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1. Introduction  

1.1. The problem and the opportunity 

Cardiovascular disease remains the leading global cause of death, responsible for nearly 

18 million deaths annually according to the World Health Organization1. (1)  

Advances in smart sensors, artificial intelligence, and the Internet of Things (IoT) offer 

new opportunities for primary and secondary prevention of cardiovascular (CV) 

morbidity and mortality. (2,3) As healthcare becomes more patient-centered, many 

aspects of care are shifting from hospitals to homes. (4)  

The COVID-19 pandemic significantly accelerated the adoption of telemedicine, which 

had been previously underutilized. Regulatory easing and reimbursement parity allowed 

rapid scale-up of virtual consultations. Current evidence suggests that telemedicine can 

offer care comparable to in-person visits, while reducing costs and improving 

convenience for both patients and providers.  (5) Further research is required to optimize 

patient selection, communication strategies, and access equity, and to prepare future 

healthcare professionals.  (6) 

Despite increased use, the quantity and quality of physiological data collected during 

telehealth remain limited. This gap is critical, as more than 1.2 billion people live with 

hypertension globally. (7) Better tools are needed for hemodynamic monitoring beyond 

traditional cuff-based blood pressure measurement, especially to enable timely and 

personalized treatment.  

As Viigimaa et al. note (8): 

“Hypertension is a multifactorial disease, but the hemodynamic component of BP (blood 

pressure) physiology includes factors that affect intravascular volume, cardiac inotropy 

and systemic vascular resistance. Usually, physicians do not have the possibility of 

evaluating the hemodynamic causes of the hypertension.”  

 

1 However, according to global estimated statistics, more than 70 million abortions are performed each 

year. (110) If we recognize the unborn as human lives, this represents the largest category of human death 

worldwide. 
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In addition to hypertensive patients, approximately 64 million individuals with heart 

failure (9) could benefit from improved home-based hemodynamic monitoring. Closer 

follow-up may reduce emergency hospitalizations and preserve quality of life.  (10)  

Between 2013 and 2015, a Hungarian research group - including the author - began 

investigating the physiological and clinical relevance of peripheral pulse wave analysis 

in the context of pregnancy-related cardiovascular complications. The work during this 

early research revealed both the depths of the relevant literature and the practical 

limitations of existing technologies. (Detailed introduction of these limitations are found 

in section 1.7. Challenges related to measurement accuracy, variability and clinical 

validation.) These findings motivated the development of a dedicated measurement 

platform, designed to support further research into the applicability of pulse wave analysis 

in health and disease. The present thesis introduces the results from the initial research 

needed to explore how the theory and practice of a dedicated peripheral pulse wave 

analysis approach can support future cardiovascular assessment and prevention. All of 

this work is guided by the main considerations of translational medicine. (11) 

1.2. Basics of pulse wave analysis 

1.2.1 Definition and basic concept 

The pulse wave is a biophysical phenomenon generated by the contraction of the heart, 

which produces a pressure wave in the blood that travels through the arterial system. 

(12,13) 

Specifically, the peripheral pulse wave originates from the left ventricular contraction and 

propagates through the arterial tree (from the elastic arteries through the muscular arteries 

and resistance arterioles), ultimately facilitating capillary blood flow. The cyclical 

changes in intravascular pressure cause the arterial walls to expand during systole and 

return to their original diameter during diastole. These dynamic changes can be assessed 

using various methodologies at peripheral sites, most commonly at the wrist or fingers. 

In this thesis, the focus will be on the peripheral pulse wave and systemic hemodynamics, 

with particular discussion on measurements recorded at the finger. By registering and 

analyzing the pulse wave, it is possible to monitor various cardiovascular functions in real 
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time. (14,15) To better understand its diagnostic potential, it is essential to explore how 

the pulse wave is generated and what key features define its morphology. 

1.2.2. The basic “anatomy” of pulse wave morphology  

After the left ventricle contracts, the created pulse wave travels along the arterial tree, 

propagating through elastic and muscular arteries at a velocity determined largely by 

arterial stiffness and blood pressure. As the pulse wave moves distally, it encounters 

changes in arterial geometry, such as bifurcations and sites of impedance mismatch - most 

notably at the level of the resistance vessels and lower limb arteries. At these points, part 

of the wave energy is reflected back toward the heart. This reflected wave then 

superimposes upon the ongoing forward wave generated by ventricular ejection.(16) 

Figure 1 presents a schematized pulse wave by its components. 

 

Figure 1 - Formation of the aortic pulse wave by the superimposition of the forward 

(ejection) and reflected pressure waves. (13,17) The pressure waveform observed in 

the aorta results from the interaction of these two components. The timing and amplitude 

of the reflected wave contribute to late systolic pressure augmentation. PP: pulse pressure 

Pr: pressure of the reflected wave, Pe: pressure of the ejection wave Adapted from: 

Mendes-Pinto et al. (18) Licensed under CC BY 4.0.(19) 
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The interaction of these two waveforms - the forward (incident) wave and the reflected 

wave - produces the final pressure waveform observed at any given arterial site. This 

process of wave interaction and the decreasing elastic content of peripheral arteries results 

in a phenomenon known as pressure augmentation, which refers to the elevation of late 

systolic pressure due to the timing and magnitude of the returning wave. (20)(Figure 2) 

 

Figure 2 - Pulse wave amplification or pressure augmentation. Amplification of 

systolic blood pressure along the arterial tree, resulting in higher peripheral than central 

systolic pressure. Example waveforms from a healthy adolescent demonstrate aortic (~85 

mmHg) and radial (~110 mmHg) systolic pressures, corresponding to a central systolic 

amplification of ~25 mmHg. Adapted from: Haseler et al.,2025. (21) Licensed under CC 

BY 4.0.  

 

The pulse contour as a whole - including the timing of the systolic peak, the depth and 

prominence of the dicrotic notch and the shape of the diastolic downslope - is not only 

reflecting the effects of the left ventricular ejection dynamics, but also the mechanical 

properties and function of the arterial system. (22) 

If we can understand the complex nature of the pulse wave, that will lead to appreciation 

of how a seemingly simple signal can withhold rich hemodynamic information. (23,24) 

1.2.3. Central vs. peripheral hemodynamics 

Understanding central hemodynamics - like central blood pressure, aortic wall stiffness 

or ventriculo-arterial coupling - is a key in cardiovascular risk stratification, since there 

is a stronger correlation between these and adverse CV outcomes, than peripheral 

measurements, like arm-cuff blood pressure measurement. (25,26) However, the 

measurement of central hemodynamics requires invasive arterial catheterization or 
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expensive tools, like MRI (27–29) or echocardiography which limits the wide 

accessibility of these important measures. 

In contrast, the peripheral pulse wave - accessed from the radial artery or fingertips with 

different technologies - is more accessible for non-invasive, regular monitoring. The 

differences and similarities between the central and peripheral pulse wave is demonstrated 

on Figure 3. 

 

Figure 3 - Differences between peripheral and central pulse wave morphology. 

© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP 

Publishing Ltd. From: Avolio AP, Butlin M, Walsh A. Arterial blood pressure 

measurement and pulse wave analysis-their role in enhancing cardiovascular assessment. 

Physiological Measurement. 2009. DOI: https://doi.org/10.1088/0967-3334/31/1/R01 

(30)  

While some methods reconstruct central waveforms via generalized transfer functions, 

these algorithms are fully dependent on the morphological and harmonic characteristics 

of the peripheral waveform - effectively transforming, not generating, new physiological 

information. (31,32) This underscores the fact that peripheral pulse waves inherently 

contain relevant hemodynamic information. Rather than relying on indirect modeling, a 

promising alternative is to extract clinically meaningful parameters directly from the 

peripheral signal itself. (33) If validated against gold-standard techniques, this approach 

could offer a practical, scalable solution for routine cardiovascular assessment, especially 

in remote or resource-limited settings. 

https://doi.org/10.1088/0967-3334/31/1/R01
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1.3. Pulse wave analysis (PWA), as a promising method for non-invasive cardiovascular 

monitoring. 

Current cardiology assessments include physical examination, auscultation, pulse 

palpation, electrocardiography, and echocardiography to evaluate heart function and 

anatomy. However, a key non-invasive bedside tool - pulse wave analysis - is notably 

absent from routine practice. While pulse palpation offers minimal peripheral insight, it 

falls short of leveraging the full diagnostic potential of pulse wave morphology. 

