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1. INTRODUCTION

1.1.  Perturbation signatures

Understanding the complex functions and mechanisms of cells is essential for
deciphering how they maintain homeostasis, adapt to their environment, respond to external
stimuli, and develop diseases. Systems biology addresses these challenges by integrating
experimental data with computational modeling to map and interpret the complex interaction
networks within a cell. System-level measurement techniques, such as RNA sequencing
(RNA-Seq) and proteomics, generate vast datasets, but these have specific limitations. For
example, transcriptomics, which measures messenger RNA (mRNA) abundance, may not
align with the activation of functional proteins due to various regulatory mechanisms.
However, measuring the activity of a protein is low-throughput, capturing only one
functional state under a specified condition, and does not provide system-level insights.

To overcome the limitations of these measurement techniques, computational
methods have been developed to provide more biologically relevant and interpretable insights
into high-throughput data, such as pathway activity prediction tools or drug target
identification using similarity-based or machine learning-based methods. These methods
utilize large-scale transcriptomic data and integrate prior biological knowledge to infer
functional outcomes from observed changes in gene expression. Most powerful methods rely
on perturbation transcriptomics profiles, where cellular responses to genetic or chemical
perturbations are measured. By the perturbations, we can capture the downstream effects of
the perturbed protein or gene in the form of gene expression signatures. Fortunately, there
are large community efforts to provide publicly available datasets for the research community
to help the deeper understanding of cellular processes and responses. On public databases,
like Gene Expression Omnibus (GEO) (1) and ArrayExpress (2), baseline and treatment gene
expression data are also deposited, however, these experiments are conducted in laboratories
worldwide and follow various protocols, so it is challenging to harmonize them into a
comprehensive data source. Furthermore, baseline experiments, where the gene expression

is measured in the untreated samples, do not provide insight into how specific genes, proteins,



or pathways influence downstream effects. To understand causal relationships, it is essential
to modulate gene expression to uncover the downstream consequences.

Advances in transcriptomics and high-throughput screening enable the cost-effective
generation of perturbation signatures. The Connectivity Map (CMap) presented a low-cost,
high-throughput, reduced representation expression profiling method, the L1000 method, as
part of the National Institute of Health (NIH) Library of Integrated Network-Based Cellular
Signatures (LINCS) Consortium (3). This library contains perturbation-induced molecular
and cellular signatures on a large scale. Data generation followed common data standards,
allowing for easy data harmonization. Chemical and genomic perturbagens are also applied
to various cells and time points to enable the investigation of wide-range perturbation effects,
like diverse inhibition and activation levels, knock-down, knock-out, or overexpression.
LINCS L1000 technology enables the measurement of 978 landmark genes that can explain
~90% of the variance of total transcriptomics difference, and with the usage of this, the
remainder of the transcriptome is inferred. The library contains over a million profiles. Since
then, several applications of the LINCS have been demonstrated to identify repurposing
candidates from drugs that can reverse the expression profiles. The similarity in perturbation
signatures between drug effects and diseased signatures can suggest repurposing
opportunities without requiring prior knowledge of direct interactions. Several significant
findings include the identification of a cyclin-dependent kinase inhibitor that can attenuate
the endotoxemic process in sepsis (4), an inhibitor targeting diabetic kidney disease (5), and
compounds capable of reversing a mutant p53-MY C—dependent signature in head and neck
squamous cell carcinoma (6).

Besides the LINCS library, there are other sources of perturbation signatures, but
these usually cover only a smaller part of the molecular functions, like cytokine
transcriptional responses of the cell lines or in vivo samples. A recently published method
and resource, known as CytoSig (7), collects cytokine stimulation signatures, where cell lines
are perturbed with cytokines, from various public databases such as GEO. The authors
developed a model to predict the cytokine signaling activities from bulk and single-cell
transcriptomic profiles using this atlas of transcriptional patterns induced by cytokines.

Computational methods applying this approach help to generate novel biological insights.



In recent years, along with in vitro response data, new datasets have emerged that
measure the cellular responses of in vivo samples to various perturbations. The Immune
Dictionary is a large dataset that measures how different immune cell types respond to
cytokines in mouse lymph nodes at the single-cell level. (8). This study enhances our
understanding of the activation states of different immune cell types. In addition, cell-cell
communication (CCC) is essential for coordinating immune responses among different
immune cells. Cytokines are the ligands in this process, binding to specific receptors on target
cells to trigger immune responses. The Immune Dictionary and the CytoSig allow for a
broader understanding of the roles cytokines play in these immune responses.

Additional methods have been developed to improve the accessibility of single-cell
perturbation profiles, such as Perturb-Seq, which combines CRISPR-based genetic
perturbations with single-cell RNA sequencing (9) or MIX-Seq, which enables multiplexed
transcriptional profiling of post-perturbation responses across many samples (10), showing
the potential benefits of these in the field of functional genomics and drug discovery (11).

Although these datasets can serve as a basis for research, they all have their
limitations. LINCS L1000 profiles, however, reduce the cost of measurements, are the largest
bulk perturbation dataset yet, and have shown that the whole transcriptome can be inferred
from them, but still have limited transcriptome coverage as only the nearly 1000 genes are
actually measured, which decreases the reliability of the remaining segment of their
transcriptome. Other bulk or single-cell perturbation profiles either capture one segment of
biology or are not measured across different cell types from various tissues and various
perturbations or modalities. The Immune Dictionary focuses on immune cell types and
cytokine transcriptional responses. CytoSig aggregates bulk transcriptional response datasets
from various public sources with experiments conducted in multiple laboratories, while
Perturb-Seq is a methodology employed across different research centers. Despite the
growing adoption and potential of Perturb-Seq, both approaches share the limitation of

requiring data harmonization to ensure effective integration across diverse sources.



1.2.  Signature similarity in drug repurposing

De novo drug development is a consuming and risky strategy for the pharmacological
industry, meaning over a billion dollars (12,13) and more than 10 years (13,14) are spent on
development and preclinical investigations, clinical trials, including failure costs.
Repurposing drugs for new indications results in significant savings in costs and time during
this process, additionally, available clinical data at the beginning of the development results
in reduced risk for further progress (15). Advancements in computational biology,
measurement techniques, and growing high-throughput experimental data sources enable
researchers to identify novel applications of the existing drugs. Comparing the drug
treatment-induced and disease transcriptomic signatures has proven to be an effective
approach for repurposing drugs for new therapeutic indications (16). The concept of
transcriptome signature reversal is a general approach to determining whether a drug can
reverse a disease-related gene expression signature. If a drug can induce gene expression that
is opposite the disease signature, it has a potential to reverse gene expression changes
associated with the disease, and thus leading to the reversal of the disease phenotype (17).
This approach is shown to be effective in the field of oncology (17), inflammatory (18),
metabolic disorders (18), central nervous system disorders (19), or infectious diseases, like
drug repurposing against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) infection (20-22). Additionally, when infected cells activate adaptive antiviral
mechanisms, like interferon pathways, inhibiting these pathways may lead to different effects
on viral replication, possibly resulting in an increase rather than just a decrease in viral levels
(23). Besides identifying potentially effective drugs for repurposing, gaining insight into the
mechanisms of action is essential. Furthermore, validating the findings would be crucial.

Unfortunately, many studies lack this validation (23).

1.3.  Mechanistic understanding

Besides measuring expression levels of particular genes or proteins, it is crucial to
understand the processes that link expression levels and changes between different conditions
to the associated phenotypes, whether as a cause or consequence. However, there are cases

where differential gene expression, such as upregulation of a gene, correlates with active



protein, for instance, the Cholesterol 25-Hydroxylase (Ch25h) expression change correlates
with the activity of the enzyme upon angiotensin II stimulation in vascular smooth muscle
cells (24), measurement of the mRNA level often does not correlate with protein abundance
(25). The levels of proteins in a steady state are not directly linked to the levels of mRNA
expressed. The time needed for transcription, processing, and transport of mRNA is
significantly shorter than the time required to reach a new steady-state level of protein (26).
Thus, single gene expressions do not provide insight into the processes present in the cell as
a result of cell-cell interactions, stimulation, or drug treatment.

To interpret high-dimensional gene expression profiles and gain more insight into
cellular processes and phenotypes, several computational tools and databases have been
developed. The most widely used database is the Molecular Signatures Database (27), which
contains annotated gene sets for gene set enrichment analysis (GSEA). This enrichment
analysis provides insight into ranked gene expression by identifying gene sets exhibiting
significant skew in their ranks. The annotated gene sets encompass various pathway
annotations, biological processes, cellular components, or molecular functions (28). These
sets use prior biological knowledge derived from published information about biochemical
pathways or co-expression (29). The method and prior knowledge have their limitations, the
method maps transcript expression to signaling proteins while neglecting the effects of post-
translational modifications or the topology of pathways (30,31) and does not model activities
of pathways based on the weighted mode of regulation (32). To address these challenges,
methods were developed that consider these weights of regulations, such as VIPER (33) or
linear models (32,34) and footprint-based methods that besides considering the weights,
focus on functional protein targets or pathway-regulated genes (30,31,35). Footprint-based
methods infer the activity of a protein or pathway by capturing the expression pattern of the
genes it regulates, rather than measuring the abundance of the protein or gene itself. This
approach provides a more biologically meaningful insight into protein function (35).
Furthermore, combining these with perturbation signatures has the advantage of measuring
the initial gene expression response to a specific stimulus in a given cellular context, which

directly links upstream functional proteins to their target genes.



1.4.  Drug repurposing in the COVID-19 pandemic

COVID-19 pandemic outbreak emerged in 2019 caused by highly infectious SARS-
CoV-2 coronavirus. The number of infections has grown rapidly, posing a significant threat
to public health (36) by causing severe acute respiratory syndrome and other diseases.
Therefore, the scientific community united to explore potential therapeutics for the virus and
disease. In addition to vaccines, the promising strategy has been drug repurposing, as
available safety profiles for the therapeutics facilitate the approval process for the new
indication and help quicker access to treatments (37).

Computational approaches, like machine learning and other in silico drug discovery
approaches, were implemented for repurposing drugs. The existing large amount of data
deposited in public repositories helps this investigation. Besides this data, in 2020, at the
beginning of pandemic, host transcriptional response signatures following SARS-CoV-2
infection were also deposited (38,39). Furthermore, ChEMBL released a large-scale drug
screening study to identify potential anti-SARS-CoV-2 agents in cell-based assays (40,41) to
contribute to this effort. These datasets give way to drug repurposing strategies by comparing
the transcriptomic signatures induced by active anti-SARS-CoV-2 agents to the infection-

induced signatures to identify potential drugs (17).

1.5. Cell-cell communication

The communication between cells is essential for functioning and coordinating
complex processes within and between them, such as maintaining homeostasis, cell growth,
differentiation, or immune interactions (42). Receptors are the key proteins that can receive
signals from the environment and initiate processes in response to them. In the case of viral
infections, the cells initiate immune responses and release cytokines, the ligands that bind to
cytokine receptors to further promote immune response in the surrounding cells (43,44).
Dysregulation of the receptor activation, caused by altered ligand binding, mutation, or
overexpression of the receptor, can lead to various diseases. Receptors that initiate altered
signaling are potential therapeutic targets. Developing methods that identify receptor activity
states within cells can help to understand the cellular processes and explain their phenotype.

Several computational tools have been developed, including CellChat (45), CellPhoneDB

10



(46), to analyze CCC. Most methods utilize prior knowledge of intercellular interactions and
statistical methods to prioritize them to identify potential communication events (47).
However, they assume that co-expression implies signaling and do not evaluate whether these
interactions result in functional downstream responses. Some other approaches, such as the
NicheNet (48) models CCC by integrating prior knowledge of gene regulatory networks with
gene expression from interacting cells.

These CCC methods may provide mechanistic insight into cell-cell communication-
induced processes, opening the opportunity to identify disease-associated changes in these

interactions.
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2. OBJECTIVES

The objectives of this study are to utilize perturbation gene expression signatures and

demonstrate their applicability and potential to advance drug repurposing strategies and gain

mechanistic insights into the processes of communicating cells. First, we aim to investigate

an infectious disease, the SARS-CoV-2 infection, focusing on identifying potential

mechanisms of action of in vitro effective antiviral drugs. Second, we aim to develop a

computational tool for gaining mechanistic insights into processes induced by cell-cell

communication by inferring receptor activities from transcriptomic profiles.

1. Investigation of SARS-CoV-2 host response and antiviral drug mechanisms by a

signature similarity-based approach to find potential anti-SARS-CoV-2 drugs and

gain insights into the in vitro effective antiviral drug mechanisms.

Gain insight into the host response to the SARS-CoV-2 infection in cellular
assays by functional genomic analysis using computational tools.

Conduct functional genomic analysis of drug effects in cellular assays,
considering drugs that have been reported to be effective against the SARS-
CoV-2 virus.

Compare infection-induced signatures and drug-induced signatures in cell
lines using signature similarity metric to identify potential anti-SARS-CoV-2
drugs by gaining insights into the mechanisms that can explain antiviral

effects.

2. Identification and validation of the antiviral drug mechanism.

Evaluate the predictive potential of the signature similarity or machine
learning-based approach for identifying in vitro effective antiviral drugs.
Furthermore, to identify molecular features that most contribute to classifying
effective or ineffective antiviral drugs, and to gain further insight into their
mechanisms.

Validate the cholesterol depletion effect of the selected antiviral drugs by

determining the fluorescent cholesterol sensor ratio between the plasma

12



membrane and cytosol in an in vitro assay, where the cholesterol localization

is determined by automatic confocal microscopy imaging.

3. Development and evaluation of the RIDDEN (Receptor actlvity Data Driven
inferENce) computational tool.
- Develop a computational framework, RIDDEN, to infer receptor activities
from transcriptomic data using perturbation signatures.
- Benchmark RIDDEN against a state-of-the-art method, CytoSig, for
predicting cytokine and cytokine receptor signaling activities.
- Evaluate the performance of both RIDDEN and CytoSig using cytokine
perturbation datasets as ground truth.
4. Demonstrating the RIDDEN’s applicability to patient data.
- Apply RIDDEN to the PD-1 inhibitor-treated patients’ transcriptomic dataset
to demonstrate its practical utility.
- Demonstrate that RIDDEN provides insights into the cellular mechanisms of
intercellular communication by investigating the association between

predicted receptor activity and therapeutic responses.
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3. METHODS
3.1.  Collection and preparation of public datasets

3.1.1.  LINCS perturbation signatures

Level 5 gene expression profiles from the LINCS-L1000 dataset were obtained from
the Data Library of the CMap linked user environment (CLUE) (3). We downloaded
perturbation data from 5 modalities: shRNA, CRISPR, drug treatment, ligand stimulation,
and overexpression. We calculated consensus gene expression signatures for each drug (for
antiviral drugs) or each perturbation-cell line pair (for receptors and ligands) using the
moderated-z score (MODZ) method. Briefly, weighted averages of z-score vectors of
perturbation signatures are summarized to a single differential expression vector based on
Spearman correlation, representing a consensus signature of the given perturbation. We
calculated the consensus signature using landmark genes (978), which are the measured
genes from the L1000 profile for antiviral drug investigation and RIDDEN construction.
Additionally, we used the inferred genes (11350+978) for benchmarking the RIDDEN.

3.1.2.  Selecting drug signatures from ChEMBL for anti-SARS-CoV-2
We obtained ChEMBL (41) 27 SARS-CoV-2 release dataset (40) to collect drugs that
showed in vitro anti-SARS-CoV-2 activity. We aligned drugs from LINCS-L1000 with
ChEMBL drugs from this release using drug names and the simplified molecular-input line-

entry system (SMILES).

3.1.3.  Download respiratory virus-induced signatures from GEO

We downloaded virus infection in vitro microarray experiments from GEO, with
accession numbers GSE28166 (Highly pathogenic avian influenza virus A, H5N1) (49),
GSE37571 (Influenza), GSE33267 (SARS-CoV-1) (50), GSE56677 (51) and GSE45042
Middle East respiratory syndrome—related coronavirus (MERS-CoV) (52) and RNA-Seq
profiles of SARS-CoV-2 and other virus-infected human cell lines with accession numbers
GSE147507 (SARS-CoV-2, Respiratory syncytial virus (RSV), Influenza A Virus (IAV),
Human parainfluenza virus (HPIV)) (39) and GSE148729 (SARS-CoV-1 and 2) (38). The

14



raw microarray profiles were processed with limma (53), and RNA-Seq profiles with DESeq?2
(54) R packages to calculate differential expression profiles between mock and infected

samples.

3.1.4.  Selecting receptor and ligand signatures using OmniPath
We queried the OmniPath database (55) using the OmniPath R package for ligand
and receptor interaction networks (56) that are compiled from the LIgand-receptor ANalysis
frAmework (LIANA) CCC resource (47). We filtered for a curated list of known interactions.
Based on this, we selected receptor and ligand perturbation signatures from the 5 modalities

from LINCS for the construction of the receptor activity prediction model.

3.1.5.  CytoSig and ImmuneDictionary collection

For the RIDDEN model predictive performance evaluation, we downloaded the
cytokine stimulation signatures from 2 resources, the CytoSig (7) and the ImmuneDictionary
(8). The CytoSig contains gene expression profiles gathered from public databases, including
transcriptional responses of cytokines across different cell lines from in vitro assays. The
ImmuneDictionary contains responses of 17 immune cell types to 86 cytokines measured in
in vivo experiments on mouse lymph nodes by single-cell RNA-Seq. We used gene-wise z-
scores for normalization, and we aggregated the cell signatures into average cytokine
perturbation signatures of the immune cell types of ImmuneDictionary. We excluded
signatures that contain only a few differentially expressed genes (8), as they do not capture
the responses to perturbations. For benchmarking the RIDDEN model, we selected the
overlap between these cytokines and LINCS cytokines and their receptors, where the

interaction is defined based on the OmniPath intercellular interaction network (56).

3.1.6.  Transcriptional profiles of patients
We obtained gene expression profiles of pretreatment samples and the overall
survival of patients to nivolumab, a PD1 inhibitor, and everolimus, an mTOR inhibitor, from
the study (57).
We downloaded 7 patients’ raw single-cell transcriptomic profiles with clear cell
renal cell carcinoma (58). We prepared the data following the method described in the

publication (59,60), with the difference of using the Batch balanced k-nearest neighbors
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(BBKNN) algorithm (61) for batch correction, and we modified the annotation based on
grouping cell types defined by different marker genes into broader cell type categories. We
visualized the cells using Uniform Manifold Approximation and Projection (UMAP) 2-D

projection.

