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List of Abbreviations

AFib - Atrial Fibrillation

AGEi - Ageing Index

Ao-vmax - Aortic maximum flow velocity

Ao-VTI - Aortic maximum flow velocity time integral

b/a - Ratio of the first two inflection points of the second derivative of the pulse wave
c-d incidence - c-d point detection ratio, proportion of periods with detected c-d points
on SDPTG

c-d point - Inflection points in the second derivative of the PPG

Crest Time - Time between beginning of pulse period and maximum systolic amplitude
Crest Time @75 - Heart rate-normalized Crest Time at 75 bpm

CV - Cardiovascular

DNi - Dicrotic Notch Index

DVP - Digital Volume Pulse

e'-med - Mitral medial annulus velocity

E/e'-lat - Ratio of early diastolic mitral inflow to mitral lateral annulus velocity
ECHO - Echocardiography

eLVET]I - Early Left Ventricular Ejection Time 1

eLVET?2 - Early Left Ventricular Ejection Time 2

eLVET2 @75 - Heart rate-normalized eLVET2 at 75 bpm

ET(PPG) - PPG based Left ventricular ejection time

ET(PPG) @75 - ET(PPG) corrected for 75 bpm

HR - Heart Rate

Interbeat interval - Average peak-to-peak interval of the PPG signal

[oT - Internet of Things

IRB - Institutional Review Board

LV-EDD - Left Ventricular End-Diastolic Diameter

LV-ESD - Left Ventricular End-Systolic Diameter

LV-GLS - Global Longitudinal Strain

LV-SV - Left Ventricular Stroke Volume

LVET - Left Ventricular Ejection Time, measured by echocardiography

LVETi - Left Ventricular Ejection Time Index, a photoplethysmography parameter



LVOT-VTI - Left Ventricular Outflow Tract Velocity Time Integral
MV-A - Mitral A-Wave Velocity

MV-E - Mitral E-Wave Velocity

MV-E/A - Ratio between E-Wave and A-Wave

PP - Pulse Pressure

PPG - Photoplethysmography

PR - Pulse Rate

PRV - Pulse Rate Variability

PW - Pulse Wave

PWA - Pulse Wave Analysis

PWYV - Pulse Wave Velocity

Ri - Reflection Index

SDPTG - Second Derivative of the Photoplethysmogram
Si - Stiffness Index



1. Introduction

1.1. The problem and the opportunity

Cardiovascular disease remains the leading global cause of death, responsible for nearly

18 million deaths annually according to the World Health Organization'. (1)

Advances in smart sensors, artificial intelligence, and the Internet of Things (IoT) offer
new opportunities for primary and secondary prevention of cardiovascular (CV)
morbidity and mortality. (2,3) As healthcare becomes more patient-centered, many

aspects of care are shifting from hospitals to homes. (4)

The COVID-19 pandemic significantly accelerated the adoption of telemedicine, which
had been previously underutilized. Regulatory easing and reimbursement parity allowed
rapid scale-up of virtual consultations. Current evidence suggests that telemedicine can
offer care comparable to in-person visits, while reducing costs and improving
convenience for both patients and providers. (5) Further research is required to optimize
patient selection, communication strategies, and access equity, and to prepare future

healthcare professionals. (6)

Despite increased use, the quantity and quality of physiological data collected during
telehealth remain limited. This gap is critical, as more than 1.2 billion people live with
hypertension globally. (7) Better tools are needed for hemodynamic monitoring beyond
traditional cuff-based blood pressure measurement, especially to enable timely and

personalized treatment.
As Viigimaa et al. note (8):

“Hypertension is a multifactorial disease, but the hemodynamic component of BP (blood
pressure) physiology includes factors that affect intravascular volume, cardiac inotropy
and systemic vascular resistance. Usually, physicians do not have the possibility of

’

evaluating the hemodynamic causes of the hypertension.’

! However, according to global estimated statistics, more than 70 million abortions are performed each
year. (110) If we recognize the unborn as human lives, this represents the largest category of human death
worldwide.



In addition to hypertensive patients, approximately 64 million individuals with heart
failure (9) could benefit from improved home-based hemodynamic monitoring. Closer

follow-up may reduce emergency hospitalizations and preserve quality of life. (10)

Between 2013 and 2015, a Hungarian research group - including the author - began
investigating the physiological and clinical relevance of peripheral pulse wave analysis
in the context of pregnancy-related cardiovascular complications. The work during this
early research revealed both the depths of the relevant literature and the practical
limitations of existing technologies. (Detailed introduction of these limitations are found
in section 1.7. Challenges related to measurement accuracy, variability and clinical
validation.) These findings motivated the development of a dedicated measurement
platform, designed to support further research into the applicability of pulse wave analysis
in health and disease. The present thesis introduces the results from the initial research
needed to explore how the theory and practice of a dedicated peripheral pulse wave
analysis approach can support future cardiovascular assessment and prevention. All of

this work is guided by the main considerations of translational medicine. (11)

1.2. Basics of pulse wave analysis

1.2.1 Definition and basic concept

The pulse wave is a biophysical phenomenon generated by the contraction of the heart,
which produces a pressure wave in the blood that travels through the arterial system.

(12,13)

Specifically, the peripheral pulse wave originates from the left ventricular contraction and
propagates through the arterial tree (from the elastic arteries through the muscular arteries
and resistance arterioles), ultimately facilitating capillary blood flow. The cyclical
changes in intravascular pressure cause the arterial walls to expand during systole and
return to their original diameter during diastole. These dynamic changes can be assessed
using various methodologies at peripheral sites, most commonly at the wrist or fingers.
In this thesis, the focus will be on the peripheral pulse wave and systemic hemodynamics,
with particular discussion on measurements recorded at the finger. By registering and

analyzing the pulse wave, it is possible to monitor various cardiovascular functions in real



time. (14,15) To better understand its diagnostic potential, it is essential to explore how

the pulse wave is generated and what key features define its morphology.

1.2.2. The basic “anatomy” of pulse wave morphology

After the left ventricle contracts, the created pulse wave travels along the arterial tree,
propagating through elastic and muscular arteries at a velocity determined largely by
arterial stiffness and blood pressure. As the pulse wave moves distally, it encounters
changes in arterial geometry, such as bifurcations and sites of impedance mismatch - most
notably at the level of the resistance vessels and lower limb arteries. At these points, part
of the wave energy is reflected back toward the heart. This reflected wave then
superimposes upon the ongoing forward wave generated by ventricular ejection.(16)

Figure 1 presents a schematized pulse wave by its components.
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Figure 1 - Formation of the aortic pulse wave by the superimposition of the forward
(ejection) and reflected pressure waves. (13,17) The pressure waveform observed in
the aorta results from the interaction of these two components. The timing and amplitude
of the reflected wave contribute to late systolic pressure augmentation. PP: pulse pressure
Pr: pressure of the reflected wave, Pe: pressure of the ejection wave Adapted from:
Mendes-Pinto et al. (18) Licensed under CC BY 4.0.(19)



The interaction of these two waveforms - the forward (incident) wave and the reflected
wave - produces the final pressure waveform observed at any given arterial site. This
process of wave interaction and the decreasing elastic content of peripheral arteries results
in a phenomenon known as pressure augmentation, which refers to the elevation of late

systolic pressure due to the timing and magnitude of the returning wave. (20)(Figure 2)
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Figure 2 - Pulse wave amplification or pressure augmentation. Amplification of
systolic blood pressure along the arterial tree, resulting in higher peripheral than central
systolic pressure. Example waveforms from a healthy adolescent demonstrate aortic (~85
mmHg) and radial (~110 mmHg) systolic pressures, corresponding to a central systolic
amplification of ~25 mmHg. Adapted from: Haseler et al.,2025. (21) Licensed under CC
BY 4.0.

The pulse contour as a whole - including the timing of the systolic peak, the depth and
prominence of the dicrotic notch and the shape of the diastolic downslope - is not only
reflecting the effects of the left ventricular ejection dynamics, but also the mechanical

properties and function of the arterial system. (22)

If we can understand the complex nature of the pulse wave, that will lead to appreciation

of how a seemingly simple signal can withhold rich hemodynamic information. (23,24)

1.2.3. Central vs. peripheral hemodynamics

Understanding central hemodynamics - like central blood pressure, aortic wall stiffness
or ventriculo-arterial coupling - is a key in cardiovascular risk stratification, since there
is a stronger correlation between these and adverse CV outcomes, than peripheral
measurements, like arm-cuff blood pressure measurement. (25,26) However, the

measurement of central hemodynamics requires invasive arterial catheterization or



expensive tools, like MRI (27-29) or echocardiography which limits the wide

accessibility of these important measures.

In contrast, the peripheral pulse wave - accessed from the radial artery or fingertips with
different technologies - is more accessible for non-invasive, regular monitoring. The

differences and similarities between the central and peripheral pulse wave is demonstrated

on Figure 3.
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Figure 3 - Differences between peripheral and central pulse wave morphology.
© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP
Publishing Ltd. From: Avolio AP, Butlin M, Walsh A. Arterial blood pressure
measurement and pulse wave analysis-their role in enhancing cardiovascular assessment.
Physiological Measurement. 2009. DOI: https://doi.org/10.1088/0967-3334/31/1/R01
(30)

While some methods reconstruct central waveforms via generalized transfer functions,
these algorithms are fully dependent on the morphological and harmonic characteristics
of the peripheral waveform - effectively transforming, not generating, new physiological
information. (31,32) This underscores the fact that peripheral pulse waves inherently
contain relevant hemodynamic information. Rather than relying on indirect modeling, a
promising alternative is to extract clinically meaningful parameters directly from the
peripheral signal itself. (33) If validated against gold-standard techniques, this approach
could offer a practical, scalable solution for routine cardiovascular assessment, especially

in remote or resource-limited settings.


https://doi.org/10.1088/0967-3334/31/1/R01

1.3. Pulse wave analysis (PWA), as a promising method for non-invasive cardiovascular

monitoring.

Current cardiology assessments include physical examination, auscultation, pulse
palpation, electrocardiography, and echocardiography to evaluate heart function and
anatomy. However, a key non-invasive bedside tool - pulse wave analysis - is notably
absent from routine practice. While pulse palpation offers minimal peripheral insight, it

falls short of leveraging the full diagnostic potential of pulse wave morphology.

However, the peripheral pulse wave, as a summation signal holds information on various

aspects of the cardiovascular system, for example:

e the time of left ventricular ejection from the beginning of the cardiac cycle to the
closure of the aortic valve ~ left ventricular (LV) function (34)

¢ the time it takes for the left ventricle to reach the systolic peak from the beginning
of the cardiac cycle ~ increasing with age (35)

e steepness of the upstroke ~ determined partly by the inotropy of the LV (36)

e the prominence of the second (diastolic) peak - aortic elasticity/distensibility (37)

e the dime delay between the systolic and diastolic peak ~ large artery stiffness (38)

o the relative height of the diastolic peak to the systolic peak ~ afterload (14)

o the relative height of the b wave to the a wave on the second derivative of the
pulse wave ~ hypothesized to be a surrogate for ventriculoarterial coupling (39)

e central and peripheral arterial wall tension, complex effect on many parameters
~ blood pressure (40)

e heart rate and its regularity ~ arrhythmias (41)

e autonomic nervous system function, cardiac neuropathy assessment through heart

rate variability (42)

Alterations of the pulse wave parameters, generated from the physiological relations
summarized above, have been associated with cardiovascular pathologies such as arterial
stiffness, atherosclerosis, hypertension, aging, diabetes, coronary heart disease, and heart

failure.(43-51)
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1.4. Basics of photoplethysmography

Photoplethysmography (PPG) is a non-invasive optical technique used to detect
peripheral arterial pulsations by measuring changes in light absorption within biological
tissue. This method relies on the fact that pulsatile blood flow causes periodic changes in
tissue volume, particularly in arteries and arterioles, which in turn modulate the
absorption of emitted light. The resulting signal comprises two components: a direct
current (DC) component reflecting the static absorption of tissue (bone, fascia, muscle,
venous and capillary blood, fat, etc.) and a pulsatile alternating current (AC) component
that corresponds to the dynamic volume changes of arterial blood (and the venous flow
also plays a limited role in the AC part). The waveform of the AC component mirrors the
pulse-induced fluctuations and forms the basis for further pulse wave analysis. (15,52)

(Figure 4)
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Figure 4 - Illustration of photoplethysmography sensing technology - transmissive
vs. reflective mode - (53,54) -as taken from the e-learning materials of E-Med4All
Europe Ltd., with permission granted by the author. (19) Abbreviations: LED: light
emitting diode, PD: photodiode, AC (alternating current) and DC (direct current) are
widely used terms referring to the pulsatile and constant part of the
photoplethysmographic signal, respectively.

The PPG recording executed on the finger is called the Digital Volume Pulse (DVP). (45)
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The photoplethysmographic (PPG) method for detecting the peripheral pulse waves offers

numerous practical benefits, including:
e It's non-invasive and safe
e [t causes no discomfort or risk to the patient
e The measurement process is quick
e [t doesn't require specialized skills to operate
e The method is repeatable

For the best results in pulse wave detection using the PPG method, it's advisable to adhere

to standardized conditions for measurement:
e Conduct measurements at room temperature

e Ensure the patient is in a resting position for at least 10 minutes before the

measurement
e Avoid any movement during the measurement

e Consistently use the same finger for the device placement in repeated

measurements

1.5. Key parameters derived from pulse wave analysis

By the various mathematical analysis methods of the pulse wave countless parameters

and indices can be calculated. (14,15,54)

These include morphological (pulse contour) and pulse rate variability (PRV) parameters,
which jointly describe the current condition of cardiac, vascular and regulatory
mechanisms. Morphological parameters are determined by mathematical analysis of the
pulse curve, whereas PRV parameters are calculated by analyzing the variability of the
time intervals between peaks (interbeat intervals). (55) This thesis will focus solely on
pulse contour parameters. Their names and definitions with the corresponding references

can be found in the Methods section.
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1.6. Potential Fields of Pulse Wave Analysis Application

Photoplethysmography (PPG)-based pulse wave analysis (PWA) is most widely used in

research for the assessment of vascular aging but offers broader applicability across

various medically relevant fields. Key application areas include:

1)

2)

3)

4)

Vascular Age Assessment: PWA can be used to estimate vascular age by analyzing
arterial stiffness and waveform morphology. PPG parameters have shown
correlations with cardiovascular risk and are used in both consumer and clinical
devices. (15,46,56-58) However, it is important to note that some articles connecting
chronological age with pulse wave features, defining “vascular age index” and similar
parameters (59) are lacking the information on CVD risk profile, thus limited in the
clinical decision making. Moreover, other confounders are affecting the pulse wave
morphology and signal quality as subjects age, which have to be considered for a more

appropriate estimation, e.g.: skin thickness, capillary recruitment. (60)

Monitoring Lifestyle Interventions: Pulse wave parameters reflect improvements
from lifestyle changes (e.g., exercise, diet, smoking cessation), providing measurable

feedback on cardiovascular health. (37,61-64).

Arterial Stiffness Estimation: Arterial stiffness, a strong predictor of cardiovascular
events, can be evaluated using pulse wave features such as stiffness index. Some
results suggest that PWA offers a potential non-invasive, operator-independent
alternative to tonometry. (38) Conversely, PPG-derived arterial stiffness indices
reflect peripheral pulse wave characteristics and are influenced by hemodynamic and
measurement-related factors, therefore it is still debated if they can only be regarded
as indirect markers of vascular function or reliable direct measures of central arterial

stiffness. (65)

Blood Pressure Monitoring: Cuffless estimation of blood pressure (BP) using PWA
is under active development. Understanding hemodynamic contributors to BP (e.g.,
hypervolemia, hyperinotropy) from different pulse wave patterns may support
personalized therapy. (8,40,66) However, PWA-based cuffless BP estimation remains
limited by its strong dependence on calibration and by the multifactorial determinants
of pulse wave morphology, which are influenced not only by arterial pressure but also

by vascular tone, wave reflections, and peripheral vasomotion. Consequently, the

13



5)

6)

7)

attribution of specific pulse wave patterns to distinct hemodynamic mechanisms and

their direct translation into personalized therapeutic decisions remain uncertain. (66)

Atherosclerosis and Peripheral Arterial Disease (PAD) Detection
Asymmetric waveform alterations between limbs, detected via simple, non-invasive,
operator independent PPG analysis, can support early PAD diagnosis in primary care.
However, bilateral asymmetry-based PPG approaches are inherently less sensitive in
cases of symmetrical or bilateral PAD, where inter-limb waveform differences may
remain small despite clinically relevant disease. In such scenarios, reliance on
asymmetry alone may underestimate disease presence, necessitating comparison
against population-based normative ranges or complementary diagnostic methods.

(67)

Detection of Atrial Fibrillation (AFib) and Other Arrhythmias: PPG-derived
pulse irregularities allow for detection of arrhythmias such as AFib or extrasystoles,
which alter beat-to-beat waveform features (prominent morphological and heart rate
variability alterations during irregular heartbeats). (68—70) However, AFib-related
pulse irregularity detected by PPG reflects probabilistic peripheral pulse
manifestations rather than direct atrial electrical activity, and pulse detection

performance deteriorates during short RR intervals and recent-onset AFib episodes.

(69)

Heart Failure Monitoring: Heart failure is associated with characteristic changes in
cardiac output, arterial compliance, and autonomic function - factors that have an
impact on peripheral pulse wave morphology too. PPG-based pulse wave analysis
captures these hemodynamic features and can support remote, longitudinal
monitoring, especially where echocardiography is not readily accessible. (15) Recent
pilot studies have demonstrated that PPG signals acquired from PPG based wearable
devices can help detect heart failure and even correlate with pulmonary capillary
wedge pressure - an important hemodynamic marker in heart failure. (71,72)
However, current evidence is mainly derived from small pilot studies, and the
association between peripheral PPG-derived waveform features and central
hemodynamics is indirect and influenced by multiple confounders such as vascular

tone, arterial stiffness, autonomic regulation, and local perfusion at the measurement

14



site. Observed correlations are moderate, context-dependent, and not specific to heart
failure, underscoring the need for larger cross sectional and longitudinal validation

studies. (71)

8) Hemodynamic Monitoring in Pregnancy: PPG-PWA is also ideal for non-invasive
tracking of maternal cardiovascular adaptation during pregnancy. Parameters such as
reflection index or “pulse transit time” (which is rather AT between the systolic and
diastolic peak of the pulse wave) change throughout gestation and may aid in early
detection of complications like preeclampsia. (73,74) In preeclampsia, elevated PPG-
derived reflection and stiffness indices have been reported; however, these alterations
overlap with physiological gestational ranges and show limited specificity for disease
stratification, including dipper versus nondipper phenotypes. (75) Consequently,
while PPG-PWA is well suited for longitudinal monitoring of maternal cardiovascular
adaptation, its role in early screening of hypertensive pregnancy disorders requires
further prospective validation. There is an ongoing pilot since 2019 in Hungary too,

with the collaboration of the health visitors’ network. (76)

1.7. Challenges related to measurement accuracy, variability and clinical validation.

Undoubtedly, these scientifically well-established characteristics of PPG-based detection
and analysis of DVP make this method a potential tool for remote cardiovascular
monitoring. Incorporation of photoplethysmography-based analysis of the digital pulse
wave in telemedical systems may be an optimal solution for cardiovascular telecare
Despite this, it has not gained ground in clinical practice so far and its reliability is debated
(37,77) One reason why the applicability of the method is debated that the parameters
computed from DVP are sensitive to errors and cannot be detected reliably as they
fluctuate from one measurement to another.(37,51,78,79) A key limiting factor might be
the insufficient and often inconsistent physiological interpretation of PPG-derived
parameters, resulting from heterogeneous methodologies, variable signal quality, and
inadequate separation of technical and biological sources of variability. (60,80) This leads
to the question: where does this variability come from? Is it from the dynamics of the
ever-changing human cardiovascular function? Or does it come from technical errors? Or
a combination of the two? This issue is particularly emphasized in the case of those

parameters which are derived from the second derivative of the DVP. The acceleration
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plethysmogram (other expression for the second derivative of the PPG wave) has several
distinguished points from which valuable cardiovascular indices can be calculated (Figure
5).

1Bl

\ 4

A systolic®

peak - Dicrotic

notch

Diastolic
peak

A
Y.

Figure 5 - Representative pulse wave recording by the SCN4ALL system. Original
pulse curve (panel A), and its first-, (panel B) and second derivative curves (panel C).
Abbreviations: IBI: inter-beat-interval, x: relative height of the systolic peak, y: relative
height of the diastolic peak, AT: time difference between systolic and diastolic peak (ms).
a,b,c,d and e points: fiducial inflection points on the second derivative. Adapted and
modified from Kulin et al. (51), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app10227977

Among these, ¢ and d points (Figure 5) have been introduced as characteristics that may
facilitate our understanding of the dynamics of wave reflection and the pulse wave
analysis based evaluation of the severity of arterial aging. (45,81-85) However, the
detection of these points has become a challenge for mathematical algorithms to identify.

(86-88)
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Moreover, PPG-based PWA for patient monitoring faces a fundamental challenge: there
is ongoing debate about whether the DVP reliably reflects central hemodynamics or is
primarily influenced by peripheral factors. According to Miyashita et al. (89), local
pressure wave reflection significantly determines the peripheral pressure waveform and
pulse pressure amplification, suggesting that peripheral signals may not accurately
represent central aortic pressures. In contrast, a later study published by the same author
presented results of certain parameters - such as the second derivative of the digital
photoplethysmogram (SDPTG) - can provide more reliable central hemodynamic
information, suggesting that peripheral signals may still provide valuable insight into
central cardiovascular status. (90) This uncertainty drives further research to determine
whether DVP can - and if yes, under what conditions - reliably estimate central
hemodynamic parameters or whether its primary benefit is limited to the assessment of

peripheral vascular function.

Currently, echocardiography is the standard, non-invasive method for assessing central
hemodynamics, cardiac structure and function. Due to its widespread clinical use and
known reliability, comparing echocardiographic measurements with the results of PPG-
based pulse wave analysis (PWA) offers a pragmatic approach to further investigate the
clinical potential of PPG based hemodynamic data. However, despite the potential value
of PPG-based PWA for assessing cardiovascular information, there are relatively few
studies in the literature that directly compare these methods. Another limitation of these

few studies that they often focus on only a limited number of PPG-echo parameter pairs.

There are some studies, however, which focused on the correlation between peripheral
and central hemodynamics by specifically assessing the associations between PPG and
echocardiography-based parameters. A short overview of these publications is found in

Table 1.

It is important to note that these comparative studies typically focused on a narrow range
of parameters, mainly cardiac output or ejection time, without exploring a more
comprehensive spectrum of pulse wave characteristics that can be extracted from
peripheral PPG signals. In addition, differences in measurement conditions, patient
populations and signal processing methods in the referenced studies may have contributed

to the conflicting results.
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Therefore, further studies in this field might reveal new information, as mapping a wider

range of pulse wave parameters and their relationship with markers of central

hemodynamics could lead to a better understanding of which fields of (cardiovascular)

medicine can benefit the most from PPG based pulse wave readings or regular

monitoring.
Table 1 - Summary of studies comparing photoplethysmography-derived and
echocardiographic measurements of cardiac function in different research settings
Study PPG Method Reference Population = Main Findings
Standard
Chenet Volume- Esophageal Surgical Strong correlation (1> =
al. (91) clamp Doppler patients 0.82), 94% trending
(Nexfin) concordance, robust under
phenylephrine-induced
changes
Duan et Peripheral Echocardiography, Healthy PPG LVET longer (348 ms)
al.(92) PPG M-mode & volunteers and more variable (SD 11
Doppler ms);
less accurate than Doppler
(309 ms, SD 9 ms)
Meah Modelflow®  Echocardiography Non- Poor agreement at rest and
et al. via finger pregnant, exercise (mean bias >1
(93) PPG pregnant, L/min); not recommended
and for CO assessment in
postpartum women
women
Blani¢  Volume- Echocardiography/ Surgical Weaker correlation with
et al. clamp Doppler patients cardiac output; PPG less
(94) reliable for absolute values
Kavas  Peripheral Echocardiography Healthy + ML model classified HF
et al. PPG + HRV  (LVEF-based HF patients  states with 87.8% accuracy
(95) feature diagnosis) (HFrEF, using PPG+HRYV; strong
HFpEF) potential for non-invasive

screening




2. Objectives

To address the limitations detailed in the last chapter of “Introduction - 1.7.”, a dedicated
high-resolution PPG-based research system was developed to enable standardized data
acquisition and systematic physiological investigation of peripheral pulse wave features.
In parallel, clarifying the relationship between peripheral pulse wave characteristics and
central cardiovascular function represents a critical prerequisite for future hypothesis-

driven clinical research.

Study 1 - Physiological stability and variability of PPG-based peripheral pulse wave

parameters

This study aimed to characterize the short-term physiological stability and sources of
variability of non-invasively derived peripheral hemodynamic parameters based on PPG
pulse wave analysis, by separating measurement-related variability from true

physiological variation under controlled conditions.
Specifically, the objectives were:

o To quantify the technical contribution to variability in PPG-derived pulse wave
parameters using artificially generated pulse wave signals under identical
measurement settings, in order to distinguish device- and algorithm-related effects

from physiological behavior

o To assess short-term intra-subject physiological variability of selected PPG-
derived hemodynamic parameters in healthy volunteers during repeated

measurements under strictly standardized conditions

e To compare intra-subject variability with inter-subject variability across
individuals measured under identical protocols, thereby identifying parameters

that primarily reflect individual physiological differences

e To evaluate the influence of anatomical measurement site on pulse wave
morphology and derived parameters, using simultaneous recordings from four

different fingers (left/right index and ring fingers)
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Study 2 - Relationship between peripheral pulse wave features and central cardiac

function

The second study examined how specific morphological and timing-related features of
the peripheral pulse wave relate to central cardiac structure and function, as assessed by

echocardiography in healthy individuals.
The objectives were:

o To investigate the association between PPG-derived timing parameters and

echocardiographic measures of left ventricular ejection time (LVET)

e To explore whether distinct pulse wave morphological features correspond to

echocardiographic indicators of systolic and diastolic cardiac function

e To identify PPG-derived parameters that demonstrate the closest physiological
alignment with established echocardiographic measures, without implying direct

clinical interchangeability
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3. Methods

3.1. Overview and technical description of the SCN4ALL system

To answer the research questions detailed in “Objectives”, a dedicated PPG-based pulse
wave analysis system was developed with the participation of the author. The
development of the SCN4ALL platform was initiated in 2016 to address methodological
limitations of existing tools for peripheral pulse wave research and analysis, particularly
the restricted access to raw signals and limited standardization of data acquisition. (See
details in “Introduction - 1.7. Challenges related to measurement accuracy, variability and

clinical validation.”)

In each investigational protocol, pulse wave was recorded as digital volume pulse (DVP)
detected by a commercially available transmission pulse oximeter (Berry Pulse Oximeter,
Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China; hardware: 32-bit AD
converter, 200 Hz sampling rate). The device emits light to the tissues of the finger from
an LED light source and detects the transmitted light by a photodiode. Vessel diameter
and blood volume in the arteries change with pulsation, and so does the amount of
transmitted light due to the changes in the amount of blood cells present in the way of it,
enabling the detection of a continuous DVP. The pulse oximeter device communicates
via Bluetooth connection with a mobile application that initiates and terminates a 140-
second-long data acquisition and transmits the recording to a cloud-based automated

algorithm that was developed by our research group. (51) (Figure 6)
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Figure 6 - Outline of the SCN4ALL telemedicine system. Adapted from Kulin et al. (51),
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
https://doi.org/10.3390/app10227977

During the course of the research, two closely related but not identical signal-processing
implementations were applied. In the first study, the 200 Hz PPG signal was resampled
to a higher temporal resolution (1 kHz) as part of an early signal-processing
implementation prior to morphology-based analysis. In subsequent studies (including
Study 2), using the upgraded SCN4ALL system, signal processing was performed directly
at the native 200 Hz sampling rate without resampling. Subsequent preprocessing steps

were applied consistently across both implementations.