However, the peripheral pulse wave, as a summation signal holds information on various 

aspects of the cardiovascular system, for example: 

• the time of left ventricular ejection from the beginning of the cardiac cycle to the 

closure of the aortic valve ~ left ventricular (LV) function (34) 

• the time it takes for the left ventricle to reach the systolic peak from the beginning 

of the cardiac cycle ~ increasing with age (35) 

• steepness of the upstroke ~ determined partly by the inotropy of the LV (36) 

• the prominence of the second (diastolic) peak - aortic elasticity/distensibility (37) 

• the dime delay between the systolic and diastolic peak ~ large artery stiffness (38) 

• the relative height of the diastolic peak to the systolic peak ~ afterload (14) 

• the relative height of the b wave to the a wave on the second derivative of the 

pulse wave ~ hypothesized to be a surrogate for ventriculoarterial coupling (39) 

• central and peripheral arterial wall tension, complex effect on many parameters 

~ blood pressure (40) 

• heart rate and its regularity ~ arrhythmias (41) 

• autonomic nervous system function, cardiac neuropathy assessment through heart 

rate variability (42) 

Alterations of the pulse wave parameters, generated from the physiological relations 

summarized above, have been associated with cardiovascular pathologies such as arterial 

stiffness, atherosclerosis, hypertension, aging, diabetes, coronary heart disease, and heart 

failure.(43–51) 
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1.4. Basics of photoplethysmography 

Photoplethysmography (PPG) is a non-invasive optical technique used to detect 

peripheral arterial pulsations by measuring changes in light absorption within biological 

tissue. This method relies on the fact that pulsatile blood flow causes periodic changes in 

tissue volume, particularly in arteries and arterioles, which in turn modulate the 

absorption of emitted light. The resulting signal comprises two components: a direct 

current (DC) component reflecting the static absorption of tissue (bone, fascia, muscle, 

venous and capillary blood, fat, etc.) and a pulsatile alternating current (AC) component 

that corresponds to the dynamic volume changes of arterial blood (and the venous flow 

also plays a limited role in the AC part). The waveform of the AC component mirrors the 

pulse-induced fluctuations and forms the basis for further pulse wave analysis. (15,52) 

(Figure 4) 

  

Figure 4 - Illustration of photoplethysmography sensing technology - transmissive 

vs. reflective mode - (53,54) -as taken from the e-learning materials of E-Med4All 

Europe Ltd., with permission granted by the author. (19) Abbreviations: LED: light 

emitting diode, PD: photodiode, AC (alternating current) and DC (direct current) are 

widely used terms referring to the pulsatile and constant part of the 

photoplethysmographic signal, respectively. 

The PPG recording executed on the finger is called the Digital Volume Pulse (DVP). (45) 
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The photoplethysmographic (PPG) method for detecting the peripheral pulse waves offers 

numerous practical benefits, including: 

● It's non-invasive and safe 

● It causes no discomfort or risk to the patient 

● The measurement process is quick 

● It doesn't require specialized skills to operate 

● The method is repeatable 

For the best results in pulse wave detection using the PPG method, it's advisable to adhere 

to standardized conditions for measurement: 

● Conduct measurements at room temperature 

● Ensure the patient is in a resting position for at least 10 minutes before the 

measurement 

● Avoid any movement during the measurement 

● Consistently use the same finger for the device placement in repeated 

measurements 

1.5. Key parameters derived from pulse wave analysis 

By the various mathematical analysis methods of the pulse wave countless parameters 

and indices can be calculated. (14,15,54) 

These include morphological (pulse contour) and pulse rate variability (PRV) parameters, 

which jointly describe the current condition of cardiac, vascular and regulatory 

mechanisms. Morphological parameters are determined by mathematical analysis of the 

pulse curve, whereas PRV parameters are calculated by analyzing the variability of the 

time intervals between peaks (interbeat intervals). (55) This thesis will focus solely on 

pulse contour parameters. Their names and definitions with the corresponding references 

can be found in the Methods section. 
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1.6. Potential Fields of Pulse Wave Analysis Application 

Photoplethysmography (PPG)-based pulse wave analysis (PWA) is most widely used in 

research for the assessment of vascular aging but offers broader applicability across 

various medically relevant fields. Key application areas include: 

1) Vascular Age Assessment: PWA can be used to estimate vascular age by analyzing 

arterial stiffness and waveform morphology.  PPG parameters have shown 

correlations with cardiovascular risk and are used in both consumer and clinical 

devices. (15,46,56–58) However, it is important to note that some articles connecting 

chronological age with pulse wave features, defining “vascular age index” and similar 

parameters (59) are lacking the information on CVD risk profile, thus limited in the 

clinical decision making. Moreover, other confounders are affecting the pulse wave 

morphology and signal quality as subjects age, which have to be considered for a more 

appropriate estimation, e.g.: skin thickness, capillary recruitment. (60) 

2) Monitoring Lifestyle Interventions: Pulse wave parameters reflect improvements 

from lifestyle changes (e.g., exercise, diet, smoking cessation), providing measurable 

feedback on cardiovascular health. (37,61–64).  

3) Arterial Stiffness Estimation: Arterial stiffness, a strong predictor of cardiovascular 

events, can be evaluated using pulse wave features such as stiffness index. Some 

results suggest that PWA offers a potential non-invasive, operator-independent 

alternative to tonometry. (38) Conversely, PPG-derived arterial stiffness indices 

reflect peripheral pulse wave characteristics and are influenced by hemodynamic and 

measurement-related factors, therefore it is still debated if they can only be regarded 

as indirect markers of vascular function or reliable direct measures of central arterial 

stiffness. (65) 

4) Blood Pressure Monitoring: Cuffless estimation of blood pressure (BP) using PWA 

is under active development. Understanding hemodynamic contributors to BP (e.g., 

hypervolemia, hyperinotropy) from different pulse wave patterns may support 

personalized therapy. (8,40,66) However, PWA-based cuffless BP estimation remains 

limited by its strong dependence on calibration and by the multifactorial determinants 

of pulse wave morphology, which are influenced not only by arterial pressure but also 

by vascular tone, wave reflections, and peripheral vasomotion. Consequently, the 
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attribution of specific pulse wave patterns to distinct hemodynamic mechanisms and 

their direct translation into personalized therapeutic decisions remain uncertain. (66) 

5) Atherosclerosis and Peripheral Arterial Disease (PAD) Detection 

Asymmetric waveform alterations between limbs, detected via simple, non-invasive, 

operator independent PPG analysis, can support early PAD diagnosis in primary care. 

However, bilateral asymmetry-based PPG approaches are inherently less sensitive in 

cases of symmetrical or bilateral PAD, where inter-limb waveform differences may 

remain small despite clinically relevant disease. In such scenarios, reliance on 

asymmetry alone may underestimate disease presence, necessitating comparison 

against population-based normative ranges or complementary diagnostic methods. 

(67) 

6) Detection of Atrial Fibrillation (AFib) and Other Arrhythmias: PPG-derived 

pulse irregularities allow for detection of arrhythmias such as AFib or extrasystoles, 

which alter beat-to-beat waveform features (prominent morphological and heart rate 

variability alterations during irregular heartbeats). (68–70) However, AFib-related 

pulse irregularity detected by PPG reflects probabilistic peripheral pulse 

manifestations rather than direct atrial electrical activity, and pulse detection 

performance deteriorates during short RR intervals and recent-onset AFib episodes. 

(69) 

7) Heart Failure Monitoring: Heart failure is associated with characteristic changes in 

cardiac output, arterial compliance, and autonomic function - factors that have an 

impact on peripheral pulse wave morphology too. PPG-based pulse wave analysis 

captures these hemodynamic features and can support remote, longitudinal 

monitoring, especially where echocardiography is not readily accessible. (15) Recent 

pilot studies have demonstrated that PPG signals acquired from PPG based wearable 

devices can help detect heart failure and even correlate with pulmonary capillary 

wedge pressure - an important hemodynamic marker in heart failure. (71,72) 

However, current evidence is mainly derived from small pilot studies, and the 

association between peripheral PPG-derived waveform features and central 

hemodynamics is indirect and influenced by multiple confounders such as vascular 

tone, arterial stiffness, autonomic regulation, and local perfusion at the measurement 
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site. Observed correlations are moderate, context-dependent, and not specific to heart 

failure, underscoring the need for larger cross sectional and longitudinal validation 

studies. (71) 

8) Hemodynamic Monitoring in Pregnancy: PPG-PWA is also ideal for non-invasive 

tracking of maternal cardiovascular adaptation during pregnancy. Parameters such as 

reflection index or “pulse transit time” (which is rather ΔT between the systolic and 

diastolic peak of the pulse wave) change throughout gestation and may aid in early 

detection of complications like preeclampsia. (73,74) In preeclampsia, elevated PPG-

derived reflection and stiffness indices have been reported; however, these alterations 

overlap with physiological gestational ranges and show limited specificity for disease 

stratification, including dipper versus nondipper phenotypes. (75) Consequently, 

while PPG-PWA is well suited for longitudinal monitoring of maternal cardiovascular 

adaptation, its role in early screening of hypertensive pregnancy disorders requires 

further prospective validation. There is an ongoing pilot since 2019 in Hungary too, 

with the collaboration of the health visitors’ network. (76) 

1.7. Challenges related to measurement accuracy, variability and clinical validation. 

Undoubtedly, these scientifically well-established characteristics of PPG-based detection 

and analysis of DVP make this method a potential tool for remote cardiovascular 

monitoring. Incorporation of photoplethysmography-based analysis of the digital pulse 

wave in telemedical systems may be an optimal solution for cardiovascular telecare 

Despite this, it has not gained ground in clinical practice so far and its reliability is debated 

(37,77) One reason why the applicability of the method is debated that the parameters 

computed from DVP are sensitive to errors and cannot be detected reliably as they 

fluctuate from one measurement to another.(37,51,78,79) A key limiting factor might be 

the insufficient and often inconsistent physiological interpretation of PPG-derived 

parameters, resulting from heterogeneous methodologies, variable signal quality, and 

inadequate separation of technical and biological sources of variability. (60,80) This leads 

to the question: where does this variability come from? Is it from the dynamics of the 

ever-changing human cardiovascular function? Or does it come from technical errors? Or 

a combination of the two? This issue is particularly emphasized in the case of those 

parameters which are derived from the second derivative of the DVP. The acceleration 
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plethysmogram (other expression for the second derivative of the PPG wave) has several 

distinguished points from which valuable cardiovascular indices can be calculated (Figure 

5).  