3.2.  Investigation of anti-SARS-CoV-2 compounds signatures and

mechanism of action

3.2.1.  Functional genomics analysis

We used computational tools to get insights into the cellular processes, we inferred
pathway activities using PROGENy (R package progeny) (30,31) and inferred transcription
factor (TF) activities using DoRothEA, a curated resource of signed TF-target interactions
(regulons) (62) and VIPER algorithm (33) of the different virus-induced signatures and
LINCS drug perturbation signatures. PROGENYy inferred z-scores of pathway activities by
using 1000 permutations of gene labels for background distribution. In DoRothEA, TFs are
assigned to confidence levels from A to E, and we selected the high-quality regulons (A, B,

C levels).
3.2.2.  Signature similarity for repurposing

We used Spearman’s correlation (scipy Python library) to calculate the signature
similarity in expression signatures of shared genes between virus-infected samples and

antiviral drug treatment samples.
3.2.3. Machine learning-based methods

We predicted effective drugs against SARS-CoV-2 using a Random Forest (RF)
Classifier algorithm (scikit-learn Python library) on the TF activity scores of the drug-treated
signatures. The classifier was trained with default parameters, except for number of trees,
which was set to 300. Other default settings included the Gini impurity criterion, bootstrap
sampling enabled, and no restriction on maximum tree depth. We used 100 random training
sets, each containing 50% of the effective and 50% of the non-effective drugs. We calculated

the mean importance of the features (TFs) as well as the mean probabilities of antiviral
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activity for each drug. To assess the predictive performance of both similarity-based and
machine learning-based predictions, we performed Receiver Operating Characteristic (ROC)
analysis, where the positive class consisted of the antiviral drugs from the LINCS database
that had measured evidence for the anti-SARS-CoV-2 effect (in ChREMBL (40)) and the
negative class contained the rest of the drugs. ROC curves were computed for each of the
100 different validation sets to compare machine learning-based methods with similarity-

based methods, considering the signature similarity scores of the corresponding drugs.
3.2.4. Image analysis

Automatic confocal microscopy images from an experiment conducted by the co-
authors of (23) were used to determine the cholesterol sensor ratio between the plasma
membrane (PM) and the cytosol in HEK293A cells, where cells were transfected with
fluorescent cholesterol sensor. Images were segmented by CellPose (63), a deep learning-
based segmentation method (CellPose Python library). The cytoplasm marker channel was
used for filtering high-quality images using Laplace filtering and used for the input of the
CellPose model with parameter cell diameter set to greater than 200 pixels and channel set
to greyscale. To determine the PM outer boundary and cytoplasm boundary, we applied a
binary dilation algorithm with a default structure and 5 iterations and a binary erosion
algorithm with a default structure and 10 iterations, respectively, after determining the cell
boundaries by CellPose. The PM boundary was obtained by subtracting the cytoplasm
boundary from the outer boundary. The log2 ratio of the mean PM and mean intracellular
(IC) cholesterol sensor (D4H) fluorescence intensities (log2(PM/IC)) for each cell in the D4H
channel was calculated to examine the cholesterol distribution at the PM. The following
ordinary least squares (OLS) linear regression (statsmodels Python package) model was used
to determine the association between the intensity ratio and change: log2(PM/IC) ~ Time +
Time: Drug + Experiment, where Time denotes the elapsed time after drug treatment, the
Drug represents the used drug with DMSO as reference and Experiment denote the individual

experiments (n=3).
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3.3.  RIDDEN

3.3.1.  Model construction for receptor activity prediction

We used the following OLS regression models (statsmodels Python package) to
estimate the relationship between receptor perturbation and gene expression: gi = Boi + Bi,j Ij
+ &, where 1j is a vector of samples (cell-receptor perturbation pairs), where each value
denotes the perturbation of receptor j in the sample. (1 if stimulation, -1 if inhibition, and 0
if no perturbation). The curated ligand-receptor interaction prior knowledge from OmniPath
(56) was used to find the corresponding receptors of the ligands and translate the ligand
perturbation into receptor perturbation. The g; represents the gene expression values (from
LINCS consensus signatures), where the values are the expression level of a specific gene in
the sample. The Po; is the intercept for gene i and Bij is the coefficient representing the
association between the receptor j perturbation and the expression of gene i, &; is the error
term for gene i. We merged the computed coefficients into a receptor-gene parameter matrix,
the RIDDEN matrix, which represents the relationship between the gene expression change
under different conditions (perturbation type, direction, cell line) and the receptor

perturbation.

3.3.2.  Inference of receptor activities using the RIDDEN

Receptor activities can be inferred from a transcriptional profile by calculating the
dot product of the gene expression of the sample and the RIDDEN matrix. The RIDDEN tool
calculates a z-score of receptor activities by generating a background distribution through

1000 permutations of gene labels as the reference.

3.3.3.  Cross-validation of receptor signatures

We fitted linear models (OLS statsmodel Python package) for each of the five
modalities separately using the same method described in 3.3.1. and used the parameter
matrices to infer receptor activities from the perturbation signature matrices of the other
modalities as described in 3.3.2. We calculated ROC Area under the curve (AUC) to assess

the performance of predicting which receptor was perturbed in the sample. Inhibiting and
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activating perturbation were handled separately, as described in the publication (64). For the
final RIDDEN model, we filtered for receptors with high predictive performance based on
the following criteria and fitted linear models for the remaining receptors, including all
modalities. We used receptors that had greater than or equal to 0.6 ROC AUC in at least one
prediction. We did not include cases where the CRISPR model predicted shRNA perturbation
and conversely, because if the receptor is not present in the cell, the receptor knock-out or
knock-down will give us incorrect information about the potential gene expression change

upon receptor perturbation. The filtering resulted in 229 different receptors.

3.3.4.  Assigning confidence levels to receptors

We assigned confidence levels to the receptors. We randomly split the dataset five
times in half, trained a model on the training set, and predicted receptor activities on the test
set. On each split, we used the Mann-Whitney U (MWU) test to determine whether there is
a significant difference in receptor activities between the perturbed and non-perturbed
conditions. Inhibitory and stimulatory perturbations were analyzed separately. The mean of
the receptors was calculated, including all splits. Confidence levels from A to E were

assigned to the receptors based on the aggregated p-values of the MWU test.

3.3.5.  Prediction performance comparison

We compared the predictive performance of RIDDEN with CytoSig (7) in predicting
perturbed cytokines or cytokine receptors. For ground truth datasets, we used CytoSig’s
cytokine perturbation bulk transcriptomic profiles and ImmuneDictionary’s cytokine
perturbation single-cell transcriptomic profiles. The comparison was conducted in the
following scenarios: 1) RIDDEN model’s performance on CytoSig dataset, 2) CytoSig
model’s performance on RIDDEN’s cytokine and cytokine receptor dataset with signature
containing inferred and landmark genes for equitable comparison, 3) RIDDEN’s
performance on ImmuneDictionary dataset, and 4) CytoSig model’s performance on
ImmuneDictionary dataset. We evaluated the performance of the models with ROC AUC
and used separate ROC curves for each receptor. We handled different perturbation directions

separately (inhibitory and stimulatory), and the receptor perturbations indicated the positive
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values. We used overlapping cytokines and cytokine receptors between the 2 resources for
each comparison. We translated between ligand and receptor perturbations using LIANA’s

ligand-receptor interaction resource. (47,56,65)

3.3.6.  Patient’s survival associations with receptor activity and gene
expression

We inferred receptor activities from bulk transcriptomic profiles of nivolumab and
everolimus-treated samples (57) (described in Methods - Transcriptional profiles of patients
section) using RIDDEN. For investigation of the associations of the receptor activity and
gene expression with patient’s overall survival, we performed Cox regression analysis using
the lifelines Python package (66) with the following equation: h(t[x) = ho(t) * exp(p * X),
where h(t|x) denotes the hazard function, ho(t) is a baseline hazard, B is the coefficient and X
denotes the receptor activity or the gene expression. Additionally, we used the log-rank test,

in which we separated patient groups by the mean of the gene expression or receptor activity.

3.3.7. Application availability

The RIDDEN tool is available at https://github.com/basvaat/RIDDEN tool.
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4. RESULTS

Input Functional Biological Hypothesis
Data analysis insights validation
Signature similarity of
I transcription factor
S activities of drug- and
3 SARS-CoV-2 infection L ' arug
a } . virus infection-induced .
© vs. mock differential . Analysis of the plasma
o - . signatures K
& | expression signatures @ membrane—to—
Pathway Machine learning £ |ntrace||u!ar
(PROGENYy) o cholesterol ratio after
p approach S drue treat £ usi
q T 'a:i fact Random Forest—based :|>:' rug r;ea T?n using
LINCSbcopsen_sus rug rans;n: tc:]r:EAac or classification of drug confoca wpage
2 perturbation signatures (Do .o. ! ) effectiveness using §egmentahon to
5 of activities drug-induced validate the proposed
;c: 1) knqwn transcription factor mechfz;msrn o:jactlon of
.?o anti-SARS-CoV-2 activity profiles, with effective drugs.
B drugs (ChEMBL feature importance
e releas'e ,27) analysis to identify key
2) Remaining drugs drivers.

Figure 1. Pathway and TF activities were inferred from virus- and drug-induced
transcriptomic signatures to gain mechanistic insights into effective antiviral drug
mechanisms of action or effects of SARS-CoV-2 infection. Signature similarity and
machine learning analyses were then applied to link these mechanisms to drug
effectiveness, generating hypotheses that were subsequently validated by confocal

image segmentation and quantitative analysis.

4.1. A comparison of the disease and the drug-induced signatures reveals
similar responses in the cells

We investigated how cells responded to SARS-CoV-2 infection and to drugs that
were reported to be effective against the virus. We used drug perturbation gene expression

profiles to gain insights into the mechanism of action that makes these drugs effective.

4.2.  Functional genomic analysis of SARS-CoV-2-infected cells suggests
an adaptive response

We analyzed two lung epithelial cancer cell lines, the Calu-3 and A549 SARS-CoV-
2 infection-induced gene expression signatures (infected-control) (38,39). Using PROGENy
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and DoRothEA, we inferred pathway and TF activities (see Methods 3.2.1.). Increased TNFa
and NFkB pathway activities were observed in both cell lines, while the JAK-STAT pathway
was active only in the infected Calu-3 cell lines (Figure 2A). Accordingly, NFkB and STAT
TFs were strongly activated, in addition to the IRF TF. The cell growth-related TFs, the E2Fs,
and Myc showed decreased activity. Interestingly, Sterol regulatory element-binding factors
1/2 (SREBF1/2), the key transcriptional regulators of cholesterol synthesis, were also
inactive in the infected cells (Figure 2B). The activated pathways and TFs are known to be
involved in the host innate immunity against viral infection (67), furthermore, TFs with

decreased activity are part of the interferon response (68,69).
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Figure 2. Transcription factor and pathway activities of the SARS-CoV-2-infected
Calu-3 and A549 cell lines.

A) Heatmap of PROGENYy pathway activities of the infected Calu-3 and A549
cell lines, with positive values indicating activation (red) and negative values
indicating inhibition (blue).

B) Heatmap of DoRothEA TF activities of the infected Calu-3 and A549 cell
lines, with positive values indicating activation and negative values indicating
inhibition. Only transcription factors (TFs) exhibiting significant variations in

activity (absolute normalized enrichment score greater than 4) are shown.
With the help of a signaling network contextualization tool, the CARNIVAL (70),

our collaborator analyzed which upstream signaling pathways regulate the inferred activity

changes using the Retinoic acid-inducible gene I (RIG-I)-like receptors, the key receptors in
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virus recognition (71), as initiators of the signaling. This analysis showed that SARS-CoV-2
infection-induced RIG-I-like receptor activation can lead to the reported TF activity changes,
with the AKTI and MAPKI1 intermediate nodes (23). Additionally, there is evidence that
these TFs are modulated by infection (72-75).

4.3.  Functional genomic analysis of drug-treated signatures shows
similarities to infection-induced signatures in cells

Using the 4671 LINCS L1000 drug-induced consensus signatures and a set of in vitro
effective anti-SARS-CoV-2 drugs from the ChEMBL database, including 47 overlapping
drugs with LINCS (see Methods 3.1.2.), we performed a functional genomic analysis using
PROGENy and DoRothEA. NFkB and TNFa pathways were activated by several in vitro
effective drugs, including niclosamide, perhexiline, and digoxin. JAK-STAT was also
activated by receptor tyrosine kinase inhibitors. (Figure 3A). The activation of these
pathways can also be observed in the infection-induced signatures. Interestingly, TF activity
analysis revealed that the SREBFs are activated by a large cluster of drugs (Figure 3B). We
calculated the average TF activities for the 5 largest drug clusters and plotted them against
the average TF activities of the 3 SARS-CoV-2 signatures. The general observation across
the clusters is a prominent increase in STATs and a decrease in E2F4 TF activity. We
observed a high or lower, but significant positive correlation between the drug-induced and
diseased signatures in four out of the five clusters (Spearman’s rho = 0.64, 0.14, 0.18, 0.58
and 0.04, p = 8.55*107%, 0.0122, 0.00174, 3.14*10" and 0.484 from upper right to lower
left panel in Figure 3C). In two drug clusters, we found high drug-induced activity of
SREBF1/2, which is opposite to the inhibition of these TFs by SARS-CoV-2 infection
(Figure 3C). We investigated the similarity of virus-induced signatures to LINCS by
Spearman’s correlation, which was shown to be an effective method for analyzing the
similarity to LINCS L1000 data (3,76). We found that anti-SARS-CoV-2 drugs (ChEMBL
drugs) have a higher similarity to infection signatures than other drugs (Figure 3D, Mann-
Whitney U test p-value = <1*1072%).

The findings indicate that drugs known to have effective anti-SARS-CoV-2 effects in

vitro induce transcriptomic signatures and TF activity profiles similar to those induced by
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SARS-CoV-2 infection. Additionally, a group of drugs demonstrates high activation of

SREBF, which plays a key role in regulating cholesterol metabolism.
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A)

B)

0

D)

4.4.

Heatmap of the PROGENy pathway activities calculated from LINCS
consensus signatures of the 47 ChEBML drugs. The red color indicates
activation, while blue indicates inactive pathways.

Heatmap of TF activities (DoRothEA) calculated from LINCS consensus
signatures of the 47 ChEMBL drugs. The red color indicates activation, while
blue indicates inactive TF. The drugs were clustered based on TF activity
profiles, and 5 clusters were identified. The clusters are indicated by color on
the left side of the heatmap.

The scatterplots show the relationship between the average TF activity of
drug-treated cell lines (calculated from the average of LINCS drug
perturbation signatures of the in vitro effective ChEMBfL drugs) in the 5
largest drug clusters and the average TF activity profile of 3 SARS-CoV-2-
infected cell lines. Top TFs are marked. Cluster colors match those in (B).
The plot illustrates the distribution of signature similarity between drug-
induced signatures and average SARS-CoV-2-induced signatures for
effective anti-SARS-CoV-2 drugs (ChEMBL drugs) and all LINCS-L1000
drugs (All drugs).

Drug perturbation signatures and their similarity to infection
signatures predict the antiviral activity

We showed that SARS-CoV-2 infection and several effective drugs elicit similar
responses, which led us to explore how we can predict drug effectiveness using signature
similarity. We used unsupervised and supervised learning strategies to predict effectiveness
and evaluated the predictions using ROC analysis by using ChEMBL in vitro effective anti-
SARS-CoV-2 drugs as positive values.

The similarity scores (Methods 3.2.2.) show predictivity to effective drugs (Figure
4A) in SARS-CoV-2-infected cell lines (ROC AUCs: 0.75, 0.74, and 0.64 for GSE147507
A549, GSE147507 Calu-3, and GSE148729 Calu-3, respectively). Furthermore, we aimed to

investigate if the signature similarity is predictive in the case of other respiratory viruses
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infected Calu-3 and/or A549 cell lines, like other coronaviruses (SARS-CoV (50), MERS-
CoV (51,52)), influenza (Influenza A (49)), H5N1, parainfluenza (HPIV) or RSV (Methods
3.1.3.). These infection signatures exhibited less predictive performance for the ChEMBL
anti-SARS-CoV-2 drugs with ROC AUC values <0.7, except for one SARS and RSV
signature with ROC AUCs 0.70 and 0.71, respectively Figure 4B), indicating the relative
specificity of the similarity-based approaches for SARS-CoV-2.

We classified drugs into effectivity groups using the drug-induced TF activity profile
as features with the supervised Random Forest (RF) algorithm (Methods 3.2.3.). The positive
class consisted of the 47 effective ChEMBL drugs. We established a cross-validation method
based on random subsampling and assessed its performance using the ROC AUC (Methods
3.2.3.). We compared the ROC AUC values of the RF-based model and similarity-based
values of the three SARS-CoV-2 signatures (Figure 4C). The mean ROC AUC values are
0.72 and 0.68, 0.66, 0.57, respectively, indicating a slight improvement in the predictive
performance of the machine-learning-based method (paired t-test p-values between machine
learning and similarity-based methods: 3.02*107, 2.76*1071°, 4.89*10!> for GSE147507
A549, Calu-3, and GSE148729 Calu-3 signatures, respectively). To get more mechanistic
insights into the drug effects, we used RF classification and Gini importance. We identified

SREBFI1 and 2 as the most important TFs in predicting effective drugs (Figure 4D).
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Figure 4. Similarity-based and machine-learning-based methods predict effective drugs

A)

B)

9

ROC curves evaluating the performance of similarity-based predictions using
drug—SARS-CoV-2 infection signature similarity. Known in vitro effective
anti-SARS-CoV-2 drugs from the ChEMBL dataset were used as the positive
class. FPR refers to False Positive Rate, TPR refers to True Positive Rate
ROC curves evaluating similarity-based predictions using drug—other
respiratory virus infection signature similarity. Known in vitro effective anti-
SARS-CoV-2 drugs from the ChEMBL dataset were used as the positive
class.

ROC AUC values of the similarity-based values and the RF Classification
algorithm predicting the effective drugs from ChEMBL. Random
subsampling and cross-validation were used to predict the effectivity.

Boxplots represent the median (central line), first and third quartile (box),
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minimum and maximum non-outlier values (whiskers), and outliers
(diamonds).

D) The top and bottom 10 features ranked by Gini importance in the RF
classification model trained on TF activity of drug perturbation signatures and

predicting in vitro effectiveness against SARS-CoV-2.

With the unsupervised approach, we achieved similar predictive performance to the
similarity-based approach and, interestingly, found that the SREBFs contribute the most to

predicting drug antiviral effectiveness.

4.5.  Invitro validation of plasma membrane depletion by SREBF-
activating drugs and their antiviral effect

We demonstrated that SARS-CoV-2 infection inhibits SREBF TFs, while a range of
anti-SARS-CoV-2 drugs activate them. This shows a contrasting effect compared to other
TFs that are similarly activated or inhibited by both conditions in cells.

SREBF TF can be activated by the reduction of the plasma membrane and
endoplasmic reticulum cholesterol levels. Its activation promotes the production of
cholesterol and other lipid-synthesizing enzymes (77). Consequently, reduced activity of
SREBF caused by virus infection may lead to decreased cholesterol synthesis, hindering viral
replication and/or viral entry into cells (69). Thus, this effect can be considered as an adaptive
response of the host cell (Figure 5). Based on our hypothesis, some in vitro effective drugs
directly reduce plasma membrane cholesterol, which contributes to an antiviral effect. This
mechanism may lead to an increased SREBF activity due to the lower cholesterol levels in

the plasma membrane (Figure 5).
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Figure 5. Schematic figure of the hypothesis that antiviral drugs block virus entry into

cells by cholesterol depletion from plasma membrane, and are leading to a

compensatory increased SREBF1/2 activity. The effects caused by viral

infections are indicated by black arrows on the left side, whereas the changes caused

by drugs are shown with orange arrows on the right side. RIG I denotes retinoic

acid-inducible gene-I-like receptors, which are pattern-recognition receptors that

sense viral RNA and trigger antiviral responses, like interferon signaling.