To minimize edge effects related to signal stabilization and preprocessing, only a 120-
second segment of the recorded 140-second PPG signal was selected for further analysis,
with the initial 15 seconds and the final 5 seconds excluded. To condition the PPG signal,
a digital bandpass filter - fourth-order Butterworth - with -3 dB points at 0.1 and 10 Hz is
applied. Then, the algorithm identifies the pulse cycles. Afterward, within each cycle,
fiducial points of the DVP (primary curve, first and second derivatives) are identified.
Then, contour parameters are computed for every individual cycle. Afterward, the means
of all cycles are calculated and displayed on an internet platform for the physician. In this
study, these averages were exported as spreadsheets for further analysis. The
measurement data are stored at a cloud-based server (Amazon Web Services, Amazon
Web Services EMEA SARL, 1855 Luxembourg, Luxemburg) equipped with safe data
protection that conforms to the applicable regulations ((EU) 2016/679). (51)
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3.2. Protocol - Study 1 - Repeatability and reliability

3.2.1. Assessment of Measurement Variability

To evaluate the variability caused by measurement errors in the SCN4ALL system
(including DVP recording, data processing, and analysis), we used artificial signals
generated by a pulse simulator device (MS100 SpO2 Simulator, Contec Medical Systems
Co., Ltd., Qinhuangdao, China). We performed 5 repeated measurements for each of the
three signal settings - Normal (SpO2: 98%, HR: 55/min), Abnormal 1 ("geriatric" -
Sp0O2: 92%, HR: 95/min), and Abnormal 2 ("weak" - SpO2: 90%, HR: 95/min) - using

5 different pulse oximeters of the same model.
3.2.2. Intrapersonal Variability at Standard Conditions

To determine the physiological variability remaining after standardizing conditions, we
conducted 10 repeated 2-minute measurements on 10 healthy individuals (5 males, 5
females; age 19-35, mean age: 25.3 + 4.3 years) under standardized conditions.
Measurements took place in a quiet room at room temperature, in the morning, at least
two hours after the last meal and coffee, in a sitting position with hands resting on a table.

The left index finger was used for all measurements.
3.2.3. Anatomical Variability: Parallel Finger Measurements

To assess the effect of anatomical differences between fingers, we performed parallel 2-
minute measurements on 4 fingers (left and right index and ring fingers) using 4 pulse
oximeters. The study included 25 healthy subjects (17 males, 8 females; age 19-49, mean
age: 29.4 + 8.4 years).

3.3. Protocol - Study 2 - Central vs peripheral hemodynamics - comparison with cardiac

ultrasound measurements

In this study, we employed temporally aligned recordings to capture and compare data
from photoplethysmography (PPG) and echocardiography under comparable resting
conditions. PPG parameters were calculated by averaging measurements from each
heartbeat during continuous recordings over a 140-second period. Concurrently,

echocardiographic parameters were derived by averaging the data from 1-3 heartbeats, in
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line with standard clinical echocardiographic practice. The echocardiographic
examination lasted approximately 20 minutes, and the 2-minute PPG recording was

performed during the examination under stable resting conditions.

3.3.1. Echocardiography

Standard two-dimensional transthoracic echocardiography was performed in accordance
with current EACVI recommendations. (96) Blood pressure (BP) was measured three
times using an automatic sphygmomanometer before conducting a cardiac ultrasound
scan. During the scan, the participant lay on the examination bed with the upper body
undressed, positioned on the left side. 2D echocardiography examinations were
performed with a GE Vivid E95 system with a 4Vc-D phased-array transducer (GE
Vingmed Ultrasound, Horten, Norway). LV focused, ECG-gated datasets were obtained
from parasternal long and short axis, apical four-chamber, apical three-chamber and
apical two-chamber views at a minimum rate of 50 frames per second. Offline analyses
of these datasets were performed after selecting the optimal heart cycle using
commercially available software (Autostrain LV, TOMTEC Imaging Systems GmbH,
Unterschleissheim, Germany). The algorithm automatically generated the endocardial
contours of the cavities, which were manually corrected throughout the entire cardiac
cycle. Speckle tracking technique was used for the deformation analysis. The assessed

echocardiography parameters can be found in Table 2.

24



Table 2 - List of echocardiographic parameters with abbreviations and definitions.

Abbreviation Definition

EF (%) Ejection fraction

LVET (ms) Left ventricular ejection time

LV-EDD (mm) Left ventricular end-diastolic diameter

LV-ESD (mm) Left ventricular end-systolic diameter

LV-SV (ml) Left ventricular stroke volume

LV-GLS (%) Global longitudinal strain

LVOT-VTI (cm) Left ventricular outflow tract velocity time integral
MV-E (cm/s) Mitral E-wave velocity

MV-A (cm/s) Mitral A-wave velocity

MV-E/A The ratio between E-wave and A-wave

E/e’ - lat Early diastolic mitral inflow velocity to early diastolic mitral

annulus velocity
e'-med (cm/s) Mitral medial annulus velocity

Ao, root diam (mm)  Aortic root diameter
Ao-VTI (cm) Aortic maximum flow velocity time integral

3.3.2. PPG measurements

During the cardiac ultrasound, a pulse waveform was recorded for 140 seconds using a
special pulse oximeter on the patient's right index finger, with a 200 Hz sampling
frequency (Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China). The patient lay
on their side, staying still. The oximeter, wirelessly connected to the SCN4ALL mobile
app (E-Med4All Europe Ltd, Budapest, Hungary), sent the anonymized data in real time
to a secure online database. The SCN4ALL software analyzed the signals, its proprietary
algorithm identifies points of interest on the pulse wave from which it calculates over 30
morphological and pulse rate variability parameters online as described above. The

SCN4ALL parameters assessed in both studies are found in Table 4.

3.4. Subjects

Number of participants with specific inclusion and exclusion criteria, study location and

ethical approval number (IRB) of the studies are summarized in Table 3.
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Table 3 - Overview of participants with inclusion and exclusion criteria in Study 1 and 2.

Study 1 Study 2
Participants (n) 25 37
Inclusion e Age 18 and older, both * Age: 18-60, both biological
biological sexes IS\?XG:S | BMI (18 55
e BMI between 18.5 and ¢ ~orma ( )
kg/m”"2)

30 kg/m”2

e Healthy individuals (physically and mentally, self-declaration)
e Does not smoke
¢ Does not consume alcohol regularly

Exclusion e Diagnosed with or treated for any CV disease

e Pregnancy

e Known other chronic or cancerous diseases

e Wears nail polish or artificial nails

e SARS-CoV-2 infection in the last 6 months (only in Study 2)
IRB approval No. 120/2018 120/2018-3
Location of study Institute of Translational Varosmajor Heart and Vascular
execution Medicine, Semmelweis Centre, Semmelweis University,

University, Budapest Budapest

3.5. SCN4ALL Parameters assessed by Study 1 and Study 2

The following set of parameters (Table 4) is only a collection of the many possible options
published in the medical literature. Moreover, with the years of use and testing, our
working group has developed and defined some new PPG parameters as it was
hypothetized that they point to some dedicated, however currently overlooked aspects of

the cardiovascular function.
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Table 4 - List of PPG parameters, with abbreviations and definitions. Legend: * These
parameters are developed by the scientific team behind the SCN4ALL system. Most of
them are not yet validated in clinical studies, their definition and meaning are hypotheses
based on the current understanding of pulse wave  physiology.
®: In Study 2 The findings for these parameters are presented in the supplementary
materials, due to their correlation with echocardiography parameters being lower than
0.4. (Supplementary Table 1). “@75” after some PPG indices: the original time value is
corrected to 75/min heart rate (31)

Abbreviations/ PPG parameter definition Study
Parameter 1or2
names or
1+2
Interbeat The average of all the measured peak-to-peak time 1
interval differences of the 120 sec. registered signal.
(ms)(55)
c-d incidence The proportion of periods in which the algorithm identifies 1
(c-d point c-d points on the second derivative of the PPG (SDPTG, or
detection accelerated plethysmogram (APG)) relative to all periods.
ratio)* (Figure I from Study 1 (51))
HR Mean Heart Rate The mean value of the heart beats per 1+2

minute (1/min). The algorithm calculates a heart rate from
the length of each period of the 120-second signal and
averages them.

Si (38) Stiffness index: h/AT(m/s); h is the height of the person in ~ 1+2©)
meters. AT is the time between the systolic peak and
diastolic peak on the pulse curve in seconds.

b/a (46) The ratio of the first two inflection points of the second 1+2
derivative of the pulse wave.

d/a (43) The ratio of the fourth to the first inflection points of the 1+2
second derivative of the pulse wave.

AGEi (46) Ageing-index The value derived from the second 1+2
derivative of the pulse wave. AGEi= b-c-d-e/a

Ri (14) Reflection index The ratio of the amplitude of the diastolic =~ 1426
peak to the amplitude of the systolic peak.

LVETi (44) Left ventricular ejection time indexed for heart rate 1+2

(LVET:i) was calculated from sex-specific resting
regression equations LVETi(male) = 1,7 x heart rate +
ET(PPG), LVETi(female) = 1,6 x heart rate + ET(PPQG).

DNi * Dicrotic notch index * Describes the relative position of 2
the diastolic peak to the dicrotic notch (the valley induced
by the aortic valve closure before the diastolic peak).
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Abbreviations/ PPG parameter definition Study

Parameter (Table 4 - cont.) lor2
names or
1+2
eLVET1 * Early left ventricular ejection time 1 and Early left 2
eLVET?2 * ventricular ejection time 2 ELVET]1 is measured from the )

start of the period to the first peak of the first derivative of
eLVET1 @75 the pulse, whereas ELVET2 is defined as the time duration 2

* ) from the first peak of the first derivative PTG to the peak
eLVET2 @75 * of the systolic wave. 2
@75 - ELVET1,2 compensated for 75/min heart rate
Crest Time (37) Crest Time - The time elapsed between the beginning of 2
Crest Time the period (foot) and the maximum systolic amplitude )
@75 (peak)
@75 - Crest time compensated for 75/min heart rate
(37)
ET(PPG) (14)  PPG based Left ventricular ejection time 2
ET(PPG) It is the time elapsed between the beginning of the pulse 26
@75 period and the aortic valve closure (dicrotic notch/e-point).

@75 - ET compensated for 75/min heart rate (37)

3.6. Statistical Analysis - Study 1

Cycles with irregular duration or atypical morphology were automatically excluded by
the algorithm (<5% in all cases). For each parameter, the average of all valid pulse cycles
from the 2-minute recordings was used for analysis. Descriptive statistics were reported
as means with 95% confidence intervals. To evaluate variability, the coefficient of
variation (CV) was calculated for both artificial signal recordings (as a measure of
repeatability) and repeated human measurements taken under standardized conditions
(test-retest variability). Threshold of 2% was set for acceptable repeatability and 10% was
set for test-retest variability. For the four-finger protocol, we calculated intraclass
correlation coefficients (ICC) using a linear mixed-effects model to determine how
closely measurements from different fingers agreed and how much of the overall
variability came from differences between individuals. All statistical analyses were

performed using IBM SPSS Statistics, version 26.
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3.7. Statistical Analysis - Study 2

To examine how well PPG- and echocardiography-derived ejection times matched,
Bland-Altman analysis was used to calculate the bias and the 95% limits of agreement.
Ratios and percent differences were also used to evaluate relative agreement. Correlation
analyses were performed to assess the strength of association between PPG- and
echocardiography-derived parameters in JASP (JASP Version 0.19.3; JASP Team, 2025),
using Pearson or Spearman methods based on the normality of variables (tested with the
Shapiro-Wilk test). Scatter plots were used to visualize associations between variables;
fitted linear trend lines were displayed for descriptive purposes only and do not represent
regression models. Significant associations (p < 0.05, r (Pearson)/p (Spearman) > 0.4) are
reported in the main text, while additional and heart rate-adjusted correlations are found

in Supplementary Tables 1 and 2 in Kulin et al. (97)
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4. Results

4.1. Results - Study 1

Results indicated that the system reliably detected and analyzed normal pulse signals,
with coefficient of variation (CV) values below 1% for all calculated variables, indicating
high stability. Even in the abnormal signal conditions (high heart rate and low intensity),
the majority of parameters remained stable, except for the aging index and d/a parameter,

due to the absence of detectable ¢ and d points in the second derivative. (Table 5)

To assess the reliability and stability of human pulse wave measurements, we performed
10 repeated resting measurements in 10 healthy volunteers (M/F: 5/5) under standardized
conditions. The mean age was 25.3 £ 4.5 SD years, and the mean BMI was 22.3 £2.9 SD
kg/m?. Several parameters, including the b/a ratio, left ventricular ejection time index,
mean interbeat interval, stiffness index, and mean heart rate, showed CV values below
10%, indicating reliable consistency. However, the aging index demonstrated slightly
higher variability (CV: 13.6%), and the d/a and c-d point detection ratios showed high

variability despite unchanged conditions. (Figure 7.)

To investigate anatomical variability, we conducted parallel measurements on four
different fingers in 25 individuals, aged 19-49 years. The mean age of the participants
was 29.4 £+ 8.6 SD years, and the mean BMI was 23.7 + 4.0 SD kg/m? For most
parameters, there was no significant difference between fingers. ICC values exceeded
99% for mean interbeat interval, mean heart rate, and left ventricular ejection time index,
suggesting that finger choice had virtually no impact on these measures. Other parameters
- such as stiffness index, c-d point detection ratio, reflection index, b/a ratio, d/a ratio, and
aging index - had slightly lower ICCs (80-90%), but still indicated that anatomical

variability was small compared with differences between individuals. (Table 6)
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Figure 7 - Graphs demonstrating the relationship between interpersonal variability
and intrapersonal variations of the computed pulse contour parameters.
Measurements were performed on 10 healthy volunteers 10 times repeatedly under
standardized conditions. Means (+confidence intervals) are presented (red solid line) for
each consecutive measurement along with individual measurement data (black lines).
Adapted and modified from Kulin et al. (51), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app10227977
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Table 5 - Results of repeatability measurements. Means (confidence intervals - CI) and coefficients of variation (CV) of pulse contour
variables measured by the SCN4All telemedicine system. Repeatability was assessed using artificially generated pulse signals recorded with
a pulse oximeter simulator under three settings (Normal, Abnormal 1, Abnormal 2). For each setting, five repeated measurements were
performed with one pulse oximeter (n=5), and extended to four additional devices of the same release (n=25, 5x5 measurements). Adapted

from Kulin et al. (51), licensed under CC BY 4.0, https://doi.org/10.3390/app10227977

- Table 5 continues next page -

32

Normal Abnormal 1 Abnormal 2
n=>5 n=25 n=35 n=25 n=>5 n=25
Variables | Mean(Cl) CV(%) Mean(Cl) CV(%)| Mean(Cl) CV(%) Mean(Cl) CV(%)| Mean(Cl) CV(%) Mean(Cl)  CV(%)
Aging 1.13(1.12- 1.14(1.13- 3.37(2.29- 3.12(2.79- 3.71(2.81-
_ 0.57 27.1 26.1 20.4 3.84(3.69-4) 9.9
index 1.14) 1.14) 4.45) 3.46) 4.60)
b/a 1.78(1.78- 1.79(1.78- 1.59(1.59- 1.59(1.59- 1.60(1.59- 1.60(1.56-
0.32 0.29 0.32 0.33
1.79) 1.79) 1.59) 1.60) 1.60) 1.59)
c-d point
0.60(0.08- 0.44(0.23- 2.70(2.25-
detection [100(100-100) 0  100(100-100) O 95.9 116 | 2(0.48-3.52) 64.3 42.2
1.28) 0.65) 3.19)
ratio (%)
d/a 0.75(0.74- 0.75(0.75- 0.48(0.06- 0.35(0.18- 0.64(0.20- 0.71(0.63-
0.37 95.9 116 58.7 26.9
0.75) 0.75) 1.01) 0.52) 1.09) 0.79)
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Table 5 - cont.

ejection time

index (ms)

Heart rate
(1/min)

Interbeat
interval

(ms)

Reflection

index (%)

Stiffness

index (m/s)

552(552-554) 022 553(552-553) 0.27

55(55-55) 0 55(55-55) 0
1089(1089- 1089(1088-
1089) 1090)

35.5(35.5-35.6) 0.13 35.5(35.5-35.6) 0.11

4.62(4.62-4.63) 0.10 4.62(4.62-4.63) 0.26

462 (461-462) 0.06 462(462-462) 0.05

95(95-95) 0

631(631-631) 0

95(95-95) 0

631(631-631) 0.19

32.7(32.7- 32.7(32.7-
0.13
32.8) 32.8)
7.34(7.34- 7.34 (7.33-
0.18
7.34) 7.34)

462(462-463) 0.06

95(95-95)

630(630-631)  0.07

Normal Abnormal 1 Abnormal 2
n=35 n=25 n=>5 n=25 n=>5 n=25
Variables Mean(Cl) CV(%) Mean(CI) CV(%)| Mean(Cl) CV(%) Mean(Cl) CV(%)| Mean(Cl) CV(%) Mean(Cl) CV(%)
Left
ventricular

462(462-463) 0.07

0 95(95-95) 0

32.8(32.6-32.9) 0.35

7.34 (7.33-
7.36)

631(631-632) 0.18

32.8(32.7-
0.42
32.8)
7.34(7.33-
0.16 34
7.35)
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Table 6 - Results of measurements performed in parallel on 4 separate fingers on 25 healthy individuals. The results of the 25
subjects were averaged for each finger separately and are presented in the table with bracketed confidence intervals (Cls). Intraclass
coefficients (ICC) were calculated to assess the correlation of results within the same individuals. Adapted and modified from Kulin et al.
(51), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app 10227977

Left index finger Left ring finger Right index finger Right ring finger ICC
n=25 n=25 n=25 n=25

Pulse contour variables Mean(CI) Mean(CI) Mean(CI) Mean(CI)
Aging index -1.29(- 1.46; -1.13)  -1.30(-1.47;-1.13)  -1.34(-1.15;-1.12)  -1.47(-1.17;-1.25) 0.81
b/a -1.21(-1.26; -1.15)  -1.22(-1.29; -1.16)  -1.25(-1.31;-1.20)  -1.24(-1.30; -1.17) 0.83
c-d point detection ratio (%) 33.8(25.3;42.4) 31.3(23.1; 39.5) 31.9(22.9; 40.8) 32.3(23.9; 40.78) 0.90
d/a -0.15(-0.24; -0.06)  -0.16(-0.26; -0.07)  -0.17(-0.29; -0.06)  -0.10(-0.21; -0.01) 0.82
Left ventricular ejection time 148(56; 240) 148(57; 240) 147(56; 238) 147(56; 237) >0.99
index (ms)
Heart rate (1/min) 70.6(67.1; 74.2) 71.0(67.5; 74.2) 70.9(67.4; 74.4) 71.0(67.4; 74.5) >0.99
Interbeat interval (ms) 862(817; 906) 862(818; 908) 862(816; 907) 861(817; 907) >0.99
Reflection index (%) 62.2(59.2; 65.1) 60.8(57; 64.6) 61.5(58.4; 64.5) 61.3(57.6; 65.0) 0.81
Stiffness index (ms) 7.74(7.37; 8.10) 7.71(7.32; 8.10) 7.58(7.20; 7.97) 7.59(7.13; 8.05) 0.90
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4.2. Results - Study 2

The results of a total of 37 healthy volunteers aged 20-57 years were used in the data
analysis. (M/F: 16/21; mean age: 36.9 = 11.4 SD years, BMI mean: 22.4+ 2.3 SD,
Systolic brachial BP: 115+ 12 SD mmHg, Diastolic brachial BP: 64 + 9 SD mmHg).

The results of the correlation tests are shown in Table 7.

Table 7 - Results of Pearson’s and Spearman’s correlations: comparisons of
echocardiographic parameters and PPG parameters. r: Pearson’s correlation
coefficient; p(rho):Spearman’s correlation coefficient, p= p-value (significance value
<0.05) Given the correlation between heart rate measured by PPG and some
echocardiographic parameters, where applicable, partial correlation tests were performed
as a function of heart rate. *: SCN4ALL parameters. List of abbreviations found in Table
2 and Table 4.

Correlation of echocardiography parameters with PPG (Pearson)

Echocardiography: PPG Pearson’s Pearson’s Partial
Ejection time parameters correlations correlations condition
on HR
r p r P
LVET (ms) ET(PPQG) 0.648  <.001 0.555 <.001
Crest Time 0.567  <.001 0.371 0.026
DNi * -0.496  0.002 -0.479 0.003

HR -0.538 <.001 N/A N/A

Table continues next page
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Correlation of echocardiography parameters with PPG (Pearson)(cont.)

Echocardiography: PPG Pearson’s Pearson’s Partial
systolic function parameters correlations correlations condition
on HR
r p r p

LV-EDD (mm) AGEi -0.51 0.001 N/A N/A

d/a 0.47 0.003 N/A N/A

b/a -0.41 0.013 N/A N/A
LV-ESD (mm) AGEi -0.52 0.001 N/A N/A

d/a 0.45 0.005 N/A N/A

b/a -0.42 0.01 N/A N/A
LV-GLS (%) DNi * 0.5 0.001 N/A N/A
LVOT-VTI (cm) DNi * -0.4 0.015 N/A
Ao-VTI (cm) DNi * -0.44 0.007 N/A
Echocardiography: PPG Pearson’s Pearson’s Partial
diastolic function parameters correlations correlations condition

on HR
r p r p

MV-A (cm/s) b/a 0.52 <.001 0.51 0.001

HR 0.5 0.005 N/A
MV-E (cm/s) AGEi 0.4 0.014

e'-med (cm/s) Crest Time -0.41 0.012

Table continues next page
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Correlation of echocardiography parameters with PPG (Spearman)(cont.)

Echocardiography:

Ejection time

LVET (ms)

Echocardiography:

systolic function

LV-EDD (mm)

LV-ESD (mm)

Ao, root diam (mm)

Echocardiography:

diastolic function

MV-A (cm/s)

MV-E/A

E/e' - lat

PPG parameter

eLVET2 *

PPG parameters

Crest Time @75
eLVET2 @75 *
eLVET2 @75 *
DNi *

PPG parameters

eLVET2 @75 *
Crest Time @75
HR

HR

End of Table 7

Spearman’s Spearman’s Partial

correlations correlations
condition on HR

p P p Y

0.496 0.002 0.404 0.015

Spearman’s Spearman’s Partial

correlations correlations
condition on HR

p p p p

-0.472 0.003

-0.436 0.007

-0.409 0.012

0.482 0.003

Spearman’s Spearman’s Partial

correlations correlations
condition on HR

p p p p

0.572 <.001 NA NA

0.517 0.001 NA NA

0.5 0.005

-0.451 0.005
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4.2.1. Results related to left ventricular ejection time (LVET)

Bland-Altman analysis showed a mean difference of 95.0 ms between echocardiography
and PPG measurements of cardiac ejection time. The limits of agreement ranged from
54.0 ms to 136.0 ms, with most differences falling within this range and no evident

proportional bias. ( Figure 8)
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Figure 8 - Agreement between photoplethysmography (PPG) and echocardiography
(ECHO) in measuring ejection time (ET) in milliseconds (ms) using Bland-Altman
analysis. Middle dashed line: mean difference (95.0 ms), upper and lower dashed line are
mean difference +/- 1.96 SD (standard deviation)(136.0 ms and 54.0 ms), respectively.
Adapted and modified from Kulin et al. (97), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/),
https://doi.org/10.1556/2060.2025.00675

LVET (ms) measured by cardiac ultrasound showed a moderate-to-strong correlation

with ejection time measured by PPG (ET(PPQ)) (r= 0.648; p<0.001). (Figure 9)
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Figure 9- Association between ejection times measured by echocardiography and PPG.
Scatter plot illustrating the association between left ventricular ejection time (LVET, ms)
measured by cardiac ultrasound and ejection time derived from photoplethysmography
(ET(PPG), ms). The strength of association was quantified using Pearson’s correlation
analysis (see Methods). The fitted linear line is displayed for visualization purposes only
and does not represent a regression model. Adapted and modified from Kulin et al. (97),
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
https://doi.org/10.1556/2060.2025.00675

We also found correlations with other parameters related to systolic time, such as Crest
Time (r=0.567; p<0.001); and the early left ventricular ejection time 1 (eLVETI *)
(r=0.478; p=0.003) and 2 (¢eLVET2 *) (r=0.472; p=0.003).

LVET correlated with the Dicrotic notch index (DNi*), too. (r=-0.496; p=0.002).

Given the correlation between heart rate measured by PPG and echocardiographic LVET
(r=-0.538; p<0.001), we conducted partial correlation tests conditioned on heart rate. The
correlation persisted for the parameters ET(PPG), Crest Time, eLVET2*, DNi*,
suggesting an independent relationship with heart rate. However, the correlation
disappeared for the parameters eLVET1*, indicating that the strong association was
driven by the relationship with heart rate in this case. (Parameters that lost significance

after heart rate adjustment are shown in Supplementary Table 1 in Kulin et al.) (97)
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4.2.2. Results related to cardiac systolic function

Several PPG parameters were significantly correlated with echocardiographic parameters
which are routinely used in monitoring of systolic function and have known prognostic

values. The parameters with the best correlation are shown in Figure 10 and Table 7.
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Figure 10- Scatter plots illustrating associations between parameters describing
systolic function. LV-EDD - left ventricular (LV) end-diastolic diameter, LV-ESD - LV
end-systolic diameter, LV-GLS - LV global longitudinal strain. AGEi - value calculated
from fiducial points of the second derivative of the pulse wave (SDPPG), defined as AGEi
=(b - c-d - e)a; d/arepresents the amplitude ratio of the fourth inflection point (“d”) to
the first inflection point (“a”) of the SDPPG. DNi - parameter describing the relative
position of the diastolic peak with respect to the dicrotic notch. Associations were
quantified using correlation analysis (see Methods); fitted linear trend lines are shown for
visualization purposes only. p <0.05 for all parameters. Adapted and modified from Kulin
et al. (97), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
https://doi.org/10.1556/2060.2025.00675
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4.2.3. Results related to cardiac diastolic function

We observed the most significant correlations with indicators of atrial contraction (MV-
A) and left ventricular filling pressure (E/e’ lat). Given that some parameter pairs
exhibited correlations with heart rate, we further analyzed these relationships using partial
correlation to account for heart rate variability. Table 7 and Figure 11 showcases these

significant correlations.
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Figure 11- Scatter plots illustrating associations between parameters describing
diastolic function. PPG-derived parameters showing some of the strongest associations
with echocardiographic indices of diastolic function. MV-A - mitral A-wave velocity;
E/e'-lat - ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus
velocity; eLVET2@75* - eLVET2 is defined as the time interval from the first peak of
the first derivative of the PPG signal to the peak of the systolic wave; b/a - ratio of the
first two inflection points of the second derivative of the pulse wave; Crest Time@75 -
time elapsed between waveform onset (foot) and maximum systolic amplitude (peak).
The @75 notation indicates correction of the original time values to a heart rate of 75
beats/min. LVETi - left ventricular ejection time indexed for heart rate, calculated using
sex-specific resting regression equations. Associations were quantified using correlation
analysis (see Methods); fitted linear trend lines are shown for visualization purposes only.
p < 0.05 for all parameters. Adapted and modified from Kulin et al. (97), licensed under
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
https://doi.org/10.1556/2060.2025.00675
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5. Discussion

The systematic investigation of peripheral pulse wave analysis represents a structured
contribution to translational cardiovascular science. Despite decades of research on the
shape and features of the pulse wave, the physiological interpretation of many peripheral
pulse wave-derived parameters and their relationship to central cardiovascular function
remain incomplete, and this area therefore remains underutilized in clinical care.

(37,51,60,78,79)

The present work was driven by the recognition that, although peripheral
photoplethysmographic signals are easily accessible and rich in physiological
information, limitations in the physiological characterization, stability, and
interpretability of derived parameters, in addition to the availability of validated systems
and comprehensive methodological evaluations, have constrained their medical

application. (80)

To advance the field, our team has developed a custom high-resolution PPG-based
measurement system as a research tool, tailored for systematic pulse wave recording and
analysis. The development was embedded in the framework of translational medicine,
aiming to bridge experimental pulse wave analysis with physiologically interpretable

cardiovascular phenomena. (11)

5.1. Physiological stability and variability of PPG-based peripheral pulse wave

parameters

In Study 1, first the system's measurement repeatability using artificial signals and human
test-retest variability were evaluated. The system demonstrated high repeatability for
most parameters (CV < 2%) when detecting normal pulse signals. However, detecting
SDPPG ‘¢’ and ‘d’ points in abnormal signals proved less reliable, affecting derived

parameters such as the Aging-index and d/a ratio.

