P < 0.01$ (69).

MPA plasma concentrations decreased considerably after 2 hours of CPB compared to pre-CPB levels in both groups, but its median level was comparable to controls in the hemoabsorption group at each measurement point (Figure 6). The time interval between MMF pre-operative administration and CPB start was 123 ± 48 min in the control group versus 226 ± 44 min in the hemoabsorption group, $P = 0.302$ (69).

Figure 6. *Intraoperative change in mycophenolic acid.* N=55. Filled circle indicates outlier, while asterisk represents extreme value (69).


As shown in **Table 4**, shorter durations of MV and ICU stay were registered in the hemoabsorption than in the control group. Similarly, patients who had intraoperative hemoabsorption experienced significantly lower rates of post-operative AKI and renal replacement therapy (RRT) versus subjects in the control group (**Table 4**). In addition, the PCB was significant in the controls, while it was found to be <3.0% in the hemoabsorption group over a 24-h time frame (**Table 4**). Nevertheless, only one patient from the control group developed post-operative hyperbilirubinaemia (bilirubin ≥ 3.0 mg/dL). There was a low rate of 30-day mortality for the total study cohort (3.6%) which did not show difference between the groups (**Table 4**). Importantly, the follow up EMB examinations did not confirm any grade of cardiac allograft rejection on post-operative day 7 and the frequency of low-grade allograft rejections were similar in the groups over the subsequent weeks (**Table 4**). The secondary outcome parameters are described in **Table 4**. The analysis of cumulative post-transplant 1-year survival did not reveal any statistically significant difference between the groups (control group: 88.0% vs.

hemoadsorption group: 96.7%, $P = 0.210$, **Figure 7**). There were no reported hemoadsorption device–related adverse events over the study period (69).

Table 4. Comparative analysis of secondary outcome parameters. Data are presented as number of patients (frequency) and median [interquartile range]. N=55. ^aAKI was classified according to Kidney Disease Improving Global Outcomes creatinine–based definition criteria over the first 5 postoperative days. ^bEarly sepsis was screened over the first 5 postoperative days. ECMO, extracorporeal membrane oxygenation; PRC, packed red cell; FFP, fresh frozen plasma; PLT, platelet transfusion; MV, mechanical ventilation; AKI, acute kidney injury; RRT, renal replacement therapy; ICU, intensive care unit; EMB, endomyocardial biopsy (69).

Parameters	Control group N=25	Hemoadsorption group N=30	P
Postcardiotomy ECMO, n	3 (12.0%)	0 (0%)	0.088
Postoperative bleeding, mL	570 [385–1305]	565 [350–1130]	0.543
Reoperation for bleeding, n	2 (8.0%)	0 (0%)	0.202
PRC/post–CPB 24 h, unit	4.0 [0–5.5]	2.0 [0–4.0]	0.243
FFP/post–CPB 24 h, unit	2.0 [0–3.0]	2.0 [0–3.0]	0.571
PLT/post–CPB 24 h, unit	12.0 [0–16.0]	12.0 [8.0–16.0]	0.597
Postoperative MV, hour	65 [23–287]	25 [19–68.8]	0.025
AKI stage 1, n ^a	15 (60.0%)	9 (30.0%)	0.025
AKI stage 2, n ^a	0 (0%)	1 (3.3%)	1.00
AKI stage 3, n ^a	4 (16.0%)	1 (3.3%)	0.104
AKI _{total} , n	19 (76.0%)	11 (36.7%)	0.004
Postoperative RRT, n	4 (16.0%)	0 (0%)	0.037
Percent change in bilirubin, %	72.1 [11.2–191.4]	2.5 [–24.6–71.1]	0.009
Early sepsis, n ^b	1 (4.0%)	0 (0%)	0.455
Length–of–ICU–stay, day	12 [8.5–18.0]	8.5 [8.0–10.3]	0.022
Length–of–hospital stay, day	28 [24–38.5]	25 [22–34.3]	0.232
30–day mortality, n	2 (8.0%)	0 (0%)	0.202
EMB cellular rejection			
Post–transplant day 7., n	0 (0%)	0 (0%)	

Post-transplant day 14., n	5 (20.0%)	5 (16.7%)	1.00
Post-transplant day 21., n	5 (20.0%)	5 (16.7%)	1.00
Post-transplant day 28., n	6 (24.0%)	10 (33.3%)	0.448
EMB antibody-mediated rejection			
Post-transplant day 7., n	1 (4.0%)	0 (0%)	0.455
Post-transplant day 14., n	1 (4.0%)	2 (6.7%)	1.00
Post-transplant day 21., n	1 (4.0%)	3 (10.0%)	0.617
Post-transplant day 28., n	2 (8.0%)	1 (3.3%)	0.585

Number at risk:

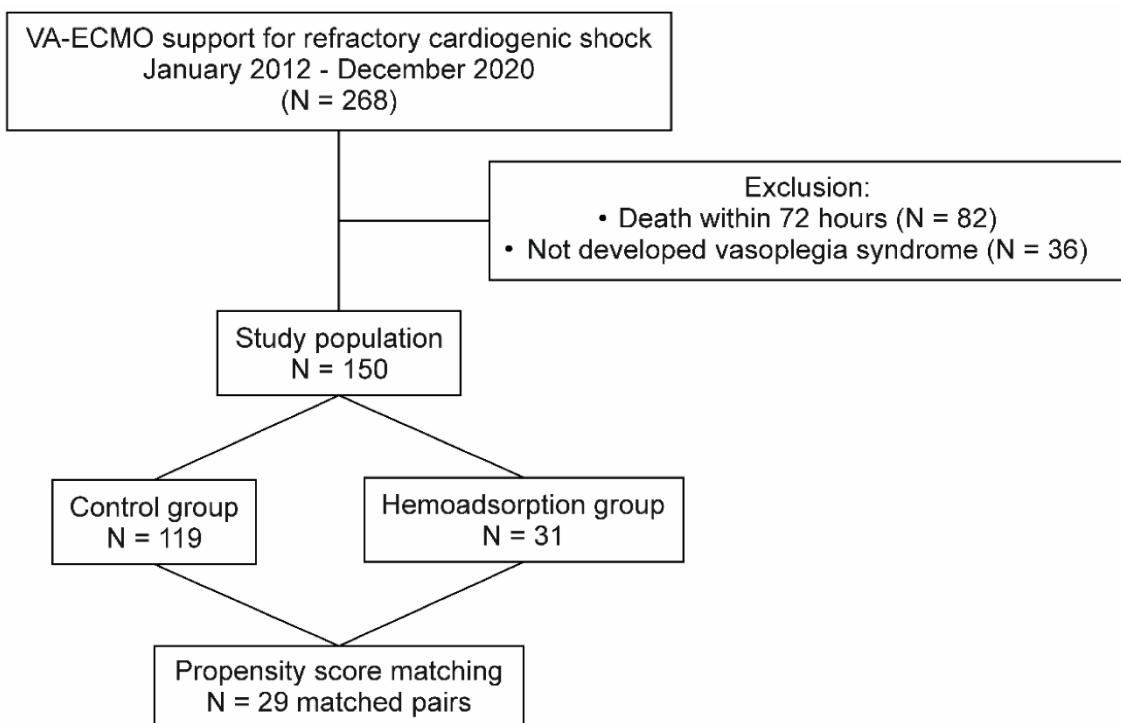

Hemoabsorption Group:	30	30	29	29	29	28	28	27
Control Group:	25	22	21	21	21	21	21	21

Figure 7. Kaplan-Meier estimates of cumulative 1-year survival, according to the intraoperative treatment. Red line represents the hemoabsorption group, while blue line illustrates the control group. P value (log-rank test) shows the difference in survival (69).

4.2 Influence of VA-ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock

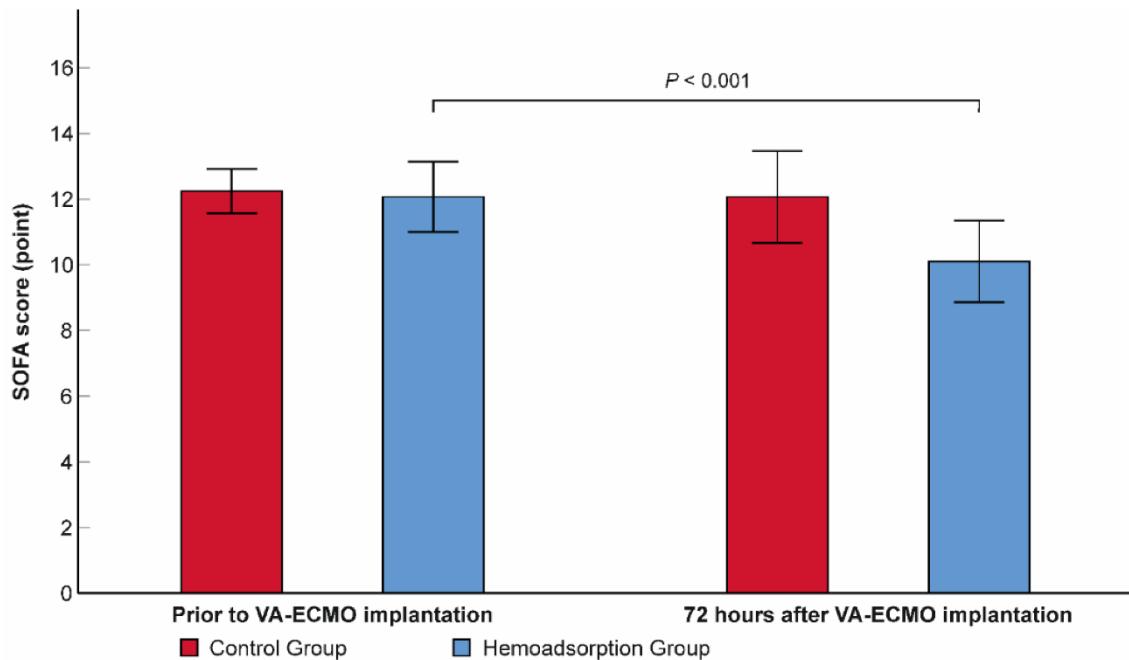
4.2.1 Clinical characteristics

Overall, 268 patients were treated with refractory CS and VA-ECMO support in the investigated period at our institution. After the exclusions, the PSM procedure involving 150 patients resulted in 29 matched pairs (**Figure 8**). The absolute values of standardized mean differences were found to be less than 0.225 for all adjusted covariates. APACHE II and SOFA scores achieved balance by PSM, which indicated similar risks for early mortality in both groups prior to VA-ECMO implantation. The univariate analyses of the baseline parameters did not reveal relevant differences between the two groups in terms of patient characteristics (**Table 5**). However, the peripheral VA-ECMO support was less frequent in patients of the hemoabsorption group than the control group. The patient selection process and the clinical characteristics in the unmatched and matched cohorts are summarized in **Figure 8** and **Table 5**, respectively.