To confirm this hypothesis, our colleagues conducted an in vitro experiment using

automated confocal microscopy imaging on HEK293A cells that were infected with a

fluorescent cholesterol sensor, D4H-mVenus (78,79), and cytoplasmic Cerulean as a

cytosolic marker. The cells were treated with negative control DMSO, a plasma membrane

cholesterol-depleting compound methyl B-cyclodextrin (MBCD) as a positive control, and

three drugs: loperamide, amiodarone, and chlorpromazine, which were selected based on

their in silico SREBF-activating effects (all drugs were used in 10 uM final concentration).
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Amiodarone was one of the top-predicted drugs of the Random Forest model (Figure 6A),
while loperamide and chlorpromazine are part of the ChEMBL anti-SARS-CoV-2 drug set
(Figure 6B). In the experiment, rosuvastatin was also applied, which does not directly
influence plasma membrane cholesterol, but inhibits 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase, a de novo cholesterol synthesis limiting enzyme.

For a systematic and unbiased analysis of PM cholesterol changes, I calculated the
ratio of the average plasma membrane (PM) and average intracellular (IC) D4H-mVenus
fluorescence (PM/IC ratio) for each cell on the captured images (see Methods 3.2.4.).
Investigating the ratio as a function of elapsed time after drug treatment, we did not observe
a decrease in loperamide and rosuvastatin-treated samples, while MBCD, chlorpromazine,
and amiodarone treatment significantly decreased the ratio (linear model p values: <102%,
<1029, 2.71*10°, 0.25 and 0.0047 for MBCD, chlorpromazine, amiodarone, loperamide,
rosuvastatin respectively, Figure 6C). This confirms that plasma membrane cholesterol was

depleted by chlorpromazine and amiodarone, which were also identified as SREBF-

activating drugs.
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Figure 6. SREBF-activating drug PM cholesterol-depleting effects.

A) Predicted probability of in vitro antiviral activity in the Random Forest model

and
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B) Histogram of SREBF1 activity of the drugs, where SREBF-activating drugs
and rosuvastatin, an HMG-CoA reductase inhibitor, are highlighted.

C) Time-dependent change of log2(PM/IC) ratio of average cholesterol sensor
intensity in HEK293A cells treated with DMSO, MBCD, chlorpromazine,
amiodarone, loperamide, or rosuvastatin. The red line marks drug treatment.
*: significant (p<0.001) interaction between drug treatment and elapsed time

in the linear model.

Cholesterol rescue experiments were performed by co-authors of (23) to test whether
decreased plasma membrane cholesterol depletion affects SARS-CoV-2 infectivity. In these
experiments, amiodarone significantly decreased the number of viral particles in Vero-E6
cells, while cholesterol replenishment significantly increased the number of viral particles in
cells treated with amiodarone. This confirms that the cholesterol depletion caused by

amiodarone treatment plays a crucial role in its antiviral effect (23).

4.6. Inference of receptor activities from ligand and receptor
perturbation gene expression signatures

We established a model that infers receptor activity from the transcriptomic profiles,
called RIDDEN, Receptor actlvity Data Driven inferENce. Unlike other methods that rely
on ligand and receptor expressions, RIDDEN utilizes receptor footprints, which capture the
downstream transcriptional consequences of receptor activity change, rather than assuming
that the presence of ligands and receptors directly reflects signaling activity. This required a
curated database of ligand-receptor interactions obtained from OmniPath (55,56) and
chemical (drug treatment, ligand stimulation) and genomic perturbation (CRISPR, shRNA,
overexpression) signatures of these ligands and receptors from the LINCS L1000 database
(3). To predict receptor activities, we created a dataset consisting of 38989 consensus
perturbation signatures across five perturbation types applied to several cell lines for 599
receptors. Using this, we fitted linear models to describe the relationship between the

perturbed receptor and each gene expression caused by the perturbation (see Methods 3.3.1.)
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(Figure 7A). This method resulted in a parameter matrix of receptor-gene pairs that allows
for inferring receptor activities from transcriptomic profiles of new samples, as it provides
insight into what changes in the gene expression profiles are a consequence of altered
receptor activity (Figure 7B). We use a permutation-based approach to estimate receptor
activities in new samples (see Methods 3.3.2.). We applied receptor quality filtering to ensure
the reliability of the prediction (see Methods 3.3.3.) Finally, the RIDDEN matrix consists of
14463 transcriptional signatures of 229 receptors that can be leveraged to infer receptor
activities from bulk and single-cell transcriptomics. We also classified receptor activities into
five confidence levels (A-E), where receptors with A confidence level had the best cross-

validation performance (Methods 3.3.4.).
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A) RIDDEN model construction. Ligand and receptor perturbation profiles are
collected from the LINCS L1000 database, and their interaction are queried
from the OmniPath. The ligands are mapped to corresponding receptors,
known to be interacting according to prior knowledge, and linear models are
fitted on the ligand-receptor perturbation profiles using the known receptor
perturbations (+1 activated, -1 inhibited, 0 not perturbed) as input to create
the RIDDEN.

B) RIDDEN estimates receptor activities from both bulk and single-cell
transcriptomic data by calculating dot products of gene expression profiles
and the RIDDEN weight matrix, followed by generating z-scores through

random permutations of gene labels.

4.7.  Benchmarking the RIDDEN model

We compared the RIDDEN to CytoSig (7), a model predicting cytokine (ligand)
signaling activities from gene expression. Utilizing the Immune Dictionary (8), and the
dataset from CytoSig containing cytokine stimulation signatures, we evaluated the
performance of both models in predicting cytokine receptor and cytokine signaling activities
based on cytokine and receptor perturbation signatures. This comparison assessed how
accurately each model predicted the perturbations (see Methods 3.3.5.) on the in vitro
cytokine and receptor perturbation datasets. The full RIDDEN yielded 0.61, while the
CytoSig yielded 0.59 median ROC AUC. Moreover, the RIDDEN receptor models with
confidence levels A-E reached 0.68, 0.64, 0.56, 0.51, and 0.52, respectively (Figure 8A). On
the in vivo Immune Dictionary dataset, despite RIDDEN not explicitly modelling ligand
perturbations, RIDDEN had a comparable ROC AUC score of 0.64 with CytoSig (0.67)
(Figure 8B).
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Figure 8. RIDDEN model benchmark
A) RIDDEN and CytoSig performance comparison.

ROC AUC distributions were compared by applying RIDDEN and CytoSig
to each other’s training datasets. RIDDEN models were subsetted by receptor
confidence scores, while CytoSig was evaluated on LINCS cytokine
perturbation signatures (landmark + inferred genes). Boxplots show median
ROC AUC (black numbers, central line), interquartile range (box), non-outlier
range (whiskers), and outliers (diamonds).

B) RIDDEN and CytoSig evaluation on the Immune Dictionary dataset.
The first two boxplots show performance on overlapping cytokines/receptors
from the three resources. Subsequent boxes display RIDDEN's results across
receptors grouped by confidence scores (A—E) on the ImmuneDictionary and

RIDDEN receptor overlap. Boxplot features are as in (A).
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4.8. RIDDEN identifies biomarkers of cancer therapy response

We assessed RIDDEN's ability to infer receptor activities of patients and how these
are associated with cancer therapy response. We used clear cell carcinoma patients’ gene
expression profiles and response to immune-checkpoint blockade (ICB) therapy (see
Methods 3.3.6.) (57), ICB targets ligands or receptors that are responsible for regulating
immune responses, like the PD-1 receptor and its ligand, PD-L1 (80). To compare, the
responses and transcriptomics of the mTOR inhibitor-treated patient cohort were utilized
from the same study. From the patient’s pretreatment samples, RIDDEN inferred receptor
activities. We calculated the associations between receptor activity and gene expression and
patient survival using the log-rank test and Cox regression. We found that PD-1 receptor
activity was associated with overall survival (OS) in anti-PD-1 therapy (log-rank test p-value
= 4*10, Cox regression B = -0.36, p-value = 0.012), nivolumab-treated samples but not in
mTOR inhibitor, everolimus-treated patient samples (log-rank p = 0.092, Cox p = 0.106,
Figure 9A). Neither the PD-1 nor the PD-L1 gene expression was associated with patient OS
(log-rank test p-value = 0.465, 0.318, Cox p-value = 0.585, 0.630, Figure 9B). The negative
association between PD-1 receptor activity and hazard rate suggests that higher PD-1 activity
is associated with longer survival in nivolumab-treated patients. The nivolumab, by inhibiting
the PD-L1/PD-1 interaction, is effective in patients with higher PD-1 activity. In nivolumab-
treated patients, the chemokine receptors CXCR1 and CXCR2, as well as the serotonin
receptor HTR2C and TGF-f receptors (TGFBR2 and TGFBR3), have significant negative
coefficients in the Cox regression analysis, indicating a negative association between their
activity and patient hazard. Conversely, BMPR1B, members of the ERBB receptor family,
and EGFR showed the most significant positive coefficients, suggesting a positive
association with the hazard (Figure 9C).

Furthermore, we predicted receptor activities based on the single-cell transcriptomic

profiles of an independent cohort of renal cell carcinoma patients (Figure 9D).
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Figure 9. PD-1 expression and activity in tumor samples

A) PD-1 receptor activity is associated with improved overall survival in nivolumab-
treated renal cell carcinoma patients (left), while no association is observed with
everolimus treatment (right). Kaplan-Meier plots show survival probabilities
stratified by PD-1 activity levels. Log-rank test results are indicated; blue and red
curves represent high and low activity groups, respectively.

B) PD-1 and PD-L1 gene expression are not associated with patient survival in

nivolumab-treated samples. Kaplan-Meier plots show survival based on PD-1 and

PD-L1 gene expression levels using the mean as a threshold; no significant

differences were observed.
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C) Association of receptor activities with survival in nivolumab-treated patients. A
volcano plot displays Cox regression coefficients (x-axis) and -logl0 p-values (y-
axis) for receptors with high-confidence scores. Significant receptors (p < 0.03) are
labeled; the dashed line marks the p = 0.05 threshold.

D) Single-cell analysis of renal carcinoma samples reveals that PD-1 receptor activity is
enriched in specific cell populations. Boxplots display PD-1 activity across major cell
types, showing median activity values (central line), interquartile range (box), non-
outlier range (whiskers), and outliers (diamonds). (The x-axis labels represent the
following cell types: vMSC indicates vascular smooth muscle cells, Mast denotes
mastocytes, Macro denotes macrophages, and Unknown refers to cells that cannot be

characterized).
We found that PD-1 is active in macrophages and showed that the immune cells have

high activity of PD-1, while no activity was observed in tumor cells, endothelial,

perivascular, and smooth muscle cells.
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5. DISCUSSION

Transcriptomic perturbation signatures, which quantify gene expression changes in a
dose-dependent manner induced by genetic and chemical interventions (81), provide the
possibility for measuring cellular responses that datasets measuring baseline gene expression,
such as CCLE (82) or The Genotype-Tissue Expression (GTEx) (83), are not able to capture.
While baseline signatures elucidate the normal, untreated state of cells, providing insights
into physiological processes, disease states, and gene expression regulation (83), perturbation
signatures enable a controlled investigation of how cells respond to various stimuli, such as
drug treatments or genetic interventions like CRISPR knockout. By observing the
transcriptional changes in cells resulting from the absence of functional proteins or altered
activity, we can explore downstream effects and causal relationships. Previously, several
studies have leveraged perturbation gene expression signatures for drug repurposing to
identify novel biomarkers (84), resistance mechanisms (85), and therapeutic candidates (86).
Although numerous studies have explored the use of perturbation gene expression signatures,
our study (64) applies transcriptomic perturbation signatures to predict receptor activity from
receptor-regulated transcriptional footprints, enabling the inference of more biologically
meaningful receptor signaling activity from transcriptomic data compared to non-footprint-
based methods.

In my research, I explored the application of perturbation signatures as a tool for drug
repurposing against SARS-CoV-2 (23) and predicting receptor protein activity (64). The
findings demonstrated that by utilizing genomic and chemical perturbation gene expression
profiles, we can enhance our understanding of cellular responses and the underlying
mechanisms of antiviral drug action. We demonstrated that perturbation signatures provide
valuable insights into receptor activity. Furthermore, our results indicate that utilizing
computational methods based on perturbation signatures can enhance the identification of
effective treatments and improve the prediction of drug interactions and biological effects.

The growing number of studies in this field indicates that perturbation profiles offer
valuable insights and are essential in this research field. While several perturbation profiles
have been submitted to public databases, such as GEO (1) or ArrayExpress (2), they lack

standardized experimental and processing workflows, and they often answer a specific
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question, limiting their usability in a broader context. There is still a need for larger-scale
databases with standardized measurements, like the LINCS L1000 (3) project. Current
technologies enable the screening of perturbation profiles on a large scale, not only at the
transcriptomic level but also at the protein level (87) and imaging-based approaches (88).
Each method captures different aspects of the cellular responses, proteomics-based
approaches capture the basic functional units of biological processes, or post-translational
modifications (e.g., phosphorylation) (87), and image-based approaches can link
morphological and phenotypic information to the cell response (88). The future of the
perturbation-based approach may depend on integrating complementary modalities (11) to
overcome the limitations of analyzing individual molecular layers by providing rich multi-
omics information.

While measuring and integrating perturbation effects across multiple omics levels is
beneficial, transcriptomics is currently the most widely used in drug discovery due to its
broad accessibility. Several studies have shown that it can provide biologically relevant
information about the state of the cell. This can be achieved by enrichment (29) of known
genes of specific signaling pathways (27,89,90) or biological processes, molecular functions
in differential expression signature (28,91), or by using methods that infer the activity of
different proteins (33), such as transcription factors (62) or pathways (30,31). These methods
are all well-suited for generating hypotheses; however, large-scale, well-annotated
perturbation datasets are also crucial for benchmarking these methods and new computational
approaches to ensure that they are robust across different biological contexts (11). For
example, in this study, the Immune Dictionary (8) was used to compare the performance of
RIDDEN and CytoSig (7) in predicting cytokine receptor and cytokine signaling activities.
However, the lack of additional datasets limits the ability to benchmark our method across
broader biological contexts.

There are several methods to gain functional insights from gene expression data. One
of the most widely used is the GSEA, which links changes in gene expression to pathway or
process annotations. However, this method assumes that the change in differential gene
expression is directly associated with protein activity or abundance (11), although this is

complicated by regulatory processes, post-translational modifications, or splicing (92,93).
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An alternative approach, footprint-based methods, infers protein or pathway activity from the
expression of their downstream targets, rather than relying on gene or protein abundance.
(35). By combining perturbation signatures, these methods enable a context-specific
assessment of regulatory activity. Studies have shown that this approach more accurately
reflects biological phenotypes in multiple benchmarks (31,93,94). In my study, I utilized the
latter approach to infer receptor protein activity. This method, as discussed in recent
literature, analyzes the expression of genes regulated by the receptors rather than relying on
receptor or ligand expression or co-expression. RIDDEN uses receptor-specific footprints
learned from perturbation experiments, enabling the use of context-specific regulatory
relationships (64).

I discussed the relevance of perturbation studies and how they can provide
mechanistic insights. I also demonstrate their potential usability in the field of drug
repurposing (23). Gene expression-based drug repurposing is a widely used method. Its
applicability is demonstrated in several studies in cancer research (95,96) and other diseases
(18,97). These studies apply a general approach focusing on compounds whose
transcriptional perturbation profiles are inversely correlated with disease-associated gene
expression signatures. In this work, I demonstrate that drugs similar to the SARS-CoV-2-
induced, an infectious disease-induced gene expression signature, can also be effective.
Whereas cancer and metabolic diseases often benefit from reversing pathological
transcriptional states, viral infections like SARS-CoV-2 may require activating the host’s
antiviral response. We conducted a more unbiased analysis of drug repurposing based on
gene signatures induced by SARS-CoV-2. By examining the gene expression patterns
associated with known effective anti-SARS-CoV-2 drugs and comparing them to the
signatures of SARS-CoV-2 infection, we found that the similarity between these signatures,
rather than their dissimilarities, is predictive for antiviral efficacy. Our findings indicate that
enhancing the antiviral responses of host cells may be a more effective approach than
blocking the pathways activated by viral infection. It remains to be determined if this is
unique to SARS-CoV-2, which is known for its ability to evade various antiviral defenses of
host cells, or if it represents a broader mechanism applicable to other viral infections. By

utilizing the "signature similarity" approach alongside network-based methods (23,70),
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computational drug repurposing in the case of both established and emerging infectious
diseases can be accelerated.

To gain mechanistic insight with the help of perturbation signatures, we performed
functional genomic analysis on signatures of SARS-CoV-2-infected and drug-treated cells
with anti-SARS-CoV-2. Similarly, in infected cells, especially in Calu-3 human airway
epithelial cells and in drug-treated cells, we found NFkB and JAK-STAT pathway activation.
This finding also supports the previously introduced concept of “signature similarity”.

The analysis revealed significant findings, showing that SREBF1 and SREBF2 TFs
were inhibited in samples infected with SARS-CoV-2. A comparison between machine
learning approaches and a signature similarity-based method to predict antiviral activity
based on perturbation signatures revealed that both methods can classify antiviral drugs with
similar performance. Additionally, the machine learning approach identified SREBF1/2 as
the most important features for predicting antiviral activity. These transcription factors are
found to be activated in a large cluster of drug-treated cells, in contrast to the infected cells.
SREBF1/2 are involved in regulating the expression of the key components of cholesterol
synthesis (77). Previous research suggests that reducing plasma membrane cholesterol may
inhibit SARS-CoV-2 infection (98,99). The downregulation of SREBFs and subsequent
decrease in cholesterol synthesis can also be part of the physiological antiviral response
(69,100,101). Additionally, previous studies showed that SREBFs and DNA interaction can
lead to antiviral effect (102), and knocking-out components of the SREBF pathway leads to
resistance against the virus (103). We observed an increase in SREBF activity in drug-treated
cells, and this can be supported by studies showing the increased expression of lipid
metabolism enzymes in antiviral drug-treated cells (22). Additionally, an increase in
cholesterol synthesis has been shown to reduce SARS-CoV-2 infection (104).

Changes in gene expression may be a compensatory response rather than a cause. We
propose that increased activity of SREBF1/2 could be a response to lower PM cholesterol
levels following virus infection. To investigate this hypothesis, an experiment was designed
and conducted by the co-authors of (23), where a fluorescent cholesterol sensor was used on
antiviral drug-treated cells to monitor changes in PM cholesterol levels over time. Two in

vitro effective antiviral drugs, amiodarone and chlorpromazine, were found to decrease PM
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cholesterol levels. This was further supported by the finding of an in vitro SARS-CoV-2
infection assay, coupled with a cholesterol rescue experiment. This experiment demonstrated
that replenishing cholesterol reduced the antiviral activity of amiodarone, thereby confirming
the causal role of decreased plasma membrane cholesterol in the antiviral effect of
amiodarone (23). This highlights importance of understanding how perturbation profiles can
yield valuable insights into disease mechanisms and treatment strategies.