Human test-retest measurements revealed that core parameters like b/a, left ventricular
ejection time index, mean interbeat interval, stiffness index, and mean heart rate remained
consistent under standard conditions (CV < 10%). However, the aging index and d/a ratio
showed higher variability, indicating that these parameters should only be interpreted

when c-d point detection is reliable. The issue of the absence of c-d points and the
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limitations of parameters calculated using them have been addressed in numerous
previous publications searching for methods how to detect these points (79,85,98), as they

hypothesized to represent the onset and offset of the reflected wave.(84)

Anatomical variability analysis showed minimal differences between measurements
performed on different fingers, with intraclass correlation coefficients exceeding 80% for
most parameters. These findings suggest that the contribution of finger-related anatomical
variability to the total observed variance is small. Importantly, the high ICC values imply
that most of the variability in the assessed pulse wave parameters originates from true
interindividual differences rather than from intrapersonal variability associated with
measurement location. Nevertheless, to maximize comparability - particularly in
longitudinal or repeated-measurement settings - it remains advisable to consistently
perform measurements on the same finger to minimize even minor sources of inter-finger

variability.

5.2. Comparison with gold-standard: correlation of peripheral pulse wave features with

central cardiac function

In study 2 we aimed to examine the relationship between echocardiographic and
photoplethysmographic (PPG) pulse wave-derived parameters in healthy individuals.
While previously published results revealed limited aspects of this relationship (Table 1),
our analysis provides a more comprehensive evaluation, including both established and
novel PPG parameters. The results contribute to the emerging body of evidence
supporting the potential role of pulse wave analysis by either PPG (15,90,99) or other

methods in non-invasive cardiac monitoring. (100)

5.2.1. Ejection time

Left ventricular ejection time is a clinically relevant parameter in heart failure
management and pharmacological response assessment. (101) Our findings show a
significant, though moderate, correlation between ET measured by echocardiography and
several PPG-derived indices (ET(PPG), Crest Time, eLVET2*, DN1). These findings are
in line with earlier studies reporting systematic differences between central and peripheral

ET measurements. (102) While not interchangeable, these parameters may still support
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longitudinal monitoring, especially given the magnitude higher availability of PPG
devices, compared to echocardiography. 1.1 billion wearable devices were used globally
in 2022, from which at least half of them are wristbands and smartwatches with PPG
capabilities. (103) Besides the correlation of the time domain parameters, the significant
correlation of DNi with ejection time supports our initial hypothesis that it captures
information related to ventricular function, potentially reflecting aspects of ventriculo-

arterial coupling.

5.2.2. Systolic function
Systolic Function and Left Ventricular Dimensions

Left ventricular end-diastolic and end-systolic diameters are well-established markers of
systolic function and overall cardiac performance. (104) In our study, the strongest
correlation between a PPG-derived parameter and a structural echocardiographic measure
was observed between LV-EDD and the Ageing Index (AGEi) and d/a - a suggested
proxy for afterload by Takazawa et. al and Nichols et al. (46,105) AGE:i also showed
moderate association with LV-ESD, highlighting its potential as a surrogate PPG
indicator of LV anatomy and function. The clinical relevance of these findings is that both
LV-EDD and LV-ESD are independently associated with prognosis in coronary artery
disease, dilated and hypertrophic cardiomyopathies, and heart failure. (106) Although
correlation strength remained moderate, requiring further studies, the consistency of
AGE1i’s relationship with both diameters supports the hypothesis that peripheral

waveform characteristics may reflect ventricular geometry.
Stroke Volume, Ejection Fraction, and Global Longitudinal Strain (GLS)

Stroke volume showed weak but significant correlations with several PPG parameters,
particularly with AGE1 and d/a ratio. (Results are presented in the Supplementary Table
1. and 2. in published paper of Study 2. (97)) While ejection fraction (EF) did not show a
significant correlation with any PPG parameter, this is not surprising given that EF is a
volume ratio not directly captured by peripheral signals. Instead, the local signal of PPG
is likely reflecting systemic hemodynamic performance providing information on the

effectivity of cardiovascular function at the tissue level, rather than estimating absolute
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chamber volume measures and ratios. It is also important to underline that the results
reveal a significant correlation between GLS and the Dicrotic Notch Index (DNi),
suggesting that further studies should target DNi, as it may offer insights into subtle
myocardial dysfunction, particularly in HFpEF, where EF remains preserved despite
declining contractility. This represents the first reported association between PPG
morphology and ventricular strain, highlighting a new direction for non-invasive systolic

function assessment in early-stage heart failure - upon further validation studies.
Aortic Parameters

Both static and dynamic aortic measures demonstrated moderate and weak, but significant
correlations with PPG parameters, mainly with DNi. Specifically, DNi correlated
significantly with aortic root diameter (rho = 0.482), Ao-VTIL, and LVOT-VTI, in addition
to ejection time and GLS. These relationships further support our initial hypothesis that
DNi may capture elements of aortic distensibility, ejection dynamics and ventriculo-
arterial coupling. These findings support its potential role in broader cardiovascular

assessment; however further validation is needed in various CV patient groups.

5.2.3. Diastolic function

The results revealed further significant correlations between several PPG parameters
(eLVET2@75, b/a, CrestTime@75) and established echocardiographic markers of
diastolic function. Significant, but moderate associations were found with MV-A, a
parameter influenced by atrial contraction and ventricular relaxation (107,108), which
suggest PPG’s potential to reflect diastolic dynamics. LVET], a time-domain parameter
showed the strongest correlation with E/e’-lat, a well-known surrogate of left ventricular
filling pressure, supporting prior research on its relevance in diastolic dysfunction

assessment. (109)

While EF often remains normal in heart failure with preserved ejection fraction (HFpEF),
rising E/e’-lat and MV-A values - which exhibited the highest correlations with PPG
parameters - indicate impaired diastolic filling and increased pressure. These findings
suggest that PPG-derived features may complement existing tools in evaluating diastolic
function or might be useful features in the future for home monitoring between

ambulatory visits.
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Given the prognostic significance of diastolic dysfunction in heart failure, especially in
the context of preserved systolic function, these results of PPG derived parameters may
offer a future method to support screening and monitoring - particularly for asymptomatic
HFpEF patients. However, it is emphasized that further studies should validate these
associations in broader clinical populations and explore other interesting fields. For
example: How PPG-based parameters respond even to treatment strategies such as the

increasingly used SGLT2 inhibitors?
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6. Conclusions

This dissertation aims to summarize the findings of two initial trials about a non-
invasively recorded set of peripheral hemodynamic parameters to explore their
physiological behavior, stability and relationship with echocardiographic measures, with
the long-term aim of evaluating their potential as biomarkers of cardiovascular status.
These findings are just the beginning of a long research project to demonstrate sufficient

evidence of whether these markers are appropriate or not for clinical decision-making.

Even though there was a need for the creation of a custom-built PPG analysis system due
to the limitations of the available devices, the main aim of the works presented above is

to better understand how these characteristics behave in healthy volunteers.

6.1. The key findings from Study 1 and Study 2

Study 1 - Physiological stability and variability of PPG-based peripheral pulse wave

parameters

e The custom-built system demonstrated excellent repeatability under controlled
conditions: measurement variability remained below 2% across devices when

recording artificial pulse signals with proper signal quality.

e A novel contribution was the introduction of the “c-d point detection ratio” as a
quality control metric to assess the trustworthiness of second-derivative-based
parameters. This parameter supports the selective interpretation of features like
the Aging-index and d/a ratio. Their use should be limited to measurements with

sufficient c-d point detection ratios.

e Key pulse wave parameters - including b/a, stiffness index, left ventricular
ejection time index, and mean interbeat interval - showed low intrapersonal
variability (CV < 10%) in short-term repeated measurements on healthy subjects,
identifying the most robust parameters from the aspect of hemodynamic stability,

under standardized conditions.

e Parallel measurements on four different fingers showed strong within-subject

agreement, with intraclass correlation coefficients exceeding 0.80 for all
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investigated pulse wave parameters, indicating that finger-related anatomical
variability contributes only minimally to overall pulse wave variability. For
longitudinal or repeated measurements, it is therefore recommended to
consistently perform follow-up recordings on the same finger to minimize even
minor inter-finger differences.

o The consistently high intraclass correlation coefficients further indicate that the
majority of observed variability originates from true interindividual differences
rather than short-term intraindividual fluctuations related to measurement

location.

Study 2 - Relationship between peripheral pulse wave features and central cardiac

function

Study 2 examined the physiological relationship between peripheral pulse wave features
derived from PPG recordings and central cardiovascular function, as characterized by
echocardiographic measures. The analysis focused on whether specific time-domain
pulse wave characteristics are associated with measures of left ventricular systolic and
diastolic function, aortic properties, and cardiac morphology. Moderate but consistent
associations were identified between selected PPG-derived parameters and
echocardiographic indices, supporting the physiological relevance of peripheral pulse

wave morphology.

e PPG-derived ejection time showed a moderate-to-strong association with
echocardiographic left ventricular ejection time (r = 0.648, p < 0.001), with a
systematic mean offset of +95 ms relative to echocardiography, indicating that
peripheral timing-based pulse wave features reflect central systolic timing under

standardized measurement conditions.

e Both newly defined parameters such as eLVET2 @ 75 and established PPG-
derived metrics including the Aging index and b/a demonstrated moderate and
significant associations with echocardiographic measures of chamber dimensions,
diastolic filling pressure, and atrial contraction, consistent with peripheral pulse
wave morphology being sensitive to variations in central cardiac structure and

filling dynamics
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e The Dicrotic Notch Index (DNi) showed consistent moderate associations with
aortic root diameter, LVOT-VTIL, and global longitudinal strain, indicating a
potential sensitivity to properties related to aortic mechanics and ventriculo-

arterial interaction.

6.2. Future outlook

Upon the publication of further PPG related research, future potential of the method is
the paradigm shift: from the occasional medical measurements to daily or continuous data
recording. There is high chance that trend analysis of daily measurements and insights
from Big Data and pattern evaluation will overcome the known limitations of the
peripheral pulse wave analysis on the long run - especially as this is a more affordable
technology than the current expensive medical systems to assess hemodynamics, leading
to a more reachable and inclusive healthcare even for the low socioeconomic areas and

remote places of Earth.

Ongoing studies and collaborative projects using the SCN4ALL system are underway in
multiple clinics and academic centers across Europe - including Hungary, Greece, and
the Netherlands - to gather further data and determine which medical settings and patient

groups may benefit most from the regular use of this approach.
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7. Summary

Photoplethysmography (PPG)-based pulse contour analysis provides a non-invasive
approach for studying peripheral hemodynamics and pulse wave morphology.
This thesis investigated the physiological behavior, stability, and interpretability of
selected digital arterial volume pulse (DVP) parameters derived from peripheral PPG

recordings, using a custom-built high-resolution research system (SCN4ALL).

Study 1 assessed the technical and short-term physiological stability of PPG-derived
pulse wave parameters under standardized conditions. Artificial signal testing
demonstrated excellent repeatability (CV < 1%), indicating minimal device- and
algorithm-related measurement error. In human test-retest measurements, key parameters
- including stiffness index, reflection index, left ventricular ejection time index, mean
interbeat interval, and b/a - showed low intrapersonal variability (CV < 10%), supporting
their robustness in healthy subjects. Second-derivative-based parameters were more
variable due to limited c-d point detectability; therefore, a c-d point detection ratio was
introduced as a quality control metric. Parallel finger recordings showed strong within-
subject agreement (ICC > 0.80), indicating that most variability reflects interindividual

differences rather than measurement location effects.

Study 2 investigated how PPG-based parameters reflect central cardiac function by
comparing them with echocardiographic measurements in 37 healthy subjects. PPG-
derived ejection time showed highest correlation with echocardiographic values (r =
0.648, p < 0.001), despite a consistent overestimation (+95 ms). Twelve additional PPG
features showed moderate and significant correlations - both previously published PPG
parameters and markers defined by our research group - (r > 0.4, p < 0.05) with key
echocardiographic indices, including left ventricular dimensions, stroke volume, global
longitudinal strain, aortic root diameter, ventricular filling pressure (E/e’ lat), and atrial

contraction (MV-A).

Overall, the results contribute to a more detailed physiological interpretation of peripheral
pulse wave morphology and highlight which PPG-derived parameters provide stable and
interpretable information under standardized conditions in healthy individuals. These
findings establish a physiological basis for future hypothesis-driven studies investigating

specific cardiovascular conditions and well-defined clinical questions.
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Abstract: Telemonitoring systems equipped with photoplethysmography-based contour analysis of
the digital arterial volume pulse (DVP) can be optimal tools for remote monitoring of cardiovascular
patients; however, the method is known to be sensitive to errors. We aimed to show that DVP
analysis is a reliable method to track cardiovascular status. We used our proprietary SCN4ALL
telemedicine system and analyzed nine parameters derived from the DVP and its second derivative
(SDDVP). First, we assessed the repeatability of system measurements by detecting artificial signals.
Then test-retest reliability of human measurements was evaluated in healthy individuals under
standardized conditions. The SCN4ALL system analyzed each parameter with high accuracy
(coefficients of variation (CVs) < 1%). Test-retest reliability of most parameters (stiffness index,
reflection index, left ventricular ejection time index, b/a, heart rate) was satisfactory (CVs < 10%) in
healthy individuals. However, aging index and d/a ratio derived from the SDDVP were more variable.
Photoplethysmography-based pulse contour analysis is a reliable method to monitor cardiovascular
status if measurements are performed with a system of high accuracy. Our results highlighted that
SDDVP parameters can be interpreted with limitations due to (patho)physiological variations of the
DVP. We recommend the evaluation of these parameters only in measurements where all inflections
of SDDVP are detected reliably.

Keywords: pulse wave analysis; photoplethysmography; telemedicine; test-retest reliability;
pulse contour

1. Introduction

Despite the enormous effort invested in research and development of new treatments to break the
dominance of cardiovascular diseases in morbidity and mortality statistics, they are still among the
leading causes of death [1,2]. A potential breakthrough could be achieved by launching extensive home
surveillance programs that allow close follow-up of cardiovascular patients. The pandemic months
of COVID-19 underline the need for reliable telemedicine surveillance tools to reduce the need for
personal visits to outpatient clinics, thus reducing the chance of infection of the highest risk population.

Development of a cardiovascular telemonitoring system requires the incorporation of a
cardiovascular measurement that is noninvasive, easy-to-use for the patient, convenient, timesaving,
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and not least provides clinically relevant information about the current cardiovascular status of
the patient. The detection and analysis of digital arterial volume pulse (DVP) recorded by the
photoplethysmographic (PPG) method is a perfect option as it fits all these requirements. In fact,
the DVP tracks the changes of vessel diameter and blood volume in the arteries which occur due to
arterial pulsation [3,4], and hence its shape is identical to the digital arterial pulse wave.

Mechanistically, the arterial pulse wave is a pressure wave that is initiated by cardiac ejection and
runs through the arterial system. It is an invaluable source of information about the cardiovascular
status of the patient, as its amplitude and contour are influenced by the dynamics of cardiac function,
the elasticity of the arteries, and also by the pressure augmentation caused by the superimposing
reflected pressure wave [5], which is highly affected by the tone of the resistance vessels. Moreover,
all these factors are dependent on the current status of the autonomic nervous system. Not surprisingly,
altered cardiovascular conditions (both physiological and pathological) cause well-defined characteristic
changes in the shape and propagation velocity of the pulse wave [6-11]. Therefore, by detecting the
changes in pulse wave contour, it is possible to establish the cardiovascular status of the patient.

Mathematical analysis of the pulse wave and DVP is well established in the literature [4,12-14].
Several cardiovascular indices, termed pulse contour parameters, derived from the raw curve and
from its first and second derivatives have been identified as measures of various elements of cardiac
and vascular function (Figure 1). Alterations of these indices have been associated with cardiovascular
pathologies such as arterial stiffness, atherosclerosis, hypertension, aging, diabetes, coronary heart
disease, and heart failure [12-19].

Undoubtedly, these scientifically well-established characteristics of PPG-based detection and
analysis of DVP make this method an optimal tool for remote cardiovascular monitoring. Despite this,
it has not gained ground in clinical practice so far. The reason behind this is that there are controversies
about the applicability of this method in clinical diagnostics and the lack of large-population studies
that could establish the guidelines for follow-up and those patient groups in which it would have the
highest benefit.

One reason why the applicability of the method is debated that the parameters computed from
DVP are sensitive to errors and cannot be detected reliably as they fluctuate from one measurement to
another even if the cardiovascular status of the patient is stable [20-23]. However, this controversy is
fostered in part by the fact that no data are available in the scientific literature about the reliability of
the measurements. This issue is particularly emphasized in the case of those parameters which are
derived from the second derivative of the DVP. The second derivative of the DVP (often referred to as
acceleration plethysmogram) has several distinguished points from which valuable cardiovascular
indices can be calculated (Figure 1). Among these, c and d points have been introduced as characteristics
that may facilitate our understanding of the dynamics of wave reflection and the pulse wave analysis
based evaluation of the severity of arterial aging [14,24-28]. However, the detection of these points has
become a challenge for mathematical algorithms to identify [8,29,30].

This study was designed to address these controversies in order to show that the detection
and computation of DVP contour parameters is a reliable method. We postulated that fluctuations
in measured values most probably reflect real changes in cardiovascular functioning and are not
caused by poor reliability of DVP analysis. To answer our specific questions, we used a PPG-based
telemedicine system which has been developed with the participation of our research team (SCN4ALL
ver.1.0, E-Med4All Europe Ltd., Budapest, Hungary) (Figure 2), and we analyzed nine pulse contour
parameters, the medical significance of which has been proposed by various studies (Figure 1).
Our specific questions addressed not only the reliability of DVP analysis in general, but also the
measurement reliability of our system.



Appl. Sci. 2020, 10, 7977 30f17

A systolict L2
peak > D“;"::’c Diastolic
notcl peak
©
X
y
& v »Y v
ET
<
PTT
B

NS
/avf\/ﬂ/\ﬁ«/

Figure 1. Pulse contour parameters calculated by the SCN4ALL system. Representative pulse wave
recording (panel A), and its first (panel B) and second derivative curves (panel C). ET represents ejection
time measured as the duration between the foot of the pulse wave and the dicrotic notch. ET was

normalized for heart rate to calculate left ventricular ejection time index (LVETI) using the formulae
LVETI = 1.7 X heart rate + ET and LVETI = 1.6 x heart rate + ET in males and females, respectively.
Pulse transit time (PTT) is the duration measured between the systolic and diastolic peaks of the curve.
PTT was used to calculate stiffness index as the height of the subject over PT. IBI represents interbeat
interval, which is the pulse duration measured from peak to peak. Here, x and y are amplitudes of
the systolic and diastolic peaks, respectively, and are used for calculation of the reflection index as
x/y. Points a—e represent notable inflection points of the second derivative curve. Second derivative
inflection points were used to calculate b/a, d/a, aging index (calculated as (b — ¢ — d — e)/a), and c—d
point detection ratio (the percentage of pulse cycles in the 2-min recording in which ¢ and d points
were successfully identified by the algorithm).

Database

Pulse oximeter

Algorithm engine
Mobile app Physician’s dashboard

Figure 2. Outline of the SCN4ALL telemedicine system. Peripheral arterial pulse wave is detected by a
transmission pulse oximeter. The device (Berry Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd.,
Shanghai, China) communicates via Bluetooth connection with a mobile application (SCN4ALL) which
initiates and terminates the 2-min-long data acquisition and transmits the recording to a cloud database.
A cloud-based automated algorithm calculates the pulse contour variables which are then reported to
the dashboard of the physician and, in brief form, to the mobile application of the user.
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In this context, firstly we assessed the measurement error of our telemedicine system to rule out
its relevant contribution to measurement variability in human tests.

As a next step, we aimed to test the reliability (test-retest variability) of PPG-based pulse contour
analysis in human measurements. As a satellite question, we also aimed to clarify whether using
different fingers for the measurement has an influence on the measurement of pulse contour indices.

Finally, using the results of the performed measurements, we evaluated the applicability of our
proprietary algorithm to detect ¢ and d points on the acceleration plethysmograph.

2. Materials and Methods

2.1. Subjects

Healthy, informed, consenting volunteers participated in the study. Volunteers who smoked,
received any kind of medication, were pregnant, or had BMI > 30 were excluded. The study was
approved by the Regional and Institutional Committee of Science and Research Ethics at Semmelweis
University (approval number 120/2018).

2.2. Measurements with the SCN4ALL System

In each investigational protocol, pulse wave detection and analysis were performed by the
1.0 version of the SCN4ALL telemedicine system (E-Med4All Europe Ltd., Budapest, Hungary).
Pulse wave was recorded as DVP detected by a commercially available transmission pulse oximeter
(Berry Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China; hardware: 32-bit AD
converter, 200 Hz sampling rate). The device emits light to the tissues of the finger from an LED light
source and detects the transmitted light by a photodiode. Vessel diameter and blood volume in the
arteries change with pulsation, and so does the amount of transmitted light, enabling the detection of a
continuous DVP. The pulse oximeter device communicates via Bluetooth connection with a mobile
application that initiates and terminates a 2-min-long data acquisition and transmits the recording to a
cloud-based automated algorithm that was developed by our research group (Figure 2).

Signal preprocessing by the algorithm starts with upsampling the 200 Hz sampling frequency
of the device to 1 kHz. In order to condition the PPG signal, a digital bandpass filter—fourth-order
Butterworth—with —3 dB points at 0.1 and 10 Hz is applied. Then, the algorithm identifies the pulse
cycles. Afterward, within each cycle, particular distinct points of the DVP (primary curve, first and
second derivatives) are identified. Then, contour parameters are computed for every individual cycle.
Afterward, the means of all cycles are calculated and displayed on an internet platform for the physician.
In this study, these averages were exported as spreadsheets for further analysis. The measurement
data are stored at a cloud-based server (Amazon Web Services, Amazon Web Services EMEA SARL,
1855 Luxembourg, Luxemburg) equipped with safe data protection that conforms to the applicable
regulations ((EU) 2016/679).

The automatically calculated pulse contour parameters that this study focuses on are as follows:
mean interbeat interval (IBI, ms), heart rate (HR, 1/min), stiffness index (calculated as the height of
the subject over pulse transit time (PTT), m/s [4,6]), reflection index (the ratio of the amplitude of
the diastolic peak to the amplitude of the systolic peak), left ventricular ejection time index (LVETI,
ejection time (ET) normalized for heart rate using the formulae LVETI = 1.7 X heart rate + ET and
LVETI = 1.6 X heart rate + ET in males and females, respectively [13]), b/a (parameter relating the
amplitude of the second wave of the DVP second derivative to the first wave), d/a (ratio of the fourth
and first inflection points of the second derivative of the DVP), aging index (a parameter derived from
the amplitudes of inflections of the second derivative of the DVP as (b — ¢ — d — e)/a [31]), and c-d point
detection ratio (a value that specifies the percentage of those pulse cycles in the 2-min recording in
which ¢ and d points of the second derivative were successfully identified by the algorithm) (Figure 2).
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2.3. Protocols

2.3.1. Measurement Reliability of the Telemedicine System

In order to exclude major effects of measurement error of our telemedicine system on the
evaluation of human pulse contour readings, we explored the repeatability of measurements. To define
measurement error by the SCN4ALL system (combined error of DVP recording, data processing,
and analysis), we recorded artificial signals generated by a pulse simulator device (MS100 SpO,
Simulator, Contec Medical Systems Co., Ltd., Qinhuangdao, China). Besides the generation of
high-quality, physiological simulated pulse signals (“normal”—SpO;: 98%, heart rate: 55/min),
the simulator offers signals which model frequent signal variants, “Abnormal 1” (titled “geriatric”
in the simulator’s software) (SpO;: 92%, heart rate: 95/min) and “Abnormal 2” titled “weak” in the
software (SpO,: 90%, heart rate: 95/min) signal settings. The latter simulates a pulse wave in which
the detectable signal is of low intensity (Figure 3). We performed five repeated measurements for
each signal setting (Normal, Abnormal 1, Abnormal 2) with five different pulse oximeters of the same
product release.

2.3.2. Reliability of Human Pulse Wave Measurements at Standard Conditions

The reliability of human DVP measurements was assessed by measuring test—retest variability by
performing consecutive measurements on healthy individuals under standardized conditions, in which
physiological fluctuations of cardiovascular functioning are supposed to be minimal. We performed 10
repeated 2-min-long measurements on 10 young healthy volunteers (M/F: 5/5, Age: 19-35, Mean + SD:
25.3 £ 4.3) under standard conditions. The course of successive measurements took approximately
30 min. We defined ‘standard condition’ as the set of measurement conditions which we recommend our
users to maintain when they perform their daily morning measurements during follow-up. The criteria
for standard conditions are as follows: measurement takes place in a quiet room at room temperature;
in the morning hours at least two hours after the last meal and coffee; and in a sitting, resting position,
with hands held quietly on a table. Moreover, consumption of energy drinks and alcoholic beverages
and intensive physical activity on the day of the measurement were avoided in this study. For these
measurements, the pulse oximeter was placed on the left index finger.

2.3.3. Parallel Measurement on Four Fingers

To investigate whether a different anatomical disposition of the fingers affects the measured
pulse contour parameters, we placed four pulse oximeters on four fingers (left and right indices and
ring fingers) and made parallel 2-min measurements. We made two consecutive pulse recordings on
25 healthy individuals (M/F: 17/8; Age: 19-49, Mean + SD: 29.4 + 8.4), and took the average of the two
measurements for each individual.
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Figure 3. Representative recordings obtained on a healthy individual and the pulse oximeter stimulator.

(Panel A) shows representative recording of one of our healthy subjects. (Panel B) shows recording of
an artificial pulse wave generated by the Normal setting of the pulse oximeter simulator. Recordings of
(panels C and D) demonstrate pulse waves generated by the Abnormal 1 and Abnormal 2 signal
settings of the pulse oximeter simulator device. Both are high heart rate signals (95/min) and are
characterized by disappearance of c and d inflections of the second derivative curve. Abnormal 2
setting was a low-intensity signal but was still recorded accurately with the SCN4ALL system. In each
panel, the upper graph shows the recorded digital volume pulse (DVP), whereas the middle and lower
panels show the first and second derivatives of the DVP, respectively. AU: arbitrary units.
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2.4. Data Analysis and Statistics

Cycles with irregular durations and unusual morphology were automatically excluded from
the analysis by the algorithm (in each case <5% of all recorded cycles). Afterward, the means of
values calculated for the individual pulse cycles of the 2-min-long recording were calculated for each
parameter. For the present analysis, means were exported from the system in spreadsheets. These mean
values were used for further characterizations. The descriptive statistics are presented as mean with
its 95% confidence interval. To estimate variability between repeated measurements of the artificial
signal (repeatability) and to characterize test-retest variability of repeated human measurements under
standard conditions, we used coefficient of variation (CV = (SD/mean X 100) X (1 + 1/4 n) where n is
the sample size) [32]. For repeatability measurements, we predefined the criterion of acceptance for CV
as 2%, whereas this was defined as 10% for test-retest variability measurements. For the four-finger
measurements, we calculated intraclass correlation coefficients (ICC) to show the correlation between
fingers and assess the contribution of interpersonal variability to overall variability. The ICC calculation
was based on a linear mixed-effects model. All statistical analyses were performed by using IBM SPSS
Statistics for Windows, version 26 (Armonk, NY, USA: IBM Corp.).

3. Results

3.1. Measurement Reliability of the Telemedicine System

Before addressing our main goal, i.e., that of assessing the reliability of human DVP measurements
in general, we determined the repeatability of measurements made by our telemedicine system.
Measurement error was assessed by detecting stable artificial signals generated by a pulse oximeter
simulator (Figure 3). The overall measurement error of the telemedical system may be produced by the
data analyzing algorithm, the measurement error of a single pulse oximeter, or the variability due to
using different pulse oximeter devices to detect the pulse signals. Firstly, in order to assess the combined
contribution of the algorithm and the error of a single pulse oximeter to the overall measurement
error, we detected the normal pulse signals of the simulator with a single, randomly chosen pulse
oximeter and repeated it five times (Table 1; Normal condition, 1st column). The results showed that
the measurement was stable: the confidence intervals (Cls) were very close to the mean of the five
measurements, and the coefficient of variation was below 1% for each calculated variable.