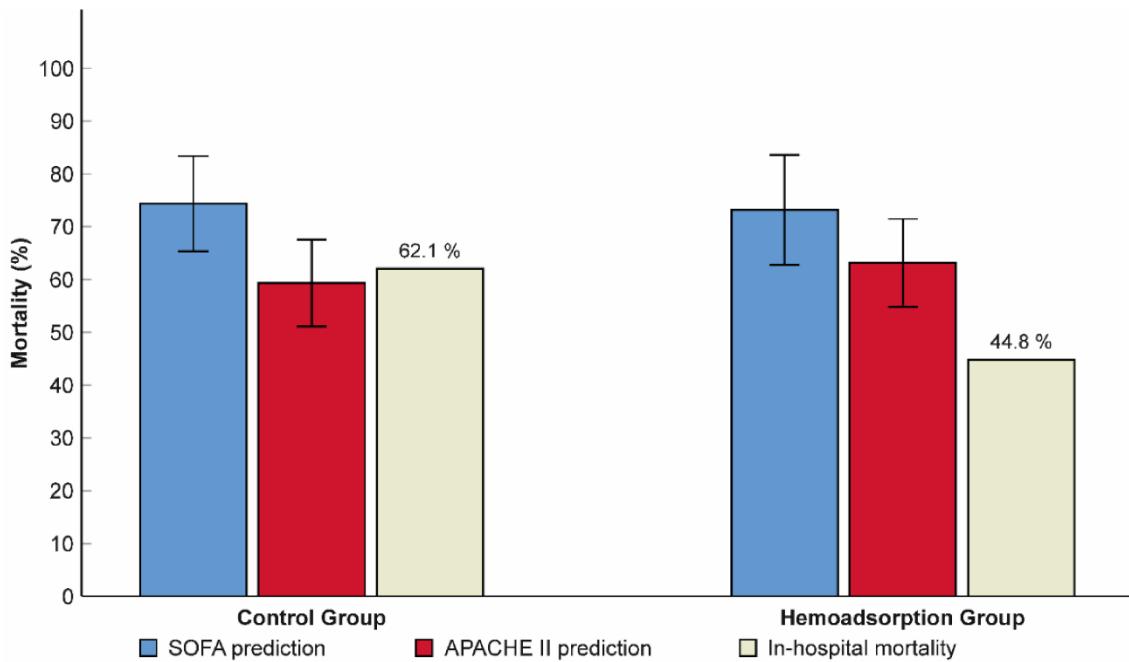
Figure 8. Patient selection flowchart. VA-ECMO: venoarterial extracorporeal membrane oxygenation (72).

Table 5. Patient characteristics and clinical data in the unmatched and matched cohorts.

Data are presented as mean \pm standard deviation and number of patients (frequency).


^aCKD was defined as estimated glomerular filtration rate < 60 mL/min/1.73 m². ^bP_(v-a)CO₂ gap = P_vCO₂ – P_aCO₂; Normal range: 2–6 mmHg (85). *P*-value shows the difference between the control group and hemoabsorption group (propensity score matched cohort). PS: propensity score; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; COPD: chronic obstructive pulmonary disease; CLD, chronic liver disease; CKD, chronic kidney disease; DM, diabetes mellitus; PVD, peripheral vascular disease; TIA: transient ischemic attack; AMI: acute myocardial infarction; CHF: congestive heart failure; OHT: orthotopic heart transplantation; ECMO: extracorporeal membrane oxygenation; APACHE II: Acute Physiology and Chronic Health Evaluation II; SOFA: Sequential Organ Failure Assessment; SAVE: Survival after Veno–Arterial ECMO (72).

	Study Population N = 150	Control Group N = 29	Hemoabsorption Group N = 29	P
	PS matched cohort N = 58			
Age, year	53 \pm 16	55 \pm 14	51 \pm 15	0.291
Age > 70 years, n	17 (11.3%)	2 (6.9%)	1 (3.4%)	1.00
Female sex, n	38 (25.3%)	8 (27.6%)	6 (27.0%)	0.774
BMI, kg/m ²	27.8 \pm 5.1	28.2 \pm 5.5	27.8 \pm 4.6	0.717
Hypertension, n	69 (46.0%)	13 (44.8%)	10 (34.5%)	0.581
CAD, n	60 (40.0%)	14 (48.3%)	11 (37.9%)	0.549
CHF, n	67 (44.7%)	14 (48.3%)	16 (55.2%)	0.791
COPD, n	20 (13.3%)	3 (10.3%)	6 (20.7%)	0.453
CLD, n	7 (4.7%)	3 (10.3%)	0 (0%)	0.250
CKD, n ^a	72 (48.0%)	12 (41.4%)	14 (48.3%)	0.804
DM, n	35 (23.3%)	7 (24.1%)	8 (27.6%)	1.00
PVD, n	8 (5.3%)	0 (0%)	3 (10.3%)	0.250
Previous stroke, TIA, n	8 (5.3%)	2 (6.9%)	3 (10.3%)	1.00


Aetiology of refractory cardiogenic shock				
AMI, n	40 (26.7%)	5 (17.2%)	3 (10.3%)	0.687
Acute-on-CHF, n	21 (14.0%)	4 (13.8%)	5 (17.2%)	1.00
Acute myocarditis, n	7 (4.7%)	0 (0%)	3 (10.3%)	0.250
Intoxication, n	3 (2.0%)	1 (3.4%)	0 (0%)	1.00 —
Severe septic shock, n	2 (1.3%)	1 (3.4%)	0 (0%)	1.00
Postcardiotomy, n	77 (51.3%)	18 (62.1%)	18 (62.1%)	1.00
OHT graft failure, n	43 (28.7%)	10 (34.5%)	12 (41.4%)	0.774
Pre-ECMO parameters				
pH	7.33 ± 0.10	7.33 ± 0.09	7.36 ± 0.09	0.439
Lactate, mmol/L	7.52 ± 5.35	6.90 ± 4.12	6.56 ± 4.96	0.769
P _(v-a) CO ₂ gap, mmHg ^b	8.83 ± 3.40	9.19 ± 3.03	8.47 ± 3.76	0.388
White blood cell, G/L	13.04 ± 7.48	11.64 ± 4.28	14.45 ± 9.57	0.146
C-reactive protein, mg/L	49.06 ± 67.46	31.57 ± 43.25	66.57 ± 82.23	0.054
APACHE II score	30.4 ± 5.3	30.0 ± 5.5	31.1 ± 5.1	0.413
SOFA score	11.3 ± 2.3	12.2 ± 1.8	12.1 ± 2.8	0.789
SAVE score	-6.9 ± 6.1	-7.2 ± 5.6	-6.5 ± 6.7	0.668
VA-ECMO support				
Peripheral ECMO support, n	45 (30.0%)	11 (37.9%)	3 (10.3%)	0.039
Average ECMO flow, L/min	3.3 ± 0.5	3.5 ± 0.4	3.5 ± 0.5	0.366
ECMO support duration, hour	159 ± 67	154 ± 59	183 ± 73	0.106
Hemoadsorption treatment, hour	70.6 ± 8.7	0	70.5 ± 8.9	—

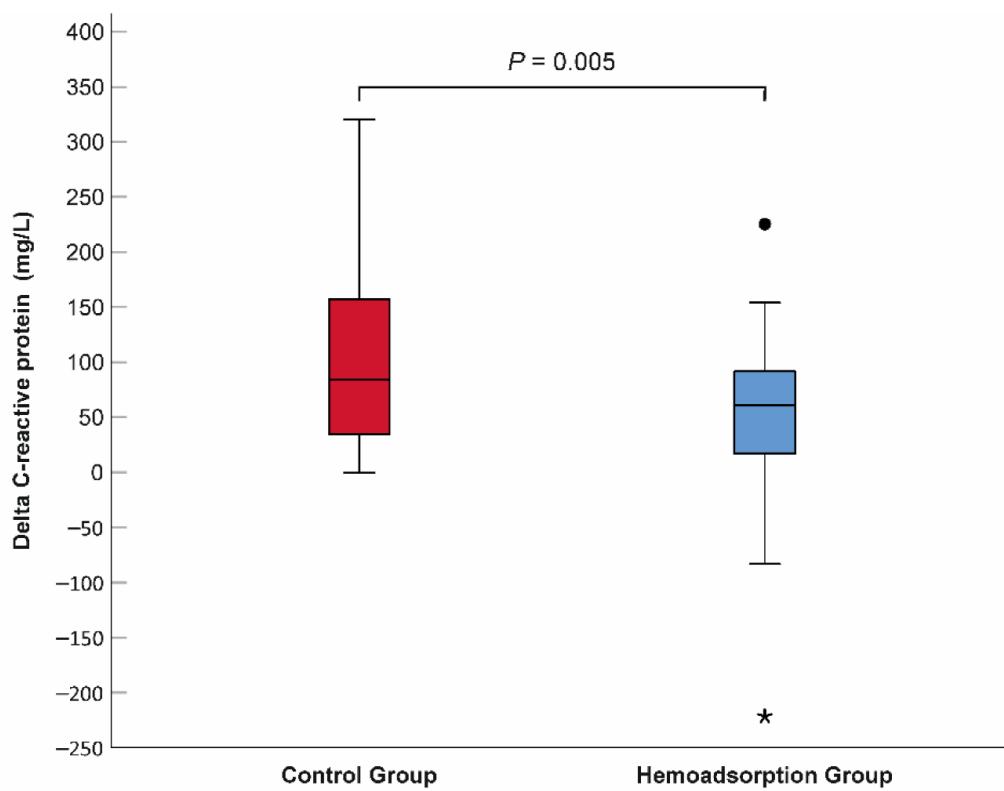
4.2.2 Primary outcomes

Subjects from the hemoadsorption group experienced a significant reduction in the follow-up 72-hour SOFA score from 12.1 ± 2.8 to 10.1 ± 3.3 ($P < 0.001$), with no difference detected in the control group (12.2 ± 1.8 versus 12.1 ± 3.7 , $P = 0.815$, respectively; **Figure 9**). Additionally, the 72-hour SOFA score was also significantly lower in the hemoadsorption than in the control group (**Table 6**). We registered a higher frequency of in-hospital mortality in the control compared to the hemoadsorption groups (62.1% vs. 44.8%, respectively), however, this difference was not statistically significant (**Table 6**). Interestingly, the observed in-hospital mortality was also lower than the mean predicted value calculated according to the APACHE II and SOFA scores prior to VA-ECMO initiation in patients from the hemoadsorption group (44.8% vs. 63.1% and 73.2%, respectively), while there were no relevant differences in the controls (62.1% vs. 59.3% and 74.4%, respectively, **Figure 10**).