 

Figure 5 - Representative pulse wave recording by the SCN4ALL system. Original 

pulse curve (panel A), and its first-, (panel B) and second derivative curves (panel C). 

Abbreviations: IBI: inter-beat-interval, x: relative height of the systolic peak, y: relative 

height of the diastolic peak, ΔT: time difference between systolic and diastolic peak (ms). 

a,b,c,d and e points: fiducial inflection points on the second derivative. Adapted and 

modified from Kulin et al. (51), licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app10227977 

Among these, c and d points (Figure 5) have been introduced as characteristics that may 

facilitate our understanding of the dynamics of wave reflection and the pulse wave 

analysis based evaluation of the severity of arterial aging. (45,81–85) However, the 

detection of these points has become a challenge for mathematical algorithms to identify. 

(86–88) 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app10227977
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Moreover, PPG-based PWA for patient monitoring faces a fundamental challenge: there 

is ongoing debate about whether the DVP reliably reflects central hemodynamics or is 

primarily influenced by peripheral factors. According to Miyashita et al. (89), local 

pressure wave reflection significantly determines the peripheral pressure waveform and 

pulse pressure amplification, suggesting that peripheral signals may not accurately 

represent central aortic pressures. In contrast, a later study published by the same author 

presented results of certain parameters - such as the second derivative of the digital 

photoplethysmogram (SDPTG) - can provide more reliable central hemodynamic 

information, suggesting that peripheral signals may still provide valuable insight into 

central cardiovascular status. (90) This uncertainty drives further research to determine 

whether DVP can - and if yes, under what conditions - reliably estimate central 

hemodynamic parameters or whether its primary benefit is limited to the assessment of 

peripheral vascular function. 

Currently, echocardiography is the standard, non-invasive method for assessing central 

hemodynamics, cardiac structure and function. Due to its widespread clinical use and 

known reliability, comparing echocardiographic measurements with the results of PPG-

based pulse wave analysis (PWA) offers a pragmatic approach to further investigate the 

clinical potential of PPG based hemodynamic data. However, despite the potential value 

of PPG-based PWA for assessing cardiovascular information, there are relatively few 

studies in the literature that directly compare these methods. Another limitation of these 

few studies that they often focus on only a limited number of PPG-echo parameter pairs. 

There are some studies, however, which focused on the correlation between peripheral 

and central hemodynamics by specifically assessing the associations between PPG and 

echocardiography-based parameters. A short overview of these publications is found in 

Table 1. 

It is important to note that these comparative studies typically focused on a narrow range 

of parameters, mainly cardiac output or ejection time, without exploring a more 

comprehensive spectrum of pulse wave characteristics that can be extracted from 

peripheral PPG signals. In addition, differences in measurement conditions, patient 

populations and signal processing methods in the referenced studies may have contributed 

to the conflicting results. 



18 

Therefore, further studies in this field might reveal new information, as mapping a wider 

range of pulse wave parameters and their relationship with markers of central 

hemodynamics could lead to a better understanding of which fields of (cardiovascular) 

medicine can benefit the most from PPG based pulse wave readings or regular 

monitoring. 

 

 

Table 1 - Summary of studies comparing photoplethysmography-derived and 

echocardiographic measurements of cardiac function in different research settings 

Study PPG Method Reference 

Standard 

Population Main Findings 

Chen et 

al. (91) 

Volume-

clamp 

(Nexfin) 

Esophageal 

Doppler 

Surgical 

patients 

Strong correlation (r² = 

0.82), 94% trending 

concordance, robust under 

phenylephrine-induced 

changes  
Duan et 

al.(92) 

Peripheral 

PPG 

Echocardiography, 

M-mode & 

Doppler 

Healthy 

volunteers 

PPG LVET longer (348 ms) 

and more variable (SD 11 

ms);  

less accurate than Doppler 

(309 ms, SD 9 ms)  
Meah 

et al. 

(93) 

Modelflow® 

via finger 

PPG 

Echocardiography Non-

pregnant, 

pregnant, 

and 

postpartum 

women 

Poor agreement at rest and 

exercise (mean bias >1 

L/min); not recommended 

for CO assessment in 

women  

Blanié 

et al. 

(94) 

Volume-

clamp 

Echocardiography/ 

Doppler 

Surgical 

patients 

Weaker correlation with 

cardiac output; PPG less 

reliable for absolute values  
Kavas 

et al. 

(95) 

Peripheral 

PPG + HRV 

feature 

Echocardiography 

(LVEF-based 

diagnosis) 

Healthy + 

HF patients 

(HFrEF, 

HFpEF) 

ML model classified HF 

states with 87.8% accuracy 

using PPG+HRV; strong 

potential for non-invasive 

screening 
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2. Objectives  

To address the limitations detailed in the last chapter of “Introduction - 1.7.”, a dedicated 

high-resolution PPG-based research system was developed to enable standardized data 

acquisition and systematic physiological investigation of peripheral pulse wave features. 

In parallel, clarifying the relationship between peripheral pulse wave characteristics and 

central cardiovascular function represents a critical prerequisite for future hypothesis-

driven clinical research. 

Study 1 - Physiological stability and variability of PPG-based peripheral pulse wave 

parameters 

This study aimed to characterize the short-term physiological stability and sources of 

variability of non-invasively derived peripheral hemodynamic parameters based on PPG 

pulse wave analysis, by separating measurement-related variability from true 

physiological variation under controlled conditions. 

Specifically, the objectives were: 

• To quantify the technical contribution to variability in PPG-derived pulse wave 

parameters using artificially generated pulse wave signals under identical 

measurement settings, in order to distinguish device- and algorithm-related effects 

from physiological behavior 

• To assess short-term intra-subject physiological variability of selected PPG-

derived hemodynamic parameters in healthy volunteers during repeated 

measurements under strictly standardized conditions 

• To compare intra-subject variability with inter-subject variability across 

individuals measured under identical protocols, thereby identifying parameters 

that primarily reflect individual physiological differences 

• To evaluate the influence of anatomical measurement site on pulse wave 

morphology and derived parameters, using simultaneous recordings from four 

different fingers (left/right index and ring fingers) 
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Study 2 - Relationship between peripheral pulse wave features and central cardiac 

function 

The second study examined how specific morphological and timing-related features of 

the peripheral pulse wave relate to central cardiac structure and function, as assessed by 

echocardiography in healthy individuals. 

The objectives were: 

• To investigate the association between PPG-derived timing parameters and 

echocardiographic measures of left ventricular ejection time (LVET) 

• To explore whether distinct pulse wave morphological features correspond to 

echocardiographic indicators of systolic and diastolic cardiac function 

• To identify PPG-derived parameters that demonstrate the closest physiological 

alignment with established echocardiographic measures, without implying direct 

clinical interchangeability 
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3. Methods 

3.1. Overview and technical description of the SCN4ALL system  

To answer the research questions detailed in “Objectives”, a dedicated PPG-based pulse 

wave analysis system was developed with the participation of the author. The 

development of the SCN4ALL platform was initiated in 2016 to address methodological 

limitations of existing tools for peripheral pulse wave research and analysis, particularly 

the restricted access to raw signals and limited standardization of data acquisition. (See 

details in “Introduction - 1.7. Challenges related to measurement accuracy, variability and 

clinical validation.”) 