In addition to gaining valuable insights through analysis of perturbation signatures—
as demonstrated in our study on SARS-CoV-2 and cholesterol depletion—these signatures
have also proven valuable in building computational frameworks (7,30,48), where these
signatures were systematically used to infer pathway or signaling activities and to model
intercellular communication. Building on this foundation, we developed RIDDEN, a novel
computational framework that utilizes the footprint-based approach and learns from receptor
perturbation response signatures. This enables data-driven prediction of receptor activity
from gene expression profiles. Unlike previous methods, RIDDEN leverages large-scale
transcriptional response profiles, relies on curated pathway knowledge to map ligands to their
receptors, and on the basis of these, predicts a large number of receptor activities.

Conventional CCC methods, like CellPhoneDB (46) or CellChat (45), rely on the
prior knowledge networks of ligands and receptors and identify potential interacting ligands
and receptors based on their gene expression. They do not capture whether these interactions
lead to actual receptor activation or downstream signaling. In contrast, RIDDEN provides a
more mechanistic perspective by inferring receptor activity from gene expression profiles,
using perturbation transcriptional signatures (e.g., from receptor knockouts or activations) to
assess whether a receptor is functionally active and what effect its activation has on the
receiver cell. Furthermore, as a footprint-based method, RIDDEN derives more biological
insights than gene set-based methods.

Benchmarking computational tools for activity inference and CCC is essential to
assess their reliability and ensure biological relevance. However, the lack of large and
harmonized ground-truth datasets limits this effort (105). Benchmarking the RIDDEN needs
receptor perturbation datasets and prediction tools for receptor activities. Classical CCC

methods are unsuitable for comparison with perturbation-based methods, as they depend on
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the expression of endogenous ligands. Thus, they are unable to capture externally introduced
ligands. CytoSig (7) provides a collection of cytokine perturbation signatures obtained from
public databases and a tool for predicting cytokine signaling activities. Along with the
Immune Dictionary, an in vivo dataset of cytokine perturbation responses can serve as the
benchmark for RIDDEN. However, the comparison is limited to cytokines and their receptor
signaling activities.

RIDDEN demonstrated comparable performance to CytoSig in cytokine signaling
predictions while also providing confidence levels for receptor activity. In the evaluation of
the top-performing receptors, the model outperformed CytoSig, demonstrating its robust
performance in predicting cytokine receptor activity. RIDDEN has broader coverage of
perturbation signatures, thus it can capture core signaling changes induced by receptor
activity change across diverse cells.

The performance of the RIDDEN compared to CytoSig was assessed using the
Immune Dictionary dataset. In vivo experiments model more complex responses to
perturbations as they capture cellular responses within their microenvironment within a
tissue. RIDDEN demonstrated a capability to predict receptor activities triggered by ligand
stimulation in this complex environment. RIDDEN predicted which receptor-induced
signaling was modulated by the immune ligand with performance comparable to CytoSig.

In our study (64), we extended the evaluation beyond predictive performance to
biological relevance. RIDDEN also demonstrated value in analyzing patient therapy
responses to an immune checkpoint inhibitor targeting the PD-1 receptor. While
measurement of PD-L1 protein levels has been crucial for guiding therapy decisions and
serves as an important marker of treatment response across various cancer types (106),
targetable receptors can also be assessed directly from gene expression, providing additional
and functional insights. Using pre-treatment gene expression profiles from patients treated
with nivolumab, a PD-1 inhibitor RIDDEN was able to infer PD-1 receptor activity, which
showed a significant association with overall survival. Notably, only the inferred receptor
activity, and not the expression levels of PD-1 or its ligand, the PD-L1, were predictive of
patient outcomes in Cox regression and effectively stratified patients based on survival in

log-rank analysis. Additionally, we have observed associations between patient survival and
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the activity of various other receptors that are already linked to immuno-oncology (107-112).
These results highlight how RIDDEN can reveal important signaling activities that are not
apparent from gene expression alone. Moreover, the PD-1 receptor activity can be accurately
inferred in specific cell types likely to be present in the tissue microenvironment, such as T
cells (113) and tumor-associated macrophages (114). In contrast, receptor activity was not
predicted in tumor cells, likely due to the lack of a signature associated with receptor

activation in these cells.
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6. CONCLUSIONS

This study highlights importance and demonstrates potential applications of
perturbation signatures in advancing drug repurposing strategies against virus infections and
gaining mechanistic insights in transcriptional signatures over traditional tools, capturing
baseline transcriptional states but not the causal consequences of regulation.

I systematically investigated the host transcriptional response to SARS-CoV-2
infection using computational functional genomics approaches. The analyses identified
distinct pathways and transcription factor activities in infected cell lines, revealing an
adaptive host immune response characterized by the activation of NFkB and JAK-STAT
signaling, alongside suppression of sterol regulatory pathways. By comparing these
infection-induced signatures with gene expression profiles of in vitro effective antiviral
drugs, transcriptional similarities were observed that suggest effective drugs induce antiviral
mechanisms in the host cell.

Notably, SREBF1/2 TFs were found to be active in several in vitro effective antiviral
drugs. These factors are involved in cholesterol synthesis, opposing the virus-induced
suppression of the same TFs. This observation led to the hypothesis that activation of
cholesterol synthesis regulatory factors is the consequence of a decrease in cholesterol level.
Thus, these drugs may exert antiviral effects via plasma membrane cholesterol depletion. I
evaluated both the signature similarity approach and a machine learning model based on TF
activities in classifying antiviral drugs. Both approaches effectively distinguished in vitro
active from inactive antiviral compounds. Notably, the Random Forest model also identified
SREBF1/2 as key features in predicting drug effectiveness, highlighting their relevance.

We validated the cholesterol depletion effect of SREBF-activating antiviral drugs
through automated confocal microscopy imaging using a fluorescent cholesterol sensor. |
performed the analysis of the detection of cholesterol levels in PM and cytoplasm on
fluorescent images, confirming that the selected drugs indeed reduce plasma membrane
cholesterol levels in vitro. These results support a mechanistic link between antiviral drug
action and host lipid metabolism. Furthermore, amiodarone, one of the SREBF-activating
drugs, was validated to exert its antiviral effect by cholesterol depletion in a cholesterol

rescue experiment by the co-authors of our study (23).
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I developed RIDDEN, a computational tool that infers receptor activity from gene
expression signatures. It benefits from large-scale transcriptomic perturbation datasets and
curated ligand-receptor interactions. While RIDDEN was developed as a systems biology
application, it also demonstrates that perturbation signatures can provide mechanistic insights
into receptor-driven signaling, highlighting broad applicability of these signatures.

I evaluated RIDDEN against the CytoSig model in predicting cytokine signaling and
receptor activities, using an in vitro bulk and in vivo single-cell immune response dataset
based on cytokine perturbations as ground truth. RIDDEN demonstrated comparable
performance to CytoSig and outperformed it for the highest-confidence receptors,
demonstrating its applicability in capturing real transcriptional responses also within
complex immune environments.

RIDDEN also showed potential for finding associations between receptor activity
inferred from patients' pretreatment transcriptomic profiles and their therapeutic outcomes.
In patients with renal cell carcinoma undergoing treatment with a PD-1 inhibitor, RIDDEN
identified activated receptors, including PD-1, that were associated with therapeutic
outcomes, where this relationship was not captured by the gene expression of the receptor or

its ligand.
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7. SUMMARY

This work demonstrates applicability of perturbation gene expression signatures as a
tool for drug repurposing and receptor activity inference, highlighting their value in
uncovering mechanisms of action and guiding hypothesis generation.

First, I leveraged SARS-CoV-2 infection-induced gene expression signatures and
compared them with drug treatment-induced perturbation profiles to gain insights into
antiviral drug action. In contrast to the classical signature-reversal approach, we found that
effective antiviral drugs often mimic adaptive host responses, activating pathways like NFkB
and JAK-STAT. Several of these drugs also activated SREBF1/2, key regulators of lipid
metabolism. Experimental validation using fluorescent cholesterol sensors confirmed that
these drugs reduce plasma membrane cholesterol and that this depletion contributes to their
antiviral effect. These findings refine our understanding of signature-based drug repurposing
in viral contexts and highlight cholesterol modulation as a key antiviral mechanism.

I demonstrated the systematic use of chemical and genomic perturbation signatures.
I developed RIDDEN (Receptor actlvity Data Driven inferENce), a computational tool that
infers receptor activity from transcriptomic profiles of 229 receptors. Unlike co-expression-
based methods, RIDDEN leverages the downstream transcriptional response of receptor
perturbation to provide insights into cell-cell communication. Benchmarking on in vitro and
in vivo datasets showed that RIDDEN accurately reflects the transcriptional responses of the
cytokine receptor modulation and performs comparably to, or better than, existing models in
this context. When applied to a cancer immunotherapy dataset, RIDDEN identified receptor
activities associated with treatment response, revealing biologically meaningful signals that
gene expression is not able to capture.

These applications demonstrate the value of perturbation gene expression signatures
and how they can serve as a bridge between high-dimensional data and interpretable
biological insight, guiding hypothesis generation in drug discovery and advancing our

understanding of complex cellular responses.
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cholesterol depletion as key factor of antiviral
drug activity
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Abstract

Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-
induced gene expression signatures is a promising bioinformatic tool to repurpose existing
drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is
that drugs with inverse similarity to a disease signature can reverse disease phenotype and
thus be effective against it. However, in the case of viral infection diseases, like SARS-CoV-
2, infected cells also activate adaptive, antiviral pathways, so that the relationship between
effective drug and disease signature can be more ambiguous. To address this question, we
analysed gene expression data from in vitro SARS-CoV-2 infected cell lines, and gene
expression signatures of drugs showing anti-SARS-CoV-2 activity. Our extensive functional
genomic analysis showed that both infection and treatment with in vitro effective drugs leads
to activation of antiviral pathways like NFkB and JAK-STAT. Based on the similarity—and
not inverse similarity—between drug and infection-induced gene expression signatures, we
were able to predict the in vitro antiviral activity of drugs. We also identified SREBF1/2, key
regulators of lipid metabolising enzymes, as the most activated transcription factors by sev-
eral in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol sensor, we
showed that these drugs decrease the cholesterol levels of plasma-membrane. Supple-
menting drug-treated cells with cholesterol reversed the in vitro antiviral effect, suggesting
the depleting plasma-membrane cholesterol plays a key role in virus inhibitory mechanism.
Our results can help to more effectively repurpose approved drugs against SARS-CoV-2,
and also highlights key mechanisms behind their antiviral effect.
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Author summary

Targeting the infected host cells is an effective strategy in infectious diseases, like COVID-
19. Better understanding the virus and drug induced cellular mechanisms can help to
identify new compounds with potential antiviral activity. We used computational meth-
ods to analyse gene expression data from in vitro SARS-CoV-2 infected cell lines, and
gene expression signatures of drugs showing anti-SARS-CoV-2 activity. With the help of
machine learning methods, we were able to predict in vitro effective antiviral drugs from
gene expression based features. We found that effective drugs activate antiviral pathways
like JAK-STAT and NFkB, and also the SREBF transcription factors, key regulators of
cholesterol synthesis. Using microscopic measurements we validated that several antiviral
drugs influence the cholesterol content of the plasma membrane. Finally, we showed that
cholesterol rescue inhibited the in vitro antiviral effect of amiodarone, demonstrating the
importance of drug induced cholesterol changes in the antiviral drug effect.

1. Introduction

The newly emerged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), caus-
ing the coronavirus disease 2019 (COVID-19), has led to more than 420,000,000 reported
infections and 5,500,000 reported deaths worldwide [1] until February 2022. Identification of
new therapeutic compounds against SARS-CoV-2 / COVID-19 is an urgent need until effec-
tive vaccination is worldwide available and given the emergence of SARS-CoV-2 strains show-
ing immune evasion [2]. The main therapeutic strategies include A) inhibiting key viral
enzymes (like remdesivir [3]); B) modulating the infected cells to decrease viral replication
[4,5] and C) modulating the over-activation of the immune system to treat late complications
like “cytokine storm” [6-8]. Repurposing already approved drugs for these indications is espe-
cially important as it allows a shorter time of approval for anti-SARS-CoV-2 treatment.

Comparing gene expression signatures of drugs and diseases have been previously shown
to be an effective strategy to repurpose drugs for new therapeutic indications [9]. The general
principle of these studies is that a drug inducing an opposite gene expression signature to a dis-
ease signature can reverse the disease-related gene expression changes, thus the disease pheno-
type. This “signature reversal” principle has also been used to predict effective drugs against
SARS-CoV-2 infection [10-12]. However, these predictions lack, in most cases, mechanistic
insight and experimental validation. Moreover, as infected cells activate adaptive antiviral
pathways (like interferon pathway), inhibiting these pathways does not necessarily decrease
viral replication.

In this study, we analyzed transcriptomics data from in vitro SARS-CoV-2 infected cell
lines (section 2.1) and from cell lines treated with drugs showing anti-SARS-CoV-2 activity
(effective drugs, section 2.2). Functional genomic analysis revealed shared transcription factor
and pathway activity changes (eg. increased activity NFkB and JAK-STAT pathways) in the
infected and effective drug-treated cell lines. Similarity between infection signature and drug-
induced signature was predictive for in vitro effective drugs, contradictory to the classical “sig-
nature reversal” principle (section 2.3). Machine learning-based prediction of effective drugs
identified SREBF1 and SREBF2 transcription factors, key regulators of lipid metabolism, as
important factors of antiviral drug effect. Using a fluorescently labeled cholesterol sensor, we
showed the decreased level of plasma-membrane cholesterol in cells treated with effective
drugs, like chlorpromazine, confirming the effect of these drugs on cholesterol metabolism
(section 2.4). We also identified amiodarone, a drug decreasing plasma-membrane cholesterol
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content, thus a potential in vitro effective drug. Using an in vitro SARS-CoV-2 infection assay,
we demonstrated that the antiviral effect of amiodarone can be reversed by cholesterol supple-
ment, underlying the relevance of decreased plasma-membrane cholesterol in the antiviral
drug effect (section 2.5).

2. Results

2.1 Analysis of host pathway and transcription factor activities reveals
adaptive response of SARS-CoV-2 infected cells

We analysed gene expression data from two recent studies (GSE147507 [13] and GSE148729
[14]), where lung epithelial cancer cell lines (Calu-3 and A549) were infected with SARS-CoV-
2. To identify infection-induced pathway and transcription factor (TF) changes, we used the
PROGENY [15,16] and DoRothEA [17,18] tools, respectively (more details in Methods).

PROGENY analysis showed increased activity of NFkB and TNFa pathways in both ana-
lysed cell lines, while the activity of JAK-STAT pathway increased more pronounced in
infected Calu-3 cell lines (Fig 1A). DoRothEA analysis (Fig 1B) revealed strong activation of
STAT, IRF and NFkB transcription factors, while cell growth-related transcription factors
(E2Fs, Myc) showed decreased activity. Also SREBF1/2, key transcriptional regulators of cho-
lesterol synthesis, showed decreased activity. STATSs, IRFs and NFkB pathways / TFs play a key
role in antiviral innate immunity [19]. Decreased activity of E2Fs and Myc [20] and decreased
synthesis of cholesterol [21] are also part of the physiological antiviral / interferon response.

To further analyse which upstream signalling pathways regulate the inferred TF activity
changes, we used CARNIVAL [22], a signaling network contextualisation tool, which connects
transcription factor activities to perturbations in signaling networks via integer linear pro-
gramming (more details in Methods). We performed CARNIVAL analysis using inferred tran-
scription factor activities from a SARS-CoV-2 infected cell line (GSE147507, Calu-3), and used
RIG-I like receptors (DDX58 and IFIH1), key receptors for foreign RNA sensing [23], as main
perturbation target. CARNIVAL results showed (Fig 1C), that activation of RIG-I like recep-
tors by the dsRNA of SARS-CoV-2 can directly lead to the observed transcription factor activ-
ity changes, including activation of NFkB, IRFs and STATs and inhibition of SREBF2 and
E2F4. Key identified intermediate nodes AKT1 and MAPKI1 were already connected to coro-
navirus infection [5,24] and other viral infections [25,26], also suggesting that the observed TF
changes are initiated by the RIG-I like receptors, thus corresponding to the antiviral response
of the host cell.

In summary, our functional analysis of the gene expression changes in SARS-CoV-2
infected cell lines suggests that a large part of the induced pathway / transcription factor activ-
ity changes are adaptive, i.e. part of the physiological antiviral response.

2.2 Analysis of in vitro anti-SARS-CoV-2 drug-induced pathway and
transcription factor activities reveals similar changes to virus infection

To compare infection and drug-induced signatures, we used a large compendium of drug-
induced gene expression signatures from the LINCS-L1000 project [27]. LINCS-L1000 con-
tains drug-induced gene expression signatures from different cell lines, concentrations and
time points. We calculated consensus gene signatures for each drug using our previous
approach ([28], Methods), ending up with gene expression signatures for 4671 drugs. To select
drugs effectively inhibiting SARS-CoV-2 replication in vitro, we used a curated database cre-
ated by ChEMBL (http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html).
This dataset contains 133 drugs previously showing effective inhibition of viral replication in 8
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Fig 1. Functional genomic analysis of SARS-CoV-2 infected cell lines. (A) Inferred pathway and (B) TF activities of
SARS-CoV-2 infected samples from lung epithelial cell lines (Calu-3 and A549). Activities were calculated from
differential expression signatures (infected—control) using PROGENy and DoRothEA tools for pathway and TF
activities, respectively. Only TFs with high absolute level of activity changes (absolute normalized enrichment

score > 4) are shown. (C) Causal signalling network in SARS-CoV-2 infected Calu-3 cells (GSE147507) identified by
CARNIVAL. RIG-I like receptors (DDX58 and IFIH1) as perturbation targets and DoRothEA inferred TF activities
were used as the input of the CARNIVAL pipeline. Color code represents inferred activity of protein nodes (blue:
inhibited, red: activated).

https://doi.org/10.1371/journal.pcbi.1010021.9001

studies [4,29-35]. We found an intersection of 47 drugs between LINCS-L1000 (available gene
expression signatures) and ChEMBL dataset (in vitro effective drugs). To characterize drug-
induced pathway and transcription activity changes, we analysed consensus drug-induced sig-
natures using PROGENy and DoRothEA.

PROGENY analysis showed strong activation of NFkB and TNFa pathways by several
drugs, including niclosamide, perhexiline and digoxin (Fig 2A). Several drugs also strongly
activated the JAK-STAT pathway (RTK inhibitors osimertinib and regorafenib). In case of TF
analysis, we found similar patterns (Fig 2B) to the infection-induced signatures: increased
activity of NFkB and STAT transcription factors and decreased activity of Myc/E2Fs transcrip-
tion factors. Interestingly, SREBF1/2 showed strongly increased activity for a large cluster of
drugs, but (similar to the infection signatures) decreased in another cluster. To further analyse
the TF activity changes in the different clusters of drugs, we calculated average TF activities for
these clusters and plotted these values against the average TF activities of the 3 SARS-CoV-2
infection signatures (Fig 2C). One cluster (Fig 2C, upper left panel), showed high correlation
(Spearman’s rho = 0.64, p = 8.55¢-35) across all TFs. Two other clusters (Fig 2C, upper middle
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SARS-CoV-2 drugs (ChEMBL drugs).

https://doi.org/10.1371/journal.pcbi.1010021.9002

and upper right panels) showed lower, but still significant correlation with infection TF activity
signature (Spearman’s rho = 0.14 and 0.18, p = 0.0122 and 0.00174, respectively), with promi-
nent increase of STATSs and decrease of E2F4 transcription factor activity. For the remaining
two large clusters, we found either negligible (Fig 2C, lower right panel) or high (Fig 2C, lower
left panel) correlation with infection-induced TF activities (Spearman rho = 0.04 and 0.58,

p = 0.484 and 3.14e-27, respectively), but we found high drug-induced activity of SREBF1/2
transcription factors in these clusters, opposite to the inhibition of these TFs by SARS-CoV-2

infection.
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As we found that, for several drug clusters, drug-induced TF activities showed positive cor-
relation with SARS-CoV-2-induced TF activities, we were interested in the general similarity
of drug and infection-induced gene expression signatures. To achieve this we calculated the
signature similarity (Spearman’s correlation coefficient, which has been previously shown to
be an effective metric to analyse signature similarity for the LINCS-L1000 data [27,28])
between all the 4,671 drug-induced signatures from our LINCS-L1000 dataset and the infec-
tion signatures. We found that effective anti-SARS-CoV-2 drugs (ChEMBL dataset) have
higher similarity to infection signatures, than ineffective drugs / drugs with unknown efficacy
(Fig 2E, Mann-Whitney U test p-value = <1e-200).