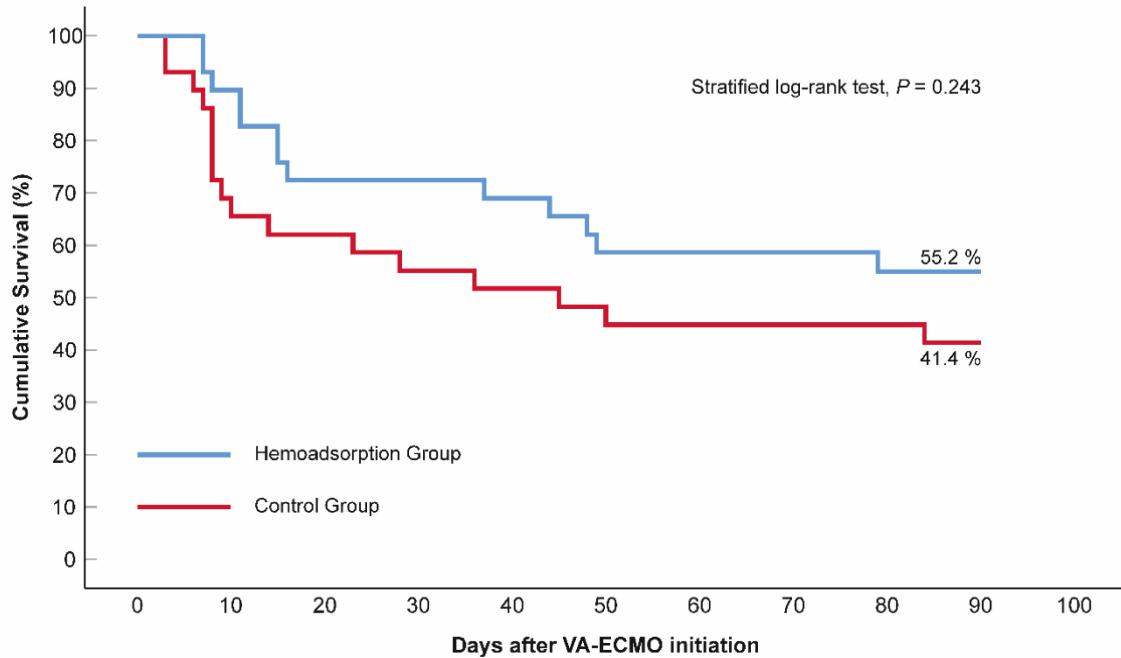
Figure 9. Within-subjects change in sequential organ failure assessment score over the first 72 hours of venoarterial extracorporeal membrane oxygenation support. N=58. Data are presented as means. Error bars show 95% confidence intervals. SOFA: sequential organ failure assessment; VA-ECMO, venoarterial extracorporeal membrane oxygenation (72).

Figure 10. Relationship between predicted and observed in-hospital mortality rates in patients from the hemoabsorption and control groups. N=58. Data are presented as means and frequency (%). Error bars show 95% confidence intervals. SOFA: sequential organ failure assessment; APACHE II, acute physiology and chronic health evaluation II (72).

4.2.3 Secondary outcomes


The mean lactate level decreased significantly in both the control and hemoabsorption groups 72 hours after VA-ECMO initiation (2.11 vs. 6.90 mmol/L, $P < 0.001$, 1.57 vs. 6.56 mmol/L, $P < 0.001$, respectively). Nevertheless, the mean lactate was found to be in the normal range and significantly lower in the hemoabsorption than the control group, which persisted outside the lactate upper limit in the latter group at the 72-hour follow-up time point (Table 6). Similarly, the $P_{(v-a)}\text{CO}_2$ gap declined significantly and normalized after 72 hours of VA-ECMO support in subjects from the hemoabsorption group (4.47 vs. 8.47 mmHg, $P < 0.001$), while the $P_{(v-a)}\text{CO}_2$ gap remained elevated and in the pre-ECMO range in the controls (8.13 vs. 9.19 mmHg, $P = 0.109$). We observed a significant reduction in VIS in the two groups during the first 72-hour time frame of VA-ECMO run (control group: 79.2 ± 51.0 vs. 35.2 ± 36.1 points, $P < 0.001$ and hemoabsorption group: 90.0 ± 61.7 vs. 13.8 ± 19.5 points, $P < 0.001$). Additionally, the VIS of the hemoabsorption group was significantly lower comparing to that of the control group ($P = 0.007$, Table 6). The mean CRP showed an increase up to similar ranges in

both the control and hemoabsorption groups (140.05 mg/L vs. 116.69 mg/L, $P = 0.159$, respectively, **Table 6**) after 72 hours of VA–ECMO support. However, the magnitude of the CRP change (delta CRP) was significantly smaller in the hemoabsorption than in the control group (50.13 ± 85.29 mg/L vs. 108.47 ± 87.20 mg/L, $P = 0.005$, respectively, **Figure 11**). The length of mechanical ventilation, intensive care unit, and hospital stays were comparable in the two groups. Early major complications, registered for the first 72 hours of the VA–ECMO support, did not show relevant differences, except for clinically relevant bleeding related to the VA–ECMO application. While this complication had a significantly lower frequency in the hemoabsorption versus control group, the rate of reoperation for bleeding was similar in both groups (**Table 6**). Detailed analyses of the primary and secondary outcome parameters from the hemoabsorption and control groups are shown in **Table 6**. Analysis of cumulative 90–day survival did not reveal a statistically significant difference between the groups; however, there was a trend towards improved mortality in the hemoabsorption group compared to the control group for the complete observational period (**Figure 12**).


Table 6. Comparative analysis of the primary and secondary outcome parameters in the propensity score matched cohort. Data are presented as mean \pm standard deviation and number of patients (frequency). $^a\text{P}_{(\text{v}-\text{a})}\text{CO}_2$ gap = $\text{P}_v\text{CO}_2 - \text{P}_a\text{CO}_2$; Normal range: 2–6 mmHg (85). b Clinically relevant blood loss required conservative (i.e. blood products and factor concentrates) and/or surgical therapy (registered for the post–VA–ECMO implantation period). PS: propensity score; SOFA: Sequential Organ Failure Assessment; VIS, vasoactive–inotropic score; RO: reoperation; PRC: packed red cell; AKI: acute kidney injury; RRT: renal replacement therapy; ICU: intensive care unit (72).

Outcome Measures	Control	Hemoabsorption	P
	Group N = 29	Group N = 29	
PS matched cohort N = 58			
Primary outcome parameters			
72–hour SOFA score, point	12.1 ± 3.7	10.1 ± 3.3	0.040
In–hospital mortality, n	18 (62.1%)	13 (44.8%)	0.180
Secondary outcome parameters			

72-hour pH	7.40 ± 0.04	7.43 ± 0.04	0.048
72-hour lactate, mmol/L	2.11 ± 0.77	1.57 ± 0.96	0.015
72-hour $P_{(v-a)}CO_2$ gap, mmHg ^a	8.13 ± 1.26	4.47 ± 1.69	<0.001
72-hour white blood cell, G/L	11.95 ± 4.32	11.35 ± 6.16	0.650
72-hour C-reactive protein, mg/L	140.05 ± 86.72	116.69 ± 55.33	0.159
72-hour VIS, point	35.2 ± 36.1	13.8 ± 19.5	0.007
Bleeding /72 hours, n ^b	22 (75.9%)	13 (44.8%)	0.049
RO for bleeding /72 hours, n	9 (31.0%)	7 (24.1%)	0.754
PRC transfusion /72 hours, unit	9 ± 9	10 ± 6	0.461
AKI _{total} within 72 hours, n	21 (72.4%)	21 (72.4%)	1.00
RRT within 72 hours, n	15 (51.7%)	19 (65.5%)	0.481
Mechanical ventilation, day	30.3 ± 39.2	34.6 ± 30.3	0.673
Length-of-ICU stay, day	37 ± 45	37 ± 23	0.962
Length-of-Hospital stay, day	49 ± 59	45 ± 33	0.707

Figure 11. Comparison of delta C-reactive protein between the hemoabsorption and control groups. N=58. Delta C-reactive protein = 72-hour CRP – baseline CRP. Filled circle indicates outlier, while asterisk represents extreme value (72).

Number at risk:

Hemoabsorption Group:	29	25	21	20	19	17	17	16	15	14
-----------------------	----	----	----	----	----	----	----	----	----	----

Control Group:	29	19	17	16	15	13	13	13	12	11
----------------	----	----	----	----	----	----	----	----	----	----

Figure 12. Kaplan-Meier estimates of cumulative 90-day survival, according to the applied venoarterial extracorporeal membrane oxygenation management. N=58. The blue line represents the hemoabsorption group, while the red line illustrates the control group. P value (stratified log-rank test) indicates the difference in survival. VA-ECMO, venoarterial extracorporeal membrane oxygenation (72).

5 Discussion

5.1 Intraoperative hemoabsorption treatment and its impact on the outcome of patients undergoing orthotopic heart transplantation

5.1.1 Control on development of the severe post-CPB vasoregulatory dysfunction and haemodynamic instability

Patients undergoing OHT are reported to be at a remarkably higher risk for developing severe vasoplegia with an incidence ranging from 11% to 66% based on previous analyses (86–89). Playing a dominant role in post-transplant haemodynamic instability, VS can substantially contribute to the development of post-operative multiple organ dysfunction, resulting in prolonged duration of MV and increased ICU and hospital stays (89). Considering the most relevant predisposing factors for post-transplant VS such as advancing age, elevated body mass index, chronic kidney disease, and expanded CPB time, the two groups were found to be homogenous (87, 89). In this RCT, intraoperative hemoabsorption showed significant associations with reduced post-operative VIS. The median VIS was significantly higher in the control than in the hemoabsorption group, where it was in the range of ≥ 30 indicating a higher risk for unfavourable outcomes. Among the four major VIS components, decreased vasopressor requirements were the main determinant of the reduced VIS in the hemoabsorption group; however, the doses of inotropes did not differ between the groups (**Figure 4**). These results are indicative of the less severe vasoplegia that developed in the hemoabsorption group, and they are also consistent with the less frequent VS and extreme noradrenaline demand, shortened vasopressor need and decrease in the odds of VS found in the same group. To date, only one observational study performed by our workgroup has investigated the effect of intraoperative hemoabsorption on post-operative vasopressor need and outcome among OHT patients (68). Interestingly, we observed significantly reduced vasopressor requirements linked to hemoabsorption use (68). Similarly, in a propensity score matched analysis of high-risk infective endocarditis patients, the median vasopressor dose on post-operative day 1 was found to be significantly lower in the hemoabsorption group than in controls (36). On the other hand, several recent RCTs including intraoperative hemoabsorption in medium- to high-risk cardiac surgical patients reported controversial data on the post-operative need for vasoactive support (42,

90–93). The results of our RCT are in line with earlier observational studies confirming a clear relationship between intraoperative hemoabsorption and the moderate manifestation of post-operative vasoplegia. Most likely, the discrepancies among these results can be explained by the inhomogeneity of the examined patient populations in terms of perioperative risk for severe vasoplegia.

5.1.2 Modulating the dysregulated post-CPB inflammatory response

One of the theoretical aims for introducing intraoperative hemoabsorption in OHT recipients is to modulate the dysregulated inflammatory response related to OHT surgery. This trial demonstrated a mitigated post-operative PCT response at all pre-defined time points in the hemoabsorption group compared to controls (**Figure 5**) emphasizing a clear modulating effect on the post-CPB inflammatory response. Our previous observational study in OHT patients showed similar kinetics in post-operative PCT in both the hemoabsorption and control groups (68). However, an arbitrary criterion was used to indicate intraoperative hemoabsorption in this previous investigation, definitely influencing patient selection bias in terms of pre-operative immune priming level and increasing the chance of highly diverse post-CPB immune response including PCT kinetics (68).

5.1.3 Clinical effects on post-transplant complications and immunological adverse events

Consistently with the finding of mitigated post-operative PCT response in patients receiving intraoperative hemoabsorption, these patients also exhibited reduced incidence of post-operative organ dysfunction such as severe vasoplegia, respiratory failure and AKI. Additionally, our data indicate a well-preserved hepatic bilirubin excretion in the interventional (PCB < 3.0%) versus control group, in which a significant post-operative decline of this hepatic function was observed (PCB > 70.0%). It has recently been shown that bilirubin can be removed directly by hemoabsorption treatment integrated into extracorporeal devices (94–97). In line with these results, a degree of direct bilirubin removal by intraoperative hemoabsorption can be supposed. The preserved hepatic bilirubin excretion in the interventional group correlated with less manifested post-operative organ dysfunction, associated with reduced VIS and mitigated PCT response as represented in our study group versus controls. The previous observational study in OHT

patients showed only favourable trends in the length of MV, ICU stay, and rate of AKI (68). But the presumably inhomogeneous patient population resulted in different risk and reversibility of post-operative organ dysfunction (68). Our RCT aimed to analyse homogeneous patient groups selecting low risk recipient (i.e. UNOS status 6 patients), which underlines the relative power of the better post-operative complication profile of the hemoabsorption group (69).