In each investigational protocol, pulse wave was recorded as digital volume pulse (DVP) 

detected by a commercially available transmission pulse oximeter (Berry Pulse Oximeter, 

Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China; hardware: 32-bit AD 

converter, 200 Hz sampling rate). The device emits light to the tissues of the finger from 

an LED light source and detects the transmitted light by a photodiode. Vessel diameter 

and blood volume in the arteries change with pulsation, and so does the amount of 

transmitted light due to the changes in the amount of blood cells present in the way of it, 

enabling the detection of a continuous DVP. The pulse oximeter device communicates 

via Bluetooth connection with a mobile application that initiates and terminates a 140-

second-long data acquisition and transmits the recording to a cloud-based automated 

algorithm that was developed by our research group. (51) (Figure 6) 
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Figure 6 - Outline of the SCN4ALL telemedicine system. Adapted from Kulin et al. (51), 

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), 

https://doi.org/10.3390/app10227977 

During the course of the research, two closely related but not identical signal-processing 

implementations were applied. In the first study, the 200 Hz PPG signal was resampled 

to a higher temporal resolution (1 kHz) as part of an early signal-processing 

implementation prior to morphology-based analysis. In subsequent studies (including 

Study 2), using the upgraded SCN4ALL system, signal processing was performed directly 

at the native 200 Hz sampling rate without resampling. Subsequent preprocessing steps 

were applied consistently across both implementations. 

To minimize edge effects related to signal stabilization and preprocessing, only a 120-

second segment of the recorded 140-second PPG signal was selected for further analysis, 

with the initial 15 seconds and the final 5 seconds excluded. To condition the PPG signal, 

a digital bandpass filter - fourth-order Butterworth - with -3 dB points at 0.1 and 10 Hz is 

applied. Then, the algorithm identifies the pulse cycles. Afterward, within each cycle, 

fiducial points of the DVP (primary curve, first and second derivatives) are identified. 

Then, contour parameters are computed for every individual cycle. Afterward, the means 

of all cycles are calculated and displayed on an internet platform for the physician. In this 

study, these averages were exported as spreadsheets for further analysis. The 

measurement data are stored at a cloud-based server (Amazon Web Services, Amazon 

Web Services EMEA SARL, 1855 Luxembourg, Luxemburg) equipped with safe data 

protection that conforms to the applicable regulations ((EU) 2016/679). (51) 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app10227977
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3.2. Protocol - Study 1 - Repeatability and reliability 

3.2.1. Assessment of Measurement Variability 

To evaluate the variability caused by measurement errors in the SCN4ALL system 

(including DVP recording, data processing, and analysis), we used artificial signals 

generated by a pulse simulator device (MS100 SpO2 Simulator, Contec Medical Systems 

Co., Ltd., Qinhuangdao, China). We performed 5 repeated measurements for each of the 

three signal settings - Normal (SpO2: 98%, HR: 55/min), Abnormal 1 ("geriatric" - 

SpO2: 92%, HR: 95/min), and Abnormal 2 ("weak" - SpO2: 90%, HR: 95/min) - using 

5 different pulse oximeters of the same model. 

3.2.2. Intrapersonal Variability at Standard Conditions 

To determine the physiological variability remaining after standardizing conditions, we 

conducted 10 repeated 2-minute measurements on 10 healthy individuals (5 males, 5 

females; age 19-35, mean age: 25.3 ± 4.3 years) under standardized conditions. 

Measurements took place in a quiet room at room temperature, in the morning, at least 

two hours after the last meal and coffee, in a sitting position with hands resting on a table. 

The left index finger was used for all measurements. 

3.2.3. Anatomical Variability: Parallel Finger Measurements 

To assess the effect of anatomical differences between fingers, we performed parallel 2-

minute measurements on 4 fingers (left and right index and ring fingers) using 4 pulse 

oximeters. The study included 25 healthy subjects (17 males, 8 females; age 19-49, mean 

age: 29.4 ± 8.4 years). 

3.3. Protocol - Study 2 - Central vs peripheral hemodynamics - comparison with cardiac 

ultrasound measurements 

In this study, we employed temporally aligned recordings to capture and compare data 

from photoplethysmography (PPG) and echocardiography under comparable resting 

conditions. PPG parameters were calculated by averaging measurements from each 

heartbeat during continuous recordings over a 140-second period. Concurrently, 

echocardiographic parameters were derived by averaging the data from 1-3 heartbeats, in 
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line with standard clinical echocardiographic practice. The echocardiographic 

examination lasted approximately 20 minutes, and the 2-minute PPG recording was 

performed during the examination under stable resting conditions. 

3.3.1. Echocardiography 

Standard two-dimensional transthoracic echocardiography was performed in accordance 

with current EACVI recommendations. (96) Blood pressure (BP) was measured three 

times using an automatic sphygmomanometer before conducting a cardiac ultrasound 

scan. During the scan, the participant lay on the examination bed with the upper body 

undressed, positioned on the left side. 2D echocardiography examinations were 

performed with a GE Vivid E95 system with a 4Vc-D phased-array transducer (GE 

Vingmed Ultrasound, Horten, Norway). LV focused, ECG-gated datasets were obtained 

from parasternal long and short axis, apical four-chamber, apical three-chamber and 

apical two-chamber views at a minimum rate of 50 frames per second. Offline analyses 

of these datasets were performed after selecting the optimal heart cycle using 

commercially available software (Autostrain LV, TOMTEC Imaging Systems GmbH, 

Unterschleissheim, Germany). The algorithm automatically generated the endocardial 

contours of the cavities, which were manually corrected throughout the entire cardiac 

cycle. Speckle tracking technique was used for the deformation analysis. The assessed 

echocardiography parameters can be found in Table 2. 
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Table 2 - List of echocardiographic parameters with abbreviations and definitions. 

Abbreviation Definition 

EF (%) 

LVET (ms) 

Ejection fraction 

Left ventricular ejection time 

LV-EDD (mm) Left ventricular end-diastolic diameter 

LV-ESD (mm) Left ventricular end-systolic diameter 

LV-SV (ml) Left ventricular stroke volume 

LV-GLS (%) Global longitudinal strain 

LVOT-VTI (cm) Left ventricular outflow tract velocity time integral 

MV-E (cm/s) Mitral E-wave velocity 

MV-A (cm/s) Mitral A-wave velocity 

MV-E/A The ratio between E-wave and A-wave 

E/e' - lat 
Early diastolic mitral inflow velocity to early diastolic mitral 

annulus velocity 

e'-med (cm/s) Mitral medial annulus velocity 

Ao, root diam (mm) Aortic root diameter 

Ao-VTI (cm) Aortic maximum flow velocity time integral 

3.3.2. PPG measurements 

During the cardiac ultrasound, a pulse waveform was recorded for 140 seconds using a 

special pulse oximeter on the patient's right index finger, with a 200 Hz sampling 

frequency (Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China). The patient lay 

on their side, staying still. The oximeter, wirelessly connected to the SCN4ALL mobile 

app (E-Med4All Europe Ltd, Budapest, Hungary), sent the anonymized data in real time 

to a secure online database. The SCN4ALL software analyzed the signals, its proprietary 

algorithm identifies points of interest on the pulse wave from which it calculates over 30 

morphological and pulse rate variability parameters online as described above. The 

SCN4ALL parameters assessed in both studies are found in Table 4.  

3.4. Subjects  

Number of participants with specific inclusion and exclusion criteria, study location and 

ethical approval number (IRB) of the studies are summarized in Table 3. 
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Table 3 - Overview of participants with inclusion and exclusion criteria in Study 1 and 2. 

 Study 1 Study 2 

Participants (n) 25 37 

Inclusion • Age 18 and older, both 

biological sexes 

• BMI between 18.5 and 

30 kg/m^2 

• Age: 18-60, both biological 

sexes 

• Normal BMI (18 - 25 

kg/m^2) 

 

• Healthy individuals (physically and mentally, self-declaration) 

• Does not smoke 

• Does not consume alcohol regularly 

Exclusion • Diagnosed with or treated for any CV disease 

• Pregnancy 

• Known other chronic or cancerous diseases 

• Wears nail polish or artificial nails 

• SARS-CoV-2 infection in the last 6 months (only in Study 2) 

IRB approval No. 120/2018 120/2018-3 

Location of study 

execution 

Institute of Translational 

Medicine, Semmelweis 

University, Budapest 

Városmajor Heart and Vascular 

Centre, Semmelweis University, 

Budapest 

3.5. SCN4ALL Parameters assessed by Study 1 and Study 2 

The following set of parameters (Table 4) is only a collection of the many possible options 

published in the medical literature. Moreover, with the years of use and testing, our 

working group has developed and defined some new PPG parameters as it was 

hypothetized that they point to some dedicated, however currently overlooked aspects of 

the cardiovascular function.  
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Table 4 - List of PPG parameters, with abbreviations and definitions. Legend: * These 

parameters are developed by the scientific team behind the SCN4ALL system. Most of 

them are not yet validated in clinical studies, their definition and meaning are hypotheses 

based on the current understanding of pulse wave physiology.   
(s): In Study 2 The findings for these parameters are presented in the supplementary 

materials, due to their correlation with echocardiography parameters being lower than 

0.4. (Supplementary Table 1). “@75” after some PPG indices: the original time value is 

corrected to 75/min heart rate (31) 

Abbreviations/

Parameter 

names 

PPG parameter definition Study 

1 or 2 

or 

1+2 

Interbeat 

interval 

(ms)(55) 

The average of all the measured peak-to-peak time 

differences of the 120 sec. registered signal. 