In summary, we found that known in vitro effective anti-SARS-CoV-2 drugs induce similar
pathway and TF activity patterns, and appropriately similar gene expression signatures to
virus infection signatures. We also identified two large clusters of drugs inducing strong acti-
vation of SREBF1/2 transcription factors, key regulators of cholesterol / lipid metabolism.

2.3 Prediction of drugs with in vitro anti-SARS-CoV-2 activity

After identifying some general patterns in the gene expression signatures of in vitro effective
anti-SARS-CoV-2 drugs, we investigated how well we can predict drug effectiveness using
gene expression signatures.

As a first strategy, we simply used the previously calculated drug—infection signature simi-
larity to predict effective drugs. Using these similarity values (predicted score) and the known
in vitro effective drugs (ChEMBL dataset, true positive values) we performed ROC analysis
(Fig 3A). We found that similarity to infection signatures is predictive for effective drugs, i.e.
drugs with high similarity to infection signature are more frequently effective (ROC AUCs:
0.75, 0.74 and 0.64 for GSE147507 A549, GSE147507 Calu-3 and GSE148729 Calu-3, respec-
tively). To test the specificity of this signature similarity-based approach for SARS-CoV-2
infection signature, we included several other virus infection-induced gene expression signa-
tures for SARS-CoV (GSE33267 [36], GSE148729), MERS (GSE45042 [37], GSE56677 [38]),
respiratory syncytial virus (RSV, GSE147507), influenza (GSE28166 [39], GSE37571) and
human parainfluenza (HPIV, GSE147507) infected Calu-3 and/or A549 cell lines. Similarity to
these infection signatures showed lower predictive performance for anti-SARS-CoV-2 drugs
(ROC AUC values <0.7 except one SARS and RSV signature with ROC AUCs 0.70 and 0.71,
respectively, Fig 3B), suggesting the relative SARS-CoV-2 specificity of the similarity-based
methods.

Following this unsupervised prediction strategy, we also performed supervised, machine
learning-based predictions. We used the drug-induced TF activities as features, and effective
drugs from the ChEMBL dataset as positive examples, with Random Forest Classification as
prediction algorithm. We set up a random subsampling based cross-validation scheme and
evaluated the performance using ROC analysis (Methods). Our results showed a slightly
improved performance compared to the unsupervised, similarity-based approach (mean ROC
AUCs: 0.72 and 0.68, 0.66, 0.57, respectively for the machine learning and similarity-based
methods, paired t-test p-values between machine learning and similarity-based methods:
3.02e-07, 2.76e-15, 4.89¢-15 for GSE147507 A549, Calu-3 and GSE148729 Calu-3 signatures
respectively, Fig 3C). To gain some more mechanistic insight from the prediction of machine
learning models, we analysed feature importances (Gini importance, Fig 3D) of the Random
Forest Regression models and found that SREBF1 and SREBF2 activity were the two most
important features, followed by TFAP2A, HNF4A and TP63 transcription factors.

In summary, our two different prediction approaches showed reasonable performance
(comparable to studies based on network medicine and chemical similarity [40,41]), to predict
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Fig 3. Evaluation of similarity-based and machine learning-based models in predicting in vitro effective drugs. (A,
B) ROC analysis of similarity-based predictions of effective drugs against SARS-CoV-2. Drug—SARS-CoV-2 (A) or
drug—other virus (B) infection signature similarity was used as prediction score, while known in vitro effective drugs
(ChEMBL dataset) were used as true positives. (FPR: false positive rate, TPR: true positive rate) (C) Comparison of
predictive performance (ROCAUC:) of similarity-based method (similarity to SARS-CoV-2 infection signature, x-
axis) and random forest-based (RE-based, x-axis) prediction. Results of 100 random subsampling cross-validations. In
case of similarity-based methods, ROC AUC curves were only calculated for the corresponding cross-validation sets.
Boxplots represent the median (central line), first and third quartile (box), minimum and maximum non-outlier values
(whiskers) and outliers (diamonds). (D) Feature importances (Gini importance) of the Random Forest model. Top and
bottom 10 features (TFs) are shown according to importance.

https://doi.org/10.1371/journal.pcbi.1010021.9003

drugs with in vitro anti-SARS-CoV-2 activity, and also highlighted the importance of previ-
ously discussed SREBF1/2 transcription factors. Drug—SARS-CoV-2 signature similarities,
and predicted probabilities of anti-SARS-CoV-2 activity is available in S1 Table.

2.4 Anti-SARS-CoV-2 drugs are increasing SREBF activity by depleting
plasma membrane cholesterol

While in most cases we found similarity between the activity of SARS-CoV-2 infection and in
vitro effective drug-induced transcription factor activities, in case of SREBF1/2 we found
opposite changes: SARS-CoV-2 infection inhibited SREBF1/2, while a large cluster of effective
drugs lead to increased activity of SREBFs. SREBFs are activated through the decreased choles-
terol content of plasma membrane and endoplasmic reticulum, and activated SREBFs induce
the expression of cholesterol, and other lipid synthesizing enzymes [42]. From this point of
view, decreased SREBF activity during viral infection can lead to decreased cholesterol synthe-
sis, which can inhibit the viral replication and/or viral entry [21], thus can be considered as an
adaptive response of the host cell (Fig 4A). Interestingly, we observed a strongly increased
SREBF activity in large clusters of effective drugs. To resolve this discordance, we hypothesized
that these in vitro effective drugs directly decrease plasma membrane cholesterol (Fig 4A). In
this case, drug-induced decrease of plasma membrane cholesterol can contribute to the
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increased SREBF1/2 activity. Effects induced by viral infection are marked with black arrows (left side), while orange
arrows represent drug-induced changes (right side) The figure was created with BioRender.com. (B) Schematic
representation of the used fluorescent constructs. (C) Histogram of SREBF1 activation (left panel) and histogram of
predicted probabilities of in vitro antiviral activity of LINCS-L1000 drugs (right panel, according to the Random Forest
model). Drugs selected for in vitro experiments are text labeled. (D) Representative confocal microscopy images of
D4H-mVenus transfected HEK293A cells treated with DMSO, MBCD, chlorpromazine or amiodarone. White arrows
mark plasma membrane, while red arrows show intracellular localised cholesterol sensors. (E) Time-dependent change
of log,(PM/IC) ratio of average cholesterol sensor intensity in HEK293A cells treated with DMSO, MBCD,
chlorpromazine, amiodarone, loperamide or rosuvastatin. Red line marks drug treatment. *: significant (p<0.001)
interaction between drug treatment and elapsed time in linear model.

https://doi.org/10.1371/journal.pcbi.1010021.9g004

antiviral effect, while decreased cholesterol levels can activate SREBFs, thus explaining the
observed increased activity of these TFs in our bioinformatic analysis.

To confirm this hypothesis, we performed high-throughput, automatic confocal micros-
copy imaging using a fluorescently labeled cholesterol sensor domain, D4H-mVenus [43,44].
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HEK293A cells were co-transfected with D4H-mVenus and cytoplasmic Cerulean as cytosolic
marker (Fig 4B), and treated with dimethyl sulfoxide (DMSO, negative control), MBCD
(methyl B-cyclodextrin, plasma membrane cholesterol depleting compound, as positive con-
trol) and 3 drugs from our computational drug repurposing pipeline, loperamide, amiodarone
and chlorpromazine (all drugs were used in 10 uM final concentration). All these three drugs
increased the activity of SREBF transcription factors (Fig 4C, left panel). Loperamide and
chlorpromazine have been previously shown to be in vitro effective against SARS-CoV-2
(ChEMBL dataset), while amiodarone was one of the top predicted drugs of the Random For-
est model (Fig 4C, right panel, ranked 36/4671 drugs, S1 Table). We also treated HEK293A
cells with rosuvastatin, an inhibitor of cholesterol synthesis. Rosuvastatin also alters cellular
cholesterol metabolism, however, it does not influence plasma membrane cholesterol directly,
but inhibits HMG-CoA reductase, the rate limiting enzyme of de novo cholesterol synthesis.
Rosuvastatin was not predicted as an effective anti-SARS-CoV-2 drug by the Random Forest
model (Fig 4C left panel, ranked 1821/4671 drugs).

Cells were treated with the different drugs and serial confocal microscopy images were
recorded for 4.5 hours. In untreated, or DMSO treated cells, we observed a predominantly
plasma membrane localisation of the fluorescent protein labeled cholesterol sensor (Fig 4D,
top left panel). Treatment with MBCD led to decreased plasma membrane cholesterol levels,
while cholesterol accumulated in intracellular vesicles (Fig 4D, top right panel). We observed
similar phenotypic changes in case of amiodarone and chlorpromazine (Fig 4D, bottom pan-
els), while the localisation of cholesterol sensor in loperamide and rosuvastatin treated cells
was more similar to control condition (S1 Fig).

For a more systematic and unbiased analysis of the changes in the localisation of cholesterol
sensors, we performed quantitative image analysis (S2 Fig). For each cell in each image, we cal-
culated the ratio of average plasma membrane (PM) and average intracellular (IC) D4H-mVe-
nus fluorescence (PM/IC ratio). To segment cells in confocal microscopy images, we used
Cellpose library ([45], Methods). Plotting the PM/IC ratio as a function of elapsed time after
drug treatment (Fig 4E) revealed that PM/IC ratio did not decrease in loperamide and rosuvas-
tatin treated samples, while MBCD, chlorpromazine and amiodarone treatment induced sig-
nificant decrease of the ratio (linear model coefficients values for interaction between drug
treatment and time: -0.002, -0.00086, -0.00017, -0.000032 and 0.000083 for MBCD, chlorprom-
azine, amiodarone, loperamide, rosuvastatin respectively, p values: <1e-200, <1e-200, 2.71e-
09, 0.25 and 0.0047), confirming the plasma membrane cholesterol depleting effect of chlor-
promazine and amiodarone, two SREBF activating drugs.

In summary, our high-throughput image acquisition and analysis pipeline confirmed that
chlorpromazine and amiodarone decreased plasma membrane cholesterol content, which
explains the increased activity of SREBF transcription factors in case of gene expression
readout.

2.5 Supplementing cholesterol reverses anti-SARS-CoV-2 activity of
amiodarone

As our experiments revealed that the selected drugs with in vitro anti-SARS-CoV-2 activity
decreased the cholesterol content of plasma membrane, we were interested in whether
decreased plasma membrane cholesterol levels could play a causal role in the antiviral effect,
according to our assumptions (Fig 4A). To test this hypothesis, we performed in vitro SARS-
CoV-2 viral infection assay with cholesterol rescue in Vero-E6 cells.

At first we tested whether the investigated drugs show anti-SARS-CoV-2 activity in our pre-
viously described experimental system [46]. Briefly, Vero-E6 cells were co-treated with
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https://doi.org/10.1371/journal.pchi.1010021.g005

SARS-CoV-2 and the selected drugs (6 pM amiodarone, 12 M chlorpromazine or 50 uM
loperamide, effective drug concentrations were selected based on preliminary experiments) for
30 minutes, then washed and incubated with the drugs for 48 hours. Infection efficacy was
evaluated by microscopic examination of infection-induced cytopathic effect (CPE, more
details in Methods). Untreated, SARS-CoV-2 infected cells showed strong cytopathy (Fig 5A,
top left panel), while amiodarone, chlorpromazine and loperamide markedly reduced the
infection-induced cytopathy, confirming the antiviral effect of these drugs (Fig 5A). The used
compounds did not lead to cellular toxicity in the used concentrations (S3 Fig).

To test the effect of plasma membrane cholesterol depletion on SARS-CoV-2 infectivity, we
performed cholesterol rescue experiments (Fig 5B). Vero-E6 cells were treated with drugs
overnight, then the media was replaced with cholesterol (80 pM) containing media. After 1
hour of cholesterol treatment, the cells were infected for 30 min with SARS-CoV-2. Infection
efficacy was evaluated 48 hours after infection by droplet digital PCR based viral RNA
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quantification (Fig 5C). Chlorpromazine and loperamide did not have antiviral effect in the
pretreatment setting (linear model p values: 0.62 and 0.18, respectively), while amiodarone
decreased viral particle number significantly (linear model p-value: 1.47e-05). Cholesterol
replenishment significantly increased viral particle number in amiodarone treated Vero-E6
cells (amiodarone: cholesterol interaction term p-value: 0.026), confirming the causal role of
drug-induced cholesterol depletion in the antiviral effect of amiodarone.

Our in vitro SARS-CoV-2 infection assay confirmed the antiviral effects of chlorpromazine,
loperamide and amiodarone, and cholesterol rescue experiments suggest that plasma mem-
brane cholesterol depletion plays an important role in the antiviral effect of amiodarone.

3. Discussion

In this study, we analysed the gene expression signatures of in vitro SARS-CoV-2 infected cells
and effective anti-SARS-CoV-2 drugs. Using functional genomic computational tools, we
showed that both virus infection and drug treatment leads to similar changes of pathway and
transcription factor activities, like activation of antiviral NFkB and JAK-STAT pathways. Sig-
nature similarity between infection and drug-induced signature was predictive for drugs with
in vitro anti-SARS-CoV-2 activity, contrary to the classical “signature reversal” hypothesis.
Using machine learning models we effectively predicted anti-SARS-CoV-2 drugs, and pre-
dicted amiodarone as an in vitro antiviral compound. More detailed functional genomic analy-
sis of TF activities revealed that SREBF1/2 TFs are strongly activated by large clusters of
effective drugs. Using a high-throughput confocal microscopy setup and quantitative image
analysis we showed that two of the three investigated effective drugs influence cellular distribu-
tion of cholesterol, leading to decreased plasma membrane cholesterol content. Viral infection
assay confirmed the already described in vitro antiviral activity of loperamide and chlorproma-
zine, and also the predicted antiviral activity of amiodarone. Cholesterol supplement reversed
the antiviral effect of amiodarone, suggesting the causal role of decreased membrane choles-
terol in the antiviral effect.

Gene expression-based computational drug repurposing is a promising field to find new
disease indications of existing drugs [47]. Despite its simplicity, it has been used successfully to
identify repurposable drugs for different diseases from cancer [48,49] through inflammatory
[50] to metabolic [51] diseases. While most of the related works rely on the “signature reversal”
hypothesis, in case of infection diseases, like COVID-19, it is less clear whether signature rever-
sal (inhibiting the virus-hijacked signalisation) or signature similarity (promoting the antiviral
response of infected host cells) can be more effective. While early studies at the beginning of
the COVID-19 pandemic applied mostly the original signature reversal hypothesis, more
recent works [52,53] also assumed that drugs with similarity to the SARS-CoV-2-induced gene
expression signature can be effective. In our work, we performed a more unbiased analysis of
signature-based drug repurposing against SARS-CoV-2. We compared the gene expression
signatures of known effective drugs against SARS-CoV-2 infection signatures, and found that
signature similarity, and not dissimilarity, is predictive for antiviral effect. These results suggest
that increasing the antiviral response of host cells can be a more effective strategy than inhibit-
ing viral infection-induced pathways. Whether this is specific for SARS-CoV-2, known for
evading several antiviral systems of the host cell [54], or a general mechanism for (viral) infec-
tions, needs further analysis with large scale in vitro drug screenings against other viruses. Nev-
ertheless, using our “signature similarity” principle instead of—or together with—the
“signature reversal” hypothesis can accelerate computational drug repurposing against existing
and emerging infectious diseases, complemented by network-based repurposing strategies
[40,55].
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While signature (dis)similarity-based computational drug repurposing has promising pre-
dictive performance, it gives no real mechanistic insight. To overcome this problem, we per-
formed extensive functional genomic analysis of SARS-CoV-2 and drug-induced gene
expression signatures. We found that both viral infection and effective drugs stimulate known
antiviral pathways like NFkB and JAK-STAT. We observed lower induction of these pathways
in virus-infected A549 cells, compared to Calu-3 cell lines, probably based on the lower expres-
sion of virus receptor ACE2 in A549 cells. The activation of antiviral pathways in virus-
infected and effective drug-treated cells also supports the “signature similarity” principle.

Beside the activation of antiviral TFs and pathways, we also observed inhibition of
(inferred) SREBF1/2 transcription factors in SARS-CoV-2 infected samples, while an activa-
tion of these TFs in a large cluster of antiviral drug-treated cells. SREBF1/2 regulate the expres-
sion of key members of cholesterol synthesis. Cholesterol depletion of plasma membrane can
reduce SARS-CoV-2 infection [56,57], and decreasing SREBFs activity (and cholesterol syn-
thesis) can be also part of the physiological, interferon-induced antiviral response of the host
cell [21,58,59]. Recently, inhibitors of the SREBFs—DNA interaction were found to exert anti-
viral effects [60] and CRISPR based knock-out of the SREBF pathway members also led to
SARS-CoV-2 resistant phenotype [61], suggesting that inhibition of SREBFs could be benefi-
cial in case of SARS-CoV-2 infection. In contrast, we found increased activity of SREBFs in
case of several effective drug-induced gene expression signatures. Previous works also showed
the increased expression of lipid metabolic enzymes [12] in antiviral drug-treated cells, and a
recent large scale CRISPR screen [62] also found that increased cholesterol synthesis can
reduce SARS-CoV-2 infection. However, these two later conclusions were based on the analy-
sis of gene expression changes of the cholesterol synthetic pathway. Gene expression changes
are in several cases not the cause, but the (compensatory) consequence of perturbed cell states
[63,64]. Based on this, we hypothesized that increased SREBF1/2 activity (based on transcrip-
tional readout) can be a compensatory consequence of decreased plasma membrane choles-
terol levels in case of several antiviral drugs. Using a fluorescent cholesterol sensor, we found
that amiodarone and chlorpromazine, two effective in vitro antiviral drugs, indeed decreases
the cholesterol content of plasma membranes, which can explain the (compensatory) increased
SREBF1/2 activity. In an in vitro SARS-CoV-2 infection assay, coupled with cholesterol rescue,
we also showed that cholesterol replenishment reduced the antiviral activity of amiodarone,
thus confirmed the causal role of plasma membrane cholesterol decrease in the antiviral effect
of amiodarone. While our computational analysis also predicted that PM cholesterol depletion
plays a role in the antiviral effect of chlorpromazine and loperamide, we were not able to verify
these predictions experimentally. Noteworthy, these two drugs had antiviral effect in case of
co-treatment with virus infection, but not in the case of the pre-treatment setup used in choles-
terol rescue experiments (probably due to pharmacokinetic factors). It is thus hard to draw
conclusions about the role of cholesterol in the antiviral effect of these drugs.