Cardiac allograft rejection early after OHT is among the most severe complications which can negatively affect recipients' long-term outcomes (98). High variability in the immunosuppressive drug concentrations is confirmed to be linked to increased risk for acute allograft rejection (99). To date, no data exist on interactions between intraoperative hemoabsorption and immunosuppressive drug concentrations in terms of OHT. Interestingly, Lindstedt et al. did not find histopathological signs of acute rejection at 1- and 3-month posttransplant in patients who received cytokine adsorption during lung transplantation, compared to patients managed without the adsorber (100). Also, a very recently published large animal study reported on an adsorption rate of less than 5% for immunosuppressive agents such as tacrolimus, cyclosporin A, mycophenolate mofetil, everolimus, and methylprednisolone during 6 h of in vivo extracorporeal hemoabsorption treatment (101). Data presented in our RCT strongly substantiate these previous investigations. Similar MPA concentrations were measured pre-CPB and at 2 h of CPB run in the study groups (**Figure 6**), and there were no differences in the frequencies of cardiac allograft rejection over the 1-month follow-up period between the groups (**Table 4**). These results demonstrate significant safety information regarding the interaction between intraoperative hemoabsorption treatment and perioperative immunosuppressive therapy of OHT (69).

5.1.4 Relationship with 1-year survival

In our RCT we involved low risk OHT recipients (median IMPACT score was 4 in both groups, see **Table 2**) with identical pre-operative inflammatory activity and risk profile for post-operative organ dysfunctions (**Table 2**). Accordingly, the registered 30-day mortality rate was 8.0% and 0%, and 1-year survival was 88.0% and 96.7% in the control versus hemoabsorption groups, respectively. In the light of these favourable survival numbers in both groups, a positive impact of hemoabsorption on mortality was

not to be expected. However, our results in terms of proximal endpoints suggest the effectiveness of intraoperative hemoabsorption in controlling the dysregulated inflammatory processes and reducing post-operative organ dysfunctions. In addition, this method of intraoperative immune modulation of OHT surgery did not show a relationship with an increased rate of adverse immunological events, and the use of intraoperative hemoabsorption was not linked to any complications in our study (69).

5.1.5 Limitations of the trial

Our proof-of-concept RCT has strengths and limitations. To the best of our knowledge, our investigation is the first RCT to assess the clinical effects of intraoperative hemoabsorption among OHT patients focusing on proximal primary endpoints. Despite the small sample size, a homogeneous cohort of patients were randomized into two similar arms in terms of clinical characteristics and risk profile. However, due to a lack of any previous RCT in this field based on similar primary outcomes, we did not perform a formal sample size calculation. It is a single-centre study; therefore, the presented results are subject to selection bias requiring external validation by other centres. These limitations in part restrict the interpretation of our results.

5.2 Influence of VA-ECMO integrated hemoabsorption on the early reversal of multiorgan and microcirculatory dysfunction and outcome of refractory cardiogenic shock

5.2.1 Early change of the refractory cardiogenic shock associated multiorgan dysfunction

Multiorgan dysfunction is a dominant contributing factor of in-hospital mortality risk associated with refractory CS (61). The SOFA score is a widely employed composite assessment tool in critical care to classify and monitor multiorgan dysfunction over time (102). SOFA score assessed prior to VA-ECMO initiation has been found to have good predictive value for in-hospital mortality in earlier clinical investigations of patients undergoing VA-ECMO support (103–105). Similarly, a decreasing SOFA score at day 3 of VA-ECMO support has been associated with better hospital survival in the same clinical scenario, demonstrating the link between the early improvement of organ function and outcome (104, 106). In our study, we observed significantly reduced mean SOFA scores in the hemoabsorption group after 72 hours of VA-ECMO start compared to the

initial value (**Figure 9**). Despite the identical combined mechanical and pharmacological circulatory support applied in the control group the mean 72-hour SOFA score persisted in the pre-ECMO range in these subjects. Only very few clinical studies and case series have previously examined the significance of ECMO integrated hemoabsorption on patient outcome—among them, two comparative investigations involving VA-ECMO patients (107–109). Of these two studies only the RCT published by Supady et al. used longitudinal SOFA score follow-up (109). They did not find any significant differences in either the longitudinal change or the 72-hour values of the SOFA scores (109). However, 54.5% of patients in the cytokine adsorption group, and 73.7% of patients in the control group compared to baseline survived the 72-hour timepoint in their study, which restricts the interpretation of SOFA score change in the study groups (109). In our analysis, we excluded patients who died on VA-ECMO within 72 hours to mitigate patient selection bias in the advanced analyses, which resulted in the complete comparison of groups in terms of SOFA score change. Interestingly, in a recent RCT including patients with severe COVID-19 pneumonia requiring venovenous ECMO, a marked reduction in SOFA score was seen in the cytokine adsorption group versus controls with a time frame of 72 hours, despite the lower range of initial SOFA scores registered in the groups (110). These results are in line with the findings of our study supporting the assumption that VA-ECMO integrated hemoabsorption can contribute to accelerate the reversal of multiorgan dysfunction induced by refractory CS (69).

5.2.2 Early change of the macro- and microhaemodynamics

Our analysis confirmed significant reduction of VIS in both groups over the first 72 hours of VA-ECMO support demonstrating an obvious stabilization of the macrohemodynamics. This change of VIS was more robust in the hemoabsorption group than the control group (**Table 6**). However, the restoration of macrohemodynamics during adequate VA-ECMO support does not result in instant and simultaneous improvement in microcirculatory dysfunction (16). Moreover, prolonged impairment of microhemodynamics and tissue oxygen delivery can be an independent factor of unfavourable outcome in patients receiving VA-ECMO support (16, 19, 70). Indeed, ECMO associated pathomechanisms involving plasma fHb and dysregulated inflammatory response linked processes can amplify microcirculatory dysfunction and delay its normalization (16). In this context, the integration of the hemoabsorption

treatment into a VA–ECMO system early on in the clinical course can theoretically control the adverse microcirculatory effects of the aforementioned pathophysiological interferences (111). As a surrogate marker of hemodynamic coherence and microcirculatory function, the $P_{(v-a)}CO_2$ gap was monitored in VA–ECMO patients in a recent retrospective cohort study (112). They found that an elevated $P_{(v-a)}CO_2$ gap measured in the initial course of VA–ECMO support was associated with poor outcome (112). Our data show a significantly lower and normalized 72–hour $P_{(v-a)}CO_2$ gap and lactate level in patients from the hemoabsorption group than controls (**Table 6**). Both parameters suggest early reversal of microcirculatory dysfunction and impaired tissue oxygen delivery in the hemoabsorption group, which was delayed in the controls according to their persistently elevated mean $P_{(v-a)}CO_2$ gap and lactate level registered at 72 hours. Considering the results of our investigation it can be supposed that a 72–hour VA–ECMO integrated hemoabsorption treatment can contribute to the rapid reversal of macro– and microcirculatory dysfunction and restoration of hemodynamic coherence, resulting in improved organ function (72).

5.2.3 Early inflammatory response

Previous case reports and case series demonstrated marked reductions in CRP, procalcitonin, and interleukin–6 (IL–6) related to hemoabsorption treatment combined with VA–ECMO support (81, 113, 114). Nevertheless, most recent PSM– and RCT–based analyses of extracorporeal cardiopulmonary resuscitation (ECPR) patients found comparable CRP and IL–6 levels in both the cytokine adsorption and control group after 72 h of VA–ECMO run (108, 109). The results of our study are different from findings of the latter investigations. While the mean 72–hour levels of CRP were in a similar range in the groups, the magnitude of delta CRP was significantly smaller in the patients from the hemoabsorption than the control group (**Figure 11**), suggesting a mitigated inflammatory response. The possible explanation for this discrepancy can be the divergent patient selections used in the investigations. Unlike the former studies that analysed ECPR patients, we investigated unselected refractory cardiogenic shock patients that received VA–ECMO support, with 62.1% of postcardiotomy cases in each group. Additionally, the more significant immune system priming along with higher mortality rate within 72 hours of patients presented in the cytokine versus control group in the CYTER study assume relevant differences in terms of the severity of initial multiorgan

dysfunction as well as the intensity of the inflammatory response between the analysed groups, which can influence the interpretation of the detected levels of the inflammatory markers (109). Furthermore, the significantly smaller mean delta CRP measured in the hemoabsorption group in our study is in line with the findings of the reduced mean SOFA score, lactate level, and $P_{(v-a)}CO_2$ gap at the 72-hour follow-up point compared to controls indicating the role of the inflammatory control provided by the continuous hemoabsorption in the early reversal of the refractory CS associated multiorgan dysfunction (72).

5.2.4 Clinical effects on the outcome of refractory cardiogenic shock

This study analysed cohorts of patients with various aetiologies for refractory CS. However, both the unmatched and matched cohorts presented comparable frequencies of the typical CS aetiologies with previously reported data (**Table 5**) (115). Due to the between group comparison of clinical characteristics including the major CS aetiologies, APACHE II and SOFA composite scores did not reveal any differences in the PSM cohort; we presumed identical risks for complications and early mortality. The frequency of in-hospital mortality was 62.1% in the control group, which is congruent with the mean predicted values of the pre-ECMO APACHE II and SOFA scores (**Figure 10**). Additionally, the observed in-hospital mortality of the control group is in line with recently published data of non-selected and post-cardiotomy VA-ECMO patients, demonstrating an in-hospital survival rate between 34.4% and 43.4% (104, 116–119). On the other hand, we registered lower in-hospital mortality (44.8%) and better 90-day survival in the hemoabsorption group than in controls in our study. Although these marked differences in the mortality and survival outcome did not reach statistical significance, they are indicative of an early mortality risk reduction to ~50% that might be a result of the improvement in microcirculatory and multiorgan dysfunction linked to the VA-ECMO integrated hemoabsorption treatment. Among the major complications, the observed number of ECMO-associated bleeds showed a significant difference between the two groups. The definition of bleeding complications regarding VA-ECMO support shows large diversity in the publications, which makes for limited comparison possible between the observed and registry data (115). Furthermore, none of the published investigations have examined the frequency of bleeding related to VA-ECMO integrated hemoabsorption treatment to date. In our study, we have defined an ECMO associated

bleeding complication as a clinically relevant event requiring conservative therapy (i.e., blood products and factor concentrates) and/or surgical therapy. Considering the differences in the total number of bleeding events and reoperation rates, our data suggest that the dominant component of the between-group discrepancy is the minor bleeding complication, because the reoperation rates were similar in the groups (**Table 6**). This result from our study raises the possibility that the more frequent instability of the haemostatic system during the early phase of the VA–ECMO support in the control versus hemoabsorption group could be a part of the persistent multiorgan dysfunction presented by the significantly higher mean 72-hour SOFA score in the control group (72). On the other hand, the controlled ECMO circuit–induced inflammatory processes achieved by the continuous hemoabsorption treatment could also contribute to stabilize haemostatic system indirectly gaining more restraint in terms of diffuse bleeding at the surgical sites (72).