1 

c-d incidence 

(c-d point 

detection 

ratio)* 

The proportion of periods in which the algorithm identifies 

c-d points on the second derivative of the PPG (SDPTG, or 

accelerated plethysmogram (APG)) relative to all periods. 

(Figure 1 from Study 1 (51)) 

1 

HR Mean Heart Rate The mean value of the heart beats per 

minute (1/min). The algorithm calculates a heart rate from 

the length of each period of the 120-second signal and 

averages them. 

1+2 

Si (38) Stiffness index:  h/ΔT(m/s); h is the height of the person in 

meters. ΔT is the time between the systolic peak and 

diastolic peak on the pulse curve in seconds. 

1+2(s) 

b/a (46) The ratio of the first two inflection points of the second 

derivative of the pulse wave. 

1+2 

d/a (43) The ratio of the fourth to the first inflection points of the 

second derivative of the pulse wave. 

1+2 

AGEi (46) Ageing-index The value derived from the second 

derivative of the pulse wave. AGEi= b-c-d-e/a 

1+2 

Ri (14) Reflection index The ratio of the amplitude of the diastolic 

peak to the amplitude of the systolic peak. 

1+2(s) 

LVETi (44) Left ventricular ejection time indexed for heart rate 

(LVETi) was calculated from sex-specific resting 

regression equations LVETi(male) = 1,7 × heart rate + 

ET(PPG), LVETi(female) = 1,6 × heart rate + ET(PPG). 

1+2 

DNi * Dicrotic notch index * Describes the relative position of 

the diastolic peak to the dicrotic notch (the valley induced 

by the aortic valve closure before the diastolic peak). 

2 
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Abbreviations/

Parameter 

names 

PPG parameter definition 

(Table 4 - cont.) 

Study 

1 or 2 

or 

1+2 

eLVET1 * Early left ventricular ejection time 1 and Early left 

ventricular ejection time 2 ELVET1 is measured from the 

start of the period to the first peak of the first derivative of 

the pulse, whereas  ELVET2 is defined as the time duration 

from the first peak of the first derivative PTG to the peak 

of the systolic wave. 

@75 - ELVET1,2 compensated for 75/min heart rate 

2 

eLVET2 * 2 

eLVET1 @75 

*, (s) 

2(s) 

eLVET2 @75 * 2 

Crest Time (37) Crest Time - The time elapsed between the beginning of 

the period (foot) and the maximum systolic amplitude 

(peak) 

@75 - Crest time compensated for 75/min heart rate 

(37) 

2 

Crest Time 

@75 

2 

ET(PPG) (14) PPG based Left ventricular ejection time 

It is the time elapsed between the beginning of the pulse 

period and the aortic valve closure (dicrotic notch/e-point). 

@75 - ET compensated for 75/min heart rate (37) 

2 

ET(PPG) 

@75(s) 

2(s) 

3.6. Statistical Analysis - Study 1 

Cycles with irregular duration or atypical morphology were automatically excluded by 

the algorithm (<5% in all cases). For each parameter, the average of all valid pulse cycles 

from the 2-minute recordings was used for analysis. Descriptive statistics were reported 

as means with 95% confidence intervals. To evaluate variability, the coefficient of 

variation (CV) was calculated for both artificial signal recordings (as a measure of 

repeatability) and repeated human measurements taken under standardized conditions 

(test-retest variability). Threshold of 2% was set for acceptable repeatability and 10% was 

set for test-retest variability. For the four-finger protocol, we calculated intraclass 

correlation coefficients (ICC) using a linear mixed-effects model to determine how 

closely measurements from different fingers agreed and how much of the overall 

variability came from differences between individuals. All statistical analyses were 

performed using IBM SPSS Statistics, version 26.  
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3.7. Statistical Analysis - Study 2 

To examine how well PPG- and echocardiography-derived ejection times matched, 

Bland-Altman analysis was used to calculate the bias and the 95% limits of agreement. 

Ratios and percent differences were also used to evaluate relative agreement. Correlation 

analyses were performed to assess the strength of association between PPG- and 

echocardiography-derived parameters in JASP (JASP Version 0.19.3; JASP Team, 2025), 

using Pearson or Spearman methods based on the normality of variables (tested with the 

Shapiro-Wilk test). Scatter plots were used to visualize associations between variables; 

fitted linear trend lines were displayed for descriptive purposes only and do not represent 

regression models. Significant associations (p < 0.05, r (Pearson)/ρ (Spearman) > 0.4) are 

reported in the main text, while additional and heart rate-adjusted correlations are found 

in Supplementary Tables 1 and 2 in Kulin et al. (97) 

  



30 

4. Results  

4.1. Results - Study 1 

Results indicated that the system reliably detected and analyzed normal pulse signals, 

with coefficient of variation (CV) values below 1% for all calculated variables, indicating 

high stability. Even in the abnormal signal conditions (high heart rate and low intensity), 

the majority of parameters remained stable, except for the aging index and d/a parameter, 

due to the absence of detectable c and d points in the second derivative. (Table 5) 

To assess the reliability and stability of human pulse wave measurements, we performed 

10 repeated resting measurements in 10 healthy volunteers (M/F: 5/5) under standardized 

conditions. The mean age was 25.3 ± 4.5 SD years, and the mean BMI was 22.3 ± 2.9 SD 

kg/m². Several parameters, including the b/a ratio, left ventricular ejection time index, 

mean interbeat interval, stiffness index, and mean heart rate, showed CV values below 

10%, indicating reliable consistency. However, the aging index demonstrated slightly 

higher variability (CV: 13.6%), and the d/a and c-d point detection ratios showed high 

variability despite unchanged conditions. (Figure 7.) 

To investigate anatomical variability, we conducted parallel measurements on four 

different fingers in 25 individuals, aged 19-49 years. The mean age of the participants 

was 29.4 ± 8.6 SD years, and the mean BMI was 23.7 ± 4.0 SD kg/m². For most 

parameters, there was no significant difference between fingers. ICC values exceeded 

99% for mean interbeat interval, mean heart rate, and left ventricular ejection time index, 

suggesting that finger choice had virtually no impact on these measures. Other parameters 

- such as stiffness index, c-d point detection ratio, reflection index, b/a ratio, d/a ratio, and 

aging index - had slightly lower ICCs (80-90%), but still indicated that anatomical 

variability was small compared with differences between individuals. (Table 6) 
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Figure 7 - Graphs demonstrating the relationship between interpersonal variability 

and intrapersonal variations of the computed pulse contour parameters. 

Measurements were performed on 10 healthy volunteers 10 times repeatedly under 

standardized conditions. Means (±confidence intervals) are presented (red solid line) for 

each consecutive measurement along with individual measurement data (black lines). 

Adapted and modified from Kulin et al. (51), licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app10227977

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app10227977
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Table 5 - Results of repeatability measurements. Means (confidence intervals - CI) and coefficients of variation (CV) of pulse contour 

variables measured by the SCN4All telemedicine system. Repeatability was assessed using artificially generated pulse signals recorded with 

a pulse oximeter simulator under three settings (Normal, Abnormal 1, Abnormal 2). For each setting, five repeated measurements were 

performed with one pulse oximeter (n=5), and extended to four additional devices of the same release (n=25, 5x5 measurements). Adapted 

from Kulin et al. (51), licensed under CC BY 4.0, https://doi.org/10.3390/app10227977 

 

 Normal Abnormal 1 Abnormal 2 

 n=5 n=25 n=5 n=25 n=5 n=25 

Variables Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) 

Aging 

index 

1.13(1.12-

1.14) 
0.41 

1.14(1.13-

1.14) 
0.57 

3.37(2.29-

4.45) 
27.1 

3.12(2.79-

3.46) 
26.1 

3.71(2.81-

4.60) 
20.4 3.84(3.69-4) 9.9 

b/a 1.78(1.78-

1.79) 
0.26 

1.79(1.78-

1.79) 
0.32 

1.59(1.59-

1.59) 
0.29 

1.59(1.59-

1.60) 
0.32 

1.60(1.59-

1.60) 
0.36 

1.60(1.56-

1.59) 
0.33 

c-d point 

detection 

ratio (%) 

100(100-100) 0 100(100-100) 0 
0.60(0.08-

1.28) 
95.9 

0.44(0.23-

0.65) 
116 2(0.48-3.52) 64.3 

2.70(2.25-

3.19) 
42.2 

d/a 0.75(0.74-

0.75) 
0.77 

0.75(0.75-

0.75) 
0.37 

0.48(0.06-

1.01) 
95.9 

0.35(0.18-

0.52) 
116 

0.64(0.20-

1.09) 
58.7 

0.71(0.63-

0.79) 
26.9 

- Table 5 continues next page - 

https://doi.org/10.3390/app10227977
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Table 5 - cont. 