While we showed that PM cholesterol depletion can be an important factor in the in vitro
antiviral effect of drugs, whether this can be translated to in vivo is still an open question. A
recent large scale study [65] showed that several in vitro repurposable drugs exert their antivi-
ral effect via altering the membrane composition of drug-treated cells, and this antiviral effect
has low translation potential based on concerns regarding drug concentration and adverse
effects. While the authors of this study concluded that phospholipidosis is the main drug-
induced membrane component change, our results argue that altered cholesterol content can
also be a causal factor in the antiviral effect of drugs. Whether altered lipid composition of cel-
lular membranes is only a factor confounding drug repurposing studies, or this effect can be
exploited towards effective therapy, needs further studies.
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In summary, our study showed that in vitro SARS-CoV-2 infection and effective antiviral
drugs lead to similar pathway and transcription activity changes. We found that gene expres-
sion signature similarity, and not the dissimilarity, predicts in vitro effective antiviral com-
pounds, which can accelerate computational drug repurposing against infectious diseases, and
we made the results of our predictions available for the research community (S1 Table). We
also identified that plasma membrane cholesterol depletion plays an important role in the
mechanism of action of several antiviral drugs, and that cholesterol replenishment inhibits the
in vitro antiviral effect of amiodarone, thus our results also give mechanistic insight about the
antiviral effect of repurposable drugs.

4. Methods
Virus infection-induced gene expression signatures

Microarray gene expression profiles of different virus-infected cell lines were downloaded
from Gene Expression Omnibus (GEO) with accession numbers GSE28166 (H5N1),
GSE37571 (Influenza), GSE33267 (SARS-CoV-1), GSE56677 and GSE45042 (MERS-CoV).
Preprocessing and differential expression (DE) analysis was performed by using R package
limma [66].

Total RNA-Seq profiles of SARS-CoV-2 and other virus-infected human cell lines were
downloaded from GEO with accession numbers GSE147507 (SARS-CoV-2, RSV, IAV, HPIV)
and GSE148729 (SARS-CoV-1 and 2). Differential expression (DE) analysis was performed
using R library DESeq2 [67].

In all gene expression datasets, we used (virus-infected—control) contrasts for differential
expression calculation, where the control condition was mock infection. Where gene expres-
sion data after multiple time points were available, we used 24 h post-infection data. Shared
genes across all datasets were selected and further analyzed.

Drug treatment-induced signatures

We used Level 5 gene expression profiles from the LINCS-L1000 dataset [27]. We calculated
consensus expression signatures for each drug (across different cell lines, concentrations and
time points) using the MODZ method [27,28]. We matched LINCS-L1000 drugs with
ChEMBL effective drug dataset (http://chembl.blogspot.com/2020/05/chembl27-sars-cov-
2-release.html) using drug names and simplified molecular-input line-entry system (SMILES).
Only measured (landmark) genes were used in the further analysis.

Functional genomic analysis

From previously calculated SARS-CoV-2 infection and effective drug-induced signatures, we
inferred pathway activities using PROGENYy (R package progeny [15,16]) and transcription fac-
tor activities using DoRothEA (R package dorothea [18]).

PROGENYy was applied to infer activities of 14 different pathways from expression and
weight of their footprint gene sets. Z-scores of pathway activities were calculated using 10000
permutations of genes as background distribution. DoRothEA was applied to infer transcrip-
tion factor activities using the viper algorithm [68]. DoRothEA is a collected, curated resource
of signed TF-target interactions. Interactions are assigned a confidence level ranging from A
(highest) to E (lowest) based on the number of supporting evidence. In this study interactions
assigned A, B, C confidence levels were used. In transcription factor activity heatmaps (Figs 1B
and 2B), only selected transcription factors (absolute normalised enrichment score > 4 in
SARS-CoV-2 infection signatures) are shown.
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We used the CARNIVAL tool [22] to contextualize our transcriptomics-based results into a
mechanistic causal network. Briefly, CARNIVAL takes as input a prior knowledge network
and a set of constraints and infers the most likely causal interactions by solving an integer lin-
ear programming problem. We assembled a curated prior knowledge signaling network from
OmniPath resources [69]. As constraints, we selected the RIG-I like receptors (DDX58 and
IFIH1) as upstream signaling perturbation and the top 25 most deregulated TFs (according to
DoRothEA and viper results) upon SARS-CoV-2 infection as their downstream target. In addi-
tion, we used PROGENYy pathway activity scores to weight the prior knowledge network and
assist CARNIVAL in the discovery of optimal networks connecting the upstream perturbation
(RIG-I like receptors) to the downstream targets (TFs).

Signature similarity and machine learning-based prediction

We calculated similarities using Spearman’s correlation between each virus infection-induced
and each drug treatment-induced signature after selecting shared genes.

TF activity scores from drug-treated cells were used to predict effective drugs against
SARS-CoV-2 using Random Forest Classifier from scikit-learn Python library [70]. The model
was trained using 300 trees, with default parameters otherwise and with 100 different training
sets. Training sets consisted of a 50% random sampling of effective drugs and non-effective
drugs as well. The average importance of features (TFs) was computed (sum of feature impor-
tances, divided by the number of models). Predicted probabilities of antiviral activity were also
computed in each prediction and the mean of them was calculated for each drug (probabilities
were summed for each drug and divided by the number of occurrences in validation sets).

We performed ROC analysis using scikit-learn Python library to evaluate similarity-based
and machine learning-based predictions. Effective drugs against SARS-CoV-2 curated by
ChEMBL and overlapping with drugs of the LINCS-L1000 dataset were used as the positive
class. The negative class consisted of the part of drugs from the LINCS-L1000 dataset not con-
sidered as effective by ChREMBL. To compare machine learning-based and similarity-based
methods ROC curves were computed for each different validation set (100) and signature simi-
larity scores of the corresponding drugs were considered.

Fluorescent cholesterol sensor experiments

The cellular cholesterol sensor used in this study was the D4H domain [43,44] fluorescently
labeled with monomer Venus (mVenus) on its N-terminus. To create the construct coding
this sensor, we used a plasmid coding the bioluminescent version of the sensor (described in
[71]), a kind gift from Tamas Balla (NICHD, NIH, Bethesda, USA). The D4H domain-coding
sequence from this plasmid was subcloned into the pEYFP-CI plasmid containing mVenus in
place of EYFP, using BglIl and BamHI restriction enzymes. Cytosolic Cerulean was expressed
from a pEYFP-NI1 plasmid where EYFP had been replaced with Cerulean.

For fluorescent imaging, HEK293A cells (ATCC, USA) were maintained in Dulbecco’s
Modified Eagle Medium (DMEM—Lonza, Switzerland) complemented with 10% fetal bovine
serum (Biosera, France) and Penicillin/Streptomycin (100 U/ml and 100 pg/ml, respectively—
Lonza, Switzerland). Cells were seeded on poly-L-lysine pretreated (0.001%, 1h) 24-well imag-
ing plates (Eppendorf, Germany) at a density of 1e05 cells/well. On the next day, cells were co-
transfected with plasmids coding cytoplasmic Cerulean and D4H-mVenus (0.25 pg/well each)
using Lipofectamine 2000 (0.75 pl/well, Invitrogen, USA).

Image acquisition started 24h post-transfection, after the medium had been changed to
300 pl/well HEPES-buffered DMEM without phenol-red (Gibco, USA). Images were acquired
automatically using the ImageXpress Micro Confocal High-Content Imaging System
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(Molecular Devices, USA), with a 40x Plan Fluor objective. CFP-2432C and fluorescein iso-
thiocyanate (FITC) filter sets were used for Cerulean and D4H-mVenus images, respectively,
both with an exposure time of 300 ms. After acquiring control images (30 min), cells were
treated with either DMSO (as control) or with the drugs indicated on Fig 4E in a volume of
100 pl/well (270 min). Measurements were performed at 30°C. Three independent measure-
ments were made, with duplicate wells for each condition and 5 images/well taken for each
time point.

All chemicals used for treatment were purchased from Sigma-Aldrich Merck (Germany).
Amiodarone HCI, chlorpromazine HCI, loperamid HCl and rosuvastatin calcium were dis-
solved in DMSO, stored at -20°C as 10 mM stock solutions and diluted in cell medium
promptly before cell treatment to a final concentration of 10 uM. MBCD was stored as powder
at 4°C and freshly dissolved in cell medium before treatment to a final concentration of 10
mM.

Image analysis pipeline

Images were segmented with Cellpose Python library [45], which is a generalist, deep learning-
based segmentation method. To select high-quality images the cytoplasm marker channel was
used with Laplace filtering. We used high-quality images (filtered according to an appropriate
upper threshold of standard deviation of Laplace value in each experiment) as input of the
Cellpose model, with parameter channel set to greyscale and cell diameter greater than 200
pixels.

After identifying cell boundaries, we applied binary erosion (scipy Python library [72]) with
default structure and 10 iterations to determine cytoplasm boundary, or binary dilation with
default structure and 5 iterations to determine PM outer boundary. The boundary of PM was
determined by subtracting the cytoplasm boundary from the outer boundary. We calculated
the log, ratio of the mean PM and mean intracellular D4H fluorescence intensities for each
cell in the D4H channel to examine the changes of plasma membrane cholesterol distribution.
For statistical analysis, we used log2(PM/IC) ~ Time + Time: Drug + Exp linear model, where
Time corresponds to elapsed time after drug treatment, Drug factor represents the used drug,
using DMSO as reference level. Exp factor represents the (n = 3) individual experiments.

Viral infection and cholesterol rescue experiments

Amiodarone HCI (Sigma-Aldrich, Merck KGaA, Germany) was dissolved in DMSO (Sigma-
Aldrich, Merck KGaA, Germany) and kept at -20°C. Chlorpromazine (in house synthesized
based on [73]) and loperamide HCI (Sigma-Aldrich, Merck KGaA, Germany) were freshly dis-
solved in water and filtered prior to the treatment. 10 mM stock solutions were made from the
drugs. Vero-E6 cells were seeded in a 96-well plate on the day before the experiments. On the
next day the cells were treated with 100 ul of 50 uM remdesivir or loperamide or 12 uM chlor-
promazine or 6 UM amiodarone solution overnight. 1 hour prior to the infection the cell cul-
ture media containing the different drugs was replaced with media containing 80 uM
cholesterol (Sigma-Aldrich, Merck KGaA, Germany). After the 1-hour-long cholesterol treat-
ment the cells were infected with SARS-CoV-2 (GISAID accession ID: EPI_ISL_483637) at
MOI:0.01 in a BSL-4 laboratory. Cells were incubated with the virus for 30 minutes then the
media was replaced with fresh cell culture media. During the investigation (except cell seeding)
DMEM (Lonza Group Ltd, Switzerland) supplemented with 1% Penicillin- Streptomycin
(Lonza Group Ltd, Switzerland) and 2% heat-inactivated fetal bovine serum (Gibco, Thermo
Fisher Scientific Inc., MA, USA) were used. 48 hours post infection (hpi) the cells were
inspected under microscope and RNA was extracted from the supernatant (Zybio EXM 3000
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Nucleic Acid Isolation System, Nucleic Acid Extraction Kit B200-32). Viral copy number was
determined using droplet-digital PCR technology (Bio-Rad Laboratories Inc., CA, USA).
SARS-CoV-2 RdRp gene specific primers and probe were utilized (Forward: GTGARATGGT
CATGTGTGGCGG, reverse: CARATGTTAAASACACTATTAGCATA and the probe was:
FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ). For statistical analysis, measured viral
copy numbers were log, transformed, and we used a log2(CV) ~ Drug * Cholesterol + Exp,
where Drug factor represents the used drug (untreated as reference level), Cholesterol factor
represents cholesterol replenishment treatment (no treatment as reference level). Exp factor
corresponds to the (n = 4) individual experiments.
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Abstract

Intracellular signaling initiated from ligand-bound receptors plays a fundamental role
in both physiological regulation and development of disease states, making recep-
tors one of the most frequent drug targets. Systems level analysis of receptor activity
can help to identify cell and disease type-specific receptor activity alterations. While
several computational methods have been developed to analyze ligand-receptor
interactions based on transcriptomics data, none of them focuses directly on the
receptor side of these interactions. Also, most of the methods use directly the expres-
sion of ligands and receptors to infer active interaction, while co-expression of genes
does not necessarily indicate functional interactions or activated state. To address
these problems, we developed RIDDEN (Receptor actlvity Data Driven inferENce),

a computational tool, which predicts receptor activities from the receptor-regulated
gene expression profiles, and not from the expressions of ligand and receptor genes.
We collected 14463 perturbation gene expression profiles for 229 different receptors.
Using these data, we trained the RIDDEN model, which can effectively predict recep-
tor activity for new bulk and single-cell transcriptomics datasets. We validated RID-
DEN'’s performance on independent in vitro and in vivo receptor perturbation data,
showing that RIDDEN’s model weights correspond to known regulatory interactions
between receptors and transcription factors, and that predicted receptor activities
correlate with receptor and ligand expressions in in vivo datasets. We also show that
RIDDEN can be used to identify mechanistic biomarkers in an immune checkpoint
blockade-treated cancer patient cohort. RIDDEN, the largest transcriptomics-based
receptor activity inference model, can be used to identify cell populations with altered
receptor activity and, in turn, foster the study of cell-cell communication using tran-
scriptomics data.
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Author summary

Receptors play a crucial role in intercellular communication, thereby influencing
essential physiological processes. By identifying which receptors are active and
initiating signaling within cells we can gain insights into the processes triggered
by this communication. Changes in gene expression patterns regulated by these
receptors allow us to infer their activity, providing more insight than measuring
the receptor or ligand gene expression levels, which often fail to accurately
reflect the actual protein activity within the cells. To address this, we developed
RIDDEN (Receptor actlvity Data Driven inferENce), a tool for predicting receptor
activity by summarizing gene expression profiles regulated by receptors into in-
terpretable activity profiles. We evaluated RIDDEN'’s performance and found that
it reliably captures receptor activity and its biological implications. Thus, RIDDEN
enhances our understanding of cellular processes related to communication
between cells and helps identify the sources of signaling that can lead to various
cellular phenotypes.

1. Introduction

Ligands and receptors are considered the key drivers of cell-cell communication
(CCC), which process is essential for physiological functions. The ligand produced
by the “sender-cell” reaches the “receiver-cell”’, where it binds to its receptor and
changes its activity. This binding initiates downstream signaling from the receptor,
and, as a result, it alters the receiver cell’s state. This process is vital for cells to
respond to their environment, which regulates essential processes, such as maintain-
ing homeostasis, cell growth, differentiation or immune interactions. Dysregulation

of the receptor activation, caused by altered ligand binding, mutation or overex-
pression of the receptor, can lead to various diseases, including changes in insulin,
neurotransmitter, G protein-coupled or overexpression/overactivation of growth factor
receptors leading to insulin resistance [1], neurological disorders [2], endocrine dis-
eases [3] or cancer development [4], respectively.

Experimental investigation of ligand-receptor interactions on the systems biology
scale remains challenging due to the complexity of cellular interactions [5,6]. The limited
scope of studying a few isolated cells experimentally restricts the ability to obtain com-
prehensive information on communication [7]. A large number of computational methods
have emerged to discover and analyze these interactions in the last decade [6]. Most
methods use prior-knowledge-based lists of receptor-ligand interactions coupled with
statistical methods to identify sender-receiver cell pairs with significant expression of
corresponding ligand-receptor pairs [8—13]. Several new methods [14—16] focus on
the ligand-induced expression changes of “receiver-cell” to infer the activity of ligand-
induced signaling, however no current method is able to infer receptor activity directly.

Computational methods predominantly rely on transcriptomic data because it
is broadly available, and RNA sequencing is a high-throughput and cost-effective
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approach [17]. A limitation of transcriptomics data is that gene expression cannot be directly translated to protein levels
due to regulatory mechanisms, splicing, or post-translational modifications [5,18]. However, if gene expression changes
are considered a “footprint” (consequence) of altered protein activity, activity can be computationally inferred from

gene expression changes. Methods using these ideas are generally called “footprint-based” tools [19]. These methods
require information about the genes regulated by the proteins of interest. While these regulatory interactions are well-
characterised in the case of transcription factors [20], in the case of other signaling proteins, like receptors, less informa-
tion is available. Perturbation gene expression signatures, where gene expression is measured after the perturbation of a
given protein, can help to identify such protein-gene regulatory interactions [20,21].

Building on this principle, a recent study [14] introduced a method (CytoSig), that predicts cytokine signaling activities
from transcriptomic profiles. It is based on a collection of cytokine stimulation signatures accessible in public databases,
like the Gene Expression Omnibus [22]. While CytoSig effectively predicts the activity changes for 43 cytokines, the
authors describe that lack of data is a limitation of the research field. Some cytokines were trained on a low number of
expression profiles. In addition, these experiments were not conducted based on a standardised method, and the use of
different platforms for sequencing led to high variability between samples.

We developed RIDDEN (Receptor actlvity Data Driven inferENce), a statistical model that infers receptor activities
from transcriptomic profiles to overcome the limitation of the low number of high-quality signatures in public databases
and to extend the number of predictable signaling molecules. To enable the inference of receptor activities, we combined
the advantages of the prior knowledge of ligand-receptor interactions from the OmniPath resource [23,24] and a large
collection of uniformly conducted and processed ligand and receptor perturbation gene expression experiments from
The Library of Integrated Network-Based Cellular Signatures (LINCS), which is the most extensive collection of gene
expression profiles of perturbations applied in a wide range of time points, doses and several cell lines [25]. We devel-
oped a model to predict the activity of 229 receptors and demonstrated its performance by predicting cytokine signaling
activities in comparison with the state-of-the-art method, the CytoSig [14]. The RIDDEN resource and console application
are accessible at https://github.com/basvaat/RIDDEN _tool. We show how the collected resource correlates with funda-
mental biological processes and a case study where receptor activity can be used as a biomarker of patient survival in
immunotherapy.

2. Results
2.1. Establishment of the RIDDEN model for receptor activity inference

As the first step of constructing the statistical model that infers receptor activity from transcriptomic profiles a com-
prehensive dataset containing receptor and ligand perturbation data was required. We obtained curated ligand-
receptor interactions from the OmniPath database [23,24]. Based on this prior knowledge, we collected the chemical
(drug treatment, ligand stimulation) and genomic (knock-out, knock-down, overexpression) perturbation profiles of
all the receptors and ligands available in the LINCS L1000 database [25]. We used level 5, log-normalized, stan-
dardised gene expression profiles in our study. In total, our database consisted of 38989 consensus transcriptional
profiles for 599 receptors and ligands in 5 different perturbation types, and these data serve as the basis of the
statistical model.