Then, we randomly chose four other pulse oximeters of the same release, repeated the
measurements as described above, and averaged the results of the 25 measurements. These showed
that the output data had low variability as evidenced by narrow Cls and small (lower than 1%) CVs for
each parameter (Table 1; Normal condition, 2nd column).

After proving that our system detects and analyzes normal pulse signals reliably, we repeated
the measurements described above with signal presets of the simulator, which simulate abnormal
conditions. For this purpose, we used the Abnormal 1 and the Abnormal 2 presets (Figure 3). The former
preset of the simulator generates a signal with high heart rate (95/min). In this setting, the reliability of
pulse detection and analysis was similar to that of the Normal condition except for the calculation of
the aging index and d/a parameter, as the second derivative of this preset has no detectable c and d
points (Table 1; Abnormal 1 condition).

The Abnormal 2 signal preset mimics a condition where the signal is of low intensity (a typical
source of error in DVP detection). Similar to what we observed with the Abnormal 1 signals, the results
of these measurements also showed stable detection and analysis for most parameters, except for the
aging index and the d/a ratio—for the same reasons as in Abnormal 1 (Table 1; Abnormal 2 condition).
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Table 1. Results of repeatability measurements. Means (and confidence intervals (CIs)) and coefficients of variation (CVs) of pulse contour variables measured by

the SCN4ALL telemedicine system. In order to evaluate the repeatability of the measurements by the system, we detected and analyzed artificial pulse signals

generated by a pulse oximeter simulator device. Three different signal settings of the simulator were selected (Normal, Abnormal 1, and Abnormal 2). For each setting,

measurements were repeated 5 times with a single randomly chosen pulse oximeter (n = 5 columns), and then these measurements were supplemented with the

repeated measurements from 4 other pulse oximeters of the same release (n = 25 columns, showing the results of 5 X 5 measurements).

Normal Abnormal 1 Abnormal 2
n=>5 n=25 n=>5 n=25 n=>5 n=25
Variables Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%)
Aging index ~113[-1.14;-1.12] 041  -1.14[-1.14;-1.13] 057  -337[-445-229] 271  -312[-346;-2.79] 261  -371[-4.60;-2.81] 204 —3.84 [-4; -3.69] 9.9
b/a ~178[-179;-1.78] 026  -179[-179;-178] 032  -159[-159;-159] 029  -159[-1.60;-159] 032  -1.60[-1.60;-159] 036  -1.60[-159;-156]  0.33
cd Pi‘:t‘ito‘j(‘j/f?“"“ 100 [100; 100] 0 100 [100; 100] 0 0.60 [0.08; 1.28] 95.9 0.44 [0.23; 0.65] 116 21[0.48; 3.52] 64.3 2.70 [2.25; 3.19] 422
d/a —075[-0.75;-0.74] 077  —0.75[-075,-0.75] 037  —048[-1.01;-0.06] 959 ~0.35[0.18-0.52] 116 -0.64[-1.09;-020] 587  —-0.71[-0.79;-0.63] 269
Left ventricular
ejection time index 552 [552; 554] 0.22 553 [552; 553] 0.27 462 [461; 462] 0.06 462 [462; 462] 0.05 462 [462; 463] 0.06 462 [462; 463] 0.07
(ms)

Heart rate (1/min) 55 [55; 55] 0 55 [55; 55] 0 95 [95; 95] 0 95 [95; 95] 0 95 [95; 95] 0 95 [95; 95] 0
Imerbe(frtl;“erval 1089 [1089; 1089] 0 1089 [1088; 1090] 021 631 [631; 631] 0 631 [631; 631] 0.19 630 [630; 631] 0.07 631 [631; 632] 0.18
Reflection index (%) 35.5 [35.5; 35.6] 013 35.5 [35.5; 35.6] 011 327 [32.7; 32.8] 0.12 32.7[32.7; 32.8] 0.13 32.8 [32.6; 32.9] 0.35 32.8 [32.7; 32.8] 0.42
Stiffness index (m/s)  4.62 [4.62; 4.63] 0.10 4.62 [4.62; 4.63] 0.26 7.34 [7.34; 7.34] 0 7.34[7.33;7.34] 0.18 7.34[7.33;7.36] 0.16 7.34[7.33;7.35] 0.34
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3.2. Reliability of Human Pulse Wave Measurements at Standard Conditions

In order to address our main goal of assessing the reliability of human pulse wave measurements
in general, we evaluated the test-retest variability of pulse wave parameter analysis under standard
conditions. For this purpose, resting measurements were repeated 10 times in 10 healthy individuals.
After calculating the coefficient of variation for each individual, the CVs of the 10 subjects were averaged.
The mean CVs for each parameter are presented in Table 2. These show that b/a, left ventricular ejection
time index, mean interbeat interval, stiffness index, and mean heart rate are parameters that remain
stable under standard measurement conditions (CVs lower than 10%). However, the aging index is
slightly variable (CV: 13.6%), and d/a and c—d point detection ratio are highly variable even when
measured under unchanged conditions.

Table 2. Results of test-retest variability measurements. Test-retest variability of pulse contour
parameters measured by the SCN4ALL telemedicine system. Measurements were performed on 10
healthy volunteers 10 times repeatedly under standardized conditions. Coefficient of variation (CV) for
the results of the consecutive measurements was calculated for each individual. Afterwards individual
CVs were averaged; they are presented in the table along with bracketed confidence intervals (CI).

Pulse Contour Variables CV % [CI]

Aging index 13.6 [4.78; 22.5]
b/a 3.84[2.13; 5.55]
c—d point detection ratio (%) 33.6[17.1; 50.1]

d/a 83.9[9.5;177]

Left ventricular ejection time (ms) 1.30 [0.75; 1.84]
Heart rate (1/min) 3.19 [1.99; 4.39]
Interbeat interval (ms) 3.23[2.11; 4.35]
Reflection index (%) 7.431[2.79;12.1]
Stiffness index (m/s) 4.34 [2.20; 6.48]

In order to visualize how the detected test-retest (intrapersonal) variability relates to interpersonal
variability, Figure 4 displays the mean of measurements obtained from the 10 subjects for each
sequential measurement time point, with confidence intervals (Cls), along with the individual graphs
of the subjects. The graphs show that for each parameter, individual curves appear similar and show no
trend, only random fluctuations. The mean curves show no trends or extremes and have homogeneous
confidence intervals. The variability of the individual curves among measurements and the variability
between the individual curves look comparable.
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Figure 4. Graphs demonstrating the relationship between interpersonal variability and intrapersonal

variations of the computed pulse contour parameters. Measurements were performed on 10 healthy

volunteers 10 times repeatedly under standardized conditions. Means (+confidence intervals) are

presented (red solid line) for each consecutive measurement along with individual measurement data

(black lines). Individual lines are similar to each other and to the average line. The variability of the

individual curves among measurements and the variability between the individual curves seem to fall

in the same order of magnitude.
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3.3. Parallel Measurements on Four Fingers

Concomitant measurements on four different fingers were also performed in 25 individuals to test
how slightly different anatomic disposition of the fingers affects the detected pulse wave parameters.
The results are summarized in Table 3. The mean measurements of the four fingers are presented,
showing no relevant difference between the fingers. Moreover, the intraclass correlation coefficients
were over 99% for mean interbeat interval, mean heart rate, and left ventricular ejection time index,
indicating that the effect of using different fingers for measurement is negligible. The intraclass
correlation coefficients (ICCs) for stiffness index and c-d point detection ratio were about 90%, and they
were over 80% for reflection index, b/a, d/a, and aging index. These confirm that the effect of using
different fingers on variability is much less than that of the interindividual differences for these
parameters (see Table 3 for exact values for the different parameters).

Table 3. Results of measurements performed in parallel on 4 separate fingers on 25 healthy individuals.
For each individual, 2 consecutive 4-finger measurements were taken, and the average of the 2 was
used for further calculations. The results of the 25 subjects were averaged for each finger separately
and are presented in the table with bracketed confidence intervals (Cls). Intraclass coefficients (ICC)
were calculated to assess the correlation of results within the same individuals.

Left Index Finger Left Ring Finger Right Index Finger Right Ring Finger ICC
Pulse contour n=25 n=25 n=25 n=25
variables Mean [CI] Mean [CI] Mean [CI] Mean [CI]
Aging index —1.29 [-1.46; —1.13] —1.30 [-1.47; -1.13] -1.34 [-1.15; -1.12] -1.47[-1.17; -1.25] 0.81
b/a ~1.21[-1.26; ~1.152] ~1.22[-1.29; ~1.16] ~1.25[-1.312; -1.20] ~1.24[-1.30; -1.17] 0.83
ed pf;g;‘if/:;%ﬁ"“ 33.8 [25.3; 42.4] 31.3 [23.1;39.5] 31.9 [22.9; 40.8] 32.3[23.9; 40.78] 0.90
d/a ~0.15 [-0.24; —0.06] ~0.16 [-0.26; —0.07] ~0.17 [-0.29; —0.06] ~0.10 [-0.21; —0.01] 0.82
Left ventricular
ejection time index 148 [56; 240] 148 [57; 240] 147 [56; 238] 147 [56; 237] >0.99
(ms)
Heart rate (1/min) 70.6 [67.1; 74.2] 71.0 [67.5; 74.2] 70.9 [67.4; 74.4] 71.0 [67.4; 74.5) >0.99
Interbeat interval (ms) 862 [817; 906] 862 [818; 908] 862 [816; 907] 861 [817; 907] >0.99
Reflection index (%) 62.2 [59.2; 65.1] 60.8 [57; 64.6] 61.5 [58.4; 64.5] 61.3 [57.6; 65.0] 0.81
Stiffness index (ms) 7.74 [7.37;8.10] 7.71[7.32; 8.10] 7.58 [7.20; 7.97] 7.59 [7.13; 8.05] 0.90

4. Discussion

Home monitoring of cardiovascular patients is a promising approach in patient care which is
expected to gain ground in the upcoming decades and may constitute a relevant breakthrough in
primary and secondary prevention of cardiovascular diseases. Implementation of noninvasive simple
measurements, which give a deep insight into the momentary cardiovascular condition of the patient
and thus allow extensive evaluation, and reliable fast data analysis are basic requirements for such
telemedical systems. Incorporation of photoplethysmography-based analysis of the digital pulse wave
in telemedical systems may be an optimal solution for cardiovascular telecare; however, its reliability
is debated [21,33,34]. Our main purpose was to address the controversies related to the reliability of
PPG-based cardiovascular evaluation. We showed that measurement and evaluation of most pulse
contour parameters are reliable when analyzed with the SCN4ALL automated system, which is able
to track stable signals with high repeatability. This was confirmed by low test-retest variability of
repeated measurements performed under apparently constant cardiovascular conditions. Our study
also showed that otherwise valuable pulse contour parameters derived from the second derivative
of the DVP curve can only be evaluated with limitations. The detection of ¢ and d deflections on
this curve is prone to errors, which interferes with the reliable interpretation of the aging index and
d/a parameter, which are indices of arterial stiffening and aging [14,24-28]. These limitations are
related to typical alterations of pulse wave morphology rather than inaccuracies in analysis, as the
automated algorithm used in this study was proven to detect ¢ and d points reliably on normal stable
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curves. In conclusion, our study showed that PPG-based pulse wave analysis performed in this study
operates reliably with acceptable measurement errors and is capable of monitoring subtle alterations
in cardiovascular functioning.

Although the reliability of PPG-based pulse contour analysis is debated, no data are available on
the repeatability of the systems which are used for analysis in research studies. However, as these
systems are complex and comprise several sources of measurement errors, it is impossible to validly
interpret biological data obtained by PPG-based systems if information concerning repeatability is
not available. Therefore, we firstly checked the repeatability of the pulse contour measurements of
our telemonitoring system. This was assessed by calculating the variability of the DVP parameters
obtained from successive measurements of stable artificial pulse signals, which simulated healthy pulse
waves and were generated by a pulse oximeter simulator device. Such variability can be caused by
measurement errors of the pulse oximeter instrument and also by the automated algorithm analyzing
the detected pulse wave. The combined effect of these two factors on measurement variability was
investigated by testing the agreement among the results of five successive measurements performed
by the same randomly chosen pulse oximeter device. The variation was smaller than the predefined
2% criterion of acceptance for each parameter (Table 1; Normal condition). Afterward, we extended
the investigation to four additional instruments with which we performed the same measurements.
We pooled the 5 x 5 measurements and calculated the overall CVs, which then reflected the combined
variation caused by measurement error of a single pulse oximeter, analysis by the algorithm, and also
the “interinstrumental” variability of several pulse oximeters of the same product. The CVs calculated
in this way were also below the limit of acceptance (Table 1; Normal condition), showing that
measurements are highly repeatable even if different pulse oximeters are used. Testing of pulse
oximeter reliability was relevant in this setting because the applied devices had only been tested for the
reliability of oxygen saturation and heart rate calculations by the manufacturers, but it was unknown
whether they accurately track a continuous pulse wave for minutes.

After proving that our system reliably tracks stable signals, we addressed our main question
of determining whether PPG-based monitoring and analysis of the DVP are reliable. We aimed to
resolve the controversy in which it is often doubted that PPG-based methods can be used as diagnostic
tools [21,33,34] because they are highly sensitive to errors, causing pulse contour parameters to fluctuate
even if there is no alteration in cardiovascular functioning. However, we postulate that these alterations
reflect real changes in cardiovascular condition. To show this, we measured test-retest variability
under standardized measurement conditions. Measurements were performed in a quiet room at room
temperature; in the morning hours, preferably at least two hours after the last meal and coffee; in a
sitting, resting position, with hands held calm on a table. Speaking, moving, and mental activity
were avoided during data collection [24,26,35,36]. Naturally, this standardization does not remove
variability completely. However, the output contour parameters of our telemedical system showed
minimal test-retest variability for most of the parameters, namely for b/a, left ventricular ejection time
index, mean interbeat interval, stiffness index, and mean heart rate (CVs lower than 10%; Table 2).
This indicates that these parameters are suitable for patient follow-up and may well support clinical
decision, as the deviation of a measurement from the standard individual value most probably indicates
real, physiological, or pathological alterations in cardiovascular function. Anyway, to enhance the
precision of pulse contour analysis, we need to advise the users of PPG-based telemedical systems
to perform their daily measurements preferably under standard conditions. This standardization
does not require any particular cooperation from users; the recommendations are as simple as those
for blood pressure measurement and are confined to those conditions which have been reported to
influence pulse contour parameters [24,26,35,36].

In our study, we also provided preliminary data on the interpersonal variability of the studied
contour parameters (Figure 4). Based on our observations, we can conclude that interpersonal and
intrapersonal variabilities of the studied parameters are in the same range for healthy individuals
when measurements are performed under standard conditions. This indicates that normal ranges
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can be identified for these parameters and that deviations from these ranges may reflect DVP—and
hence cardiovascular—abnormalities both at individual (when compared to other results of the same
patient) and at population levels (when data are compared to values of healthy individuals). However,
larger studies should be conducted to define the normal reference ranges for the contour parameters
computed by telemedicine systems and to determine which alterations can be considered clinically
relevant. Indeed, reference ranges for these parameters are scant in the literature, and they have only
limited validity for larger populations [6,14,25,27,28,37-40].

As a satellite question, we also tested in this study how different anatomical disposition of the
fingers affects the results of pulse contour analysis. Without question, we recommend the use of the
same finger for each measurement. However, for some reason, the occasional use of another finger
may occur, which may limit the valid remote interpretation of the recordings. Therefore, we need to be
aware of whether this error causes significant alterations in the output results. In healthy individuals,
we could observe that there was no relevant difference in pulse contour parameters when measured
in parallel on the index and ring fingers of the two hands (Table 3). The calculated ICCs showed
that the effect of using different fingers on the variability of the outcomes is much less than the effect
of interpersonal differences. Therefore, changing to different fingers does not constitute a relevant
measurement error. However, we need to keep in mind that pathological alterations and diseases of
the supplying arterial tree may have an impact on the blood flow of the digital arteries. For this reason,
at the first patient visit, it is recommended to record pulse signals on several fingers on both sides and
analyze whether there are differences in the output parameters.

Finally, we evaluated the reliability of our proprietary analysis engine to detect and analyze
distinguished deflections of the second derivative PPG curve. Pulse wave analysis was originally
extended to the second derivative of the DVP by Takazawa et al. [14]. They defined notable points of
the curve which facilitate understanding of the pressure wave. Since then, several research groups
have related the height of the b, ¢, and d waves to the a-wave to create measures that can index
vascular pathologies (vascular aging, hypertension, arterial stiffness) and predict cardiovascular
endpoints [14,28,41,42]. Among these points, ¢ and d points are particularly valuable, as they are
supposed to hold information about wave reflection [14], and the parameters derived from them
provide information about arterial stiffening [14,35]. However, detection of ¢ and d inflections has
reportedly become a challenge for automated algorithms as their position and amplitude change along
with pathophysiological alterations of the PPG [8,22,43]. In this study, we analyzed the success of
¢ and d point identification by our algorithm and variability of parameters (namely d/a and aging
index) derived from these points. When we tracked the stable, normal artificial signal of the pulse
oximeter stimulator, the ratio of those cycles in which we could detect ¢ and d points was 100% and
the variability of the aging index and d/a was minimal (CVs below 1%) (Table 1; Normal condition).
This shows that our engine reliably analyzes the second derivative curve. However, when we analyzed
the abnormal signals offered by the pulse oximeter simulator, the success of ¢ and d point detection
became less reliable. We tested two different abnormal signal settings: Abnormal 1 setting generates
a pulse signal of high heart rate and almost totally absent second derivative c—d points, whereas
Abnormal 2 is a signal that simulates a weak pulse wave (e.g., similar to that observed in case of
vasoconstriction due to cold). Second derivative c—d points are absent in this setting as well. With
these settings, the calculation of other pulse contour parameters was still highly repeatable (CVs below
2%). However, c—d point detection ratio, the parameter which expresses the percent of those pulse
cycles in which ¢ and d points are recognized by the algorithm, fell below 5% for each setting (Table 1;
Abnormal 1 and Abnormal 2 conditions). This increased the variability of all the parameters that are
derived from c and d values, namely aging index and d/a.

When performing repeated human measurements, we also observed diminished reliability of ¢
and d point analysis. Parameters derived from ¢ and d points of the second derivative of the DVP
became more variable (aging index, d/a) (Table 2). This concurs with the relatively high variations in
c—d point detection ratio of consecutive measurements.
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The optimum solution for this problem is to improve the automated algorithm in order to make
the identification of second derivative c and d points more reliable. However, literature data suggest
that this may have limitations (reviewed by M. Elgendi [22]). Although we recognize that attempts
to make c-d point detection more precise are inevitable, we also propose the use of the c—d point
detection ratio as a tool that aids clinical assessment of parameters derived from the second derivative.
If the c—d point detection ratio reaches a certain value, we can reliably use parameters derived from the
second derivative to support patient evaluation; however, when it is low, these parameters should be
neglected. Determination of the minimum c-d point detection ratio that allows valid second derivative
parameter interpretation requires further studies; however, based on our preliminary observations,
it is around 30% (data not shown). Moreover, in the follow-up of a patient, a sudden or progressive
change in c-d point detection may be evaluated as a warning for pulse wave abnormalities.

5. Conclusions

In this study, we characterized the reliability of using PPG-based pulse contour analysis to support
clinical decision. For this purpose, we applied our self-developed SCN4ALL telemedical system and
used a multidirectional approach to explore and characterize the possible measurement errors in depth
in order to establish the reliability of this diagnostic tool. We showed that if we use a PPG-based
telemedicine system, which is proven to track artificial signals with high repeatability, it can analyze
most pulse contour parameters (e.g., stiffness index, reflection index, left ventricular ejection time
index) with high precision in human measurements. This allows high-fidelity evaluation of these
parameters and the detection of small cardiovascular alterations. However, correct evaluation of
some parameters derived from the second derivative of the pulse wave (i.e., aging index, d/a) can be
hindered by pathophysiological alterations or normal variants of the pulse wave which make ¢ and
d point identification difficult. To handle this limitation, we recommend the introduction of the c-d
point detection ratio in pulse wave analysis and the consideration of second derivative parameters
only if its value is acceptable. In summary, we can claim that PPG-based pulse wave analysis is a
reliable measurement tool and meets the requirements set for cardiovascular telemonitoring devices.
Clearly, further, large-population studies are warranted to establish the guidelines for its application in
patient follow-up.
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Abstract: Alterations of heart rate variability (HRV) are associated with various (patho)physiological
conditions; therefore, HRV analysis has the potential to become a useful diagnostic module of
wearable/telemedical devices to support remote cardiovascular/autonomic monitoring. Continuous
pulse recordings obtained by photoplethysmography (PPG) can yield pulse rate variability (PRV)
indices similar to HRV parameters; however, it is debated whether PRV/HRV parameters are
interchangeable. In this study, we assessed the PRV analysis module of a digital arterial PPG-based
telemedical system (SCN4ALL). We used Bland—Altman analysis to validate the SCN4ALL PRV
algorithm to Kubios Premium software and to determine the agreements between PRV /HRYV results
calculated from 2-min long PPG and ECG captures recorded simultaneously in healthy individuals
(n =33) at rest and during the cold pressor test, and in diabetic patients (n = 12) at rest. We found
an ideal agreement between SCN4ALL and Kubios outputs (bias < 2%). PRV and HRV parameters
showed good agreements for interbeat intervals, SDNN, and RMSSD time-domain variables, for total
spectral and low-frequency power (LF) frequency-domain variables, and for non-linear parameters
in healthy subjects at rest and during cold pressor challenge. In diabetics, good agreements were
observed for SDNN, LF, and SD2; and moderate agreement was observed for total power. In
conclusion, the SCN4ALL PRV analysis module is a good alternative for HRV analysis for numerous
conventional HRV parameters.

Keywords: pulse rate variability; pulse wave analysis; photoplethysmography; telemedicine

1. Introduction

The time duration between heart beats (interbeat intervals, IBls) continuously changes,
even at rest. These alterations are referred to as heart rate variability (HRV) and are brought
about by various oscillating regulatory mechanisms that directly or indirectly affect heart
rate (HR). These processes dominantly act by modifying the balance of sympathetic and
parasympathetic effects on the heart; however, HR fluctuations due to other regulatory
mechanisms (chemical, hormonal, and hemodynamic factors) also participate [1-4]. Control
mechanisms contributing to HRV are diverse (e.g., respiratory rhythm, oscillations of
baroreceptor activity, thermoregulation, etc.) and operate at different timescales [2,3,5,6].
In general, fluctuations of parasympathetic activity occur at higher frequencies, whereas
those of sympathetic activity and hormonal effects at lower frequencies [6].

HRYV analysis provides indices that characterize the variability of the IBIs (time-domain
parameters) [2] and also that reflect the contribution of control mechanisms oscillating at
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different frequencies to this variability (frequency-domain parameters). In addition, so-
called non-linear parameters that characterize the unpredictability of HR are also derived.
HRYV analysis is performed by analyzing normal-to-normal (i.e., non-arrhythmic) IBIs of
sequential heartbeats acquired from continuous ECG recordings of various lengths (from
2 min to 24 h) [1,5,7]. In general, healthy people tend to have higher HRV values, which
reflect the flexibility of regulatory systems to respond to different cardiovascular and
homeostatic challenges [8-13], whereas depressed HRV has been associated with a wide
variety of diseases and pathophysiological disorders. Moreover, alterations of certain HRV
indices have been proposed to be applicable for assessment of prognosis in post-infarction
patients and in patients with congestive heart failure [14-26].

These observations indicate that HRV analysis has a promising potential to evolve to
a useful medical tool to monitor cardiovascular status. Since physiological fluctuations
of autonomic functions make HRV parameters highly variable even within the same in-
dividual, HRV evaluation offers the most benefit if regular measurements are available.
This can be easily accomplished by using telemedical and wearable monitoring systems
equipped with HRV analysis modules. Nowadays, photoplethysmography (PPG)-based
devices to monitor heart rate and oxygen saturation are very common both in clinical
practice and everyday activities. PPG is a technique that detects blood volume changes in
the tissues with an optical method. The PPG signal is an invaluable source of information
of cardiovascular and autonomic functions. Among others, continuous PPG recordings
obviously offer the opportunity to determine IBls from which pulse rate variability (PRV)
indices similar to HRV indices can be derived. However, it is debated whether PPG-based
PRV indices can be interpreted similarly to HRV parameters, since IBIs are defined as RR
intervals from ECG, and as pulse durations from PPG are not obviously identical. RR
intervals signify the duration of the electrical cardiac cycle, which may slightly differ from
PPG pulse durations (most often defined as peak-to-peak intervals of PPG pulse waves),
since the timing of peripheral pulse peaks is influenced by several additional factors includ-
ing the dynamics of ventricular ejection, elasticity of large arteries, peripheral resistance,
and the propagation velocity of the pulse wave [27-29]. Moreover, this implies that PRV
parameters may bear additional information about cardiovascular functioning, which is
not available in HRV indices. Disparities between HRV and PRV have already been studied
by several researchers, and various HRV and PRV indices have been reported to highly
correlate in healthy individuals [30-39]. However, most of these studies are restricted to
selected HRV parameters and resting healthy conditions. Comprehensive investigations
covering numerous HRV indices [27,31,34] (including time-domain, frequency-domain,
and non-linear parameters in the same study) and studies focusing on agreements between
HRYV and PRV parameters under autonomic challenge [39] and in diseased conditions are
scarce in the literature.

Our research group has recently introduced a telemedical system (SCN4ALL) that
is designed for the remote monitoring of cardiovascular patients and is based on the
photoplethysmographic (PPG) detection and analysis of the digital arterial pulse wave [40].
The system analyzes continuous 2-min long PPG recordings, which are used to evaluate
morphological pulse characteristics [40]. In order to offer the most benefit for our users,
we have also elaborated an automated algorithm for PRV computation and equipped
the telemedical system with a PRV analysis module. The ultimate aim of this study is
the comprehensive assessment of the performance of the SCN4ALL pulse rate variability
analysis module.

First, we aimed to assess the agreements between the most widespread conventional
HRV and PRV indices computed from ECG and PPG captures, respectively. For this
purpose, we simultaneously recorded ECG and PPG on healthy individuals at rest and also
under cold pressor challenge, when the autonomic balance was disrupted. We calculated
IBIs and 17 HRV parameters from both captures using a clinically validated and widely
accepted algorithm (Kubios HRV Premium) [41] and then compared the results with Bland-
Altman analysis. The agreements of HRV and PRV parameters were also investigated in
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diabetic patients in order to assess if the interchangeability observed in healthy individuals
also holds for diseased conditions.

Automated algorithms used for HRV analysis use slightly different mathematical
approaches for the power spectral and non-linear analysis of HRV. In this study, we also
aimed to validate our proprietary SCN4ALL algorithm to a clinically accepted algorithm
in order to show its reliability before introduction to clinical research and practice. For
this purpose, we performed PRV analysis on 2-min long PPG recordings both with the
Kubios HRV Premium [41] and the SCN4ALL algorithms and compared the results with
Bland-Altman analysis.

2. Materials and Methods
2.1. Subjects

A total of 33 informed and consenting healthy (M/F: 14/19, age between 19 and
55, mean £ SD: 32.1 & 9.7 years) and 12 type 2 diabetic (M/F:5/7, age between 43-79,
mean + SD: 61.1 & 12.8 years) subjects participated in this study. None of the healthy vol-
unteers had a history of cardiovascular disease, or cardiovascular medication, and none of
them reported any symptoms that may affect autonomic balance (sleep deprivation, stress,
headache, etc.). The participating diabetic patients had been treated for type 2 diabetes for
more than one year. The study was approved by the Regional and Institutional Committee
of Science and Research Ethics at Semmelweis University (approval number: 120/2018).