5.2.5 Limitations of the study

Our observational study has some limitations. Due to the retrospective design applied in this investigation, we performed the PSM modelling approach to minimize the characteristic discrepancy linked bias. Nevertheless, some hidden confounders may be present. The therapeutic utilization of VA–ECMO integrated hemoabsorption was not strictly protocolized in the study period, and the clinical decision whether to start hemoabsorption treatment or not was at the discretion of the treating physician. Considering these limitations and the sample size of the analysed cohort in part restricts the interpretation of our results.

6 Conclusions

- i. The intraoperative hemoadsorption during OHT is associated with better haemodynamic stability, as indicated by a 6.4-fold decrease in the odds of developing VS and less frequent VS in the early post-operative period compared to standard care.
- ii. Patients in the hemoadsorption versus the control group experienced a mitigated PCT response, lower rates of post-operative AKI and RRT, more stable hepatic bilirubin excretion, and shorter durations of MV and ICU stay.
- iii. Our investigations did not confirm any relevant adsorption effect on MPA and more frequent adverse immunological events such as early cardiac allograft rejection and sepsis related to intraoperative hemoadsorption treatment.
- iv. The patients who received a 72-hour length VA-ECMO integrated hemoadsorption treatment realized significant reductions in their SOFA score, faster normalization of macrohemodynamics, metabolic state, and $P_{(v-a)}CO_2$ gap over the same time frame than subjects in the control group, suggesting accelerated recovery of CS-associated multiorgan and microcirculatory dysfunction.
- v. The VA-ECMO integrated hemoadsorption treatment was associated with mitigated inflammatory response, less bleeding complications, and lower risk for early mortality predicted by the APACHE II and SOFA composite scores in comparison with controls.
- vi. The promising outcomes of our proof-of-concept randomised trial and propensity score-matched cohort study support the necessity for adequately powered RCTs in this field to clarify the potential benefits of the intraoperative- or VA-ECMO integrated hemoadsorption treatment.

7 Summary

The microcirculatory dysfunction is presumed to be the key factor of both the orthotopic heart transplantation (OHT) related– and the refractory cardiogenic shock (CS) related multiple organ failure.

In our proof–of–concept randomised controlled trial (RCT) we compared the effects of the pre–emptive, intraoperative hemoadsorption versus standard medical care on the severity of early postoperative haemodynamic instability, frequency of postoperative organ dysfunctions, early graft rejection, and length of hospital stay in patients underwent OHT. Our trial found that OHT patients who received intraoperative hemoadsorption experienced reduced vasoactive–inotropic score and less severe post–operative vasoplegia compared to standard care alone. The use of intraoperative hemoadsorption was associated with a 6.4–fold decrease in the odds of developing early post–operative vasoplegic syndrome, mitigated procalcitonin kinetics, lower rates of post–operative acute kidney injury and renal replacement therapy, preserved post–cardiopulmonary bypass hepatic bilirubin excretion and shorter durations of mechanical ventilation and intensive care unit stay. Our trial did not confirm any relevant adsorption effect on mycophenolic acid, and did not reveal differences in the frequency and severity of early cardiac allograft rejection as well as in mortality between the groups.

The aim of our retrospective observational study was to analyse the clinical impact of VA–ECMO integrated hemoadsorption in terms of early reversal of multiorgan– and microcirculatory dysfunction, and short–term clinical outcomes in patients undergoing VA–ECMO support for refractory CS, using propensity score matching. Our study demonstrated that patients who received a 72–hour period of hemoadsorption treatment showed a significant reduction in SOFA score, faster normalization of macrohemodynamics, metabolic state and $P_{(v-a)}CO_2$ gap, and lower risk for early mortality than patients in the control group. VA–ECMO integrated hemoadsorption treatment was associated with reduced delta CRP and less bleeding complications compared with the controls.

8 References

1. Hessel EA, 2nd. A Brief History of Cardiopulmonary Bypass. *Semin Cardiothorac Vasc Anesth.* 2014;18(2):87–100.
2. Isath A, Fishkin T, Spira Y, Frishman WH, Aronow WS, Levine A, Gass A. Emerging Modalities for Temporary Mechanical Circulatory Support in Cardiogenic Shock. *Cardiol Rev.* 2025;33(1):41–5.
3. Kant S, Banerjee D, Sabe SA, Sellke F, Feng J. Microvascular dysfunction following cardiopulmonary bypass plays a central role in postoperative organ dysfunction. *Front Med (Lausanne).* 2023;10:1110532.
4. Lüsebrink E, Binzenhöfer L, Hering D, Villegas Sierra L, Schrage B, Scherer C, Speidl WS, Uribarri A, Sabate M, Noc M, Sandoval E, Erglis A, Pappalardo F, De Roeck F, Tavazzi G, Riera J, Roncon-Albuquerque R Jr, Meder B, Luedike P, Rassaf T, Hausleiter J, Hagl C, Zimmer S, Westermann D, Combes A, Zeymer U, Massberg S, Schäfer A, Orban M, Thiele H. Scrutinizing the Role of Venoarterial Extracorporeal Membrane Oxygenation: Has Clinical Practice Outpaced the Evidence? *Circulation.* 2024;149(13):1033–52.
5. Cribben N, Gonoud D, Kevin LG. Cardiopulmonary bypass. *Anaesthesia and Intensive Care Medicine.* 2024;25(3):174–9.
6. Hessel EA, Groom RC. Guidelines for Conduct of Cardiopulmonary Bypass. *J Cardiothorac Vasc Anesth.* 2021;35(1):1–17.
7. Vedel AG, Holmgård F, Rasmussen LS, Langkilde A, Paulson OB, Lange T, Thomsen C, Olsen PS, Ravn HB, Nilsson JC. High–Target Versus Low–Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial. *Circulation.* 2018;137(17):1770–80.
8. Pratomo BY, Sudadi S, Setianto BY, Novenanto TT, Raksawardana YK, Rayhan A, Kurniawaty J. Intraoperative Goal–Directed Perfusion in Cardiac Surgery with Cardiopulmonary Bypass: The Roles of Delivery Oxygen Index and Cardiac Index. *Ann Thorac Cardiovasc Surg.* 2024;30(1):23-00189.
9. Abrams D, Combes A, Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. *J Am Coll Cardiol.* 2014;63(25 Pt A):2769–78.

10. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. *Circ Heart Fail.* 2018;11(9):e004905.
11. Pineton de Chambrun M, Bréchot N, Combes A. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock: indications, mode of operation, and current evidence. *Curr Opin Crit Care.* 2019;25(4):397–402.
12. Betit P. Technical Advances in the Field of ECMO. *Respir Care.* 2018;63(9):1162–73.
13. Kociol KJ, Isath A, Rao S, Gregory V, Ohira S, Van Diepen S, Lorusso R, Krittawong C. Extracorporeal Membrane Oxygenation (VA–ECMO) in Management of Cardiogenic Shock. *J Clin Med.* 2023;12(17):5576.
14. Smith M, Vukomanovic A, Brodie D, Thiagarajan R, Rycus P, Buscher H. Duration of veno–arterial extracorporeal life support (VA ECMO) and outcome: an analysis of the Extracorporeal Life Support Organization (ELSO) registry. *Crit Care.* 2017;21(1):45.
15. Geller BJ, Sinha SS, Kapur NK, Bakitas M, Balsam LB, Chikwe J, Klein DG, Kochhar A, Masri SC, Sims DB, Wong GC, Katz JN, van Diepen S. Escalating and De-escalating Temporary Mechanical Circulatory Support in Cardiogenic Shock: A Scientific Statement From the American Heart Association. *Circulation.* 2022;146(6):e50–e68.
16. Govender K, Jani VP, Cabrales P. The Disconnect Between Extracorporeal Circulation and the Microcirculation: A Review. *ASAIO J.* 2022;68(7):881–9.
17. Koning NJ, Atasever B, Vonk AB, Boer C. Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass. *J Cardiothorac Vasc Anesth* 2014;28(5):1331–40.
18. Koning NJ, Vonk AB, Vink H, Boer C. Side–by–Side Alterations in Glycocalyx Thickness and Perfused Microvascular Density During Acute Microcirculatory Alterations in Cardiac Surgery. *Microcirculation.* 2016;23(1):69–74.
19. Akin S, Dos Reis Miranda D, Caliskan K, Soliman OI, Guven G, Struijs A, van Thiel RJ, Jewbali LS, Lima A, Gommers D, Zijlstra F, Ince C. Functional evaluation of sublingual microcirculation indicates successful weaning from VA–ECMO in cardiogenic shock. *Crit Care.* 2017;21(1):265.

20. den Os MM, van den Brom CE, van Leeuwen ALI, Dekker NAM. Microcirculatory perfusion disturbances following cardiopulmonary bypass: a systematic review. *Crit Care*. 2020;24(1):218.
21. Banerjee D, Feng J, Sellke FW. Strategies to attenuate maladaptive inflammatory response associated with cardiopulmonary bypass. *Front Surg*. 2024;11:1224068.
22. Esper SA, Subramaniam K, Tanaka KA. Pathophysiology of Cardiopulmonary Bypass: Current Strategies for the Prevention and Treatment of Anemia, Coagulopathy, and Organ Dysfunction. *Semin Cardiothorac Vasc Anesth*. 2014;18(2):161–76.
23. Giacinto O, Satriano U, Nenna A, Spadaccio C, Lusini M, Mastroianni C, Nappi F, Chello M. Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. *Recent Pat Inflamm Allergy Drug Discov*. 2019;13(2):158–73.
24. Lesouhaitier M, Belicard F, Tadié JM. Cardiopulmonary bypass and VA–ECMO induced immune dysfunction: common features and differences, a narrative review. *Crit Care*. 2024;28(1):300.
25. Bartoszko J, Karkouti K. Managing the coagulopathy associated with cardiopulmonary bypass. *J Thromb Haemost*. 2021;19(3):617–32.
26. Bartoszko J, Li H, Fitzgerald J, Ho LTS, Serrick C, Kahr WHA, Gross PL, Karkouti K. The association of thrombin generation with bleeding outcomes in cardiac surgery: a prospective observational study. *Can J Anaesth*. 2022;69(3):311–22.
27. Solomon C, Rahe–Meyer N, Sørensen B. Fibrin formation is more impaired than thrombin generation and platelets immediately following cardiac surgery. *Thromb Res*. 2011;128(3):277–82.
28. Fitzgerald J, McMonnies R, Sharkey A, Gross PL, Karkouti K. Thrombin generation and bleeding in cardiac surgery: a clinical narrative review. *Can J Anaesth*. 2020;67(6):746–53.
29. Tanaka KA, Butt AL, Abuelkasem E, Mazzeffi MA. Protamine and Coagulopathy After Cardiopulmonary Bypass: May the Perfect Electrostatic Force Be With You. *J Cardiothorac Vasc Anesth* 2023;37(8):1509–10.