 Normal Abnormal 1 Abnormal 2 

 n=5 n=25 n=5 n=25 n=5 n=25 

Variables Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) Mean(CI) CV(%) 

Left 

ventricular 

ejection time 

index (ms) 

552(552-554) 0.22 553(552-553) 0.27 462 (461-462) 0.06 462(462-462) 0.05 462(462-463) 0.06 462(462-463) 0.07 

Heart rate 

(1/min) 
55(55-55) 0 55(55-55) 0 95(95-95) 0 95(95-95) 0 95(95-95) 0 95(95-95) 0 

Interbeat 

interval  

(ms) 

1089(1089-

1089) 
0 

1089(1088-

1090) 
0.21 631(631-631) 0 631(631-631) 0.19 630(630-631) 0.07 631(631-632) 0.18 

Reflection 

index (%) 
35.5(35.5-35.6) 0.13 35.5(35.5-35.6) 0.11 

32.7(32.7-

32.8) 
0.12 

32.7(32.7-

32.8) 
0.13 32.8(32.6-32.9) 0.35 

32.8(32.7-

32.8) 
0.42 

Stiffness 

index (m/s) 
4.62(4.62-4.63) 0.10 4.62(4.62-4.63) 0.26 

7.34(7.34-

7.34) 
0 

7.34 (7.33-

7.34) 
0.18 

7.34 (7.33-

7.36) 
0.16 

7.34(7.33-

7.35) 
0.34 
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Table 6 - Results of measurements performed in parallel on 4 separate fingers on 25 healthy individuals. The results of the 25 

subjects were averaged for each finger separately and are presented in the table with bracketed confidence intervals (CIs). Intraclass 

coefficients (ICC) were calculated to assess the correlation of results within the same individuals. Adapted and modified from Kulin et al. 

(51), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), https://doi.org/10.3390/app10227977  
Left index finger Left ring finger Right index finger Right ring finger ICC 

 
n=25 n=25 n=25 n=25 

 

Pulse contour variables Mean(CI) Mean(CI) Mean(CI) Mean(CI) 
 

Aging index -1.29(- 1.46; -1.13) -1.30(-1.47; -1.13) -1.34(-1.15; -1.12) -1.47(-1.17; -1.25) 0.81 

b/a -1.21(-1.26; -1.15) -1.22(-1.29; -1.16) -1.25(-1.31; -1.20) -1.24(-1.30; -1.17) 0.83 

c-d point detection ratio (%) 33.8(25.3; 42.4) 31.3(23.1; 39.5) 31.9(22.9; 40.8) 32.3(23.9; 40.78) 0.90 

d/a -0.15(-0.24; -0.06) -0.16(-0.26; -0.07) -0.17(-0.29; -0.06) -0.10(-0.21; -0.01) 0.82 

Left ventricular ejection time 

index (ms) 
148(56; 240) 148(57; 240) 147(56; 238) 147(56; 237) >0.99 

Heart rate (1/min) 70.6(67.1; 74.2) 71.0(67.5; 74.2) 70.9(67.4; 74.4) 71.0(67.4; 74.5) >0.99 

Interbeat interval (ms) 862(817; 906) 862(818; 908) 862(816; 907) 861(817; 907) >0.99 

Reflection index (%) 62.2(59.2; 65.1) 60.8(57; 64.6) 61.5(58.4; 64.5) 61.3(57.6; 65.0) 0.81 

Stiffness index (ms) 7.74(7.37; 8.10) 7.71(7.32; 8.10) 7.58(7.20; 7.97) 7.59(7.13; 8.05) 0.90 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app10227977
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4.2. Results - Study 2 

The results of a total of 37 healthy volunteers aged 20-57 years were used in the data 

analysis.  (M/F: 16/21; mean age: 36.9 ± 11.4 SD years, BMI mean: 22.4± 2.3 SD, 

Systolic brachial BP: 115± 12 SD mmHg, Diastolic brachial BP: 64 ±  9 SD mmHg). 

The results of the correlation tests are shown in Table 7.  

Table 7 - Results of Pearson’s and Spearman’s correlations: comparisons of 

echocardiographic parameters and PPG parameters. r: Pearson’s correlation 

coefficient; ρ(rho):Spearman’s correlation coefficient, p= p-value (significance value 

<0.05) Given the correlation between heart rate measured by PPG and some 

echocardiographic parameters, where applicable, partial correlation tests were performed 

as a function of heart rate. *: SCN4ALL parameters. List of abbreviations found in Table 

2 and Table 4. 

 

Correlation of echocardiography parameters with PPG (Pearson) 

Echocardiography: 

Ejection time 

PPG 

parameters 

Pearson’s 

correlations 

Pearson’s Partial 

correlations condition 

on HR 

r p r p 

LVET  (ms) ET(PPG) 0.648 < .001 0.555 < .001 

Crest Time 0.567 < .001 0.371 0.026 

DNi * -0.496 0.002 -0.479 0.003 

HR -0.538 < .001 N/A N/A 

 Table continues next page  
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Correlation of echocardiography parameters with PPG (Pearson)(cont.) 

Echocardiography: 

systolic function 

PPG 

parameters 

Pearson’s 

correlations 

Pearson’s Partial 

correlations condition 

on HR 

r p r p 

LV-EDD (mm) AGEi -0.51 0.001 N/A N/A 

d/a 0.47 0.003 N/A N/A 

b/a -0.41 0.013 N/A N/A 

LV-ESD (mm) AGEi -0.52 0.001 N/A N/A 

d/a 0.45 0.005 N/A N/A 

b/a -0.42 0.01 N/A N/A 

LV-GLS (%) DNi * 0.5 0.001 N/A N/A 

LVOT-VTI (cm) DNi  * -0.4 0.015 N/A N/A 

Ao-VTI (cm) DNi  * -0.44 0.007 N/A N/A 

Echocardiography: 

diastolic function 

PPG 

parameters 

Pearson’s 

correlations 

Pearson’s Partial 

correlations condition 

on HR 

r p r p 

MV-A (cm/s) b/a 0.52 < .001 0.51 0.001 

HR 0.5 0.005 N/A N/A 

MV-E (cm/s) AGEi 0.4 0.014 N/A N/A 

e'-med (cm/s) Crest Time -0.41 0.012 N/A N/A 

 Table continues next page  
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Correlation of echocardiography parameters with PPG (Spearman)(cont.) 

Echocardiography: 

Ejection time 

PPG parameter Spearman’s 

correlations 

Spearman’s Partial 

correlations 

condition on HR 

 ρ p ρ p 

LVET (ms) eLVET2 * 0.496 0.002 0.404 0.015 

Echocardiography: 

systolic function 

PPG parameters Spearman’s 

correlations 

Spearman’s Partial 

correlations 

condition on HR 

ρ p ρ p 

LV-EDD (mm) Crest Time @75 -0.472 0.003 N/A N/A 

eLVET2 @75 * -0.436 0.007 N/A N/A 

LV-ESD (mm) eLVET2 @75 * -0.409 0.012 N/A N/A 

Ao, root diam (mm) DNi * 0.482 0.003 N/A N/A 

Echocardiography:

diastolic function 

PPG parameters Spearman’s 

correlations 

Spearman’s Partial 

correlations 

condition on HR 

ρ p ρ p 

MV-A (cm/s) eLVET2 @75 * 0.572 < .001 NA NA 

Crest Time @75 0.517 0.001 NA NA 

HR 0.5 0.005 N/A N/A 

MV-E/A HR -0.451 0.005 N/A N/A 

E/e' - lat LVETi 0.423 0.009 N/A N/A 

 End of Table 7 
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4.2.1. Results related to left ventricular ejection time (LVET) 

Bland-Altman analysis showed a mean difference of 95.0 ms between echocardiography 

and PPG measurements of cardiac ejection time. The limits of agreement ranged from 

54.0 ms to 136.0 ms, with most differences falling within this range and no evident 

proportional bias. ( Figure 8) 

 
Figure 8 - Agreement between photoplethysmography (PPG) and echocardiography 

(ECHO) in measuring ejection time (ET) in milliseconds (ms) using Bland-Altman 

analysis. Middle dashed line: mean difference (95.0 ms), upper and lower dashed line are 

mean difference +/- 1.96 SD (standard deviation)(136.0 ms and 54.0 ms), respectively. 

Adapted and modified from Kulin et al. (97), licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/), 

https://doi.org/10.1556/2060.2025.00675 

LVET (ms) measured by cardiac ultrasound showed a moderate-to-strong correlation 

with ejection time measured by PPG (ET(PPG)) (r= 0.648; p<0.001). (Figure 9) 

https://creativecommons.org/licenses/by/4.0/
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Figure 9- Association between ejection times measured by echocardiography and PPG. 