2.2. Measurements of HRV
2.2.1. Signal Recording

ECG. Einthoven II lead ECG was recorded with the Biopac BSL MP45 data acquisition
system (Biopac Systems Incl., Goleta, CA, USA). For ECG recording, disposable ECG elec-
trodes were attached to the right shoulder, left lower abdomen, and right lower abdomen,
and then connected to the negative, positive, and ground wires of a Biopac SS2LB electrode
lead set, respectively. The signal was amplified by a Biopac MP45 data acquisition unit,
which was directly connected to a desktop computer. BSL 3.7.7 software was used to
capture ECG for 2 min at a sample rate of 1000 Hz. ECG recordings were saved as .acq
files and were used to identify RR intervals by the Kubios HRV Premium analysis software
(Kubios Ltd., Kuopio, Finland) [41]. RR intervals were used as IBls (IBI-ECG) to calculate
HRYV parameters (for details, see data analysis).

PPG. For recording the PPG signal, a finger-clip transmission pulse oximeter (Berry
Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China) was attached to
the left index finger. Pulse wave detection and analysis were performed by the SCN4ALL
telemedicine system (E-Med4All Europe Ltd., Budapest, Hungary). In the system, the
pulse oximeter communicates via Bluetooth connection with a mobile application, which
initiates and terminates data acquisition and transmits the recording to a cloud-based
automated algorithm, which has been developed by our research group. First, the signals
sampled at a frequency of 200 Hz are upsampled to 1000 Hz; then, the algorithm identifies
the pulse cycles and peak-to-peak intervals as IBIs (IBI-PPG). Time series of IBI-PPG were
used to calculate PRV parameters (for details, see data analysis). Data captured by the
SCN4ALL system is stored on a cloud-based server equipped with safe data protection,
which conforms to the applicable regulations ((EU)2016/679) [40].

2.2.2. Protocol

We performed the measurements on 33 healthy and 12 diabetic participants under
the following conditions: measurement took place in a quiet room at room temperature,
in a sitting, resting position, with hands held quietly on a table. The pulse oximeter
was placed on the left index finger, and the ECG electrodes were attached as described
above. After mounting the devices, participants were instructed to minimize movements.
Measurements were initiated after 10 min of rest. First, we measured the blood pressure
of the participants with an Omron M3 Intellisense arm-cuff blood pressure meter 3 times,
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with 2-min intervals between the measurements (OMRON Corporation, Kyoto, Japan).
Afterwards, ECG and PPG signals were simultaneously recorded for 2 min using Biopac
3.7.7 software and SCN4ALL application, respectively.

After completion of the resting examination, the healthy volunteers remained seated,
and we repeated the measurements in these subjects also during a cold pressor cardiovas-
cular challenge, which was applied to disturb the resting autonomic balance. First, we
measured the participants’ blood pressures. Then, the right hand was immersed in a bowl
of cold water (+3-5 °C). ECG and PPG recordings were initiated simultaneously with the
cold pressor challenge and lasted for 2 min. Blood pressure measurements were repeated
immediately after the termination of the 2-min recording period.

2.3. Data Analysis

In the analysis, only those recordings were evaluated that consisted of normal-to-
normal IBIs. For this reason, results of 3 healthy subjects were completely excluded from
the study, because in 2 cases, previously unknown arrhythmia was seen on the ECG, and in
1 case, the PPG was contaminated with motion artefacts. Four additional healthy subjects
were excluded from the ‘cold pressor test” study either for not tolerating the challenge
or for producing numerous PPG artefacts. Therefore, in the healthy group, results of
control measurements are presented for 30 (M/F: 14/16, age range 19-55, mean + SD:
33 £ 9.7 years), and those of the cold pressor study for 26 subjects (M/F: 11/15, age range
19-55, mean =+ SD: 33 £ 9.9 years).

We calculated HRV /PRV parameters from the two detection modalities (ECG and
PPG) by three methods:

1.  ECG recordings (.acq files captured by the Biopac system) were opened in Kubios
HRV Premium software (ver. 3.3.1), which identified RR intervals (IBI-ECG) and
then computed HRV parameters. As only non-arrhythmic recordings were used, the
calculations were made using no artefact correction and with unfiltered settings. As a
result, HRV-ECG values were generated.

2. We saved peak-to-peak intervals calculated by the SCN4ALL algorithm from each
PPG recording (IBI-PPG) as .csv files. The PRV analysis of the IBI-PPG datasets were
executed with Kubios HRV Premium, with the same settings as in Point 1. As a result,
PRV-Kubios values were created.

3. The automatic algorithm of the SCN4ALL system was also used to calculate PRV
parameters from IBI-PPG data to produce PRV-SCN4ALL values. The functions of the
algorithm were programmed in Matlab. The algorithm uses the statistical approaches
recommended by the ‘Task Force of the European Society of Cardiology and the
North American Society of Pacing Electrophysiology’ [5] to determine time-domain
parameters. For frequency-domain analysis, a power spectrum density estimate
was calculated by the algorithm using a Fast Fourier Transform (FFT)-based Welch’s
periodogram method. After obtaining the FFT spectrum, absolute power values for
each frequency band were calculated by simply integrating the spectrum within the
band limits. To compute non-linear PRV parameters, detrended fluctuation analysis
was performed according to the work of C.G Peng et al. [42]. SCN4ALL also displays
a Poincaré plot with SD1 and SD2 parameters. Poincaré plot is a graph of IBI(n)
on the x-axis versus IBI(n + 1) on the y-axis [43,44]. SD1 is the standard deviation
of the distance of the points from the “x = y” axis and reflects short-term changes,
whereas SD2 is the standard deviation of the distance of the points from the “x = —y +
2xIBI(mean)” axis [44,45]. SD1 and SD2 determine the length and width of a fitted
ellipsis, respectively, the center of which is at the coordinate of (IBI(mean);IBI(mean)).
In fact, SD1 and SD2 can be mathematically derived from time-domain indices;
therefore, we calculated SD1 and SD2 as follows [44,46—48]:

1
SD1 = rMSSD x —
V2
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SD2 = v/2 x SDNN? — SD12

Comparison of the HRV and PRV results derived according to points 1 and 2 describes
the agreement between the ECG and PPG methodologies (performed for healthy indi-
viduals at rest and during cold pressor test and for diabetic subjects at rest). In contrast,
comparison of the PRV results between points 2 and 3 provides information about the
performance of the SCN4ALL PRV analysis engine compared to the widely used and
clinically accepted Kubios HRV Premium analysis [41]. The analysis was performed for a
wide range of HRV /PRV parameters, which are listed in Table 1.

Table 1. Heart rate variability parameters analyzed in the study.

Time-Domain Parameters

Mean IBI The mean normal-to-normal interbeat interval (IBI)
SDNN The standard deviation (SD) of IBIs (NN: normal-to-normal IBI)
MHR Mean heart rate
RMSSD The square root of the mean squared differences of successive IBIs
PNNG50 The proportion of differences of successive IBIs exceeding 50 ms (NN: normal-to-normal IBI)
MnHR Minimum heart rate
MxHR Maximum heart rate
Frequency-Domain Parameters
LF power Absolute power of the low-frequency (LF) band (0.04-0.15 Hz)
HF power Absolute power of the high-frequency (HF) band (0.15-0.4 Hz)
LFnu Relative power of the low-frequency (LF) band expressed in normalized units (nu)
HFnu Relative power of the high-frequency (HF) band expressed in normalized units (nu)
Ptotal Total spectral power (P)
LF/HF ratio Ratio of low frequency (LF) to high frequency (HF)
Non-Linear Parameters
SD1 Standard deviation (SD) 1 of the Poincaré plot representing the length of the ellipse fitted to the plot
SD2 Standard deviation (SD) 2 of the Poincaré plot representing the width of the ellipse fitted to the plot
SD1/SD2 The ratio of SD1 and SD2
DFA«1 Short term fluctuation slope («x1) obtained by detrended fluctuation analysis (DFA)

2.4. Bland—Altman Analysis

The agreements between HRV /PRV parameter values (HRV-ECG vs. PRV-Kubios
and PRV-Kubios vs. PRV-SCN4ALL) were assessed by Bland—Altman analysis [49,50].
The differences of measurements were plotted against the means of the measurements.
Bias was defined as mean difference and is presented with 95% confidence intervals
(C.I). To calculate percentage bias, bias is expressed as the percentage of the mean of the
measurements. Limits of agreement were calculated as bias + 1.96 standard deviation.
The analysis was performed with MedCalc Statistical Software v.19.6.4 (MedCalc Software,
Ostend, Belgium).

3. Results
3.1. Agreements between ECG-Based HRV and PPG-Based PRV Parameters

The Bland—Altman plots used for the analysis of agreement between PRV and HRV
parameters derived from 2-min long PPG and ECG recordings, respectively, are shown
in Figure 1. In this setting, conventional HRV indices were calculated by the algorithm
of the Kubios HRV Premium software. The values of variables referring to IBI duration
(IBI, mean HR, minimum HR, and maximum HR) are apparently identical in PPG and
ECG based calculations (Figure 1A, and Supplementary Figure S1A). Among time-domain
parameters, SDNN and RMSSD showed good agreement. The percentage biases were
—3.2% (95% C.I.: =5.2; —1.2) and —9.5% (95% C.I.: —14.3; —4.6), respectively, indicating
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that the values calculated from PPG recordings are slightly higher. However, in the case
of pNNG5O0, the bias was —27.3% (95% C.I.: —53.2; —1.4) (Figure 1A). Among frequency-
domain parameters, good agreement was observed for total and low-frequency spectral
power (percentage bias —8.2% (95% C.I.: —10.6; —5.8) for total power (Ptotal); and —2.7%
(95% C.I.: —4.9; —0.5) for LF) (Figure 1B and Supplementary Figure S1B)). However, the
agreement for high-frequency power was weaker (percentage bias —26.5% (95% C.L: —35.6;
—17.5) (Supplementary Figure S1B)), with significant overestimation of the parameter by
the PPG based calculation. The calculated non-linear parameters (DFA«x1, SD1, SD2, and
SD1/SD2) each showed good agreement (Figure 1C).
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Figure 1. Bland—-Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long ECG
(indicated as ‘parameter name-ECG’) and PPG (indicated as “parameter name-PPG’) recordings captured under resting
conditions. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs

exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LE/HF (ratio of low frequency to high
frequency), LF (absolute power of the low-frequency band (0.04-0.15 Hz)), HF (absolute power of the high-frequency band

(0.15-0.4 Hz)).

(C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),

SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFA«1 (short term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as

"Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/— 1.96 standard deviations (SD) and

their confidence intervals.

When Bland—-Altman analysis was performed on HRV vs. PRV parameters calculated
from 2-min ECG and PPG recordings obtained from healthy individuals during cold
pressor test, similar tendencies could be observed with similar IBI durations, and with
good, clinically acceptable agreements for SDNN, RMSSD, total power, and LF; and also,
for non-linear parameters (Figure 2 and Supplementary Figure 52.).
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Figure 2. Bland-Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long

ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained during cold
pressor test. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs

exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low frequency to high

frequency), LF (absolute power of the low-frequency band (0.04-0.15 Hz)), HF (absolute power of the high-frequency band

(0.15-0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),
SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFA«1 (short-term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as

‘Mean’'—blue solid line) and is presented with 95% confidence intervals (green) and +/— 1.96 standard deviations (SD) and

their confidence intervals.

In diabetic individuals, the Bland—Altman analysis showed good agreements be-
tween HRV and PRV values for IBI durations (Figure 3A), SDNN (Figure 3A), LF power
(Figure 3B), and SD2 variables (Figure 3C) (percentage bias < 10% for each parameter).
Slightly weaker, moderate agreements were observed for total power (Figure 3B; percent-
age bias —14.2% (95% C.I.: —23.3; —5.1)); and for DFA«1 non-linear parameter (Figure 3C;
percentage bias 13.8% (95% C.L: 0.0; 27.6)). However, in case of RMSSD and pNNb50 time-
domain variables (Figure 3A); HF and relative (HFnu, LFnu, LF/HF) frequency-domain
indices (Figure 3B and Supplementary Figure S3); and SD1 and SD1/SD2 non-linear pa-
rameters (Figure 3C), the agreements were found to be insufficient (percentage bias > 20%).
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Figure 3. Bland—-Altman plots of HRV /PRV parameters computed by the Kubios Premium algorithm from 2-min long ECG
(indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from diabetic
patients under resting conditions. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of
IBIs), RMSSD (the square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of
successive IBIs exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LE/HF (ratio of low
frequency to high frequency), LF (absolute power of the low-frequency band (0.04-0.15 Hz)), HF (absolute power of the
high-frequency band (0.15-0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the
line of identity), SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFA«1
(short-term fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences
(indicated as ‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/— 1.96 standard
deviations (SD) and their confidence intervals.

3.2. Agreements between PRV Calculations of the SCN4ALL and Kubios HRV
Premium Algorithms

Comparison of the PRV parameters calculated by the SCN4ALL and the Kubios HRV
Premium algorithm from 2-min long PPG recordings showed perfect agreement in case of
all PRV variables. For time-domain and non-linear variables (Supplementary Figure S3),
the percentage biases were smaller than 0.5%. In case of frequency-domain variables,
these values were below 2% and well within the clinically acceptable limits and with no
significant difference between the outputs of the two algorithms (Figure 4).

The agreement between the outputs of the algorithms remained unaltered when 2-
min long recordings acquired in healthy subjects during cold pressor test (Figure 5 and
Supplementary Figure S5) and in diabetic patients at rest (Figure 6 and Supplementary
Figure 56) were used for analysis.
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Figure 4. Bland-Altman plots of frequency-domain HRV /PRV parameters calculated by the SCN4ALL (indicated as
‘parameter name-SCN4ALL") and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min
long PPG recordings captured under resting conditions. (A) Ptotal (total spectral power), (B) LF/HF (ratio of low frequency
to high frequency), (C) LF (absolute power of the low-frequency band (0.04-0.15 Hz)), (D) HF (absolute power of the
high-frequency band (0.15-0.4 Hz)). Bias is calculated as the mean of differences (indicated as ‘Mean’—blue solid line) and
is presented with 95% confidence intervals (green) and +/— 1.96 standard deviations (SD) and their confidence intervals.
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Figure 5. Bland—-Altman plots of frequency-domain HRV /PRV parameters calculated by the SCN4ALL (indicated as
‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min
long PPG recordings obtained during cold pressor test. (A) Ptotal (total spectral power), (B) LE/HF (ratio of low frequency
to high frequency), (C) LF (absolute power of the low-frequency band (0.04-0.15 Hz)), (D) HF (absolute power of the
high-frequency band (0.15-0.4 Hz)) Bias is calculated as the mean of differences (indicated as ‘Mean’—blue solid line) and is
presented with 95% confidence intervals (green) and +/— 1.96 standard deviations (SD) and their confidence intervals.
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Figure 6. Bland-Altman plots of frequency-domain HRV /PRV parameters calculated by the SCN4ALL (indicated as
‘parameter name-SCN4ALL") and the Kubios Premium HRV (indicated as “parameter name-Kubios’) algorithms from
2-min long PPG recordings obtained from diabetic patients under resting conditions. (A) Ptotal (total spectral power),
(B) LE/HEF (ratio of low frequency to high frequency), (C) LF (absolute power of the low-frequency band (0.04-0.15 Hz)),
(D) HF (absolute power of the high-frequency band (0.15-0.4 Hz)). Bias is calculated as the mean of differences (indicated
as ‘Mean’—Dblue solid line) and is presented with 95% confidence intervals (green) and +/— 1.96 standard deviations (SD)
and their confidence intervals.

4. Discussion

In our study, using Bland—Altman plots, we have shown that PRV and HRV calcula-
tions (obtained from PPG and ECG recordings, respectively) are in good agreement for
several conventional HRV /PRV parameters when the analysis is performed using short
(2-min long) recordings. Apparently, there is no significant difference in mean interbeat
intervals defined from PPG and ECG captures, and for several HRV/PRV parameters
computed by the Kubios software, the limits of agreement are within 10% (i.e., SDNN and
RMSSD among time-domain variables, total power and LF frequency-domain indices, and
non-linear parameters). The agreement of HRV parameters obtained by the two methods
prevailed even if the resting autonomic balance had been disrupted by a cardiovascular
challenge (cold pressor test). In diabetic individuals, the good agreements between HRV
and PRV indices were also valid for SDNN, LF, and SD2 indices, and moderate agreements
could be detected between total spectral power and DFA«x1 values. However, for parame-
ters that are considered to be conventional markers of short-term HRV, weaker agreements
were found. We have also shown that the outputs of the PRV algorithm of the SCN4ALL
telemonitoring system are in perfect agreement with the values computed by Kubios HRV
Premium when the analysis is performed on data derived from short (2-min long) PPG
captures. Our study extends our scientific knowledge about the interchangeability of HRV
and PRV analysis with relevant new pieces, as it is a comprehensive investigation covering
a large number of HRV /PRV parameters and assessing their agreements not only in healthy
individuals at rest but also under autonomic challenge and in diabetes.

Autonomic function has been in the focus of research for decades, and several non-
invasive techniques have been proposed for its evaluation (ECG, PPG, electroencephalogra-
phy, sudomotor function, etc.) [51-53]. Many of these may also be incorporated in remote
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monitoring systems, and experiences acquired in signal analysis of one method have
often facilitated progression in the procession of other signals. Using the HRV analysis
approach for PPG signals is a good example of this. However, in the literature, it is con-
troversial whether HRV parameters calculated from time series of RR intervals obtained
from ECG recordings and from pulse durations obtained from PPG signals or continuous
non-invasive blood pressure monitoring (e.g., Finapress) can be used alternatively [54].
Nowadays, the number of wearable and telemedical devices that are equipped with either
ECG or PPG detectors dynamically increases [55,56]. This may open new prospects for sci-
entists and physicians to exploit the opportunities offered by HRV /PRV analysis in patient
evaluation. However, most of our scientific knowledge on HRV alterations in different
(patho)physiological conditions relies on ECG-based studies, mostly following a task force
statement of the European Society of Cardiology and the North American Society of Pacing
Electrophysiology [5]. Therefore, it is important to assess the agreement between HRV and
PRV under different (physiological and pathological) conditions in order to confidently
accept the PPG-based PRV-analysis as a reliable alternative to monitor HRV changes. So
far, several studies have compared PRV to the gold standard of ECG-derived HRV [30-39].
Some publications found good agreements between PRV and HRYV, especially in younger
subjects and at rest [31,57], or during sleep [58], and mostly in time-domain parameters.
However, some studies have found weaker agreements between HRV and PRV values for
HRYV indices, which are generally influenced by short-term regulatory fluctuations (RMSSD,
pNN50, HE, LE/HE SD1) [32,34,36,54,59-61]. Their results indicate that PRV overestimates
HF but underestimates LF/HF ratio and LF percentage. However, it is notable that this is
observed more often in continuous blood pressure monitoring studies (Finapress) than in
PPG studies. There is sparse evidence of whether frequency-domain PRV variables behave
similarly to HRV variables and have some value in diagnosing autonomic function [38,62].
In our study, we have shown that among time-domain variables, PPG-based and ECG-
based SDNN and RMSSD values have good agreements (Figure 1A). Similar to previous
studies, pPNN50 was overestimated when PPG-based IBIs were used [27,32,34,36,54,59].
On the other hand, total spectral power and low-frequency power computed from PPG
and ECG had similar values (Figure 1B). Interestingly, high-frequency power was signif-
icantly overestimated by the PPG-based analysis (Figure 1B). This is in agreement with
some studies, in which similar observations were made for certain frequency-domain vari-
ables [32,34,36,39,54,60,61,63]. It has been speculated that the reason for this disparity in
HF power and other indices reflecting short-term variability is that spontaneous breathing
rate lying within the HF frequency band has a greater impact on PRV than on ECG-based
HRV [54,59,62,64].

We also observed good agreements for non-linear parameters. The relevance of these
parameters in HRV analysis is not completely established, and there is no consensus on the
measurement duration which can yield clinically informative non-linear variables [65-67].
Moreover, some of these parameters are in a direct mathematical relationship with other
parameters and bear the same information (e.g., SD1 and RMSSD). Anyway, our results
show that PPG-based PRV analysis is a good alternative for HRV analysis in case of
non-linear parameters, too.

Although several studies have shown correlations between PRV and HRV variables,
these were observed at rest or during sleep. However, exercise, stress, or changing position
were observed to diminish these agreements. The authors speculated that in physically
active states, the disagreement is most probably due to motion artefacts [34,39]. On the
other hand, the disparity between PRV and HRV variables can also be the consequence
of the altered autonomic balance, which may affect pulse rate and heart rate differentially.
In our study, we used the cold pressor cardiovascular challenge to disrupt the resting
autonomic balance. This allowed examination of the effects of altered autonomic func-
tion without producing motion artefacts. Although not every subject had the same usual
and expected cardiovascular response during the test, there was some disruption of the
autonomic balance in every case (average increase in systolic pressure: 5.4 = 7.7 mmHg,
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average increase in diastolic pressure: 3.7 & 6.6 mmHg). The agreements in the PPG- and
ECG-based analysis described at rest could also be observed during the cold pressor test
(Figure 2, and Supplementary Figure S2), implying that PPG-based PRV analysis can be
applicable also in conditions in which altered autonomic function has been described by
HRYV analysis. In our study, we chose a cold pressor test to modify autonomic balance,
because this allowed us to avoid undesirable motion artefacts. However, this may have
limitations, as in another study it has been shown that whole-body cold exposure has
differential effects on HRV and PRV parameters, thereby modifying the agreements be-
tween them [27]. It was speculated that this can be most probably due to the unbalanced
influence of cold exposure on central and peripheral sympathetic activity. In our study,
cold exposure on one hand did not abolish the agreements of HRV and PRV parameters,
presumably because its effects differ from those of whole-body cold exposure.

We have also conducted a pilot study to assess the agreements between HRV and PRV
indices in type 2 diabetic patients in order to find out whether the agreements observed
in healthy individuals are also valid in a diseased condition. Diabetes is characterized
by reduced total and LF power, and also by the decrease of HRV parameters that signify
mainly short-term variability (SDNN, RMSSD, pNN50, HF) [68-71]. These alterations
are caused by the deleterious effects of the impaired glucose metabolism on autonomic
nerves [70]. We found that for several relevant HRV parameters, such as SDNN, LF power,
and SD2 parameters, good agreements can be detected between HRV and PRV derived
values. Moreover, we observed moderate agreements (bias < 15%) in case of DFA«1 and
total power. However, in case of those parameters that describe short-term variability
(RMSSD, pNN50, SD1) though both HRV and PRV values tended to be lower in the
diabetic group, the HRV-PRV agreements were weaker than those observed in healthy
individuals. Our results suggest that several conventional HRV /PRV parameters can be
used interchangeably not only in healthy but also in diabetic individuals; however, there are
other parameters with non-negligible disparities. It does not necessarily imply that those
parameters that show weaker agreements in our study are not worth evaluating. However,
our findings highlight the relevance of larger-scale comparative HRV vs. PRV studies to
verify whether diabetes or various other disease conditions are associated with typical
alterations of these PRV variables. Data mining techniques to identify correlations between
PRV patterns and different diseases could effectively improve our scientific knowledge
in this field. As a result, we may identify the differences even in localized autonomic
responses accounting for HRV and PRV disparities in order to establish sound diagnostic
indications for HRV and PRV analyses.

HRV algorithms used for calculation of HRV variables may apply different mathemat-
ical approaches. This may limit the comparison of studies and the valid interpretation of
the HRV variables and their alterations in different conditions. Therefore, we considered it
to be relevant to validate our algorithm to a clinically widely accepted and frequently used
HRYV algorithm, the Kubios HRV Premium. In case of time-domain variables, we should
expect perfect agreement between algorithms, since these parameters are calculated as sta-
tistical parameters describing IBI variability using formulae recommended by a task force
statement [5]. However, for spectral analysis, two main different approaches can be used
to separate HRV into frequency components, namely Fast Fourier Transformation (FFT)
and autoregressive modeling [5]. For each approach, several slightly different functions
can be applied. The SCN4ALL algorithm uses an FFT-based Welch’s periodogram method,
which is similar to the one applied by the Kubios algorithm. For calculation of non-linear
parameters, the SCN4ALL algorithm uses detrended fluctuation analysis according to
the work of Peng et al. [42] and a Poincaré plot, which are characterized by SD1 and SD2
parameters defined in the “Methods” section above. Comparison of the SCN4ALL algo-
rithm outputs to the Kubios outputs by Bland—Altman analysis showed perfect agreement
between the methods when we analyzed 2-min long PPG-based IBI time series obtained
from either healthy individuals at rest and during cold pressor cardiovascular challenge or
from diabetic patients at rest. In case of those parameters where a simple mathematical for-
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mula is applied (time-domain variables, SD1 and SD2 non-linear variables), the negligible
differences between the SCN4ALL and Kubios results are attributable to slightly different
rounding schemes used by the algorithms.

Signal processing of telemedical systems may be prone to signal loss and uncertainty
due to multistep signal transformation [72,73]. This can be interpreted as the uncertainty of
the data used for classification. Effective classification of evidence requires the use of fuzzy
classifiers [74,75]. Based on multiple studies [76-78], the fuzzy data application allows to
increase the accuracy of the classification of uncertain data [79]. In the case of the PPG-
based system used in our study, there are two possible steps where signal loss may occur.
The first is the analog-to-digital conversion of the signal. In the case of heart rate variability,
only the quantization error can play a role. The SCN4ALL telemedicine system operates at
a sampling rate of 200 Hz, meaning that at a heart rate of 60 beats/minutes, it only creates a
0.5% error. This is clinically acceptable and does not affect the diagnostic value of the given
system. The second step where some information loss can be expected is at the filtering of
the digitized signal. However, it only affects the morphology of the PPG signal but not the
timely relations of the fiducial timepoints. Therefore, filtering the signal does not affect the
peak-to-peak distances of the pulse wave from which IBIs for PRV calculation are derived.
Furthermore, in our previous article [40], we examined how artificial non-variable PPG
signals generated by a simulator (both normal and simulated pathological signals) were
processed by the system, and the repeatability was found to be perfect in case of most
studied parameters [40]. Although this study focused on morphological parameters, we
also investigated the reliability of IBI determination, and the error (expressed as coefficient
of variation) was virtually zero. Our PRV analysis module uses only IBls as detected signals
for further computation, so we think that signal loss and uncertainty have a negligible
effect on our analysis.

5. Conclusions

Our study showed that the HRV algorithm of the SCN4ALL system is as accurate as
the widely used Kubios HRV Premium algorithm for PRV analysis of short (2-min long)
time series of interbeat intervals obtained by PPG recordings. PRV analysis performed on
PPG pulse signals is in good agreement with ECG-based analysis for numerous clinically
relevant HRV parameters, including SDNN and RMSSD time-domain parameters, total
and low-frequency spectral power frequency-domain variables, and non-linear parameters
in healthy individuals at rest, and also under an autonomic challenge. Moreover, we
identified several parameters (SDNN, total power, LF, SD2, and DFA«1) that showed
moderate to good HRV-PRV agreements in diabetic patients. This indicates that these
parameters can be reliably used for HRV-based evaluation of autonomic function in healthy
and diabetic individuals regardless of whether ECG or PPG provides the time series of
interbeat intervals. Other conventional PRV parameters computed from PPG recordings
should be interpreted cautiously, keeping in mind that clinical evidence obtained on ECG-
based HRV alterations in different disease conditions can be applied with limitations.
Despite these limitations, we can claim that PPG-based PRV analysis of the SCN4ALL
system is suitable for evaluation of PRV alterations, and to pursue research to establish
the clinical relevance of PRV analysis in the follow-up of autonomic dysregulation in
various diseases.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/s21165544 /51, Supplementary Figure S1: Bland—Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings captured in healthy individuals
under resting conditions; Supplementary Figure S2: Bland—-Altman plots of HRV /PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from healthy individuals
during cold pressor test; Supplementary Figure S3: Bland—Altman plots of HRV /PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
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ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from diabetic patients
under resting conditions; Supplementary Figure S4. Bland—Altman plots of HRV /PRV parameters
calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL") and the Kubios Premium
HRV (indicated as “parameter name-Kubios’) algorithms from 2-min long PPG recordings captured
in healthy individuals under resting conditions; Supplementary Figure S5: Bland—Altman plots of
HRV /PRV parameters calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL") and
the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min long PPG
recordings obtained from healthy individuals during cold pressor test; Supplementary Figure Sé:
Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL (indicated as “parameter
name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms
from 2-min long PPG recordings obtained from diabetic patients under resting conditions.
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Supplementary Material

Supplementary Figure S1: Bland-Altman plots of HRV/PRV parameters computed by the Kubios Premium
algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter
name-PPG’) recordings captured in healthy individuals under resting conditions.
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A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative
power of the high-frequency band). Bias is calculated as the mean of differences (indicated as ‘Mean’ -
blue solid line) and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations
(SD) and their confidence intervals.