30. Rijpkema M, Vlot EA, Stehouwer MC, Bruins P. Does heparin rebound lead to postoperative blood loss in patients undergoing cardiac surgery with cardiopulmonary bypass? *Perfusion*. 2024;39(8):1491–515.
31. Frantzeskaki F, Konstantonis D, Rizos M, Kitsinelis V, Skyllas G, Renieris I, Doumani M, Kolias V, Kefalidi E, Angouras D, Tsantes A, Tsangaris I. Extracorporeal Membrane Oxygenation (ECMO)–Associated Coagulopathy in Adults. *Diagnostics (Basel)*. 2023;13(23):3496.
32. Abraham AS, Wakefield BJ. Pro: Hemostasis Management of Patients on Extracorporeal Membrane Oxygenation Is Different Than Cardiopulmonary Bypass. *J Cardiothorac Vasc Anesth*. 2024.
33. Ankawi G, Xie Y, Yang B, Xie Y, Xie P, Ronco C. What Have We Learned about the Use of Cytosorb Adsorption Columns? *Blood Purif*. 2019;48(3):196–202.
34. Poli EC, Rimmelé T, Schneider AG. Hemoabsorption with CytoSorb(®). *Intensive Care Med*. 2019;45(2):236–9.
35. Matejic-Spasic M, Lindstedt S, Lebreton G, Dzemali O, Suwalski P, Folliguet T, Geidel S, Klautz RJM, Baufreton C, Livi U, Gunaydin S, Deliargyris EN, Wendt D, Thielmann M. The role of hemoabsorption in cardiac surgery – a systematic review. *BMC Cardiovasc Disord*. 2024;24(1):258.
36. Haidari Z, Demircioglu E, Boss K, Tyczynski B, Thielmann M, Schmack B, Kribben A, Weymann A, El Gabry M, Ruhparwar A, Wendt D. Intraoperative hemoabsorption in high-risk patients with infective endocarditis. *PLoS One*. 2022;17(7):e0266820.
37. Kellum JA, Song M, Venkataraman R. Hemoabsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor- κ B DNA binding, and improves short-term survival in lethal endotoxemia. *Crit Care Med*. 2004;32(3):801–5.
38. Peng ZY, Carter MJ, Kellum JA. Effects of hemoabsorption on cytokine removal and short-term survival in septic rats. *Crit Care Med*. 2008;36(5):1573–7.
39. Kogelmann K, Jarczak D, Scheller M, Drüner M. Hemoabsorption by CytoSorb in septic patients: a case series. *Crit Care*. 2017;21(1):74.
40. Steindl D, Schroeder T, Krannich A, Nee J. Hemoabsorption in the Management of Septic Shock: A Systematic Review and Meta-Analysis. *J Clin Med*. 2025;14(7):2285.

41. Gleason TG, Argenziano M, Bavaria JE, Kane LC, Coselli JS, Engelman RM, Tanaka KA, Awad A, Sekela ME, Zwischenberger JB. Hemoabsorption to Reduce Plasma-Free Hemoglobin During Cardiac Surgery: Results of REFRESH I Pilot Study. *Semin Thorac Cardiovasc Surg.* 2019;31(4):783–93.
42. Diab M, Lehmann T, Bothe W, Akhyari P, Platzer S, Wendt D, Deppe AC, Strauch J, Hagel S, Günther A, Faerber G, Sponholz C, Franz M, Scherag A, Velichkov I, Silaschi M, Fassl J, Hofmann B, Lehmann S, Schramm R, Fritz G, Szabo G, Wahlers T, Matschke K, Lichtenberg A, Pletz MW, Gummert JF, Beyersdorf F, Hagl C, Borger MA, Bauer M, Brunkhorst FM, Doenst T; REMOVE Trial Investigators*. Cytokine Hemoabsorption During Cardiac Surgery Versus Standard Surgical Care for Infective Endocarditis (REMOVE): Results From a Multicenter Randomized Controlled Trial. *Circulation.* 2022;145(13):959–68.
43. Hassan K, Thielmann M, Easo J, Kamler M, Wendt D, Haidari Z, Deliargyris E, El Gabry M, Ruhparwar A, Geidel S, Schmoeckel M. Removal of Apixaban during Emergency Cardiac Surgery Using Hemoabsorption with a Porous Polymer Bead Sorbent. *J Clin Med.* 2022;11(19):5889.
44. Kalisnik JM, Leiler S, Mamdooh H, Zibert J, Bertsch T, Vogt FA, Bagaev E, Fittkau M, Fischlein T. Single-Centre Retrospective Evaluation of Intraoperative Hemoabsorption in Left-Sided Acute Infective Endocarditis. *J Clin Med.* 2022;11(14):3954.
45. Schmoeckel M, Thielmann M, Vitanova K, Eberle T, Marcin N, Hassan K, Liebold A, Lindstedt S, Mächler G, Matejic-Sasic M, Wendt D, Deliargyris EN, Storey RF. Direct-acting oral anticoagulant removal by intraoperative hemoabsorption in CABG and/or single valve surgery: interim analysis of the International Safe and Timely Antithrombotic Removal (STAR) registry. *J Cardiothorac Surg.* 2025;20(1):74.
46. Naruka V, Salmasi MY, Arjomandi Rad A, Marcin N, Lazopoulos G, Moscarelli M, Casula R, Athanasiou T. Use of Cytokine Filters During Cardiopulmonary Bypass: Systematic Review and Meta-Analysis. *Heart Lung Circ.* 2022;31(11):1493–503.
47. Morris AA, Khazanie P, Drazner MH, Albert NM, Breathett K, Cooper LB, Eisen HJ, O'Gara P, Russell SD; American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Arteriosclerosis,

Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; and Council on Hypertension. Guidance for Timely and Appropriate Referral of Patients With Advanced Heart Failure: A Scientific Statement From the American Heart Association. *Circulation*. 2021;144(15):e238–e50.

48. Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, Gustafsson F, Tsui S, Barge-Caballero E, De Jonge N, Frigerio M, Hamdan R, Hasin T, Hülsmann M, Nalbantgil S, Potena L, Bauersachs J, Gkouziouta A, Ruhparwar A, Ristic AD, Straburzynska-Migaj E, McDonagh T, Seferovic P, Ruschitzka F. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. *Eur J Heart Fail*. 2018;20(11):1505–35.
49. Lee SJ, Kim KH, Hong SK, Hankins S. Evaluation of a Heart Transplant Candidate. *Curr Cardiol Rep*. 2017;19(12).
50. Boulet J, Sridhar VS, Bouabdallaoui N, Tardif JC, White M. Inflammation in heart failure: pathophysiology and therapeutic strategies. *Inflamm Res*. 2024;73(5):709–23.
51. Peled Y, Ducharme A, Kittleson M, Bansal N, Stehlik J, Amdani S, Saeed D, Cheng R, Clarke B, Dobbels F, Farr M, Lindenfeld J, Nikolaidis L, Patel J, Acharya D, Albert D, Aslam S, Bertolotti A, Chan M, Chih S, Colvin M, Crespo-Leiro M, D'Alessandro D, Daly K, Diez-Lopez C, Dipchand A, Ensminger S, Everitt M, Fardman A, Farrero M, Feldman D, Gjelaj C, Goodwin M, Harrison K, Hsich E, Joyce E, Kato T, Kim D, Luong ML, Lyster H, Masetti M, Matos LN, Nilsson J, Noly PE, Rao V, Rolid K, Schlendorf K, Schweiger M, Spinner J, Townsend M, Tremblay-Gravel M, Urschel S, Vachiery JL, Velleca A, Waldman G, Walsh J. International Society for Heart and Lung Transplantation Guidelines for the Evaluation and Care of Cardiac Transplant Candidates–2024. *J Heart Lung Transplant*. 2024;43(10):1529–628.e54.
52. Khush KK, Cherikh WS, Chambers DC, Goldfarb S, Hayes D, Jr., Kucheryavaya AY, Levvey BJ, Meiser B, Rossano JW, Stehlik J; International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-fifth Adult Heart Transplantation Report–2018; Focus Theme: Multiorgan Transplantation. *J Heart Lung Transplant*. 2018;37(10):1155–68.

53. van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, Kilic A, Menon V, Ohman EM, Sweitzer NK, Thiele H, Washam JB, Cohen MG; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Mission: Lifeline. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. *Circulation*. 2017;136(16):e232–e68.
54. Morici N, Sacco A, Paino R, Oreglia JA, Bottioli M, Senni M, Nichelatti M, Canova P, Russo C, Garascia A, Kulgmann S, Frigerio M, Oliva F. Cardiogenic shock: How to overcome a clinical dilemma. Unmet needs in Emergency medicine. *Int J Cardiol*. 2015;186:19–21.
55. Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA, Henry TD, Hollenberg SM, Kapur NK, O'Neill W, Ornato JP, Stelling K, Thiele H, van Diepen S, Naidu SS. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. *Catheter Cardiovasc Interv*. 2019;94(1):29–37.
56. Thayer KL, Zweck E, Ayouty M, Garan AR, Hernandez-Montfort J, Mahr C, Morine KJ, Newman S, Jorde L, Haywood JL, Harwani NM, Esposito ML, Davila CD, Wencker D, Sinha SS, Vorovich E, Abraham J, O'Neill W, Udelson J, Burkhoff D, Kapur NK. Invasive Hemodynamic Assessment and Classification of In-Hospital Mortality Risk Among Patients With Cardiogenic Shock. *Circ Heart Fail*. 2020;13(9):e007099.
57. Naidu SS, Baran DA, Jentzer JC, Hollenberg SM, van Diepen S, Basir MB, Grines CL, Diercks DB, Hall S, Kapur NK, Kent W, Rao SV, Samsky MD, Thiele H, Truesdell AG, Henry TD. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical

Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. *J Am Coll Cardiol.* 2022;79(9):933–46.

58. Lüsebrink E, Binzenhöfer L, Adamo M, Lorusso R, Mebazaa A, Morrow DA, Price S, Jentzer JC, Brodie D, Combes A, Thiele H. Cardiogenic shock. *Lancet.* 2024;404(10466):2006-20.
59. Corujo Rodriguez A, Richter E, Ibekwe SO, Shah T, Faloye AO. Postcardiotomy Shock Syndrome: A Narrative Review of Perioperative Diagnosis and Management. *Journal of cardiothoracic and vascular anesthesia* 2023;37(12):2621-33.
60. den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, Simoons ML. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. *European heart journal.* 2010;31(24):3032–9.
61. Reventovich A, Barghash MH, Hochman JS. Management of refractory cardiogenic shock. *Nat Rev Cardiol.* 2016;13(8):481–92.
62. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. *Am Heart J.* 2004;147(1):91–9.
63. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. *Circulation.* 2008;117(5):686–97.
64. Oren D, Zilinyi R, Lotan D, Uriel M, Uriel N, Sayer G. The role of temporary mechanical circulatory support as a bridge to advanced heart failure therapies or recovery. *Curr Opin Cardiol.* 2022;37(5):394–402.
65. Omar S, Zedan A, Nugent K. Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment. *Am J Med Sci.* 2015;349(1):80–8.
66. van Vessem ME, Palmen M, Couperus LE, Mertens B, Berendsen RR, Tops LF, Verwey HF, de Jonge E, Klautz RJ, Schalij MJ, Beerens SL. Incidence and predictors of vasoplegia after heart failure surgery. *Eur J Cardiothorac Surg.* 2017;51(3):532–8.
67. Liu H, Yu L, Yang L, Green MS. Vasoplegic syndrome: An update on perioperative considerations. *J Clin Anesth.* 2017;40:63–71.
68. Nemeth E, Kovacs E, Racz K, Soltesz A, Szigeti S, Kiss N, Csikos G, Koritsanszky KB, Berzsenyi V, Trembeckij G, Fabry S, Prohaszka Z, Merkely B, Gal J. Impact of

intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation—an observational study. *Clin Transplant.* 2018;32(4):e13211.