For training RIDDEN, we fitted linear regression models on the receptor perturbation gene expression data, using the
known receptor perturbations (+1 activated, -1 inhibited, 0 not perturbed) as input [26,27]. Linear models, despite their
simplicity, remain among the most widely used model types for gene expression signature-based studies [14,26,28]. We
fitted the models for each receptor-regulated gene pair and used the coefficients of the linear regression to define the
RIDDEN model (Fig 1A). We use a permutation-based approach to estimate receptor activities in new samples
(Methods, Fig 1B).
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Fig 1. RIDDEN Construction of the model and workflow. (A) RIDDEN model construction. The perturbation profiles are collected from the LINCS
L1000 database, and the ligand-receptor interactions are collected from OmniPath. The receptor and ligand perturbation signatures are then filtered
from LINCS, and consensus gene expression signatures are calculated. Next, the ligands are mapped to corresponding receptors, known to be inter-
acting according to prior knowledge, and linear models are fitted on the ligand-receptor perturbation profiles using the known receptor perturbations

(+1 activated, -1 inhibited, 0 not perturbed) as input to create the RIDDEN. Created in BioRender. (B) Inference of receptor activities using RIDDEN.
From bulk and single-cell transcriptomics, RIDDEN estimates receptor activities using dot products and computes z-scores using permutations of gene
labels. Created in BioRender. (C) Number of receptors in RIDDEN. Barplots show receptor counts by perturbation types. Each bar shows the number of
receptors corresponding to each confidence level. (D) The cross-validation performance was assessed using ROC AUC. The boxplot shows the median
ROC AUC of 229 receptors, the first and third quartiles. The minimum and maximum values are shown as whiskers. (E) Receptor confidence levels. The
boxplot shows the distribution of Mann-Whitney U (MWU) p-values for receptors across different confidence levels. The p-values were calculated using
the mean of the splits applied during the evaluation process. The x-axis represents the confidence levels (A-E), and on the top, the number of receptors
in each confidence group is shown. The median p-values are depicted in black, while the first and third quartiles are represented by the box, and the
minimum and maximum values are shown as whiskers.

https://doi.org/10.1371/journal.pcbi.1013188.g001

To ensure that our statistical model only includes receptors demonstrating predictive capability, we kept only sig-
natures passing certain criteria. For quality filtering, we first constructed 5 models for the 5 perturbation types (ligand,
compound, CRISPR, etc.) separately, and we performed cross-validation to filter for receptors whose activity can be
predicted at least in one other modality (Methods). Finally, the RIDDEN summarizes 14463 high-dimensional gene
expression profiles for 229 receptors into differential receptor signatures that can be leveraged to infer receptor activ-
ities from bulk and single-cell transcriptomics. The distribution of expression values for each gene across all receptor
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perturbations is shown in S1 Fig. Next, we conducted an additional cross-validation and calculated the predictive
performance for all 229 receptors, for which we used the complete set of their perturbation signatures from every
modality (Fig 1C, Methods). This model (Fig 1C, labeled with Total) was then applied for subsequent analyses. The
cross-validation resulted in a median ROC AUC score of 0.71. (Fig 1D). Based on the cross-validation performance
(Fig 1E, Methods), we further classified receptor signatures into five confidence levels (A-E, where A confidence level
receptors had the best cross-validation performance). For further evaluation, we use the RIDDEN model fitted on all
perturbation types.

2.2. Model benchmark

To assess the prediction performance of RIDDEN, we used a dataset of bulk cytokine perturbation transcriptomic profiles
collected by the authors of CytoSig, and for further evaluation, we used the most recent Immune Dictionary’s single-cell
transcriptomic profiles in response to many different cytokines as ground truth. RIDDEN was used to predict the cytokine
receptor activities of the samples, and we then compared its predictive performance with that of the CytoSig model in pre-
dicting cytokine signaling activities. We argued that if the model effectively predicts receptor activity or cytokine signaling
activity from gene expression data, it can identify the perturbed receptor or cytokine. This was evaluated using the ROC
AUC metric (Fig 2A).

First, to compare RIDDEN with CytoSig, we performed a cross-evaluation by testing each model on the dataset that
was used to train the other model. Although RIDDEN was trained on LINCS landmark genes, we evaluated the prediction
of CytoSig using both the landmark and the inferred genes in the LINCS signatures. The full RIDDEN yielded 0.61, while
the CytoSig 0.59 median ROC AUC. Moreover, the RIDDEN receptor models with confidence levels A-E reached 0.68,
0.64, 0.56, 0.51 and 0.52, respectively (Fig 2B).

Next, we used the single-cell transcriptomic profiles of the Immune Dictionary [15] to determine if the RIDDEN and
CytoSig methods could predict which cytokine was perturbed in the sample. We analyzed the cytokines and their recep-
tors that were common in all three datasets. Here, we saw that despite not explicitly modelling ligand perturbations, the
RIDDEN had a comparable ROC AUC score of 0.64 with CytoSig (0.67). We then assessed the prediction of cytokine
receptors using the entire Immune Dictionary dataset that included all identifiable cytokines. The ROC AUC scores for
receptor categories A-E are 0.84, 0.55, 0.61, 0.56, and 0.44, respectively (Fig 2C).

To compare the performance of RIDDEN to other ligand activity prediction methods, we also used NicheNet (NN) to
predict ligand activity of Immune Dictionary cytokine perturbation data. The ligand activity predictions of the NN resulted
in a median ROC AUC of 0.54, while evaluating 64 overlapping cytokines with Immune Dictionary (S2 Fig). RIDDEN
achieved higher ROC AUC score on the three dataset overlap (Fig 2C), which included 28 cytokine receptors and their 58
interacting cytokines, 46 of which also overlapped with NN.

Taken together, RIDDEN achieved predictive performance similar to CytoSig in both the cross-validation setup and the
independent perturbation dataset. Notably, for the receptors with the highest confidence, RIDDEN outperformed CytoSig

(Fig 2B, C).

2.3. Model evaluation and correlation with biology

Besides benchmarking predictive performance, we also analyzed RIDDEN from a biological perspective. To achieve this,
we examined whether receptors that share similar signaling pathways are clustered based on model weights. We also
analyzed the relationship of the receptor with transcription factor (TF) activity. Finally, we calculated the predicted receptor
activity correlation with baseline receptor and ligand expression of cell lines and patient samples.

First, we investigated the similarity of receptors in the model by hierarchical clustering of receptor weight vectors. We
can identify receptor family members clustered together on the dendrogram due to similar downstream signaling (Fig 3A).
We performed Gene Ontology biological process [29] enrichment analysis on gene weights of the RIDDEN receptors
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Fig 2. Model benchmark. (A) The receptor activities are inferred from cytokine stimulation and cytokine receptor perturbation gene expression using
the CytoSig and RIDDEN models. The ground truth describing the perturbed cytokine or receptor in the sample is used to calculate the ROC AUC per
cytokine in the case of CytoSig prediction or cytokine receptor in the case of RIDDEN prediction. Created in BioRender. (B) Comparison of the predictive
performance of the RIDDEN and the CytoSig model. The boxplot shows the distribution of ROC AUC values derived from predictions with the CytoSig
and RIDDEN models on the other model’s training dataset. The RIDDEN model matrix was split into subsets based on confidence scores, and these
models were tested against CytoSig. In the case of the CytoSig model, the evaluation dataset is the LINCS cytokine perturbation signatures consisting
of landmark genes +inferred genes. The median ROC AUC values (central line and white numbers), first and third quartile (box), minimum and max-
imum non-outlier values (whiskers) and outliers (diamonds) are shown on the boxplot. (C) Benchmarking of the RIDDEN and the CytoSig models on
the Immune Dictionary dataset. The boxplot shows the distribution of ROC AUC values. The first two boxes (RIDDEN ALL and CytoSig ALL overlap)
represent the evaluation of models on the overlapping cytokines and their receptors of the three resources. The cytokines of Immune Dictionary were
mapped to receptors of RIDDEN, thus resulting in a different number of data points in this comparison. The following boxes show the ROC AUC values
of RIDDEN models predicting the activities of all overlapping Immune Dictionary cytokine receptors. These models contain receptors with different confi-
dence scores (A-E). The boxplot features are as described in B.

https://doi.org/10.1371/journal.pcbi.1013188.9002

with distinct functions, to assess whether the model captures biologically meaningful patterns and to validate that genes
with high absolute weights reflect relevant downstream processes of each receptor. As some representative exam-
ples, the top enriched terms aligned with known receptor functions, such as CXCR4 (C-X-C chemokine receptor type

4, a G protein-coupled chemokine receptor), which is associated with lymphocyte/leukocyte homeostasis [30]; IFNGR1
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Fig 3. Evaluation of the model. (A) Hierarchical clustering of the receptor weights of the RIDDEN model. The colours indicate different receptor fami-
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ship between TF activities and receptors in the same pathways. The pairs of boxes show the calculated TF activities from the RIDDEN receptor weight
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resents the receptors with different confidence levels. The number of pathways and median TF activities, first and third quartile (box), and minimum and
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are represented in a violin plot. A dashed line indicates the quartiles of the correlation values.

https://doi.org/10.1371/journal.pcbi.1013188.g003

(interferon gamma receptor 1, a type Il cytokine receptor) has a role in antigen processing and presentation [31]; IL6R
(interleukin 6 receptor) os crucial for regulating immune responses as a cytokine receptor [32], and also plays a role in
regulating autophagy [33]; TNFRSF 1B (tumor necrosis factor receptor superfamily member 1B, a TNF receptor) is linked
to T cell activation in immune response [34,35]; and TGFBR1 (transforming growth factor beta receptor 1, a TGF-beta
receptor) is essential for all phases of wound healing [36,37], and is directly involved in hemostasis [38] (S1 Table). While
enriched terms reflect receptor biology, complete overlap is not expected because methods like RIDDEN capture func-
tional changes based on downstream effects rather than relying on predefined gene set enrichment.
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RIDDEN infers receptor activity by capturing the gene expression changes induced by receptor perturbation. However,
the gene expression does not necessarily reflect the activity of the proteins, therefore, the receptor-induced gene expres-
sion signature is expected to correlate more with the activity of downstream effectors, such as TFs, that directly regulate
target genes in response to receptor signaling, rather than with the gene expression levels of those effectors themselves.

Active receptors initiate signaling cascades that modulate the activity of downstream TFs. Thus, we anticipated that
the absolute activity of TFs, which are downstream to the active receptors is increased compared to TFs, which are not
affected in the signaling pathway. Therefore, we estimated transcription factor activities of receptor model weights using
decoupleR [28] with TF regulons from DoRothEA [20]. The RIDDEN model’s weights represent the receptor-induced gene
expression signature. We compared the activities of transcription factors included or not in the same KEGG signaling
pathways [39] as the receptors. We found that TF-receptor pairs sharing KEGG pathways had significantly higher activity
than those that do not share KEGG pathways (t-test p-value=1.6x10-5). We also saw significant differences in receptors
with the highest confidence scores, p-values of 1.6x10 for A-level receptors and 8.8x10-2 for B-level receptors. (Fig 3B).
Additionally, we correlated receptor activity with both absolute TF activity and TF gene expression levels calculated from
the CytoSig dataset. We found that the difference in correlation distribution between TF-receptor pairs within the same
KEGG pathway versus unrelated pairs was substantially greater when using TF activity (t-test p-value =9.3x10-54) com-
pared to TF gene expression (t-test p-value =1.5x10-22) (S3 Fig).

To demonstrate the significance of predicting receptor activities, we performed a correlation analysis based on the
assumption that, if the ligand and its receptor are upregulated, their increased accessibility indicates the potential for
receptor activation. For this analysis, we used patient tumor samples from The Cancer Genome Atlas (TCGA) [40], where
cancer cells are bulk sequenced together with their microenvironment thus, paracrine signaling can be assessed. We also
performed our analysis on the more homogenous cancer cell line data from the Cancer Cell Line Encyclopedia (CCLE)
[41]. We investigated the distribution of Pearson’s correlations between receptor activity and the product of receptor and
its ligands expression. Although the average correlation was relatively low, the distribution significantly differs from the ran-
dom distribution with p-value=6.6x10-13 and 1.7x10-2 for TCGA (Fig 3C) and CCLE (S4 Fig) data, respectively.

To summarize, these findings suggest that the integrated receptor perturbation signatures capture biological processes
and that the model can be leveraged for receptor activity prediction.

2.4. RIDDEN identifies biomarkers for cancer therapy response

After evaluating RIDDEN’s prediction performance and biological validity, we analyzed its potential to predict patient
response to cancer therapy. Here, we used an immune checkpoint therapy dataset, as immune-oncology therapies rely on
disturbing the interactions between cancer and immune cells, thus cell-cell communication methods, in this case, can be
especially relevant. Immune checkpoint blockade (ICB) therapies have emerged as a promising advancement in cancer
treatment. They target immune checkpoint molecules, which are pairs of ligands and receptors responsible for regulating
immune responses, such as the PD-1 and PD-L1. PD-1 is expressed on the surface of various immune cells, and acti-
vated PD-1 inhibits the anti-cancer activity of these cells. PD-L1 is prominently expressed on the surface of tumor cells
and activates PD-1, thus facilitating the immune escape of cancer cells. While ICB is effective in a group of patients, it is
important to identify biomarkers to determine which patients can benefit from the therapy [42].

We analyzed the data from a study, where clear renal cell carcinoma patients were treated with either nivolumab,
a PD-1 blockade therapy, or everolimus, an mTOR inhibitor [43]. We focused on the pretreatment samples, where
gene expression was measured less than one year prior to the initiation of the therapy. We analyzed the associations
between PD-1 receptor expression/ PD-L1 ligand expression/ PD-1 receptor activity and patient overall survival (OS).
There was no association between OS and PD-1 or PD-L1 gene expression in the nivolumab-treated patient cohort
(log-rank test p-value =0.465, 0.318, respectively) (Fig 4A). Although ligand or receptor mRNA levels were not predictive
of patient survival, the RIDDEN-estimated PD-1 receptor activity was associated with the survival of nivolumab-treated
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Fig 4. PD-1 expression and activity in tumor samples. (A) PD-1 receptor activity is associated with the survival of patients with renal cell carcinoma,
whereas PD-1 and PD-L1 gene expression are not associated. Kaplan-Meier plots represent the overall survival in months (x-axis) and the survival prob-
ability (y-axis) of samples with high or low activity of PD-1 receptor (left), expression of PD-1 receptor (middle) and expression of PD-L1 ligand (right),
where the mean value threshold is used. The result of the log-rank test is shown. The red line indicates a low; the blue indicates a high expression/activ-
ity. (B) The activity of the PD-1 receptor was not associated with patient survival in the case of patients treated with everolimus, an mTOR inhibitor. (C)
The activity of the PD-1 receptor is not associated with survival in samples that were taken more than a year before treatment with nivolumab, a PD-1
inhibitor. (D) Association of receptor activity with patient survival in response to nivolumab. The volcano plot shows the Cox regression coefficients (effect
size) (x-axis) and the -log, (p-values) (y-axis) for the receptors with A and B confidence (dots). The black dashed line indicates the p-value<0.05 signifi-
cance level. Receptors with a p-value <0.03 are shown on the plot. (E) A 2-dimensional representation of the high-dimensional single-cell transcriptomic
profile of RCC patients. The UMAP shows the different cell type clusters with different colors (left) and the PD-1 receptor activity of the single cells (right),
where high activity is marked by red and low activity is marked by blue. (F) The PD-1 receptor activity of different cell types in samples from 7 patients
with renal cell carcinoma. The x-axis represents cell types, while the y-axis represents PD-1 receptor activity. The median activity values (central line),
first and third quartile (box), minimum and maximum non-outlier values (whiskers) and outliers (diamonds) are shown on the boxplot.

https://doi.org/10.1371/journal.pcbi.1013188.9004
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(p-value =4%10-4), but not with the everolimus-treated patients (p-value =9.2%10-2) (Fig 4A, B). The effect of PD-1
receptor activity on the overall hazard in the nivolumab-treated patient cohort was found to be negative (Cox regression
B=-0.36, p-value=0.012) (Table 1). This means that higher PD-1 receptor activity was associated with a decrease in the
hazard rate, leading to a longer survival time in patients treated with nivolumab. However, this effect was not significant
in patients treated with everolimus, and the association was in the opposite direction (3=0.33, p-value=0.106) (Table
1). As nivolumab inhibits PD-L1/ PD-1 interaction, the observed increased effectiveness of the drug in high PD-1 activity
corresponds to its mechanism of action. The gene expression of the ligand or the receptor showed no association with
survival in everolimus-treated patients (Table 1). Importantly, in the patient cohort, where the samples were taken more
than one year before the treatment, the PD-1 receptor activity did not show an association with patient survival in any

of the examined cases (Fig 4C). In the samples of nivolumab-treated patients, chemokine receptors (CXCR1, CXCR2),
serotonin receptor HTR2C, TGF-{3 receptors (TGFBR2, TGFBR3), or LIFR exhibited significant negative effects, and
BMPR1B, members of the ERBB receptor family, and EGFR had the most significant positive effect on the overall haz-
ard in Cox regression analysis. (Fig 4D and S2 Table). The Cox regression results for gene expression of receptor genes
among nivolumab-treated patients and receptor activities in the everolimus-treated patient cohort are available in S3 and
S4 Tables, respectively.

Furthermore, we investigated whether RIDDEN receptor activity signatures reflect the potential effects of PD-1 activa-
tion in different cell types. For this purpose, we analyzed a dataset containing 7 renal cell carcinoma patients’ single-cell
gene expression profiles [44]. Each cell shown in the UMAP is clustered by expression after batch correction (Fig 4E). We
calculated the PD-1 receptor activities in these cells and showed that the immune cells have high activity of PD-1, while
no activity was observed on tumor cells, endothelial, perivascular and smooth muscle cells. (Fig 4E and F).

3. Discussion

RIDDEN (Receptor Activity Data-Driven Inference) is a computational tool developed to infer receptor activities by sum-
marizing thousands of ligand and receptor perturbation gene expression profiles into interpretable receptor activity states.
Receptors play a crucial role in both health and disease by initiating and mediating signaling during cell-to-cell commu-
nication. By providing insights into the initiators of signaling within cells, RIDDEN enhances our understanding of cellular
processes and supports research hypotheses, including assessing the effects of drugs on receptor activity or identifying
sources of the abnormal signaling associated with disease phenotypes.

RIDDEN combines an extensive collection of receptor and ligand perturbation transcriptomic profiles [25] and prior
knowledge of ligand-receptor interactions [23,24]. The collected dataset enables us to summarize key changes upon
receptor activity in different samples. Current state-of-the-art methods in predicting cell communication are typically based
on the prior knowledge networks of ligands and receptors. While these methods can give valuable insight into the poten-
tial receptor-ligand interactions and communicating cell types, RIDDEN directly infers the receptor level effect of these

Table 1. The effect of PD-1 receptor activity and PD-1 or PD-L1 gene expression on the overall survival of patients diagnosed with renal cell
carcinoma determined by Cox regression analysis.

Gene name Type Treatment Effect size p-value
PD-1 gene expression nivolumab -0.0513 0.5849
PD-L1 gene expression nivolumab -0.0694 0.6299
PD-1 receptor activity nivolumab -0.3622 0.0124
PD-1 gene expression everolimus -0.0256 0.8604
PD-L1 gene expression everolimus 0.1422 0.4779
PD-1 receptor activity everolimus 0.3320 0.1061

https://doi.org/10.1371/journal.pcbi.1013188.t001
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interactions on the receiver cell. It contains high-quality receptors that are validated with models constructed from other
modalities. In addition, as a footprint-based method [45], it derives more biological insights than gene set-based methods.