Supplementary Figure S2: Bland-Altman plots of HRV/PRV parameters computed by the Kubios
Premium algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as
‘parameter name-PPG’) recordings obtained from healthy individuals during cold pressor test.
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A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative
power of the high-frequency band). Bias is calculated as the mean of differences (indicated as ‘Mean’ -
blue solid line) and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations
(SD) and their confidence intervals.



Supplementary Figure S3: Bland-Altman plots of HRV/PRV parameters computed by the Kubios Premium
algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated s ‘parameter
name-PPG’) recordings obtained from diabetic patients under resting conditions.
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A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative
power of the high-frequency band). Bias is calculated as the mean of differences (indicated as ‘Mean’ -
blue solid line) and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations
(SD) and their confidence intervals.



Supplementary Figure S4: Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings captured in healthy individuals under resting
conditions.
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A: Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBls), RMSSD (the
square root of the mean squared differences of successive IBls), pPNN50 (the proportion of differences of
successive IBls exceeding 50 ms), HR (mean heart rate). B. Frequency-domain parameters: LFnu (relative
power of the low-frequency band), HFnu (relative power of the high-frequency band). C: Non-linear
parameters: SD1 (Poincaré plot standard deviation perpendicular the line of identity), SD2 (Poincaré plot
standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAa1 (short term fluctuation
slope obtained by detrended fluctuation analysis)
Bias is calculated as the mean of differences (indicated as ‘Mean’ - blue solid line) and is presented with
95% confidence intervals (green) and +/- 1.96 standard deviations (SD) and their confidence intervals.



Supplementary Figure S5: Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRYV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings obtained from healthy individuals during cold pressor

test.
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A: Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBls), RMSSD (the
square root of the mean squared differences of successive IBIs), pPNN50 (the proportion of differences of
successive IBls exceeding 50 ms), HR (mean heart rate). B. Frequency-domain parameters: LFnu (relative
power of the low-frequency band), HFnu (relative power of the high-frequency band). C: Non-linear
parameters: SD1 (Poincaré plot standard deviation perpendicular the line of identity), SD2 (Poincaré plot
standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAa1 (short term fluctuation
slope obtained by detrended fluctuation analysis)
Bias is calculated as the mean of differences (indicated as ‘Mean’ - blue solid line) and is presented with
95% confidence intervals (green) and +/- 1.96 standard deviations (SD) and their confidence intervals.



Supplementary Figure S6: Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings obtained from diabetic patients under resting
conditions.
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Evaluation of the Age Dependence ey

of Conventional and Novel
Photoplethysmography Parameters

Flora Antali', Daniel Kulin'?, Séndor Kulin? and Zsuzsanna Miklés'

Abstract

Background Cardiovascular (CV) mortality increases with age partly due to physiological ageing of the CV system.
Early vascular ageing raises CV risks. Personalizing CV risk assessment by defining CV age could reduce CV events.
Photoplethysmography (PPG), which analyses the peripheral arterial pulse wave, may be an effective method for esti-
mating CV age. Ageing index (AGEi) and some other PPG parameters were proven to have age correlation; however,
the age dependence of many other pulse wave parameters remains unclear. We aimed to identify age correlations

of PPG indices and pulse rate variability (PRV) parameters including a few novel parameters which were calculated

to further investigate the various aspects of ageing.

Our study included 118 healthy (M/F: 53/65, mean age: 31.8+ 11.8 SD) volunteers for PPG parameter calcula-

tion and 106 (M/F: 44/62, mean age: 32.6+12.2 SD) for PRV parameters (age: 19-74). 2-min pulse wave recording
was obtained using a pulse oximeter. An automated, proprietary software evaluated PPG and PRV parameter values,
which were compared with chronological age (Pearson correlation and non-linear analysis).

Results PPG parameters describing various time-dependent aspects of cardiac ejection positively correlated

with age, while those indicating arterial elasticity showed negative correlation. Composite PPG parameters proposed
as indicators of CV health and fitness had negative, non-linear correlation. Most PRV parameters exhibited negative
correlation, indicating reduced adaptive capacity due to ageing (p <0.05, Irl > 0.3).

Conclusions PPG-based pulse waveform analysis provides a wide range of age-related parameters which display
different patterns of age correlation, making it a promising method for estimating cardiovascular age. Future studies
will include subjects with vascular ageing conditions beyond physiological values (e.g., hypertension, heart failure,
coronary artery disease).

Keywords Photoplethysmography, Vascular ageing, Pulse wave analysis, Pulse rate variability

1 Introduction
Cardiovascular (CV) diseases, including atherosclero-
sis and stroke are major public health challenges, con-

*Correspondence: sistently ranking among the leading causes of death
Fora Antall worldwide in recent decades, especially in the elderly
antaliflora@gmail.com R . .
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new, affordable biomarkers that reflect (CV) aging is crit-
ical for improving treatments and preventive strategies.

Peripheral pulse wave analysis may offer a valuable
method for monitoring CV health and predicting disease
progression [5, 6]. Calculating heart rate from continuous
pulse wave recordings may have relevance in diagnostics,
as pulse rate variability (PRV) is an important indicator
of various diseases [7-9]. Beyond PRV, the morphologi-
cal characteristics of pulse waves have yielded consider-
able attention, with numerous studies suggesting that
these parameters may be associated with CV disease
states such as atherosclerosis and heart failure [5, 10, 11].

Photoplethysmography (PPG) is a simple, easily acces-
sible, and highly repeatable method for real-time moni-
toring of pulse waves [12]. This non-invasive technique
involves illuminating the skin and tissues below, typi-
cally the finger, with an LED and measuring the intensity
of the reflected or transmitted light, which corresponds
to pressure changes in the vascular system. Importantly,
PPG has no known adverse effects [13].

The promising results from previous studies suggest
that PPG-based pulse wave analysis could gain traction in
CV diagnostics and home monitoring in the near future
[14]. While it holds potential as a tool for assessing CV
aging, its broader use is constrained by the limited inves-
tigation of age-related correlations in most PPG-derived
parameters. Although some parameters have been linked
to age-related changes, most studies have focused on the
age dependence of individual or a few selected parame-
ters, leaving the majority unexplored [6, 15-17].

However, a combination of parameters or composite
measures derived from multiple parameters might bet-
ter capture age-related changes than single parameters
alone. PPG-based monitoring devices, equipped with
advanced algorithms, enable the simultaneous assess-
ment and complex analysis of numerous parameters [5,
18]. Consequently, research aimed at identifying a set of
simultaneously recorded PPG features with the strong-
est correlation to CV age could significantly enhance the
potential of PPG-based pulse wave analysis. Additionally,
most published studies have assumed linear age depend-
ence of parameters [15-17], which may not accurately
reflect reality. Many parameters could exhibit non-linear
relationships with age, particularly in women, where CV
changes accelerate after menopause.

The primary goal of our research was to identify age-
dependent changes in a large set of simultaneously
recorded pulse wave parameters, including PRV parame-
ters, pulse morphology parameters and newly developed
composite score parameters, aiming to establish the util-
ity of PPG-based pulse wave analysis as a tool to assess
CV aging. For this purpose, we utilized an efficient,
automated software that enables accurate, rapid, and
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reproducible evaluation of large datasets; and a compre-
hensive database of pulse wave data from a healthy adult
population was established. To better characterize age-
dependent parameter changes, we used both linear and
non-linear analyses to describe age-related trends.

2 Methods

Participants were required to meet specific inclusion cri-
teria, including self-reported good physical and mental
health, absence of CV disease, no use of CV medications,
non-pregnancy, a BMI between 18 and 26 kg/m? non-
smoker status, negligible alcohol consumption, and no
reported history of chronic or cancerous diseases.

Subjects were primarily recruited from among the
healthy employees, relatives of employees, and students
of Semmelweis University. Recruitment was facilitated by
the University’s Occupational Health Service and social
networking platforms. All tests were conducted in the
laboratory facilities of Semmelweis University. The study
protocol was designed in accordance with the Declara-
tion of Helsinki and approved by the Semmelweis Uni-
versity Regional and Institutional Committee of Science
and Research Ethics (approval number: 120/2018).

Participants provided informed consent and completed
a health questionnaire, which collected personal and
health-related data, including medical history, lifestyle,
and medication use. Blood pressure (BP) was measured
three times using an automatic sphygmomanometer.
Subjects with systolic BP higher than 140, and/or dias-
tolic BP exceeding 90 mmHg were excluded from the
study. All data was recorded anonymously.

Pulse wave recordings were obtained using a Berry BM
1000B pulse oximeter placed on the right index finger.
This non-invasive device, certified by the manufacturer,
recorded pulse waves for 140 s while the participant
remained seated and still. The pulse oximeter transmitted
data via Bluetooth to a mobile application (SCN4ALL/
HeartReader), developed by E-Med4All Europe Ltd.
(Budapest, Hungary), which uploaded the recordings to
a secure online database. The studies for the repeatabil-
ity and reliability of the measurements, along with the
detailed description of signal processing methods of the
system have already been published [19, 20]. Briefly, the
measurement takes 140 s to be completed. Due to fil-
tering and preprocessing reasons discussed in detail by
Kulin et al. [19], 120 s of the recording is used for further
analysis. Parameters were defined for each individual
cycle that met certain predefined signal quality criteria,
and the average of these values was reported.

The proprietary software used for analysis identified
fiducial points on the pulse wave, allowing for the calcu-
lation of both classical and novel pulse wave parameters
(PPG parameters), including pulse rate variability (PRV
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parameters) metrics. The primary criterion for selecting
parameters was to choose those that, according to the lit-
erature, describe various aspects of CV function—such
as temporal relationships, arterial elasticity, and auto-
nomic function—and have previously been reported to
correlate with CV age, mortality, and (severity) of vari-
ous CV diseases. Table 1. shows the parameters and their
descriptions.

The parameter values obtained from the pulse wave-
form analysis were compared with the age (in years) of
the volunteers (JASP 0.19.1 software, JASP Team (2024))
using Pearson correlation and Generalised Additive
Models (GAM) analysis (Google Colaboratory. Retrieved
December 14, 2024, from https://colab.research.google.
com/). GAM is an advanced statistical modelling method
designed to capture both linear and non-linear relation-
ships between variables. (see the ‘Additional filel.docx’
for a more detailed description of the model). A p value
of < =0.05 was accepted as significant throughout.

During the preparation of this work the author(s) used
ChatGPT and Grammarly to improve the readability and
find shorter expressions to fit word limit. After using
these tools/services, the authors reviewed and edited
the content as needed and took full responsibility for the
content of the publication.

3 Results

Our study included 118 healthy (M/F: 53/65, mean age:
31.8+11.8 SD) volunteers for PPG parameter calcula-
tion and 106 (M/F: 44/62, mean age: 32.6+12.2 SD) for
PRV parameters. Participants were aged between 19 and
74 years.

The relationship between age and CV function may
encompass both linear and non-linear factors. To com-
prehensively evaluate this, we performed two distinct
analyses: a Pearson correlation to assess linear associa-
tions and a GAM analysis to capture potential non-linear
trends.

Tables 2. and 3. summarize the results of Pearson
correlation and GAM analysis between PPG and PRV
parameters and age.

3.1 Pearson Correlation Analysis

Among the conventional PPG morphology parameters
that significantly correlated with age, AGEi (r=0.485),
SysAlpha (r=-— 0.418), and d/a (r=— 0.376) (Fig. 1A)
demonstrated the strongest age dependence. Addition-
ally, time-related parameters of the PPG curve that
characterize ejection-related ventricular activity, such
as ET(PPG) (r=0.589), Crest Time (r=0.570), LVETi
(r=0.539), and the proprietary parameters eLVET1*
(r=0.548) and eLVET2* (r=0.450), also exhibited strong
correlations with age (Table 2., Fig. 2.).
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Furthermore, age correlation was observed in other
novel parameters, including DNi* (r=-0.517) and
c-d incidence* (r=0.419) (Fig. 1B). Finally, all propri-
etary score parameters demonstrated significant cor-
relations with age: Heart Fitness Score (r=— 0.493), CV
Health Score (r=— 0.450), and Total Score (r=— 0.301)
(p<0.001 for all cases).

Several of the PRV parameters exhibited a moderate,
but significant negative correlation with age (Table 3.
and Fig. 3.). The cTotalPower (r=— 0.325) (Fig. 3A) and
c¢SDRR (r=— 0.401) parameters (Fig. 3B) exhibited the
strongest age dependence (p<0.001) among frequency-
domain and time-domain measures, respectively. The age
correlation of non-linear PRV parameters proved to be
weaker, except for cSD2 (r=— 0.428).

3.2 GAM Analysis

The GAM analysis allowed the identification of non-lin-
ear trends. Similar to the Pearson correlation analysis,
this analysis also found significant correlations (p <0.05)
between age and PPG parameters, except for Si and b/a
parameters. Among the PRV parameters, cSDRR, cTotal-
Power, cHFpow and ¢SD2 were significantly correlated
with age based on GAM analysis. The GAM analysis
confirmed linear (for AGEi, LVETi, eLVET2* DNi*,
SysAlpha) or near-linear (for b/a, d/a, Ri, Si) relation-
ship between most PPG parameters and age. However,
for some parameters, a non-linear trend with age was
observed.

All Score parameters demonstrated a clear non-linear
decline, especially after the age of 40. (Fig. 4A and B). The
eLVET1* and c-d incidence* parameters showed a mod-
erate non-linear upward trend followed by a plateau.

Crest Time exhibited extreme non-linearity with multi-
ple inflection points (Fig. 4C).

For PRV parameters, cTotalPower and cSDRR showed
a clear linear decrease with age. The cMHR did not have
a significant correlation with age (nor did it when Pear-
son correlation analysis was performed) (Fig. 4D).

4 Discussion

From a public health perspective, addressing the assess-
ment and monitoring of CV ageing is crucial, as CV
diseases continue to be the leading cause of mortality,
particularly in older populations. As the global popula-
tion ages, the demand for reliable, non-invasive methods
to meet this need is increasing. Photoplethysmography
(PPG) appears to be a promising tool in this regard, as
it offers a simple but effective way to monitor CV func-
tion by pulse wave analysis. Although the age correlation
of some PPG parameters has been investigated, the full
scope of age-related changes in pulse wave character-
istics is not yet fully evaluated. [21-23] This study, by


https://colab.research.google.com/
https://colab.research.google.com/

Page 4 of 11

(2025) 31:5

Antali et al. Artery Research

Jamod
-|B10] 2, 1B JUSWILIOD 935 :PaID4I0)) 91l ey ueawl ay] Jaiaulesed Ulewop-awi| A4d

1HVY3IH 343 JO [9A3] Y3[eay 21 IN0ge A3Sow UoleulIojul
sapiAoid 31025 SIY] 21035 SIY1 AQ payiew le s12adse 9say3 0s 193fgns ay3 Jo sanljigeded
D119|Y1e pue 3|A1Sajl| D113|Yie 3yl AQ padusn|jul ale sisxoweled aaem asind ulenoD)

sala1Ie 4} Jo Buibe pue UOIIPUOD ay1 pue
11eay 2y} JO UOIIdUNY Y1 Yim puodsaliod 1eyl siaraweled ay1 Woly pauleiqo

Yijeay/snieis AD $323(gns ayi Jo s15adse Jaseam pue

Jobuons AJusp! 01 djpy Ued YdIym ‘S21025-gNns J9YI0 Y1 |[e JO IS1SBW S S| 910G [e10]
9y ‘Buipiodal anem-as|ind Uiw g ay3 Jo siskjeue Arelandoid ayi WO PIALISP $1919
-weled AlljigelieA a1es 3sind pue Je[nSeAOIpIed + Q€ ||B 941 JO SISeg 3yl UO Pale|ndjed

[8€] (u10d-3/YD10U DI0IDIP) 2UNSO[D DABA DILIOR 3 pue
pouad asind ay3 Jo BuluuIbaq 2yl usamiaq pasde|s awil a3 S| Wi} U3 dy |

[9] (fead) spnjdwe
511015AS WiNWIXew ay1 pue (100)) pouad ay1 Jo Buluuibag ay1 ussmiaq pasdejs awn ay |

SABM D1101SAS 33 JO 3ead a1 01 D] d dANPALISP 1SIY Y1 JO

ead 35 SY3 WOI) UOIRIND SWI 94l SB Pauysp sI ] AT sealsym ‘asind ayi Jo aAl
-BAISP 154 343 4O ead 151y ay1 03 polad ay3 JO 14eIS SY1 WO PAINSEAW S| |1 IATS Wi
151D, JO SIUSUOAWIOD SWII-OM] 31 SJE ¢ PUE | 93U} UOIIDS(S JB[NDLIIUSA 13| Al1BS 3y |
(yead 21j031SBIP Y3 210424 2INSOPD dA[EA DI1IOR 3Y3 AG padnpul

A3]eA Y1) YD10U D110IDIP 243 03 3ead D1joiselp 3y Jo uonisod aAIR[1 3y} Saq1Dsad

19¢] 13+91e4 1082y X 9'| = (3[eWa))I L3N]

‘| 3+91e1 eay X /'] = (3]ew)I IAT suonenba uoissaibal buiisas dY10ads-xas woly
p31e|N2[eD SeM (1| JAT) 1B 1eay Joj paxapul W} UOIID(D JB[NDLIUSA 1]

$32AD 1Leay PaulULP! |[e J9A0 Wylloble 3yl Ag paynuspl

A||NJS$922NS 18 SAIND 9ABM 35|Nd 31 JO SAIIBALISP PUO3S 3 JO Sujod p pue D yoiym Ul
Bulpioa1 3y Ul 91240 3s|nd asoy1 Jo sbeiuadiad ayi sayidads olres uondalep ulod p-d
€]

SIXe [IUOZIIOY DY} pue 2%0415dn D1j01SAS JO UOIIBUIDUI [BWIIXBW SY) U9am1aq a|bue ay |
‘[9] yead 211015As sy Jo spnijduwie sy3 01 3ead dijoIselp ay1 Jo spniiidude ayi Jo olel ay |
'[9] B/2-p-2-q =130V "9A_M 35|nd U1 JO SAIIBALISP PUOIIS 31 LIOL) PIALIDP SN[eA Y|

"[9] 10108} %S JR|NDSRAOIPIRD JUSPUSdIPU| DABM

35|nd 3y} JO SAIIRAIISP PUOIS Y} JO S1UI0d UOIIB|UI Y1INO) pUe 1SIY Y3 JO Ol Y|
]

SDLIUSA Y3 Y3 JO AL|1IDBIIUOD Y1 pUB SaLaLIe 961|331 JO A1IDIISE|S Y1 YIIM S21B[3110D)
“9neM 35|nd SY3 JO SAIIBALISP PUODS Y3 JO SIUI0d UOIIIB|UI OM) 1SIY B3 JO Olel 3y |

"[9] spu0O23s ul

awi 1suely asind ay1 st | |4 'Sia1ow Ul uosiad ay3 Jo 1ybiay aya sty i(s/w) 1 1d /Y=1S

dHIND

4 100G $S3U1I4 1PaH

« 21035 Y1[e3H AD

21005 [P10|

YHWP122.110D
si919weled ujpwWOpP-aWwl] AYd

4 $9100G

¥D3YD Y3eay YBNOoIoY1 2I0W e 10J S|eUOISS3j0Id 1NSUOD 01 PUB S|IPIDP 21BN|BAS 01 UOSE3I S| 319y 18Y1 918D
-1pUI IYBIW 0/ MOJ3Q SNIBA 00 L S NjeA Xew 3y "Buipioda anem-asind UIw Z 343 JO siskjeue Aieiaiidoid syl Wolj paALsp sid1auieled +0g dU1 U0 paseq paie|ndjed d1am $21006 isiaiawieled 2103

(©dd) 13

EWVIREET)

% CLANTS
* LLAAT®

% INd

13AT

4 9JU3PIdUI P-D

eydysAs
Iy
[EDY

e/p

e/q

IS

awi} uondafa JBINDLIIUSA 1o

QW] 1591

7 9WI UONDS3 Je|NDLIUSA Y| Al1e3 pue | Wil UOND3(3 JejnduIusA Ya)| Ajie3

« X9pul ydlou dionIg

X3pU| SUII} UOIIDI3(3 JBINJLIUSA Y]

» Ol1eJ UoND213p Wiod p->

uoleulpul 9dojs J1j01sAS
X9pUl UOID3|JoY
xapul-bulsby

e/p

e/q

X9pUl SSAUYNS

suondudsaqg

saweu Jajoweded
/suoneinaiqqy

si193oweled AYd/Ddd

suondidsap pue sauleu Jarsuieied Ad pue Ddd L djgeL



Page 5 of 11

(2025) 31:5

Antali et al. Artery Research

S3IPNIS [e21U1]> Ul P33epi|eA 194 Jou ale wiay3 Jo 150l ‘dnoib ydieasal ino Aq padojanap aJe sisjawesed asay)

,49MOd|10] 3, 18 JUSWIWOD 335 :pa3da110D) ‘[6€] 30|d 3y 03 paniy asd||2 U1 JO YIPIMm Y3
Bunuasaidal 10jd 2182UI0d DY1 JO 7 UOIRIASP piepuels aiaweled Jeaul|-uoN AYd
19MOd[R10] D, 1B JUSWWOD 335 :pa313alI0 ) [6¢] 10|d Y3 03 pany asdlj|2 ay3 Jo Yibus| ayy
Bunuasaidal 10|d 21e5Ul0d 9Y3 JO | UONRIASP plepuelS Jalaweled Jesul|-UON AYd

!

,JoMO|P10] 3, 1B JUSWIWOD 335

:pR122.10D) "[01] SISOIS|PS0ISYIR JO UOISs21004d 9U1 Y1IM $318]9110D an|eA Jamod 47 'suol
-Ipuod bunsal buunp AiAnoe 101dadaioieq Ul sUOeNION| S123|Jal Ajulew pueq 479y,
‘AuAnoe dnayredwAseled pue dnayiedwAs Y1og Jo Jasiew e siuamod 47 °(ZH §1'0-+00)
pueq A>uanbal-mo| a1 Jo Jlamod a1njosqy Ua1aweled ulewop-Aousnbaiy AYd

,JOMOJ|e10]2, 1B JUSIWOD 335 :p33D34I0D)
‘[6€] Aunnoe onayredwAseled Jo 1asiew ay st samod 4H (ZH #'0-51°0)
pueq Aduanbal-ybiy ayi Jo Jamod a1njosqy Uaiaweled ulewop-Adusnbaiq AYd

‘[6€] paidde uonejodiaiul
auyds 21gn> Jo uonedldde pue syibus| 9342 Je|nbHal JO UOIIIIP DIIRUIOINE :PI1IDII0D)
“WR1SAS SNOAISU DIUIOUOINE 113U SY3 JO AUAIIDE Y3 S1D3|J31 SIY L "9AIND SIsAjleue ulewlop

-Aouanbaily 19|dwod ay3 Japun eale ay3 sayidads 1| uanauleled urewop-Adusnbaid AYd

Jamod
-[L10]2, 1 UBWIWIOD 335 :p1DaI0)) [6¢]ANANDR dnayiedwAseled sazia1oeieyd 1) 'sw 05

¢as>

1ds>

mod{1p

MOd{HD

J3MO|RI0] D

7ds pa1daiiod

1 QS pa12all0d
si919Weled UjpWOpP-1eaul|-UON AYd

19MO(d 47 P=2122110D

J3MOd 4H P122.110D

(ZSW) J9MOd [P10] Pa123110D
si91ouleled urewop-Aousnbaiq AYd

BuIPadX3 S|g| 9AISSIIINS JO SIOUIRYIP JO Uolodoid oy Us1ouleled UlWIOP-IWI| AHd OSNNAD 0SNNd pa1oaniod
,J9MOd[P10] 3, 1B JUSWILIOD 935 :P31D3II0D)
‘[6€] 1e3Y 21 JO ALI|IgEIS [PD11D33 JO All[enb SY3 0 J2Ja1 PINOD OSSN JO dNjeA YL
"sobueyd paleipawl Aj[ebeA 9yl 91eWiIse 01 Pasn pue 1ieay ayi Jo uonejnbal dnayied
-WiAseled ayy 1noge Ajewid uonewiojul sapiroid anjeA )| 'S|eAISIUI 1BIGIR1UI SAISSSD

-JNS JO S9DURIaYIP palenbs uesw 8yl Jo 1001 alenbs 3y Io1aweled urewop-aull] Add ASSWI2 ASSINIPa1931103
[6€],/9mog|e10L3, 18 JUsW
-U0J 995 :Pa1234I0D) XSPUI WSISAS SNOAISU JIUIOUOINE SAIBUILINS-ISEND B paIspIsuod
9Q ued pue AlljigeLeA 91eJ Leay bunoaye spusuodwod 124D |je AQ padusnjjul St anjea

S| (SW) S|PAISIUI 1PSGIS1UI 9] JO UOIRIASP PIBPURIS 9] Jalawieled Ulewop-awl] Atd 44as> NNQAS p2123110>
,J9MOd|10] 2, 1B JUBWIUIOD 395 :p1d2i

-10D) "[6€] [eAIS1UI 189GIS1UI [BULIOU-0)-[PWIOU UBSW 9y | U91auleled UlPWIOP-aWI| AHd NP NNIAP2128.1102

saweu J319weled
suondudsag /suoneinaiqqy sia3awesed AYd/Odd

(panupuod) | 3jqey



Antali et al. Artery Research (2025) 31:5

Table 2 Results of correlation analysis of PPG parameters and
age

Correlation
values of PPG
parameters with

PPG parameters Results of GAM analysis of
the relationship between

age and PPG parameters

age
Pearson’sr p Deviance EDOF p
explained
Conventional PPG parameters
ET(PPG) 0.589 <.001 04000 56458 <.001
Crest Time 0.570 <.001 05092 124659 <.001
LVETi 0539 <.001 0.2944 2.5483 <.001
AGEi 0.485 <.001 0.2385 25483 <.001
SysAlpha -0418 <.001 0.1834 25483 <.001
d/a -0.376 <.001 0.1540 25483 <.001
b/a 0.207 0.025 0.0487 25483 0.052
Si 0.181 0.050 0.0708 27463 0.099
Ri -0.159 0.085 0.0635 2.8567 0.010
Novel PPG parameters
elLVETT* 0.548 <.001 03574 56458 <.001
DNi* -0.517 <.001 02693 25483 <.001
elVET2* 0450 <.001 0.2063 25483 <.001
c-d incidence* 0419 <.001 02459 56458 <.001
PPG Score parameters
Heart Fitness -0.493 <.001 03310 33728 <.001
Score*
CV Health Score*  -0.450 <.001 0.2253 27463 <.001
Total Score* -0.301 <.001 0.1815 33728 <.001

EDOF effective degrees of freedom, ET(PPG) left ventricular ejection time
measured by PPG, LVETi left ventricular ejection time index, AGEi ageing-index,
SysAlpha systolic slope inclination, d/a and b/a ratios of the different inflection
points of the second derivative of the pulse wave, Si stiffness index, Ri reflection
index, eLVET1* and eLVET2* the early left ventricular ejection time 1 and 2 are the
two-time components of "Crest Time", DNi* dicrotic notch index, c-d incidence*
c-d point detection ratio, Score parameters scores were calculated based on the
30+ parameters derived from the proprietary analysis of the 2 min pulse-wave
recording

" These parameters are developed by our research group. Most of them are not
yet validated in clinical studies

For more information on GAM and an explanation of its measured values, see
the Additional file1.docx

For a more detailed description of the PPG parameters, see Table 1

examining both conventional and novel PPG parameters,
as well as PRV characteristics, provides a more compre-
hensive understanding of the effects of chronological
ageing on the pulse waveform morphology. The impor-
tance of our research is emphasized by the fact that age is
arguably the most significant risk factor for CV morbidity
and mortality. This is supported by the results of Pencina
et al. who found that age, sex, and race capture 63% to
80% of the prognostic performance of CV risk mod-
els [24]. This is further emphasized in the Framingham
risk score, where age contributes more to the total risk
score than any other variable. [25] Our study identified
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a diverse set of simultaneously recorded PPG parameters
including ones that are related to cardiac ejection time,
arterial elasticity and loss of PRV. These findings high-
light the correlation of PPG parameters with chrono-
logical age, suggesting their potential use for monitoring
age-related CV changes and evaluating CV health across
different age groups. In addition, a major strength of this
study lies in the use of a proprietary, automated software
system capable of analyzing large datasets with high effi-
ciency that enhance reliability, ensures the reproducibil-
ity of study’s results [19].