- 69. Nemeth E, Soltesz A, Kovacs E, Szakal-Toth Z, Tamaska E, Katona H, Racz K, Csikos G, Berzsenyi V, Fabry S, Ulakcsai Z, Tamas C, Nagy B, Varga M, Merkely B. Use of intraoperative haemoadsorption in patients undergoing heart transplantation: a proof-of-concept randomized trial. *ESC Heart Fail.* 2024;11(2):772–82.
- 70. Chommeloux J, Montero S, Franchiseau G, Bréchot N, Hékimian G, Lebreton G, Le Guennec L, Bourcier S, Nieszkowska A, Leprince P, Luyt CE, Combes A, Schmidt M. Microcirculation Evolution in Patients on Venoarterial Extracorporeal Membrane Oxygenation for Refractory Cardiogenic Shock. *Crit Care Med.* 2020;48(1):e9–e17.
- 71. Kara A, Akin S, Dos Reis Miranda D, Struijs A, Caliskan K, van Thiel RJ, Dubois EA, de Wilde W, Zijlstra F, Gommers D, Ince C. Microcirculatory assessment of patients under VA–ECMO. *Crit Care.* 2016;20(1):344.
- 72. Soltesz A, Molnar ZA, Szakal-Toth Z, Tamaska E, Katona H, Fabry S, Csikos G, Berzsenyi V, Tamas C, Edes IF, Gal J, Merkely B, Nemeth E. Influence of Venoarterial Extracorporeal Membrane Oxygenation Integrated Hemoadsorption on the Early Reversal of Multiorgan and Microcirculatory Dysfunction and Outcome of Refractory Cardiogenic Shock. *J Clin Med.* 2022;11(21):6517.
- 73. Shore S, Golbus JR, Aaronson KD, Nallamothu BK. Changes in the United States Adult Heart Allocation Policy: Challenges and Opportunities. *Circ Cardiovasc Qual Outcomes.* 2020;13(10):e005795.
- 74. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, Fedson S, Fisher P, Gonzales-Stawinski G, Martinelli L, McGiffin D, Smith J, Taylor D, Meiser B, Webber S, Baran D, Carboni M, Dengler T, Feldman D, Frigerio M, Kfoury A, Kim D, Kobashigawa J, Shullo M, Stehlik J, Teuteberg J, Uber P, Zuckermann A, Hunt S, Burch M, Bhat G, Canter C, Chinnock R, Crespo-Leiro M, Delgado R, Dobbels F, Grady K, Kao W, Lamour J, Parry G, Patel J, Pini D, Towbin J, Wolfel G, Delgado D, Eisen H, Goldberg L, Hosenpud J, Johnson M, Keogh A, Lewis C, O'Connell J, Rogers J, Ross H, Russell S, Vanhaecke J; International Society of Heart and Lung Transplantation Guidelines. The International Society of Heart and Lung

Transplantation Guidelines for the care of heart transplant recipients. *J Heart Lung Transplant*. 2010;29(8):914–56.

75. Yamazaki Y, Oba K, Matsui Y, Morimoto Y. Vasoactive–inotropic score as a predictor of morbidity and mortality in adults after cardiac surgery with cardiopulmonary bypass. *J Anesth*. 2018;32(2):167–73.
76. Koponen T, Karttunen J, Musialowicz T, Pietiläinen L, Uusaro A, Lahtinen P. Vasoactive–inotropic score and the prediction of morbidity and mortality after cardiac surgery. *Br J Anaesth*. 2019;122(4):428–36.
77. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. *Nephron Clin Pract*. 2012;120(4):c179–84.
78. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. *Crit Care Med*. 1985;13(10):818–29.
79. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis–related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis–Related Problems of the European Society of Intensive Care Medicine. *Intensive Care Med*. 1996;22(7):707–10.
80. Schmidt M, Burrell A, Roberts L, Bailey M, Sheldrake J, Rycus PT, Hodgson C, Scheinkestel C, Cooper DJ, Thiagarajan RR, Brodie D, Pellegrino V, Pilcher D. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno–arterial–ECMO (SAVE)–score. *Eur Heart J*. 2015;36(33):2246–56.
81. Nemeth E, Szigeti S, Varga T, Daroczi L, Barati Z, Merkely B, Gal J. Continuous cytokine haemoadsorption incorporated into a venoarterial ECMO circuit for the management of postcardiotomy cardiogenic and septic shock – a case report. *Perfusion*. 2018;33(7):593–6.
82. Lunt M. Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching. *Am J Epidemiol*. 2014;179(2):226–35.
83. Austin PC. A Tutorial and Case Study in Propensity Score Analysis: An Application to Estimating the Effect of In–Hospital Smoking Cessation Counseling on Mortality. *Multivariate Behav Res*. 2011;46(1):119–51.

84. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. *Stat Med*. 2014;33(7):1242–58.
85. Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous–arterial difference. *J Clin Monit Comput*. 2012;26(5):367–74.
86. Byrne JG, Leacche M, Paul S, Mihaljevic T, Rawn JD, Shernan SK, Mudge GH, Stevenson LW. Risk factors and outcomes for 'vasoplegia syndrome' following cardiac transplantation. *Eur J Cardiothorac Surg*. 2004;25(3):327–32.
87. Patarroyo M, Simbaqueba C, Shrestha K, Starling RC, Smedira N, Tang WH, Taylor DO. Pre-operative risk factors and clinical outcomes associated with vasoplegia in recipients of orthotopic heart transplantation in the contemporary era. *J Heart Lung Transplant*. 2012;31(3):282–7.
88. Chan JL, Kobashigawa JA, Aintablian TL, Dimbil SJ, Perry PA, Patel JK, Kittleson MM, Czer LS, Zarrini P, Velleca A, Rush J, Arabia FA, Trento A, Esmailian F. Characterizing Predictors and Severity of Vasoplegia Syndrome After Heart Transplantation. *Ann Thorac Surg*. 2018;105(3):770–7.
89. Batchelor RJ, Wong N, Liu DH, Chua C, William J, Tee SL, Sata Y, Bergin P, Hare J, Leet A, Taylor AJ, Patel HC, Burrell A, McGiffin D, Kaye DM. Vasoplegia Following Orthotopic Heart Transplantation: Prevalence, Predictors and Clinical Outcomes. *J Card Fail*. 2022;28(4):617–26.
90. Poli EC, Alberio L, Bauer–Doerries A, Marcucci C, Roumy A, Kirsch M, De Stefano E, Liaudet L, Schneider AG. Cytokine clearance with CytoSorb® during cardiac surgery: a pilot randomized controlled trial. *Crit Care*. 2019;23(1):108.
91. Taleska Stupica G, Sostaric M, Bozhinovska M, Rupert L, Bosnic Z, Jerin A, Ihan A, Klokočovnik T, Podbregar M. Extracorporeal Hemoadsorption versus Glucocorticoids during Cardiopulmonary Bypass: A Prospective, Randomized, Controlled Trial. *Cardiovasc Ther*. 2020;2020:7834173.
92. Doukas P, Hellfritsch G, Wendt D, Magliani M, Barbat ME, Jalaie H, Jacobs MJ, Gombert A. Intraoperative Hemoadsorption (Cytosorb™) during Open Thoracoabdominal Aortic Repair: A Pilot Randomized Controlled Trial. *J Clin Med*. 2023;12(2):546.

93. Holmén A, Corderfeldt A, Lannemyr L, Dellgren G, Hansson EC. Whole Blood Adsorber During CPB and Need for Vasoactive Treatment After Valve Surgery in Acute Endocarditis: A Randomized Controlled Study. *J Cardiothorac Vasc Anesth*. 2022;36(8 Pt B):3015–20.
94. Scharf C, Liebchen U, Paal M, Becker-Pennrich A, Irlbeck M, Zoller M, Schroeder I. Successful elimination of bilirubin in critically ill patients with acute liver dysfunction using a cytokine adsorber and albumin dialysis: a pilot study. *Sci Rep*. 2021;11(1):10190.
95. Ocskay K, Tomescu D, Faltlhauser A, Jacob D, Friesecke S, Malbrain M, Kogelmann K, Bogdanski R, Bach F, Fritz H, Hartjes A, Kortgen A, Soukup J, Utzolino S, van Tellingen M, Träger K, Schumacher U, Brunkhorst FM, Molnar Z. Hemoabsorption in 'Liver Indication'—Analysis of 109 Patients' Data from the CytoSorb International Registry. *J Clin Med*. 2021;10(21):5182.
96. Popescu M, David C, Marcu A, Olita MR, Mihaila M, Tomescu D. Artificial Liver Support with CytoSorb and MARS in Liver Failure: A Retrospective Propensity Matched Analysis. *J Clin Med*. 2023;12(6):2258.
97. Riva I, Marino A, Valetti TM, Marchesi G, Fabretti F. Extracorporeal liver support techniques: a comparison. *J Artif Organs*. 2024;27(3):261–8.
98. Peled Y, Lavee J, Ram E, Kassif Y, Peled A, Freimark D, Ofek E, Kogan A. Recurrent acute cellular rejection graded ISHLT 1R early after heart transplantation negatively affects long-term outcomes: The prognostic significance of 1990 ISHLT grades 1B and 2. *Transpl Immunol*. 2019;55:101204.
99. Gueta I, Markovits N, Yarden-Bilavsky H, Raichlin E, Freimark D, Lavee J, Loebstein R, Peled Y. High tacrolimus trough level variability is associated with rejections after heart transplant. *Am J Transplant*. 2018;18(10):2571–8.
100. Lindstedt S, Niroomand A, Mittendorfer M, Hirdman G, Hyllén S, Pierre L, Olm F. Nothing but NETs: Cytokine adsorption correlates with lower circulating nucleosomes and is associated with decreased primary graft dysfunction. *J Heart Lung Transplant*. 2023;42(10):1358–62.
101. Leber B, Liebchen U, Rohrhofer L, Weber J, Klaus T, Scheier J, Sucher R, Stiegler P. Pharmacokinetics of immunosuppressive agents during hemoperfusion in a sheep model. *Front Med (Lausanne)*. 2023;10:1258661.