Scatter plot illustrating the association between left ventricular ejection time (LVET, ms) 

measured by cardiac ultrasound and ejection time derived from photoplethysmography 

(ET(PPG), ms). The strength of association was quantified using Pearson’s correlation 

analysis (see Methods). The fitted linear line is displayed for visualization purposes only 

and does not represent a regression model. Adapted and modified from Kulin et al. (97), 

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), 

https://doi.org/10.1556/2060.2025.00675 

We also found correlations with other parameters related to systolic time, such as Crest 

Time (r=0.567; p<0.001); and the early left ventricular ejection time 1 (eLVET1 *) 

(r=0.478; p=0.003) and 2 (eLVET2 *) (r=0.472; p=0.003). 

LVET correlated with the Dicrotic notch index (DNi*), too. (r=-0.496; p=0.002). 

Given the correlation between heart rate measured by PPG and echocardiographic LVET 

(r=-0.538; p<0.001), we conducted partial correlation tests conditioned on heart rate. The 

correlation persisted for the parameters ET(PPG), Crest Time, eLVET2*, DNi*, 

suggesting an independent relationship with heart rate. However, the correlation 

disappeared for the parameters eLVET1*, indicating that the strong association was 

driven by the relationship with heart rate in this case. (Parameters that lost significance 

after heart rate adjustment are shown in Supplementary Table 1 in Kulin et al.) (97) 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1556/2060.2025.00675
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4.2.2. Results related to cardiac systolic function 

Several PPG parameters were significantly correlated with echocardiographic parameters 

which are routinely used in monitoring of systolic function and have known prognostic 

values. The parameters with the best correlation are shown in Figure 10 and Table 7. 

 

Figure 10- Scatter plots illustrating associations between parameters describing 

systolic function. LV-EDD - left ventricular (LV) end-diastolic diameter, LV-ESD - LV 

end-systolic diameter, LV-GLS - LV global longitudinal strain. AGEi - value calculated 

from fiducial points of the second derivative of the pulse wave (SDPPG), defined as AGEi 

= (b - c - d - e)/a; d/a represents the amplitude ratio of the fourth inflection point (“d”) to 

the first inflection point (“a”) of the SDPPG. DNi - parameter describing the relative 

position of the diastolic peak with respect to the dicrotic notch. Associations were 

quantified using correlation analysis (see Methods); fitted linear trend lines are shown for 

visualization purposes only. p < 0.05 for all parameters. Adapted and modified from Kulin 

et al. (97), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), 

https://doi.org/10.1556/2060.2025.00675 

https://creativecommons.org/licenses/by/4.0/
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4.2.3. Results related to cardiac diastolic function 

We observed the most significant correlations with indicators of atrial contraction (MV-

A) and left ventricular filling pressure (E/e’ lat). Given that some parameter pairs 

exhibited correlations with heart rate, we further analyzed these relationships using partial 

correlation to account for heart rate variability. Table 7 and Figure 11 showcases these 

significant correlations.  

 

Figure 11- Scatter plots illustrating associations between parameters describing 

diastolic function. PPG-derived parameters showing some of the strongest associations 

with echocardiographic indices of diastolic function. MV-A - mitral A-wave velocity; 

E/e′-lat - ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus 

velocity; eLVET2@75* - eLVET2 is defined as the time interval from the first peak of 

the first derivative of the PPG signal to the peak of the systolic wave; b/a - ratio of the 

first two inflection points of the second derivative of the pulse wave; Crest Time@75 - 

time elapsed between waveform onset (foot) and maximum systolic amplitude (peak). 

The @75 notation indicates correction of the original time values to a heart rate of 75 

beats/min. LVETi - left ventricular ejection time indexed for heart rate, calculated using 

sex-specific resting regression equations. Associations were quantified using correlation 

analysis (see Methods); fitted linear trend lines are shown for visualization purposes only. 

p < 0.05 for all parameters. Adapted and modified from Kulin et al. (97), licensed under 

CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), 

https://doi.org/10.1556/2060.2025.00675

https://creativecommons.org/licenses/by/4.0/
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5. Discussion  

The systematic investigation of peripheral pulse wave analysis represents a structured 

contribution to translational cardiovascular science. Despite decades of research on the 

shape and features of the pulse wave, the physiological interpretation of many peripheral 

pulse wave-derived parameters and their relationship to central cardiovascular function 

remain incomplete, and this area therefore remains underutilized in clinical care. 

(37,51,60,78,79)  

The present work was driven by the recognition that, although peripheral 

photoplethysmographic signals are easily accessible and rich in physiological 

information, limitations in the physiological characterization, stability, and 

interpretability of derived parameters, in addition to the availability of validated systems 

and comprehensive methodological evaluations, have constrained their medical 

application. (80) 

To advance the field, our team has developed a custom high-resolution PPG-based 

measurement system as a research tool, tailored for systematic pulse wave recording and 

analysis. The development was embedded in the framework of translational medicine, 

aiming to bridge experimental pulse wave analysis with physiologically interpretable 

cardiovascular phenomena. (11) 

5.1. Physiological stability and variability of PPG-based peripheral pulse wave 

parameters 

In Study 1, first the system's measurement repeatability using artificial signals and human 

test-retest variability were evaluated. The system demonstrated high repeatability for 

most parameters (CV < 2%) when detecting normal pulse signals. However, detecting 

SDPPG ‘c’ and ‘d’ points in abnormal signals proved less reliable, affecting derived 

parameters such as the Aging-index and d/a ratio.  

Human test-retest measurements revealed that core parameters like b/a, left ventricular 

ejection time index, mean interbeat interval, stiffness index, and mean heart rate remained 

consistent under standard conditions (CV < 10%). However, the aging index and d/a ratio 

showed higher variability, indicating that these parameters should only be interpreted 

when c-d point detection is reliable. The issue of the absence of c-d points and the 
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limitations of parameters calculated using them have been addressed in numerous 

previous publications searching for methods how to detect these points (79,85,98), as they 

hypothesized to represent the onset and offset of the reflected wave.(84) 

Anatomical variability analysis showed minimal differences between measurements 

performed on different fingers, with intraclass correlation coefficients exceeding 80% for 

most parameters. These findings suggest that the contribution of finger-related anatomical 

variability to the total observed variance is small. Importantly, the high ICC values imply 

that most of the variability in the assessed pulse wave parameters originates from true 

interindividual differences rather than from intrapersonal variability associated with 

measurement location. Nevertheless, to maximize comparability - particularly in 

longitudinal or repeated-measurement settings - it remains advisable to consistently 

perform measurements on the same finger to minimize even minor sources of inter-finger 

variability. 

5.2. Comparison with gold-standard: correlation of peripheral pulse wave features with 

central cardiac function 

In study 2 we aimed to examine the relationship between echocardiographic and 

photoplethysmographic (PPG) pulse wave-derived parameters in healthy individuals. 

While previously published results revealed limited aspects of this relationship (Table 1), 

our analysis provides a more comprehensive evaluation, including both established and 

novel PPG parameters. The results contribute to the emerging body of evidence 

supporting the potential role of pulse wave analysis by either PPG (15,90,99) or other 

methods in non-invasive cardiac monitoring. (100) 

5.2.1. Ejection time 

Left ventricular ejection time is a clinically relevant parameter in heart failure 

management and pharmacological response assessment. (101) Our findings show a 

significant, though moderate, correlation between ET measured by echocardiography and 

several PPG-derived indices (ET(PPG), Crest Time, eLVET2*, DNi). These findings are 

in line with earlier studies reporting systematic differences between central and peripheral 

ET measurements. (102) While not interchangeable, these parameters may still support 
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longitudinal monitoring, especially given the magnitude higher availability of PPG 

devices, compared to echocardiography. 1.1 billion wearable devices were used globally 

in 2022, from which at least half of them are wristbands and smartwatches with PPG 

capabilities. (103) Besides the correlation of the time domain parameters, the significant 

correlation of DNi with ejection time supports our initial hypothesis that it captures 

information related to ventricular function, potentially reflecting aspects of ventriculo-

arterial coupling.  

5.2.2. Systolic function 

Systolic Function and Left Ventricular Dimensions 

Left ventricular end-diastolic and end-systolic diameters are well-established markers of 

systolic function and overall cardiac performance. (104) In our study, the strongest 

correlation between a PPG-derived parameter and a structural echocardiographic measure 

was observed between LV-EDD and the Ageing Index (AGEi) and d/a - a suggested 

proxy for afterload by Takazawa et. al and Nichols et al. (46,105)  AGEi also showed 

moderate association with LV-ESD, highlighting its potential as a surrogate PPG 

indicator of LV anatomy and function. The clinical relevance of these findings is that both 

LV-EDD and LV-ESD are independently associated with prognosis in coronary artery 

disease, dilated and hypertrophic cardiomyopathies, and heart failure. (106) Although 

correlation strength remained moderate, requiring further studies, the consistency of 

AGEi’s relationship with both diameters supports the hypothesis that peripheral 

waveform characteristics may reflect ventricular geometry.  