Among the 16 PPG morphology parameters, ET,
including its subcomponent eLVET1, as described by our
research group, and LVET], as described by Weber et al.,
demonstrated the strongest correlations with age, indi-
cating a gradual decline in CV efficiency as individuals
age [21, 26, 27]. Using GAM analysis, an extreme non-
linear relationship with multiple inflection points was
observed between crest time and age. This is probably
due to sparse sampling in older age groups. This high-
lights the sensitivity of nonlinear models to small sample
sizes and outliers.

Arterial stiffening due to loss of arterial elasticity and
structural changes in the vascular wall, such as increased
collagen deposition and reduced elastin, is a hallmark of
CV aging and contributes to elevated CV risk [28]. There-
fore, reliable characterization of arterial distensibility by
easily accessible biomarkers is an important step toward
early detection and prevention of CV diseases, as well as
the assessment of vascular aging [5, 29].

Our results also confirmed the findings of previous
studies describing age-dependent changes in the AGEL
AGEi is a parameter derived from the second derivative
of the pulse contour wave, and its correlation with age
and arterial stiffness is widely recognized (as noted by
Takazawa and colleagues) [15].

While pulse wave velocity (PWYV) is often considered
a better measure for assessing CV aging because of its
broader predictive power at the population level, AGEi
shows considerable potential as a complementary tool,
particularly in individual risk assessment. The strong
correlation between the second-derivative PPG signal
parameters, particularly AGEi and PWV, has been pub-
lished in several publications [16, 30]. These results high-
light the potential of AGEi as a practical, non-invasive
measure of individual risk stratification, especially when
measurement of PWV is less accessible. The sensitivity of
AGE] to age-related vascular changes is a valuable addi-
tion to CV diagnostics, complementing PWV’s popula-
tion-level insights. Our study has also shown that DNi
has stronger age dependence than AGEi suggesting that
it may have relevant potential in monitoring a progres-
sive decline in arterial distensibility (DNi, a proposed
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Fig. 1 Scatter plots of correlation results between age and PPG parameters (AGEi and DNi¥). A The scatter plot of the correlation analysis
between age and AGEi, and B the scatter plot of the correlation analysis between age and DNi* parameters
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Fig. 2 Scatter plots of correlation results between age and the ejection-related PPG parameters. A The scatter plots of the correlation analysis

between LVETi, B eLVET1, C Crest Time and D ET(PPG) and age
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Table 3 Results of correlation analysis of PRV parameters and
age

Correlation values
of PRV parameters

Results of GAM analysis of
the relationship between

with age age and PRV parameters
Pearson’sr p Deviance EDOF p
Explained
Time domain parameters
cSDRR - 0401 <.001 0.1627 25413 <.001
crMSSD -0.266 0.006  0.0807 25413 0.058
cpNN50 -0.225 0.021 0.0940 29638  0.080
cMRR 0.082 0404 00628 37356 0413
cMHR -0.109 0264  0.0711 37356 0472
Frequency domain parameters
cTotalPower  —0.325 <.001  0.1065 25413 0.028
cHFpow -0.299 0002  0.0902 25413 0.035
cLFpow -0277 0.004 00768 25413 0270
Non-linear parameter
cSD2 -0428 <.001 0.1887 25413 <.001
cSD1 -0.266 0006  0.0807 25413 0.058

EDOF Effective degrees of Freedom, cSDRR The standard deviation of the
interbeat intervals (ms), crMSSD The square root of the mean squared differences
of successive interbeat intervals, coNN50 the proportion of differences of
successive IBls exceeding 50 ms, cMRR the mean normal-to-normal interbeat
interval, cMHR the mean heart rate, cTotalPower It specifies the area under the
complete frequency-domain analysis curve, cHFpow absolute Power of the
high-frequency band, cLFpow absolute power of the low-frequency band; cSD1
and ¢SD2: standard deviation 1 and 2 of the Poincaré plot representing the
length and width of the ellipse fitted to the plot. The c in front of the parameter
name stands for: corrected: automatic detection of irregular cycle lengths and
application of cubic spline interpolation applied

For more information on GAM and an explanation of its measured values, see
the Additional file1.docx

For a more detailed description of the PRV parameters, see Table 1
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marker of aortic distensibility and coronary flow pressure
gradient). Si is another PPG parameter proposed by sev-
eral authors to characterize arterial stiffening. Based on
the previous publication of Millasseau (Determination
of age-related increases in large artery stiffness by digi-
tal pulse contour analysis), PWV and Si are significantly
correlated with each other, and both are correlated with
age. Interestingly, the Si showed a weak correlation with
age in our study [31]. One possible explanation for this
may be the different age and sex distribution of the two
studies. In the study of Millaseau et al., 29 of the 87 par-
ticipants were women; the mean age was 47 years, with
a range of 21-68 years. Whereas our study age distribu-
tion for females found to contain a higher proportion of
women mostly in premenopausal age. These observations
emphasize that precise characterization of age correla-
tion may require accounting for sex-specific differences
and other confounding factors in the analysis; however,
this necessitates analysis performed on large datasets.

In addition to the individual parameters, "composite
scores" of multiple PPG parameters, such as the Total
Score, Heart Fitness Score and CV Health Score, also
showed significant correlations with age, both using
Pearson correlation and GAM analysis. This supports
the unpublished observations of the manufacturer that
suggested strong age dependence of these parameters in
a large inhomogeneous patient population coming from
real-world data of more than 98 000 processed meas-
urements from more than 5 800 individuals in various
age, sex and health status [32]. The composite scores
were developed to simplify the interpretation of CV
health indicators by aggregating multiple PPG-derived
parameters into a single, more user-friendly metric. This
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Fig. 3 Scatter plots of correlation results between age and PRV parameters A The scatter plot of the correlation analysis between age
and cTotalPower, and B the scatter plot of the correlation analysis between age and cSDRR parameters
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analysis between age and Crest Time PPG parameter and D the plot of the GAM analysis between age and cpNN50 PRV parameter

approach can make it easier for end-users to track and
understand their metrics, especially for non-specialists
for whom interpretation of multiple individual param-
eters (e.g. 15-20) can be challenging. While the exact
calculation methods for these scores are proprietary,
they are based on established PPG signal features asso-
ciated with vascular and cardiac health. These include
parameters related to arterial stiffness, pulse wave char-
acteristics, and temporal signal dynamics, all of which are
linked to age-dependent CV changes. The validation of
these composite scores as independent predictors of CV
health. requires further studies. However, preliminary
findings suggest that they could support CV risk evalu-
ations. All score parameters in this study showed a clear
non-linear, decreasing relationship with age, especially
after age 40. This sharp decline is consistent with pub-
lished data showing accelerated ageing during middle age
[33].

Some PRV parameters, such as total power (cTotal-
Power) and SDNN (cSDRR), showed a significant cor-
relation with age. Both parameters showed a decrease
with increasing age; this could indicate a less sensitive

autonomic nervous system, which may contribute to the
reduced cardiovascular adaptive capacity observed in the
elderly. This finding is consistent with the existing litera-
ture, which suggests that decreased heart rate variability
reflects reduced autonomic control of the CV system,
and highlights the importance of monitoring autonomic
function through PRV parameters as part of a compre-
hensive CV health assessment. [7-9, 34].

In summary, our results reveal a set of PPG and PRV
parameters associated with age-related changes with
distinct differences between parameters in the aspect
of linearity, emphasizing the potential of simultaneous
recording and analysis of multiple PPG parameters in CV
prevention, though further research is required. Addi-
tionally, combining different PPG parameters has yielded
composite scores with unique age-dependent patterns
which might reflect the non-linear trends of ageing,
which may prove useful in identifying age-related CV
events or conditions. We believe that our study may serve
as a foundational step in developing personalized PPG-
based CV age assessment tools. However, future research
should explore whether individuals positioned above or
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below the correlation trend line represent distinct CV
aging phenotypes, such as early vascular aging or super-
normal vascular aging. [35, 36].

5 Limitations of the study

A limitation of our study is that the age distribution of
the sample population is not fully uniform and may not
be fully representative of the general population. Future
research should, therefore, be extended to a wider, more
diverse cohort to further verify these results.

Clinical validation of the proprietary PPG param-
eters introduced could be a critical next step towards
their wider use and clinical utility. Although the aim of
this study was primarily to explore the age dependence
of these parameters, it is important to outline possible
avenues for future validation. Future studies are planned
to focus on the correlation of the new PPG composite
scores with widely accepted CV risk scores such as the
Framingham Risk Score or the HeartScore (European
Society of Cardiology), as well as with established meas-
ures such as lipid profiles, hs-CRP, plasma creatinine,
carotid Doppler and echocardiography results, and pulse
wave velocity (PWYV). Further validation efforts include
analysing how composite scores interact with clinical and
lifestyle factors, including patient history and modifiable
risk behaviours, to increase their predictive accuracy. In
addition, to ensure wider applicability, we plan to evalu-
ate the performance of these scores in different patient
subgroups, including individuals with different CV risk
profiles and comorbidities. These studies may be benefi-
cial to further refine the interpretation of the identified
age-related indicators, as different PPG parameters may
be more relevant in certain pathological contexts, such as
hypertension or heart failure.

6 Conclusion

This study has successfully identified age-related linear
and non-linear correlations across both conventional and
novel PPG parameters, highlighting their potential as val-
uable indicators of CV ageing. The findings demonstrate
that parameters related to cardiac ejection time, arterial
elasticity, and PRV, among others, consistently corre-
late with age, offering a comprehensive view of how the
CV system evolves over time. The introduction of novel
composite PPG score parameters, which showed notable
age correlations, may complement traditional metrics,
although further validation is needed to confirm their
specific contributions. The clinical relevance of these
findings is that they draw attention to the potential of
pulse wave analysis to monitor CV ageing non-invasively
and position PPG as a promising tool in both clinical
and preventive cardiology. However, translation of this

Page 10 of 11

method to clinical settings requires further research in
patients with various CV conditions and comorbidities.
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Supplementary material for Generalized Additive
Models (GAM)

Generalized Additive Models (GAM) are an advanced statistical modeling method designed to
flexibly capture linear and non-linear relationships between predictor and response variables.
Unlike traditional linear regression, GAMs allow for smooth, data-driven fits using spline-based
smoothing functions, enabling the analysis to identify complex trends in datasets without
imposing a rigid functional form. In this study, GAM was employed to assess the relationship
between age (predictor variable) and various PPG (Photoplethysmography) and PRV (Pulse
Rate Variability) parameters (response variables). This method proved particularly useful in
identifying both linear trends and non-linear patterns, offering insights that traditional linear

approaches like Pearson correlation might overlook.
Main parameters calculated by the GAM analysis

Deviance Explained: Measures the proportion of variability in the response variable that is
explained by the predictor variable. Higher values indicate a better fit of the model to the data,

similar to the R-squared in linear regression.

Effective Degrees of Freedom (EDOF): Reflects the model’s complexity and the smoothness of
the curve. A higher EDOF indicates a more flexible, non-linear fit, while lower EDOF

corresponds to simpler (near-linear) relationships.

Generalized Cross-Validation (GCV) Score: A measure of model performance that balances fit
and complexity. Lower GCV values indicate better model performance and smoother curves

without overfitting.



Scale: The residual variance (error term) of the model, indicating how well the model predicts

the data.

p-Value: Represents the statistical significance of the smoothing term (relationship between

predictor and response). p < 0.05 indicates a significant relationship.

Determination of Optimal Lambda (A) Values

In GAM analysis, the smoothing parameter A plays a critical role in determining the trade-off
between curve smoothness and model fit. Small A produces a highly flexible curve, which can
overfit the data. Large A results in a very smooth (near-linear) curve, potentially underfitting
the data. To ensure that the models were optimized, a grid search approach was used to
identify the best lambda values for each parameter. The lambda grid covered a broad range of

values, from highly flexible to very smooth:

e Logarithmic Scaling (0.01 to 10): Captures smaller, more flexible fits.

¢ Fine Grid (90 to 110): Focuses on tuning lambda around commonly observed optimal

values.

e Extended Range (100 to 1000): Allows for extremely smooth curves when necessary.

For each response variable, GAM was applied iteratively, and the Generalized Cross-Validation
(GCV) score was used to identify the optimal A: The model with the lowest GCV score was
selected as the optimal solution. This ensured that each parameter had the most appropriate

balance between smoothness and fit.

Summary



The GAM method successfully identified optimal A values for every PPG and PRV parameter by
minimizing the GCV score. This allowed for precise modeling of age-related trends while
accommodating both linear and non-linear relationships. This approach ensures that GAM
results provide robust insights into the complex interactions between age and cardiovascular

parameters, emphasizing the importance of non-linear analyses for understanding biological

aging.

Suppl. Table: Results of GAM analysis of the relationship between Age and PPG parameters

PPG and Optimal | Deviance
PRV GCV Score Scale |, pnmal ) EDOF | p
lambda" | Explained
parameters
Conventional PPG parameters
ET(PPG) 414.757 379.197 10 0.4000 | 5.6458 |<.001
Crest Time 214.855 174.428 0.1 0.5092 |12.4659 |<.001
LVETi 447.489 430.128 1000 0.2944 | 2.5483 |<.001
AGEi 0.183 0.176 1000 0.2385 | 2.5483 | <.001
SysAlpha 5.397 5.188 1000 0.1834 | 2.5483 | <.001
d/a 0.041 0.040 1000 0.1540 | 2.5483 | <.001
b/a 0.024 0.023 1000 0.0487 | 2.5483 | 0.052
Si 0.776 0.743 599.484 | 0.0708 | 2.7463 | 0.099
Ri 116.139 111.089 | 464.159 | 0.0635 | 2.8567 | 0,01
Novel PPG parameters
eLVET1* 35.413 32.377 10 0.3574 | 5.6458 | <.001
DNi* 49.289 47.376 1000 0.2693 | 2.5483 | <.001
eLVET2* 169.317 162.748 1000 0.2063 | 2.5483 | <.001
.C_d. * 410.381 375.196 10 0.2459 | 5.6458 | <.001
incidence
PPG Score parameters
Heart
Fitness 157.167 149.102 166.810 | 0.3310 | 3.3728 | <.001
Score*
CV. Health| 3 846 | 127292 |599.484 | 02253 | 2.7463 | <001
Score*
Total Score* 91.313 86.627 166.810 | 0.1815 | 3.3728 | <.001
Time domain PRV parameters




c¢SDRR 276.899 264.976 1000 0.1627 | 2.5413 |<.001
crMSSD 372.614 356.570 1000 0.0807 | 2.5413 | 0.058
cpNN50 352.120 334.444 359.381 | 0.0940 | 2.9638 | 0.080
cMRR 13943.825 | 13062.171 90 0.0628 | 3.7356 | 0.413
cMHR 97.989 91.793 90 0.0711 | 3.7356 | 0,472
Frequency domain PRV parameters
cTotalPower | 3618748.208 | 3462928.12| 1000 0.1065 | 2.5413 | 0,028
cHFpow 684814.250 | 655326.756| 1000 0.0902 | 2.5413 | 0.035
cLFpow 854121.978 |817344.243| 1000 0.0768 | 2.5413 | 0.270
Non-linear PRV parameters
cSD2 435.314 416.570 1000 0.1887 | 2.5413 |<.001
c¢SD1 186.307 178.285 1000 0.0807 | 2.5413 | 0,058
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ABSTRACT

Introduction: This study assesses the utility of photoplethysmography (PPG) as a non-invasive method to
evaluate cardiac function, addressing the critical need for accessible biomarkers in various cardiovascular
conditions, including heart failure management. Methods: By conducting simultaneous echocardiography
and PPG measurements on 37 healthy volunteers, we analyzed both traditional and novel composite pulse
wave scores to correlate peripheral PPG data with central echocardiographic outcomes. Results: Our results
show a good correlation between PPG-based and echocardiography-derived ejection times (r = 0.648,
P < 0.001), though Bland-Altmann analysis results reveal that PPG consistently overestimated ejection
times by a mean difference of +95 ms. Moreover, eleven PPG parameters significantly correlated with key
echocardiographic indicators of systolic and diastolic function, such as left ventricular dimensions, global
longitudinal strain, aortic functionality, atrial contraction (MV-A), and ventricular filling pressure (E/e’ lat)
with clinical relevance indicated by correlations (r) above 0.4 (P < 0.05). Conclusion: The findings pave the

* Corresponding author. 1036 Budapest, Bécsi tt. 85, Hungary. Tel.: +-36 30 9226206. E-mail: kulin.daniel@phd.
semmelweis.hu; kulindaniel@gmail.com

tEqual contributors of the study.

’j Journals

Unauthenticated | Downloaded 09/18/25 09:24 AM UTC


https://orcid.org/0000-0001-8981-0066
https://orcid.org/0000-0001-8577-4475
https://crossmark.crossref.org/dialog/?doi=10.1556/2060.2025.00675&domain=pdf
mailto:kulin.daniel@phd.semmelweis.hu
mailto:kulin.daniel@phd.semmelweis.hu
mailto:kulindaniel@gmail.com
https://doi.org/10.1556/2060.2025.00675

2 Physiology International

way for further studies in various patient groups to explore the potential of PPG in enhancing home
monitoring and regular cardiovascular assessments. This work not only broadens our understanding of the
physiological relationships between peripheral and central cardiovascular measures but also introduces
innovative metrics that might bring some added value to the current standards of patient care by facilitating
early detection and personalized management of heart conditions.

KEYWORDS

photoplethysmography (PPG), echocardiography, cardiac function, pulse wave analysis, central hemodynamics,
peripheral hemodynamics

INTRODUCTION

The rising prevalence of cardiovascular (CV) diseases, including heart failure — projected to
increase from 6.7 million to 8.5 million Americans by 2030 — underscores the urgent need for
advanced diagnostic and home monitoring solutions to manage better and mitigate their
growing impact on public health [1, 2].

Managing heart failure requires pharmacotherapy, routine cardiology visits, and patient
adherence to prescribed regimens. Echocardiography provides detailed insights into heart
morphology and function [3]. Given the challenge of screening and monitoring the growing
affected population, there is a pressing need for new biophysical, remote-monitoring biomarkers
to improve personalized treatment and continuous monitoring of heart failure [4].

The peripheral arterial pulse wave (PPW) holds promise as a potential biomarker. PPW,
influenced by cardiac dynamics, arterial elasticity, and resistance vessel tone, reflects changes in
CV status [5, 6].

Mathematical analysis of PPW parameters has shown potential in identifying CV pathol-
ogies associated with HF [7]. The term PPW is most commonly used when referring to pressure
waveforms measured by tonometry. In contrast, photoplethysmography (PPG) records related
but distinct signals: it optically measures pulsatile changes in blood volume within the illumi-
nated tissue, including contributions from small arteries, arterioles, and the microvascular bed,
rather than directly capturing arterial pressure. This is particularly relevant for transmissive PPG
recordings, such as fingertip measurements, where the entire cross-section of perfused tissue
contributes to the composite signal. Despite this difference, the resulting PPG waveform retains
morphological features analogous to the pressure pulse wave. Because PPG is non-invasive,
widely accessible, and simple to use, it has become increasingly common in devices such as
pulse oximeters and smartwatches [5]. In the remainder of this manuscript, for simplicity, we
will refer to the PPG-derived signal as the pulse wave and to its evaluation as pulse wave analysis
(PWA), while acknowledging this refers specifically to volume-based measurements.

Regardless of the many potential benefits, integration of PPG-based PWA into patient
monitoring faces a challenge, mainly because the relationship between routinely used cardiac
ultrasound measures and PPG-derived parameters is not established. The limited number of
studies addressing this gap focused on exploring relationships between selected parameters
[8-10].
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The goal is to identify those characteristics of the pulse wave that offer the greatest potential
for monitoring cardiovascular status, especially when echocardiography is not available.

Our study aims to comprehensively analyze the association between echocardiographic and
PPW parameters in healthy subjects, thereby advancing our understanding of PPG’s possible
role in the future of heart failure monitoring.

MATERIALS AND METHODS

Subjects

Subjects were recruited through multiple channels, including internal invitations distributed
among university staff members and outreach via our professional and personal networks, in
order to obtain a diverse volunteer population. The study involved healthy adult volunteers
(n = 37), who claimed themselves healthy by filling out a detailed questionnaire, had a normal
body mass index (BMI: 18-25 kg/m?), had no history of smoking, and denied drinking alcohol
regularly. Those who had been diagnosed with or had received treatment for diabetes or any CV
disease were excluded from the study. Further exclusion criteria involved: pregnancy, previous
cancerous disease, wearing false nails, and SARS-CoV-2 infection in the last 6 months before the
exam. The measurements were conducted at Semmelweis University’s Varosmajor Heart and
Vascular Centre.

Ethical Compliance

The study protocols were rigorously designed to align with the highest ethical standards, con-
forming to the principles outlined in the 2013 Declaration of Helsinki. Informed consent was
obtained from all participants, documented in writing. The study received approval from the
Regional and Institutional Committee of Science and Research Ethics at Semmelweis University,
Budapest (Approval No. 120/2018-3).

Protocol

After arriving for the exam, patients were allowed to rest for 20 min before starting the study
protocol. The protocol consisted of a simultaneous echocardiographic examination and
recording of PPG signals from a peripheral artery using a pulse oximeter placed on the right
index finger.

Echocardiography

The echocardiographic protocol followed the methodology described by Horvéth et al. (2023)
[11]. Blood pressure (BP) was measured three times using an automatic sphygmomanometer
before conducting a cardiac ultrasound scan. During the scan, the participant lay on the exam-
ination bed with the upper body undressed, positioned on the left side. 2D echocardiography
examinations were performed with a GE Vivid E95 system with a 4Vc-D phased-array trans-
ducer (GE Vingmed Ultrasound, Horten, Norway). LV-focused, ECG-gated datasets were ob-
tained from parasternal long and short axis, apical four-chamber, apical three-chamber, and
apical two-chamber views at a minimum rate of 50 frames per second. Offline analyses of these
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datasets were performed after selecting the optimal heart cycles using commercially available
software (Autostrain LV, TOMTEC Imaging Systems GmbH, Unterschleissheim, Germany);
echocardiographic parameter data were derived by averaging the data from 1 to 3 heartbeats.
The algorithm automatically generated the endocardial contours of the cavities, which were
manually corrected throughout the entire cardiac cycle. The speckle tracking technique was used
for the deformation analysis. The assessed parameters can be found in Table 1.

PPG measurements

During the cardiac ultrasound, a pulse waveform was recorded for 140 s using a special pulse
oximeter on the patient’s right index finger, with a 200 Hz sampling frequency (Shanghai Berry
Electronic Tech Co., Ltd., Shanghai, China). The patients lay on their side, staying still. The
oximeter, wirelessly connected to the SCN4ALL mobile app (E-Med4All Europe Ltd, Budapest,
Hungary), sent the anonymized data in real time to a secure online database as described
previously [19].

The SCN4ALL software analyzed the signals, its proprietary algorithm identifies points of
interest on the pulse wave from which it calculates over 30 morphological and pulse rate
variability parameters online. PPG parameters were calculated by averaging measurements from
each heartbeat of the continuous recordings. The system’s reliability, repeatability, and detailed
descriptions of its architecture and signal processing have been published previously [19, 20]
(The SCN4ALL parameters assessed in this study are found in - List of echocardiographic and
PPG parameters, with abbreviations and definitions Table 1). Besides “conventional” PPG
parameters, already known from the literature, composite parameters, called “Scores” were also
analyzed. The different “Scores” are constructed using different combinations of parameters,
each of which is assigned a value based on specific cutoff values along a monotonous or
U-shaped Likert scale. The scores, with a maximum of 100, indicate health levels for evaluated
aspects. Their actual reliability and validity in clinical practice are evaluated based on the current
and upcoming studies. The exact constituents of the Scores are a proprietary secret, kept
confidential at the manufacturer’s discretion.

Statistics, data analysis

To evaluate the agreement between ejection time measurements derived from photoplethys-
mography (PPG) and echocardiography (Echo), Bland-Altman analysis was performed. For
each paired observation, the mean of the two methods and the absolute difference (PPG —
Echo) were calculated. The bias (mean difference) and 95% limits of agreement (mean + 1.96
standard deviations) were determined to quantify systematic and random error. In addition,
ratios between PPG- and Echo-derived ejection times were computed to assess proportional
differences. The mean ratio and the mean percent difference were reported to describe relative
agreement. Bland-Altman calculations were performed in Google Colab using a custom Py-
thon script.

Parameter values obtained by echocardiography were compared with corresponding
PPG-derived parameter values using correlation analysis performed in JASP software
(JASP Version 0.19.3; JASP Team, 2025). Normality of each variable was assessed with the
Shapiro-Wilk test. For variable pairs where both distributions did not significantly deviate from
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Tablel. List of echocardiographic and PPG parameters, with abbreviations and definitions

Echocardiography

parameter
abbreviations

Echocardiography
parameter definition

PPG parameter
abbreviations

PPG parameter definition [5]

ET (ECHO) (ms)

LV-EDD (mm)

LV-ESD (mm)

LV-EDV (mL)

LV-ESV (mL)

LV-SV (mL)

LV-GLS (%)

LVOT-VTI (cm)

MV-grad (av)
(Hgmm)

Left ventricular
ejection time

Left ventricular end-
diastolic diameter

Left ventricular
end-systolic diameter

Left ventricular
end-diastolic volume

Left ventricular
end-systolic volume

Left ventricular stroke
volume

Global longitudinal
strain

Left ventricular
outflow tract velocity
time integral

Mean pressure
difference between the
left atrium and left
ventricle measured at
the mitral valve
during diastole

Si® (m s

b/a

d/a

AGEi

SysAlpha® (°)

LVETi (ms)

DNi *

eLVETI1 * (ms)

Stiffness index Si = h/AT (m s ');
h is the height of the person in
meters. AT is the time between the
systolic peak and diastolic peak on
the pulse curve [12].

The ratio of the first two inflection
points of the second derivative of the
pulse wave [13].

The ratio of the fourth to the first
inflection points of the second
derivative of the pulse wave [14].
Ageing-index Value calculated from
the fiducial points of the second
derivative of the pulse wave.
AGEi = b-c-d-e/a
Reflection index The ratio of the
amplitude of the diastolic peak to
the amplitude of the systolic peak.
Systolic slope inclination The angle
between the maximal inclination of
systolic upstroke and the horizontal
axis [15].