102. Sakr Y, Lobo SM, Moreno RP, Gerlach H, Ranieri VM, Michalopoulos A, Vincent JL; SOAP Investigators. Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. *Crit Care*. 2012;16(6):R222.
103. Pineton de Chambrun M, Bréchot N, Lebreton G, Schmidt M, Hekimian G, Demondion P, Demondion P, Trouillet JL, Leprince P, Chastre J, Combes A, Luyt CE. Venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock post–cardiac arrest. *Intensive Care Med*. 2016;42(12):1999–2007.
104. Laimoud M, Alanazi M. The Validity of SOFA Score to Predict Mortality in Adult Patients with Cardiogenic Shock on Venoarterial Extracorporeal Membrane Oxygenation. *Crit Care Res Pract*. 2020;2020:3129864.
105. Xie H, Yang F, Hou D, Wang X, Wang L, Wang H, Hou X. Risk factors of in-hospital mortality in adult postcardiotomy cardiogenic shock patients successfully weaned from venoarterial extracorporeal membrane oxygenation. *Perfusion*. 2020;35(5):417–26.
106. Bréchot N, Hajage D, Kimmoun A, Demiselle J, Agerstrand C, Montero S, Schmidt M, Luyt CE, Lebreton G, Hékimian G, Flecher E, Zogheib E, Levy B, Slutsky AS, Brodie D, Asfar P, Combes A; International ECMO Network. Venoarterial extracorporeal membrane oxygenation to rescue sepsis–induced cardiogenic shock: a retrospective, multicentre, international cohort study. *Lancet*. 2020;396(10250):545–52.
107. Napp LC, Lebreton G, De Somer F, Supady A, Pappalardo F. Opportunities, controversies, and challenges of extracorporeal hemoadsorption with CytoSorb during ECMO. *Artif Organs*. 2021;45(10):1240–9.
108. Supady A, Zahn T, Rieder M, Benk C, Lother A, Bode C, Wengenmayer T, Staudacher D, Kellum JA, Duerschmied D. Effect of Cytokine Adsorption on Survival and Circulatory Stabilization in Patients Receiving Extracorporeal Cardiopulmonary Resuscitation. *ASAIO J*. 2022;68(1):64–72.
109. Supady A, Zahn T, Kuhl M, Maier S, Benk C, Kaier K, Böttiger BW, Bode C, Lother A, Staudacher DL, Wengenmayer T, Duerschmied D. Cytokine adsorption in patients with post–cardiac arrest syndrome after extracorporeal cardiopulmonary resuscitation (CYTER) – A single–centre, open–label, randomised, controlled trial. *Resuscitation*. 2022;173:169–78.

110. Supady A, Weber E, Rieder M, Lothe A, Niklaus T, Zahn T, Frech F, Müller S, Kuhl M, Benk C, Maier S, Trummer G, Flügler A, Krüger K, Sekandarzad A, Stachon P, Zotzmann V, Bode C, Biever PM, Staudacher D, Wengenmayer T, Graf E, Duerschmied D. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): a single centre, open-label, randomised, controlled trial. *Lancet Respir Med*. 2021;9(7):755–62.
111. Napp LC, Ziegeler S, Kindgen-Milles D. Rationale of Hemoabsorption during Extracorporeal Membrane Oxygenation Support. *Blood Purif*. 2019;48(3):203–14.
112. McDonald CI, Brodie D, Schmidt M, Hay K, Shekar K. Elevated Venous to Arterial Carbon Dioxide Gap and Anion Gap Are Associated with Poor Outcome in Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation Support. *ASAIO J*. 2021;67(3):263–9.
113. Bruenger F, Kizner L, Weile J, Morshuis M, Gummert JF. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: a case report. *Int J Artif Organs*. 2015;38(2):113–6.
114. Träger K, Skrabal C, Fischer G, Schroeder J, Marenski L, Liebold A, Reinelt H, Datzmann T. Hemoabsorption treatment with CytoSorb(®) in patients with extracorporeal life support therapy: A case series. *Int J Artif Organs*. 2020;43(6):422–9.
115. Burrell AJC, Bennett V, Serra AL, Pellegrino VA, Romero L, Fan E, Brodie D, Cooper DJ, Kaye DM, Fraser JF, Hodgson CL; International ECMO Network (ECMONet). Venoarterial extracorporeal membrane oxygenation: A systematic review of selection criteria, outcome measures and definitions of complications. *J Crit Care*. 2019;53:32–7.
116. Wilson-Smith AR, Bogdanova Y, Roydhouse S, Phan K, Tian DH, Yan TD, Loforte A. Outcomes of venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock: systematic review and meta-analysis. *Ann Cardiothorac Surg*. 2019;8(1):1–8.
117. Kowalewski M, Zieliński K, Brodie D, MacLaren G, Whitman G, Raffa GM, Boeken U, Shekar K, Chen YS, Bermudez C, D'Alessandro D, Hou X, Haft J, Belohlavek J, Dziembowska I, Suwalski P, Alexander P, Barbaro RP, Gaudino M, Di Mauro M, Maessen J, Lorusso R. Venoarterial Extracorporeal Membrane Oxygenation for

Postcardiotomy Shock—Analysis of the Extracorporeal Life Support Organization Registry. *Crit Care Med.* 2021;49(7):1107–17.

- 118. Vakil D, Soto C, D'Costa Z, Volk L, Kandasamy S, Iyer D, Ikegami H, Russo MJ, Lee LY, Lemaire A. Short-term and intermediate outcomes of cardiogenic shock and cardiac arrest patients supported by venoarterial extracorporeal membrane oxygenation. *J Cardiothorac Surg.* 2021;16(1):290.
- 119. Omar HR, Handshoe JW, Tribble T, Guglin M. Survival on Venoarterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock: Which Lactate Is Most Useful? *ASAIO J.* 2022;68(1):41–5.

9 Bibliography of the candidate's publications

9.1 Publications included in the thesis

Nemeth E, **Soltesz A***, Kovacs E, Szakal-Toth Z, Tamaska E, Katona H, Racz K, Csikos G, Berzsenyi V, Fabry S, Ulakcsai Z, Tamas C, Nagy B, Varga M, Merkely B. Use of intraoperative haemoadsorption in patients undergoing heart transplantation: a proof-of-concept randomized trial. *ESC Heart Fail.* 2024;11(2):772–82.

Soltesz A, Molnar ZA, Szakal-Toth Z, Tamaska E, Katona H, Fabry S, Csikos G, Berzsenyi V, Tamas C, Edes IF, Gal J, Merkely B, Nemeth E. Influence of Venoarterial Extracorporeal Membrane Oxygenation Integrated Hemoabsorption on the Early Reversal of Multiorgan and Microcirculatory Dysfunction and Outcome of Refractory Cardiogenic Shock. *J Clin Med.* 2022;11(21):6517.

9.2 Other publications by the author

Katona H, **Soltesz A**, Kovacs E, Szakal-Toth Z, Tamaska E, Racz K, Radovits T, Fintha A, Kovács K, Hurler L, Prohászka Z, Merkely B, Nemeth E. Decreased vasoregulatory dysfunction associated with intra-operative hemoadsorption treatment is related to mitigated post-transplant procalcitonin rather than cytokine or complement response. *Front Med (Lausanne).* 2025;12:1541519.

Lakatos BK, Ladányi Z, Fábián A, Ehrenberger R, Turschl T, Bagyura Z, Evrard B, Vandroux D, Goudelin M, Lindner S, Britsch S, Dürschmied D, Zima E, Csikós GR, Túróczi Z, **Soltész Á**, Németh E, Kovács A, Édes FI, Merkely B. Non-invasive assessment of left ventricular contractility by myocardial work index in veno-arterial membrane oxygenation patients: rationale and design of the MIX-ECMO multicentre observational study. *Front Cardiovasc Med.* 2024;11:1399874.

Kovács E, Németh E, Prigya J, Szwath P, Édes I, Hartyánszky I, **Soltész Á**, Csikós GR, Fazekas L, Gál J, Becker D, Merkely B, Zima E. [The role of extracorporeal life support in cardiopulmonary resuscitation]. *Orv Hetil.* 2023;164(13):510–4.

Kiss B, Nagy B, Pál-Jakab Á, Lakatos B, **Soltész Á**, Osztheimer I, Heltai K, Édes IF, Németh E, Merkely B, Zima E. Early Application of ECMO after Sudden Cardiac Arrest to Prevent Further Deterioration: A Review and Case Report. *J Clin Med.* 2023;12(13):4249.

Katona H, Dobronte L, **Soltesz A**, Tamaska E, Fabry S, Csikos G, Szakal-Toth Z, Fule BK, Lang Z, Merkely B, Gal J, Nemeth E. Perioperative Gelatin Use Is Associated With Increased Complication Rates and Does Not Prevent Postoperative Fluid Overload in Patients Undergoing Elective Cardiac Surgery. *J Cardiothorac Vasc Anesth.* 2023;37(3):399–406.

Şulea CM, Csobay-Novák C, Oláh Z, Banga P, Szeberin Z, **Soltész Á**, Jokkel Z, Benke K, Csonka M, Merkel ED, Merkely B, Szabolcs Z, Pólos M. Staged Hybrid Repair of a Complex Type B Aortic Dissection. *J Cardiovasc Dev Dis.* 2022;9(9):297.

Nemeth E, Varga T, **Soltesz A**, Racz K, Csikos G, Berzsenyi V, Tamaska E, Lang Z, Molnar G, Benke K, Eory A, Merkely B, Gal J. Perioperative Factor Concentrate Use is Associated With More Beneficial Outcomes and Reduced Complication Rates Compared With a Pure Blood Product-Based Strategy in Patients Undergoing Elective Cardiac Surgery: A Propensity Score-Matched Cohort Study. *J Cardiothorac Vasc Anesth.* 2022;36(1):138–46.

Szakal-Toth Z, Szlavik J, **Soltesz A**, Berzsenyi V, Csikos G, Varga T, Racz K, Kiraly A, Sax B, Hartyanszky I, Fintha A, Prohaszka Z, Monostory K, Merkely B, Nemeth E. Acute heart transplantation from mechanical circulatory support in a human immunodeficiency virus-positive patient with fulminant myocarditis. *ESC Heart Fail.* 2021;8(2):1643–8.

Tokodi M, Németh E, Lakatos BK, Kispál E, Tősér Z, Staub L, Rácz K, **Soltész Á**, Szigeti S, Varga T, Gál J, Merkely B, Kovács A. Right ventricular mechanical pattern in patients undergoing mitral valve surgery: a predictor of post-operative dysfunction? *ESC Heart Fail.* 2020;7(3):1246–56.

Nemeth E, Kovacs E, Racz K, **Soltesz A**, Szigeti S, Kiss N, Csikos G, Koritsanszky KB, Berzsenyi V, Trembickij G, Fabry S, Prohaszka Z, Merkely B, Gal J. Impact of intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation—an observational study. *Clin Transplant*. 2018;32(4):e13211.

10 Acknowledgements

First and foremost, I would like to express my sincere gratitude to Professor Béla Merkely, Rector of Semmelweis University, Director and Chair of the Heart and Vascular Centre at Semmelweis University and Head of the Cardiovascular Medicine and Research Division at the Doctoral College of Semmelweis University. I am immensely grateful for the continuous support and invaluable guidance he provided throughout my research, Ph.D. programme and clinical career.

I would like to express my gratitude to Dr. Endre Németh, my supervisor and the head of the Anaesthesiology and Intensive Therapy Department, Heart and Vascular Centre at Semmelweis University, for his tireless support, enthusiasm and motivation in the context of my research work, Ph.D. studies and the composition of this thesis.

In addition, I acknowledge the help of my fellow researchers, co-authors and colleagues, including Dr. Zsófia Szakál-Tóth, Dr. Eszter Tamáska, Dr. Hajna Katona, Dr. Szabolcs Fábry, Dr. Enikő Kovács, Dr. Gergely Csikós, Dr. Kristóf Rácz, Dr. Viktor Berzsenyi, Dr. Zsuzsanna Ulakcsai and Csilla Tamás, for their invaluable contributions to my research and their unwavering support.

I would like to express my sincere gratitude to the entire team of perfusionists, anaesthetic and intensive care unit nurses working at the Heart and Vascular Centre at Semmelweis University. The completion of this thesis would not have been possible without their hard work and endless empathy.

Last, but not least, I thank my wife, Szilvia for her devoted support throughout my career.