While the RIDDEN model is based on high-throughput measurements, limitations need to be noted. The perturbation
profiles consist of 978 landmark genes and do not use the inferred set of more than 10,000 genes [25]. Although whole
transcriptome measurements could help distinguish signals between receptors with similar downstream signaling, they
are not available at this scale. However, a promising approach has been introduced, which measures single-cell transcrip-
tomic profiles of immune cell types on cytokine perturbation [15], yet there is a need for data on other ligands and recep-
tors that are crucial in intercellular communication.

The increasing number of computational models developed to study the CCC brings attention to the importance of
benchmarking and evaluating such models. In computational biology, one of the major challenges is the common lack of
ground truth to evaluate predictive models [46]. In terms of receptor activities, cytokine perturbation gene expression data
collected by CytoSig [14] or NicheNet [10] can be a reasonable basis with regard to cytokine receptors. The NicheNet
model is trained on a small coverage of public experiments, and more than half of its data overlaps with CytoSig. Addi-
tionally, the data available in public databases is often specific to a particular experimental design and only measures a
pair of cell lines or conditions. The existing studies mainly evaluate the model performance using collected experimental
data [9] and bulk or single-cell tissue measurements [10,14,47]. This may change with new studies, such as the Immune
Dictionary [15], which relies on in vivo data. Furthermore, comparing RIDDEN with classical CCC methods on perturbation
datasets would not yield meaningful insights, as these methods rely on endogenous ligand expression and are unable to
capture the externally introduced ligands, making them unsuitable for estimating interactions with receptors in perturbation
experiments.

The CytoSig model is suitable for benchmarking against our model as it predicts the activity of ligand-stimulated sig-
naling using cytokine perturbation bulk datasets, similar to how RIDDEN employs cytokine receptor perturbation datasets.
RIDDEN performed comparably to CytoSig in cytokine signaling or cytokine receptor activity predictions, moreover, RID-
DEN provides confidence levels for receptors. In the evaluation of the top-performing receptors, the model outperformed
CytoSig, demonstrating its robust performance in predicting cytokine receptor activity. RIDDEN has an advantage over
this model due to its broader coverage of perturbation signatures within the same experimental design, encompassing a
greater number of receptor and ligand perturbations. This allows the model to capture the core signaling changes induced
by receptor activity that occur similarly across different cells.

We compared our model to the published CytoSig model and evaluated its performance using in vivo ligand perturba-
tion dataset from the Immune Dictionary. /n vivo experiments model more complex responses to perturbations as they
capture cellular responses within their microenvironment within a tissue. RIDDEN'’s ability to predict the receptor activities
induced by ligand stimulation in a complex environment suggests that by learning from in vitro data, RIDDEN can capture
the fundamental responses of receptor activation. RIDDEN predicted which receptor-induced signaling was modulated by
the immune ligand with performance comparable to CytoSig.

Besides benchmarking the prediction performance, we also analyzed RIDDEN'’s performance from a biological per-
spective. First, we show that in the RIDDEN model receptor family members have highly similar signatures consistent
with biological expectations because they may form heterodimers during activation, bind the same ligands or have shared
effectors. Then, we used two large transcriptomic datasets, TCGA and CCLE, for evaluation and testing of further funda-
mental biological concepts, such as the correlation of receptor-ligand expression with receptor activity. Another strategy is
using pathway gene sets to validate the connection between the activity of transcription factors and the activated recep-
tors that could potentially affect them. Although we observed low correlation in these comparative analyses, we saw that
our model performed better than random. We anticipate such a low correlation given the expected disagreement between
expression and activity [48]. This observation highlights the importance of predicting activities. The results of these analy-
ses suggest that we can provide a good approximation of these processes.
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In addition to physiological processes, the model’s applicability extends to examining cell lines carrying a disease phe-
notype or patient samples. We present a case where the receptor plays a vital role in cancer therapy. Immune checkpoint
inhibitors, especially the PD-1 receptor inhibitor, are widely used in cancer therapy [49]. One of the criteria for patients
receiving anti-PD-1 treatment is whether they carry high PD-L1 expression measured by immunohistochemical staining of
the tumor and immune cells [50]. This suggests if inhibiting the receptor can be effective in the patient. We cannot deter-
mine whether the patient will benefit from the therapy based on the gene expression of the PD-L1 ligand or even the PD-1
receptor. However, estimating the activity of receptor proteins can serve as a reliable predictor for the effectiveness of
therapy. We have found that the patient’s overall survival on anti-PD-1 therapy is associated with increased PD-1 recep-
tor activity before the treatment. Additionally, we have observed associations between patient survival and the activity of
several other receptors already connected to immune oncology. These include chemokine receptors that play a crucial
role in communication between cells in the tumor microenvironment (TME) [51,52], serotonin receptors that have been
reported to impact cancer progression by influencing immunological processes [53], such as promoting immunosuppres-
sive M2-like macrophage polarization [54], or and TGFB receptors whose signaling promotes tumor immune evasion in
TME [55], These receptors are activated in the TME where the PD-1 signaling can be enhanced [56].

Importantly, PD-1 activity is associated with increased survival only in the nivolumab-treated cohort and not in the
everolimus-treated patients, underlying the specificity of the prediction method.

When investigating the association between mutations of patient samples and patient survival, the time of sample
collection is less crucial than examining changes in gene expression or receptor activity and their association with patient
survival. In this regard, the timing of sample collection can have a significant impact, as various factors, regulatory mecha-
nisms, and cellular processes can influence gene expression. The activity of the PD-1 receptor in samples taken less than
one year before anti-PD-1 therapy initiation is associated with the overall survival of patients, but this association is not
observed in samples taken more than 1 year before therapy initiation.

In addition, we have also shown that we can precisely detect the activity of the receptor in the cell types that may be
present, such as T cells [57] or tumor-associated macrophages [58]. On the other hand, we do not predict receptor activity
in tumor cells due to the lack of a signature induced by the active receptor.

In summary, the RIDDEN method is a reliable and easy-to-use tool for inferring receptor activities across biological con-
texts, which can be used to obtain a comprehensive overview of active and inactive receptors from transcriptomics data.

4. Methods
4.1. Collection of ligand and receptor perturbation signatures

We queried the OmniPath database [23,24] for curated ligand-receptor interactions using the OmniPath R package to
obtain the most reliable collection of possible interactions. From there, we retained all of the receptor and ligand pertur-
bation signatures from the LINCS database from 5 modalities: the genetic (ShRNA, CRISPR, overexpression) and the
chemical (ligand stimulation, drug treatment) perturbations. For model construction, we used the level 5 LINCS L1000
signatures and landmark gene set. To calculate consensus signatures for all cell and perturbation pairs, we aggregated
the perturbation signatures and computed moderated-Z weighted averages for every perturbation in each cell line, follow-
ing the method outlined in the LINCS publication [25,59].

Finally, the final dataset comprises 14463 perturbation profiles, where each signature corresponds to a receptor pertur-
bation transcriptomic profile in a cell line, referred to as a sample. This dataset includes 229 different perturbed receptors,
228 distinct cell lines, and 747 unique perturbations derived from the different data modalities.

4.2. Construction of the model

After collecting and calculating the consensus gene expression profiles of all possible ligand and receptor perturbations,
we constructed linear regression models for the expression of all genes and receptor perturbations.
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We used ordinary least squares (OLS) regression models (statsmodels Python package) to estimate the relation-
ship between receptor perturbation and the expression of a gene. In the following linear model equation: g.= + Bj r+e,
where the predictor r is a vector that represents samples (cell-receptor perturbation pairs), where each value denotes the
perturbation of receptor j in the sample. The values are encoded as follows: 1 denotes stimulation, -1 denotes inhibition,
and 0 is no perturbation. If a ligand is perturbed, curated ligand-receptor interactions are used to translate this ligand into
corresponding receptor perturbations. The response variable g, is a vector of gene expression values, with each value
representing the expression level of a specific gene in each sample. The 3, denotes the intercept term, [3j is the coefficient
for the receptor j (the parameter of interest), and « is the error term.

Each linear model generated a coefficient (Bj) for each receptor-gene pair, indicating the strength and direction of the
receptor perturbation’s influence on gene expression. The coefficients from each regression model were organized into
a receptor-gene parameter matrix, reflecting the relationship between receptor perturbations and gene expression under
different conditions (perturbation type, direction, and cell line). This parameter matrix summarizes the high-dimensional
gene expression profile associated with variations in receptor activities.

4.3. Inference of receptor activities from gene expression

To estimate the receptor activity, we calculate the dot product of the gene expression profile of the samples and the RID-
DEN matrix (described in 4.2.). This method aligns with a previously described approach, according to pathway activities
that can be inferred from the sample’s transcriptional profiles [26]. An additional step involves generating a background
distribution of receptor activities by performing 1000 permutations of gene labels. Subsequently, we calculate the stan-
dardised score (z-score) of the value relative to the background.

4.4. Improving the quality by signature filtering based on cross-validation

We aimed to capture the conserved changes of receptor or ligand perturbations in cell lines by calculating consensus
signatures from all cell lines and perturbation pairs in LINCS L1000. However, some consensus signatures may still have
poor quality due to insufficient or ineffective genetic perturbation and drug dosage. We employ receptor filtering based on
cross-validation. Briefly, we used OLS to fit linear models for each of the five modalities separately, and then, using the
parameter matrices of each modality, we inferred receptor activities from the perturbation signatures of the other modali-
ties with the methods described in sections 4.2 and 4.3.

To assess performance, we calculated the ROC AUC values based on receptor activity vectors and the true value
vector, which indicates whether the receptor was perturbed in the sample. Inhibiting and activating permutations were
handled separately. First, for inhibition perturbation, all the activation perturbations were not considered (set to 0), and
the -1 values were reversed to 1. Then, for activation perturbation, all the receptor inhibitions (-1) were not considered in
the true vector. The ROC AUC values were calculated separately, resulting in 2 values for receptors with perturbations
in both directions. For negative values, we considered 1-ROC AUC. We kept receptors that are predictive in at least one
case with a minimum ROC AUC of 0.6, either in the positive or negative direction. Non-predictive receptors were defined
as those where the ROC AUC was below the threshold of 0.6 in both the positive and negative directions. We excluded
cases where the CRISPR model predicted shRNA perturbation and conversely because if the receptor is not present
in the cell, the receptor knock-out or knock-down will give us incorrect information about the potential gene expression
change upon receptor perturbation. Finally, after filtering the non-predictive receptors, we fitted OLS linear models using
all the remaining signatures, including all modalities. This resulted in a model containing 229 different receptors.

4.5. Assigning confidence levels to receptors

The dataset was randomly split into training and test sets five times, with each set comprising half of the signatures.
A model was trained on each training set and then used to predict receptor activity on the corresponding test set. The
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Mann-Whitney U (MWU) test was conducted on each split to determine whether there is a significant difference in recep-
tor activities between the perturbed and non-perturbed conditions, based on the predicted receptor activities and the prior
knowledge of receptor perturbations. Inhibitory (-1) and stimulatory (1) perturbations were analyzed separately, as was
done for ROC AUC calculations in section 4.4. Receptors that had perturbations in both directions had their statistics aver-
aged to obtain a single score for each receptor per split. An overall mean value was calculated for each receptor across
splits. ROC AUC values were calculated in the same workflow. Confidence levels for the receptors were assigned based
on the aggregated MWU p-values, with confidence levels A-D determined by categorizing p-values into quartiles. Recep-
tors with fewer than 8 signatures in the evaluation were given an E confidence level.

4.6. Benchmarking: comparing performance with the CytoSig model

We compared the performance of CytoSig [14] with the RIDDEN model in two settings, where the prediction of the cyto-
kine receptor activities or cytokine signaling activities are evaluated.

To compare the models directly, we assessed the predictive performance using the ground truth dataset of the other
model containing perturbation profiles of cytokines and cytokine receptors. First, we inferred the activities of the cytokine
receptors using RIDDEN (with the method described in section 4.3), the receptors that have been perturbed by their
ligands (cytokines) in the CytoSig dataset. Then, we used the CytoSig model to calculate the cytokine signaling activ-
ities from RIDDEN’s cytokine and receptor perturbation signatures, which consist of not only the landmark genes but
the inferred genes as well to ensure the comparison is equitable. When evaluating RIDDEN on the CytoSig dataset, we
mapped receptors to their interacting cytokines based on the ligand-receptor interaction table from OmniPath [21,22],
allowing for both one-to-one and one-to-many interactions. When evaluating CytoSig on the RIDDEN dataset, we mapped
cytokines to their corresponding receptors while accounting for the type of perturbation applied, which can be inhibitory
or activatory. We evaluated the models’ predictive performance using the ROC AUC metric (using the scikit-learn Python
package), with separate ROC curves for each receptor. Perturbed ligands or receptors were denoted by 1 in the true val-
ues vector, while non-perturbed ones were denoted by 0. We handled different perturbation directions separately (similarly
as described in section 4.4.), calculating AUC values for stimulatory and 1-AUC values for inhibitory perturbations. The
maximum ROC AUC values were selected for a cytokine with both types of perturbations.

As a ground truth dataset, we used the perturbational single-cell RNA-sequencing profiles of Immune Dictionary [15].
After obtaining the cytokine response profiles from the Immune Dictionary’s web portal, the perturbation signatures were
normalised using gene-wise z-scores for each immune cell type, and then the cell signatures were aggregated to obtain
the average cytokine perturbation signatures of the immune cell types. Signatures containing fewer than ten differentially
expressed genes (DEG) were filtered out, as they do not capture the translational changes of the perturbation. The num-
ber of DEG of the cytokine perturbations was obtained from the study [15].

We inferred the cytokine signaling activities with CytoSig and the cytokine receptor activities using RIDDEN (as
described in section 4.3) of the aggregated cytokine perturbation profiles of immune cell types. We assessed the model
performances in inferring the perturbed cytokines. We filtered for the overlapping cytokines and their receptors between
the CytoSig, RIDDEN and the dataset and evaluated the performance of the models on this subset using the ROC AUC
metric, where the perturbed cytokines indicate the ground truth labels. We used prior knowledge of ligand-receptor inter-
actions to map the RIDDEN receptors to their interacting cytokines. We calculated the ROC AUC for RIDDEN receptors
with different confidence scores using all possible cytokine receptors whose ligand was perturbed in the dataset.

4.7. Benchmarking: NicheNet model ligand activity prediction evaluation on immune dictionary

We used NicheNet [10] to calculate ligand activity scores based on the transcriptomic response of cells to cytokine pertur-
bations from the Immune Dictionary [13,15]. We applied a sender-agnostic approach to evaluate all LR interactions where
the cognate receptors are expressed in the receiver cells. For each of the cytokine perturbations in the Immune Dictionary,
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we calculated the ligand (cytokine) activities for each single-cell type (acting as the receiver). We excluded signatures
with fewer than ten DEGs. We assessed the NicheNet model performance using the ROC AUC metric, with the perturbed
cytokines as true labels. We used AUPR (Area Under the Precision-Recall Curve) as a metric for ligand activity, previously
suggested as the most informative measure for defining ligand activity [10]. In total, we evaluated 64 cytokine perturba-
tions for which activity can be estimated using NicheNet.

4.8. Evaluation of the model assuming activities of transcription factors can be affected by active receptors

We examined whether the model reflects biological processes according to upstream activated/inhibited receptors that
can influence the activity of the downstream transcription factors (TFs). To achieve this, we used the decoupleR [28]
Python package to estimate TF activities from the dataset using the TF regulons from DoRothEA [20]. We used KEGG
pathways [39] to identify TFs and receptors with shared pathways. For each group of receptors, classified by confidence
levels, we compared the activities of TFs included or not in the same KEGG pathways as the receptors. We evaluated the
difference by Student’s t-test.

We further examined whether receptor—TF pairs within the same KEGG signaling pathway exhibit higher correlations
than unrelated pairs, and whether this relationship is better captured by TF activity than by TF gene expression. We used
TF expression and TF activity profiles from the CytoSig dataset. of 204 TFs. We computed Pearson correlations between
RIDDEN-inferred receptor activities and both (1) TF activity scores [20] and (2) TF gene expression levels. We then
compared the distribution of correlation values between the within the KEGG pathway and out-of-pathway groups using
Student’s t-test.

4.9. Receptor clustering

To investigate how receptors with similar mechanisms of action or different receptor families are represented in our model,
we used hierarchical clustering and dendrogram algorithms (from the Scipy Python package [60]) on receptor model
coefficients to visualise the similarities between receptor vectors. We obtained receptor family classifications from The
IUPHAR/BPS Guide to Pharmacology [61].

4.10. Gene Ontology enrichment based on the RIDDEN’s receptor weights

We performed Gene Ontology (GO) Biological Process gene set enrichment analysis (GSEA) on absolute gene weight
vectors of the receptors using the decoupleR package [28]. P-values were corrected using the false discovery rate method.
We show the significantly enriched terms for the selected receptors with the five highest normalized enrichment scores.

4.11. Biological relevance evaluation through correlation analysis using cell line and patient data

We leveraged patients’ gene expression profiles of The Cancer Genome Atlas and cell lines’ baseline gene expression
profiles of the Cancer Cell Line Encyclopedia to demonstrate that the model can predict potentially activated and inhibited
receptors in a large cohort of untreated samples. We inferred receptor activities from the gene expression of the samples
(Methods 4.3.) We calculated random distribution by gene label permutation performed 100 times. Subsequently, we cal-
culated Pearson’s correlation (with the Scipy Python package [60]) between receptor transcript per million (TPM) values
multiplied by ligand TPM values and the inferred receptor activities. We compared the random with the original receptor
activity distribution using the Wilcoxon test.

4.12. Receptor activity and patient survival association using pretreated samples

We leveraged gene expression of pretreatment samples and the overall survival of patients from publicly available data
[43]. We inferred receptor activities. Then, we investigated the relationship between the activities and the patient response
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to therapy using the log-rank test and the Cox regression analysis (with the lifelines Python package [62]). In the log-rank
test, we separated patient groups by the mean of the gene expression or receptor activity. In the Cox regression, we used
the following equation: h(t|x) = h (t) * exp(B * X), where h(t|x) denotes the hazard function, h (t) is a baseline hazard, 8 is
the coefficient and X denotes the receptor activity or the gene expression.

4.13. Receptor activity in patients’ single-cell transcriptomic profiles

To show the cell-wise resolution of receptor activity, we used single-cell transcriptomic profiles of tumor patients’ samples
from a recent publication [44]. We used only the patients’ data with clear cell renal cell carcinoma (ccRCC). Analysis was
performed by Scanpy [63]. First, cells containing fewer than 300 genes expressed and genes expressed in fewer than

5 cells were removed from the dataset. Then, potential cell doublets identified by scrublet [64], as well as mitochondrial,
ribosomal, and sex genes were removed. Cells with more than 25% mitochondrial content were excluded, and cells where
the percentage of ribosomal gene counts exceeded 5% were kept. The total number of counts was normalised to 5000
per cell. Then, the data was log-transformed. Highly variable genes were identified, and batch correction was performed
based on highly variable genes using the BBKNN algorithm [65]. Receptor activities were calculated on log-normalized
counts before batch correction. We visualised the cells using UMAP 2-D projection. We used the cell line annotations pro-
vided in the publication, with an extension of grouping cells that contain different marker genes but are classified into the
same cell type, like different endothelial cells.
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