Left ventricular ejection time
indexed for heart rate (LVETI) was
calculated from sex-specific
resting regression equations
LVETi(male) = 1,7 X heart
rate + ET, LVETi(female) = 1,6 X
heart rate + ET [16].
Dicrotic notch index * Describes
the relative position of the diastolic
peak to the dicrotic notch (the valley
induced by the aortic valve closure
before the diastolic peak).
Early left ventricular ejection time
1 and Early left ventricular ejection
time 2 ELVETI is measured from
the start of the period to the first
peak of the first derivative of the
pulse, whereas ELVET2 is defined as

(continued)
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Tablel. Continued

Echocardiography
parameter
abbreviations

Echocardiography
parameter definition

PPG parameter
abbreviations

PPG parameter definition [5]

MV-E (cm s™})
MV-A (cm s 1)

MV-E/A
DT (ms)
e-lat (cm s™')

E/e’ - lat

e’-med (cm s™')

Ao, root diam (mm)

Ao-vmax (m s™)

Ao-gr (peak) (Hgmm)

Ao-gr (av) (Hgmm)

Ao-VTI (cm)

Ao-accT (ms)

Mitral E-wave velocity
Mitral A-wave
velocity
The ratio between
E-wave and A-wave
Left ventricular
deceleration time
Mitral lateral annulus
velocity
Ratio of early diastolic
mitral inflow velocity
to early diastolic
mitral annulus
velocity
Mitral medial annulus
velocity
Aortic root diameter

Aortic maximum flow
velocity

Peak aortic pressure
gradient

Average aortic
pressure gradient

Aortic maximum flow
velocity time integral
Aortic acceleration
time

eLVET2 *(ms)
eLVET1 @75 **
(ms)
eLVET2 @75 *
(ms)
Crest Time (ms)

Crest Time @75

(ms)
ET(PPG) (ms)

ET(PPG) @75®
(ms)
Sys/Dias Time"®

HR (1/min)

CV Health Score

Heart Fitness
Score *

the time duration from the first peak
of the first derivative PTG to the
peak of the systolic wave.

Crest Time - The time elapsed
between the beginning of the period
(foot) and the maximum systolic
amplitude (peak)

PPG based Left ventricular ejection
time. It is the time elapsed between
the lowest point between
consecutive systolic peaks and the
marker of aortic valve closure
(dicrotic notch/e-point on the
second derivative of the PPG) [17].
Systolic/diastolic time ratio
Systolic/diastolic time ratio relates
the duration of cardiac systole to
diastole.

Mean Heart Rate The mean value of
the heart beats per minute (1/min).
The algorithm calculates a heart rate
from the length of each period of the
120-s recording and averages them.
Obtained from the parameters that
correspond with the function of the
heart and the condition and aging of
the arteries.

Certain pulse wave parameters are
influenced by the athletic lifestyle
and athletic capabilities of the
subject, so these aspects are marked
by this score.

*These parameters are developed by the scientific team behind the SCN4ALL system. Most of them are not
yet validated in clinical studies, their definition and meaning are hypotheses based on the current
understanding of pulsewave physiology. (s)The findings for these parameters are presented in the
supplementary materials, due to their correlation being lower than 0.4 (Supplementary Tables 1 and 2).
Meaning of “@75” after some PPG indices: the original time value is corrected to 75/min heart rate [18].
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normality, Pearson correlation coefficients were calculated; for pairs in which at least one
variable showed non-normal distribution, Spearman correlation was used.

Significant correlations (P < 0.05) with correlation coefficients above r = 0.4 are presented in
the main manuscript; additional correlations, including those weaker or influenced by heart rate
as determined by partial correlation analyses, are provided in Supplementary Table 1.

RESULTS AND DISCUSSION

Results

The results of a total of 37 healthy volunteers aged 20-57 years were used in the data analysis
(M/F: 16/21; mean age: 36.9 + 11.4 SD years, BMI mean: 22.4 + 2.3 SD, Systolic brachial BP:
115 + 12 SD Hgmm, Diastolic brachial BP: 64 + 9 SD).

The results of the correlation tests are shown in Table 2 and Supplementary Tables 1 and 2.

Results related to left ventricular ejection time (LVET)

Agreement between PPG and echocardiographic ejection times. Bland-Altman analysis
demonstrated a mean difference (bias) of 95 ms between PPG- and Echo-derived ejection times
(SD = 21 ms), with 95% limits of agreement ranging from 53.98 to 136.02 ms. The mean ratio of
PPG to Echo measurements was 1.353, corresponding to an average relative overestimation of
29.74% by PPG. The Bland-Altman plots showed a consistent positive bias across the measure-
ment range, with no substantial evidence of proportional error in the log-transformed ra-
tios (Fig. 1).

ET (ECHO) (ms) measured by cardiac ultrasound showed a good correlation with ejection
time measured by PPG (ET(PPG)) (r = 0.648; P < 0.001) (Fig. 2).

We also found correlations with other parameters related to systolic time, such as Crest
Time (r = 0.567; P < 0.001); and the early left ventricular ejection time 1 (eLVET1 ™) (r = 0.478;
P = 0.003 - result in Supplementary Table 1) and 2 (eLVET2 *) (r = 0.472; P = 0.003).

ET (ECHO) inversely correlated with the Dicrotic notch index (DNi*), too (r = —0.496;
P = 0.002).

Given the significant, inverse correlation between heart rate measured by PPG and echo-
cardiographic LVET (r = —0.538; P < 0.001), we conducted partial correlation tests conditioned
on heart rate. The correlation persisted for the parameters ET(PPG), Crest Time, eLVET2",
DNi*, suggesting an independent relationship with heart rate. However, the correlation disap-
peared for the parameters eLVET1", indicating that the association was driven by the relation-
ship with heart rate in this case.

Results related to cardiac systolic function

Several PPG parameters were significantly correlated with echocardiographic parameters which
are routinely used in monitoring of systolic function and have known prognostic values.
The parameters with the strongest correlation are shown in Table 2 and Fig. 3.
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Table 2. Results of Pearson’s and Spearman’s correlations: comparisons of echocardiographic parameters
and PPG parameters

Correlation of echocardiography parameters with PPG (Pearson)

Echocardiography: ejection time PPG parameters Pearson’s Pearson’s partial
correlations correlations
conditioned on
HR
r P r P
ET (ECHO) (ms) ET(PPG) 0.648 <0001  0.555  <0.001
Crest Time 0.567 <0.001 0.371 0.026
DNi * —0.496  0.002 —0.479  0.003
HR —0.538  <0.001 N/A N/A
Echocardiography: systolic function PPG parameters Pearson’s Pearson’s partial
correlations correlations
conditioned on
HR
r P r P
LV-EDD (mm) AGEi —0.51 0.001 N/A N/A
d/a 0.47 0.003 N/A N/A
b/a —0.41 0.013 N/A N/A
LV-ESD (mm) AGEi —0.52 0.001 N/A N/A
d/a 0.45 0.005 N/A N/A
b/a —0.42 0.01 N/A N/A
LV-GLS (%) DN;j * 0.5 0.001 N/A N/A
LVOT-VTI (cm) DNi * —-0.4 0.015 N/A N/A
Ao-VTI (cm) DNi * —0.44  0.007 N/A N/A
Echocardiography: diastolic function PPG parameters Pearson’s Pearson’s partial
correlations correlations
conditioned on
HR
r P r p
MV-A (cm s b/a 052 <0001  0.51 0.001
HR 0.5 0.005 N/A N/A
MV-E (cm s~ ) AGEi 0.4 0.014 N/A N/A
e-med (cm s™') Crest Time —0.41 0.012 N/A N/A
Correlation of echocardiography parameters with PPG (Spearman)
Echocardiography: ejection time PPG parameter Spearman’s Spearman’s
correlations partial
correlations
conditioned on
HR
p P p P
LVET (ms) eLVET2 * 0.496 0.002 0.404 0.015

(continued)
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Table 2. Continued

Echocardiography: systolic function PPG parameters Spearman’s Spearman’s
correlations partial

correlations

conditioned on
HR

p P p P
LV-EDD (mm) Heart Fitness Score * 0.492 0.002 N/A N/A
CV Health Score * 0.459 0.004 N/A N/A
Crest Time @75 —0.472  0.003 N/A N/A
eLVET2 @75 * —0.436 0.007 N/A N/A
LV-ESD (mm) Heart Fitness Score * 0.479 0.003 N/A N/A
eLVET2 @75 * —0.409  0.012 N/A N/A
Ao, root diam (mm) DNi * 0.482 0.003 N/A N/A

Echocardiography: diastolic function PPG parameters Spearman’s Spearman’s

correlations partial

correlations

conditioned on
HR

p p p P
MV-A (cm s™%) eLVET2 @75 * 0.572 <0.001 NA NA
Heart Fitness Score *  —0.516 0.001 —0.375 0.024
Crest Time @75 0.517 0.001 NA NA
HR 0.5 0.005 N/A N/A
MV-E/A HR —0.451 0.005 N/A N/A
E/e’ - lat LVETi 0.423 0.009 N/A N/A

r: Pearson’s correlation coefficient; p(rho): Spearman’s correlation coefficient, P = P-value (significance
value <0.05) Given the correlation between heart rate measured by PPG and some echocardiographic
parameters, where applicable, partial correlation tests were performed as a function of heart rate.

*: Proprietary SCN4ALL parameters. List of abbreviations found in Table 1.

Results related to cardiac diastolic function

PPG parameters like eLVET2@75, b/a, HeartFitnessScore, or LVETi showed the strongest (but
still moderate) correlations with indicators of atrial contraction (MV-A) and left ventricular
filling pressure (E/e’ lat). Given that some parameter pairs exhibited correlations with heart rate,
we further analyzed these relationships using partial correlation to account for heart rate vari-
ability. Table 2 and Fig. 4 showcase these significant correlations.

DISCUSSION

The ongoing quest for effective, accessible methods to assess heart function is a key focus in
cardiovascular research, particularly in the field of echocardiography.

Although other authors have presented some aspects of the correlation between cardiac
function and PWA, to our knowledge, our publication is the first to offer comprehensive insights
into how echocardiography relates to pulse wave measurements at the periphery. In addition, in
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Fig. 1. Agreement between photoplethysmography (PPG) and echocardiography (ECHO) in measuring

ejection time (ET) in milliseconds (ms) using Bland-Altman analysis.

Middle dashed line: mean difference (95.0), upper and lower dashed line are mean difference + 1.96 SD
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Fig. 2. Correlation between ejection times with the two methods.
Pearson’s correlation of LVET (ECHO) (ms) and ejection time (ms) measured by PPG (ET(PPG))
(r= 0.648; P < 0.001)
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athletic lifestyle and athletic capabilities of the subject, so these aspects are marked by this score.
AGEi - Value calculated from the fiducial points of the second derivative of the pulse wave.
AGEi = b-c-d-e/a, DNi - Describes the relative position of the diastolic peak to the dicrotic notch.
P < 0.05 for all parameters

this paper, we have presented the performance of a novel pulse wave analysis system with both
established and novel composite parameters and scores in healthy individuals. We identified
several PPG parameters that can be good candidates to support home monitoring of the
alterations of several aspects of cardiac function, such as ejection time, systolic, and diastolic
performance. Our findings offer a basis for future research to establish the utility of PPG analysis
in regular cardiology care and self-management for HF patients.

Despite extensive research, PPG-based PWA has not become common in clinical practice
due to issues like sensitivity to artifacts, varying algorithms, scientific debates over physiological
interpretations, and the complexity of pulsewave changes in the arterial tree [21]. However, the
growing interest in PPG technology, especially given its inclusion in over 1.1 billion wearables

Unauthenticated | Downloaded 09/18/25 09:24 AM UTC



12 Physiology International

130 -0.9 -
(o]
120 - ° -1.0 -
*
v 110 - 1.1 4
N~
@ ©
o 100 — 3 12
w
> 90 - 13-
[0
80 - 1.4 -
[ o
70 - -1.5 - °
[ I T I T T | 1 I T I I I I | 1
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
MV-A (cm/s) MV-A (cm/s)
540 ~ °
o
@ 240 - 520
E
u’\) 220 - 500 —
© =
Q
£ gJ 480 —
= 200 - 3
g 460 ~
O 180 -
440 -
[+]
160 - 420 -
I T T T T T T 1 [ T T T T T T 1
30 40 50 60 70 80 90 100 2 3 4 5 6 7 8 9
MV-A (cm/s) E/e' - lat

Fig. 4. Correlation plots between parameters describing diastolic function
PPG parameters with some of the strongest correlations with echocardiographic parameters indicative of
diastolic function. MV-A - Mitral A-wave velocity, E/e’-lat - Ratio of early diastolic mitral inflow velocity
to early diastolic mitral annulus velocity, eLVET2@75- ELVET2 is defined as the time duration from the
first peak of the first derivative PTG to the peak of the systolic wave, b/a - The ratio of the first two in-
flection points of the second derivative of the pulse wave, Crest Time@75 - The time elapsed between the
beginning of the period (foot) and the maximum systolic amplitude (peak), @75 - the original time value is
corrected to 75/min heart rate, LVETi - Left ventricular ejection time indexed for heart rate (LVETi) was
calculated from sex-specific resting regression equations. P < 0.05 for all parameters

[22], suggests its potential in health and disease monitoring might outweigh these limitations
[21], aided by advances in machine learning and big data analysis [23].

Furthermore, our results support that peripheral cardiovascular parameters may be valuable
in the assessment of central hemodynamics, which is consistent with previous studies investi-
gating this concept, even with different methods [7, 24, 25].
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Ejection time

The left ventricular ejection time (ET), a crucial parameter for evaluating left ventricular func-
tion, holds increasing clinical significance. It can independently predict all-cause mortality in
heart failure (HF) with reduced ejection fraction. Additionally, it proves useful as an indicator
for assessing the impact of various drugs in HF [26].

Despite echocardiography being the prevalent method for ET assessment, the easily acces-
sible PPG method offers broader availability and emerges as a potential alternative for esti-
mating ET [18]. Nevertheless, the performance of PPG in ejection time calculation is not firmly
established, partly due to the use of different algorithms across various devices. In our study, we
evaluated the performance of the SCN4ALL algorithm in ejection time calculation.

Our study showed that ET(ECHO) significantly correlated with several PPG parameters:
ET(PPG), Crest Time, eLVET1", eLVET2", DNj, in healthy subjects, which indicates that these
PPG parameters or a combination of them may be appropriate indices to estimate ET. Though
most probably the ET(PPG) has the highest clinical value among these, it is important to
highlight that it is not identical to ET(ECHO). We observed a significant, but moderate corre-
lation between them, but the absolute values were different. This is consistent with the results of
Obata and colleagues, who showed that peripherally recorded ejection time was significantly
increased compared to centrally measured values [27]. These results suggest that, although the
peripheral parameters alone do not allow an accurate clinical evaluation of central left ventric-
ular ET, they support the applicability of PPG in the assessment of ejection time.

The correlation of ET(ECHO) with DNI* - a novel parameter hypothesized to describe
ventriculo-arterial coupling and aortic distensibility - reveals a wider interconnectedness of
the hemodynamic elements beyond time-domain parameters.

Systolic function

Monitoring systolic function, especially in HF patients, is crucial in secondary and tertiary
prevention, therapy monitoring, and timely clinical decision making. Echocardiography is
considered the first-choice tool to assess systolic performance by evaluating global and
segmental myocardial contractility [28].

Left ventricular diameters and volumes. The anatomical measures of the left ventricle,
including end-diastolic and end-systolic diameters and volumes, are key indicators of cardiac
health [3].

In this study, LV-EDD showed the strongest correlation with AGEi and the proprietary
Heart Fitness Score, which may indicate that these PPG parameters can be peripheral candidates
to reflect changes in LV-EDD. A large study by Li et al. (N = 33,147) has confirmed the
predictive value of LV-EDD in the outcome of patients with coronary artery disease [29].
Moreover, the findings of this study might have further clinical relevance as there are significant
associations between LV-EDD and mortality from hypertrophic-, dilatative cardiomyopathy,
and heart failure [29].

Concerning LV-ESD, a remarkable association with AGEi was found. In a recent study by
Takada et al., it was found that LV-ESD is the strongest predictor in heart failure with reduced
ejection fraction (HFrEF) patients for non-improvement one year after hospital discharge.
Moreover, persistent HFrEF patients had significantly worse prognosis and outcomes [30].
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LV-ESD plays an important role in the determination of the severity of mitral and aortic
regurgitation and the necessity of surgery in those conditions [31]. Therefore, it is conceivable
that PPG monitoring of AGEi might have relevance in these conditions.

Volume parameters showed significant, but weaker (r/rtho<0,4) correlations with composite
PPG parameters, especially the CardioVascular Health Score and Heart Fitness Score (Results
found in Supplementary Tables 1 and 2). However, Ageing-index, d/a, and CrestTime@75 might
also be useful in the future in the differentiation of patients with altered LV anatomy and
function, as they also exhibited significant but weak correlations.

To our knowledge, no other publication has described a correlation between PPG-derived
features and ventricular volumes. However, a recent article by Kavas et al. demonstrated the
potential of using machine learning to classify PPG signals in differentiating HFpEF and HFrEF
from healthy measurements [23].

Stroke volume, ejection fraction and global longitudinal strain (GLS). Similar to LV-ESV and
LV-EDV, stroke volume (LV-SV) showed significant, but weaker correlation with several PPG
parameters, like Heart Fitness Score, followed by Cardiovascular Health Score and d/a
(Supplementary Tables 1 and 2). In clinical practice, LV-SV is often considered inferior to
ejection fraction (EF). However, it is mostly relevant in the assessment of valvular diseases
and HFpEF, independent of EF [32]. Interestingly, we observed an absence of significant cor-
relation between ejection fraction (EF) and parameters derived from the PPG. This reflects that a
peripheral signal like PPG is less likely to convey precise data about the volume ratio of blood
ejected from the left ventricle compared to the residual blood volume in the chamber. Instead,
PPG parameters are more indicative of the general efficiency of heart contractions and vascular
elasticity, which collectively contribute to either adequate or inadequate blood perfusion.

The importance of GLS is emerging, and in most cases, it is added to the assessment of EF to
get more comprehensive information on the ventricular function [32]. It has undergone exten-
sive evaluation and has been proven to offer additional prognostic insights into mortality rates
among patients with an LVEF greater than 35% [33]. It’s worth noting that early signs of left
myocardial dysfunction are observable in heart failure cases with HFpEF [34]. In such cases,
cardiac malfunction starts with compromised longitudinal strains, even if the EF remains stan-
dard for extended periods.

To our knowledge, this is the first study that compares ventricular strain with PPG-related
indices.

Our study’s findings highlight a significant correlation between the Dicrotic Notch Index and
GLS. This connection is particularly important given its attributes in the management of HFpEF
patients [34]. This discovery might open the door for using PPG-based PWA in monitoring and
preventing issues in HFpEF patients, pending further research validation.

Aortic root diameter, aortic-, and left ventricular outflow tract velocity time integral (Ao-VTI,
LVOT-VTI). Aortic root diameter is crucial for diagnosing and managing aortic diseases, and
guiding follow-up and surgery decisions [35]. The left ventricular outflow tract velocity time integral
(LVOT-VTI) is essential for assessing cardiac systolic function and output, predicting survival and
hospitalization in heart failure and coronary artery disease, and is reliable even in severe heart failure
[36]. The Aortic Velocity Time Integral (Ao VTT) estimates stroke volume and cardiac output, key in
evaluating heart function, especially in aortic valve disease and heart failure [37].
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DNi is a proprietary pulsewave parameter that was created when evaluating pulsewave
recordings of elderly subjects with severe atherosclerosis and found that the Stiffness index,
originally created to inform about aortic stiffness [5], was not sensitive enough. However, the
height ratio of the dicrotic notch to the diastolic peak might serve as a sensitive tool in the
differentiation between elderly individuals and younger subjects (unpublished data). We hy-
pothesize the DNi to be a surrogate marker of ventriculo-arterial coupling; however, further
studies are needed to confirm this hypothesis. Nonetheless, interestingly, DNi demonstrated a
significant correlation with static and dynamic parameters related to aortic functions, such as
aortic root diameter, Ao-VTI, LVOT-VTI, ejection time (besides GLS%) with a correlation
coefficient higher than 0.4, the second-highest correlation with Ao-root diameter (rho =
0.482) (the strongest correlation of DNi was found with ET(ECHO)). Further research is
required to confirm these initial findings and fully establish DNi as a reliable marker of ejection
function, aortic distensibility, and ventriculo-arterial coupling.

Diastolic function

Our study reveals significant correlations between PPG parameters, such as the eLVET2@75,
b/a, CrestTime@75, or Heart Fitness Score, and echocardiographic indicators of diastolic func-
tion. Additionally, LVETi (which in this study showed the strongest correlation with E/e’-lat.)
has been independently linked to diastolic dysfunction in prior research using other techniques
[16]. This comprehensive analysis of a wide range of PPG-derived parameters is unprecedented,
highlighting its possible utility in evaluating diastolic function.

This study found significant correlations between PPG parameters and MV-A, a param-
eter that measures late mitral velocity characterizing atrial contraction and its contribution
to ventricular filling. MV-A’s increase, which can be influenced by aging and impaired
ventricular relaxation, is linked to diastolic function and post-surgical recovery insights
[38, 39].

The E/e’-lat ratio, an echocardiography parameter, that estimates left ventricular filling
pressure and has diagnostic and prognostic value in heart failure (HF) and diastolic dysfunction.
Higher values suggest increased filling pressure and are linked to worse HF outcomes, influ-
encing treatment decisions [40]. In this study, LVETi (formerly published to possibly correlate
with diastolic function) presented significant and moderate correlation with E/e’-lat, whereas
Cardiovascular Health Score and d/a showed weaker, but still significant correlations indicating
PPG’s future potential in assessing cardiac diastolic function.

In heart failure (HF), diastolic dysfunction significantly affects symptoms, functionality, and
prognosis, making its assessment crucial, especially in systolic LV impairment [41]. Our study
suggests that photoplethysmography data could offer a non-invasive, accessible, and cost-effec-
tive way to be added to the existing tools to screen and follow-up patients with diastolic
dysfunction, aiding in identifying or monitoring asymptomatic HFpEF patients. Future research
aims to extend these findings across diverse HF patient groups, examining how diastolic
dysfunction parameters correlate with clinical outcomes and respond to treatments like SGLT2
inhibitors. This could help pinpoint high-risk individuals or those in early HF stages, potentially
benefiting from more intensive monitoring or treatment strategies.
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CONCLUSIONS

PPG-recorded pulse waves hold potential as an insightful source of information on cardiovas-
cular function and have been shown to exhibit altered characteristics in different CV diseases,
including heart failure. Its utility in cardiovascular monitoring of HF patients largely depends on
the extent to which PPG-derived parameters correspond with established measures of cardio-
vascular function, such as echocardiographic measurements. However, medical literature still
lacks sufficient studies on estimating cardiac function using peripheral signals. In this study, we
observed moderate correlations in the majority of cases between echocardiographic parame-
ters and PPG indices in healthy individuals that may have clinical relevance. These preliminary
findings support that PPG-based monitoring could be considered a complementary tool for CV
assessment. However, further research in HF patients is necessary to verify the observed re-
lationships between PPG and echocardiography parameters, in order to assess the potential
clinical relevance of PPG analysis in supporting patient care in HF.
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Evaluating photoplethysmography-based pulsewave parameters and composite scores

for assessment of cardiac function: A comparison with echocardiography
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Correlation of echocardiography parameters with PPG

LVET (ms) Ri
elLVET1 *

HR

LV-EDD (mm) SysAlpha
DNi * 0.348 | 0.035
elLVET2 * -0.331 | 0.045

LV-ESD (mm) SysAlpha 0.363 0.027
DNi * 0.341 | 0.039
eLVET2 * -0.366 | 0.026
Crest Time -0.37 0.024
@75

LV-EDV (ml) CV Health 0.383 0.021
Score *
d/a 0.334 0.046
AGEi -0.338 | 0.044
Crest Time -0.333 | 0.047
@75

LV-ESV (ml) CV Health 0.358 0.032
Score *



https://doi.org/10.1556/2060.2025.00675

Heart Fitness 0.369 0.027
Score *
LV-SV (ml) CV Health 0.387 | 0.020
Score *
d/a 0.356 | 0.033
AGEi -0.343 | 0.040
Crest Time -0.341 | 0.042
@75
Ao, root diam (mm) Si -0.36 0.029
AGEi -0.356 | 0.030
eLVET1 @75 * | -0.375 | 0.022
Crest Time -0.389 | 0.017
@75
Crest Time -0.356 | 0.030
Ao-vmax (m/s) AGEi -0.332 | 0.045
DNi * -0.389 | 0.017
eLVET2 @75 * | 0.352 | 0.033
Ao-gr (av) (Hgmm) DNi * -0.326 | 0.049
Ao-gr (peak) (Hgmm) DNi * -0.378 | 0.021
eLVET2 @75 * | 0.332 | 0.044
Ao-VTI (cm) eLVET2 0.335 | 0.046

Crest Time

MV-A (cm/s) ET(PPG) @75 | 0.464 |0.004 |0.272 0.109
AGEi 0.337 0.042 0.434 0.008
LVETi 0.362 0.028 0.279 0.100
Sys/Dias Time | 0.545 | <.001 0.258 0.129
HR 0.5 0.005 N/A N/A

MV-grad (av) (Hgmm) Heart Fitness -0.359 | 0.031 -0.248 0.151
Score *
b/a 0.366 | 0.028 0.332 0.051
Crest Time 0.369 0.027 0.344 0.043
@75
ET(PPG) @75 0.374 0.024 0.203 0.242
Sys/Dias Time | 0.485 | 0.003 0.273 0.113
HR 0.42 0.011

MV-E/A Sys/Dias Time | -0.37 0.024
HR -0.46 0.004

MV-E (cm/s) SysAlpha -0.329 | 0.047
DNi * -0.375 | 0.022
eLVET2 @75 * | 0.37 0.024
Crest Time 0.368 0.025
@75

e'-med (cm/s) eLVET1 * -0.365 | 0.026




ET(PPG) -0.345 | 0.036
E/e' - lat CV Health -0.398 | 0.015
Score *
d/a -0.382 | 0.020
SysAlpha -0.377 | 0.022
ET(PPG) @75 0.373 0.023
DT (ms) CV Health 0.392 | 0.016
Score *
b/a -0.365 | 0.026
LVETi -0.347 | 0.035
elLVET2 @75 * | -0.394 | 0.016
elLVET2 * -0.347 | 0.035
Crest Time -0.36 0.029
@75
ET(PPG) @75 -0.34 0.040

Supplementary Table 1. - Results of Pearson’s correlation: comparisons of echocardiographic
parameters and PPG parameters not included in Table 2. r: correlation coefficient; p= p value
(significance value <0.05) Given the correlation between heart rate measured by PPG and some
echocardiographic parameters, where applicable, partial correlation tests were performed as a
function of heart rate. *:proprietary SCN4ALL parameters



	Introduction 
	Materials and Methods 
	Subjects 
	Measurements with the SCN4ALL System 
	Protocols 
	Measurement Reliability of the Telemedicine System 
	Reliability of Human Pulse Wave Measurements at Standard Conditions 
	Parallel Measurement on Four Fingers 

	Data Analysis and Statistics 

	Results 
	Measurement Reliability of the Telemedicine System 
	Reliability of Human Pulse Wave Measurements at Standard Conditions 
	Parallel Measurements on Four Fingers 

	Discussion 
	Conclusions 
	References
	Introduction 
	Materials and Methods 
	Subjects 
	Measurements of HRV 
	Signal Recording 
	Protocol 

	Data Analysis 
	Bland–Altman Analysis 

	Results 
	Agreements between ECG-Based HRV and PPG-Based PRV Parameters 
	Agreements between PRV Calculations of the SCN4ALL and Kubios HRV Premium Algorithms 

	Discussion 
	Conclusions 
	References
	Evaluation of the Age Dependence of Conventional and Novel Photoplethysmography Parameters
	Abstract 
	Background 
	Results 
	Conclusions 

	1 Introduction
	2 Methods
	3 Results
	3.1 Pearson Correlation Analysis
	3.2 GAM Analysis

	4 Discussion
	5 Limitations of the study
	6 Conclusion
	Acknowledgements
	References

	Outline placeholder
	Evaluating photoplethysmography-based pulsewave parameters and composite scores for assessment of cardiac function: A compa ...
	Introduction
	Materials and methods
	Subjects
	Ethical Compliance
	Protocol
	Echocardiography
	PPG measurements
	Statistics, data analysis

	Results and discussion
	Results
	Results related to left ventricular ejection time (LVET)
	Agreement between PPG and echocardiographic ejection times

	Results related to cardiac systolic function
	Results related to cardiac diastolic function

	Discussion
	Ejection time
	Systolic function
	Left ventricular diameters and volumes
	Stroke volume, ejection fraction and global longitudinal strain (GLS)
	Aortic root diameter, aortic-, and left ventricular outflow tract velocity time integral (Ao-VTI, LVOT-VTI)

	Diastolic function

	Conclusions
	Supplementary data
	References