Stroke Volume, Ejection Fraction, and Global Longitudinal Strain (GLS) 

Stroke volume showed weak but significant correlations with several PPG parameters, 

particularly with AGEi and d/a ratio. (Results are presented in the Supplementary Table 

1. and 2. in published paper of Study 2. (97)) While ejection fraction (EF) did not show a 

significant correlation with any PPG parameter, this is not surprising given that EF is a 

volume ratio not directly captured by peripheral signals. Instead, the local signal of PPG 

is likely reflecting systemic hemodynamic performance providing information on the 

effectivity of cardiovascular function at the tissue level, rather than estimating absolute 
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chamber volume measures and ratios. It is also important to underline that the results 

reveal a significant correlation between GLS and the Dicrotic Notch Index (DNi), 

suggesting that further studies should target DNi, as it may offer insights into subtle 

myocardial dysfunction, particularly in HFpEF, where EF remains preserved despite 

declining contractility. This represents the first reported association between PPG 

morphology and ventricular strain, highlighting a new direction for non-invasive systolic 

function assessment in early-stage heart failure - upon further validation studies. 

Aortic Parameters 

Both static and dynamic aortic measures demonstrated moderate and weak, but significant 

correlations with PPG parameters, mainly with DNi. Specifically, DNi correlated 

significantly with aortic root diameter (rho = 0.482), Ao-VTI, and LVOT-VTI, in addition 

to ejection time and GLS. These relationships further support our initial hypothesis that 

DNi may capture elements of aortic distensibility, ejection dynamics and ventriculo-

arterial coupling. These findings support its potential role in broader cardiovascular 

assessment; however further validation is needed in various CV patient groups. 

5.2.3. Diastolic function 

The results revealed further significant correlations between several PPG parameters 

(eLVET2@75, b/a, CrestTime@75) and established echocardiographic markers of 

diastolic function. Significant, but moderate associations were found with MV-A, a 

parameter influenced by atrial contraction and ventricular relaxation (107,108), which 

suggest PPG’s potential to reflect diastolic dynamics. LVETi, a time-domain parameter 

showed the strongest correlation with E/e’-lat, a well-known surrogate of left ventricular 

filling pressure, supporting prior research on its relevance in diastolic dysfunction 

assessment. (109)  

While EF often remains normal in heart failure with preserved ejection fraction (HFpEF), 

rising E/e’-lat and MV-A values - which exhibited the highest correlations with PPG 

parameters - indicate impaired diastolic filling and increased pressure. These findings 

suggest that PPG-derived features may complement existing tools in evaluating diastolic 

function or might be useful features in the future for home monitoring between 

ambulatory visits. 
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Given the prognostic significance of diastolic dysfunction in heart failure, especially in 

the context of preserved systolic function, these results of PPG derived parameters may 

offer a future method to support screening and monitoring - particularly for asymptomatic 

HFpEF patients. However, it is emphasized that further studies should validate these 

associations in broader clinical populations and explore other interesting fields. For 

example: How PPG-based parameters respond even to treatment strategies such as the 

increasingly used SGLT2 inhibitors? 
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6. Conclusions  

This dissertation aims to summarize the findings of two initial trials about a non-

invasively recorded set of peripheral hemodynamic parameters to explore their 

physiological behavior, stability and relationship with echocardiographic measures, with 

the long-term aim of evaluating their potential as biomarkers of cardiovascular status. 

These findings are just the beginning of a long research project to demonstrate sufficient 

evidence of whether these markers are appropriate or not for clinical decision-making. 

Even though there was a need for the creation of a custom-built PPG analysis system due 

to the limitations of the available devices, the main aim of the works presented above is 

to better understand how these characteristics behave in healthy volunteers. 

6.1. The key findings from Study 1 and Study 2 

Study 1 - Physiological stability and variability of PPG-based peripheral pulse wave 

parameters 

• The custom-built system demonstrated excellent repeatability under controlled 

conditions: measurement variability remained below 2% across devices when 

recording artificial pulse signals with proper signal quality. 

• A novel contribution was the introduction of the “c-d point detection ratio” as a 

quality control metric to assess the trustworthiness of second-derivative-based 

parameters. This parameter supports the selective interpretation of features like 

the Aging-index and d/a ratio. Their use should be limited to measurements with 

sufficient c-d point detection ratios. 

• Key pulse wave parameters - including b/a, stiffness index, left ventricular 

ejection time index, and mean interbeat interval - showed low intrapersonal 

variability (CV < 10%) in short-term repeated measurements on healthy subjects, 

identifying the most robust parameters from the aspect of hemodynamic stability, 

under standardized conditions. 

• Parallel measurements on four different fingers showed strong within-subject 

agreement, with intraclass correlation coefficients exceeding 0.80 for all 
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investigated pulse wave parameters, indicating that finger-related anatomical 

variability contributes only minimally to overall pulse wave variability. For 

longitudinal or repeated measurements, it is therefore recommended to 

consistently perform follow-up recordings on the same finger to minimize even 

minor inter-finger differences. 

• The consistently high intraclass correlation coefficients further indicate that the 

majority of observed variability originates from true interindividual differences 

rather than short-term intraindividual fluctuations related to measurement 

location. 

Study 2 - Relationship between peripheral pulse wave features and central cardiac 

function 

Study 2 examined the physiological relationship between peripheral pulse wave features 

derived from PPG recordings and central cardiovascular function, as characterized by 

echocardiographic measures. The analysis focused on whether specific time-domain 

pulse wave characteristics are associated with measures of left ventricular systolic and 

diastolic function, aortic properties, and cardiac morphology. Moderate but consistent 

associations were identified between selected PPG-derived parameters and 

echocardiographic indices, supporting the physiological relevance of peripheral pulse 

wave morphology. 

• PPG-derived ejection time showed a moderate-to-strong association with 

echocardiographic left ventricular ejection time (r = 0.648, p < 0.001), with a 

systematic mean offset of +95 ms relative to echocardiography, indicating that 

peripheral timing-based pulse wave features reflect central systolic timing under 

standardized measurement conditions. 

• Both newly defined parameters such as eLVET2 @ 75 and established PPG-

derived metrics including the Aging index and b/a demonstrated moderate and 

significant associations with echocardiographic measures of chamber dimensions, 

diastolic filling pressure, and atrial contraction, consistent with peripheral pulse 

wave morphology being sensitive to variations in central cardiac structure and 

filling dynamics 
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• The Dicrotic Notch Index (DNi) showed consistent moderate associations with 

aortic root diameter, LVOT-VTI, and global longitudinal strain, indicating a 

potential sensitivity to properties related to aortic mechanics and ventriculo-

arterial interaction. 

6.2. Future outlook 

Upon the publication of further PPG related research, future potential of the method is 

the paradigm shift: from the occasional medical measurements to daily or continuous data 

recording. There is high chance that trend analysis of daily measurements and insights 

from Big Data and pattern evaluation will overcome the known limitations of the 

peripheral pulse wave analysis on the long run - especially as this is a more affordable 

technology than the current expensive medical systems to assess hemodynamics, leading 

to a more reachable and inclusive healthcare even for the low socioeconomic areas and 

remote places of Earth. 

Ongoing studies and collaborative projects using the SCN4ALL system are underway in 

multiple clinics and academic centers across Europe - including Hungary, Greece, and 

the Netherlands - to gather further data and determine which medical settings and patient 

groups may benefit most from the regular use of this approach. 
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7. Summary 

Photoplethysmography (PPG)-based pulse contour analysis provides a non-invasive 

approach for studying peripheral hemodynamics and pulse wave morphology. 

This thesis investigated the physiological behavior, stability, and interpretability of 

selected digital arterial volume pulse (DVP) parameters derived from peripheral PPG 

recordings, using a custom-built high-resolution research system (SCN4ALL). 

Study 1 assessed the technical and short-term physiological stability of PPG-derived 

pulse wave parameters under standardized conditions. Artificial signal testing 

demonstrated excellent repeatability (CV < 1%), indicating minimal device- and 

algorithm-related measurement error. In human test-retest measurements, key parameters 

- including stiffness index, reflection index, left ventricular ejection time index, mean 

interbeat interval, and b/a - showed low intrapersonal variability (CV < 10%), supporting 

their robustness in healthy subjects. Second-derivative-based parameters were more 

variable due to limited c-d point detectability; therefore, a c-d point detection ratio was 

introduced as a quality control metric. Parallel finger recordings showed strong within-

subject agreement (ICC > 0.80), indicating that most variability reflects interindividual 

differences rather than measurement location effects. 

Study 2 investigated how PPG-based parameters reflect central cardiac function by 

comparing them with echocardiographic measurements in 37 healthy subjects. PPG-

derived ejection time showed highest correlation with echocardiographic values (r = 

0.648, p < 0.001), despite a consistent overestimation (+95 ms). Twelve additional PPG 

features showed moderate and significant correlations - both previously published PPG 

parameters and markers defined by our research group - (r > 0.4, p < 0.05) with key 

echocardiographic indices, including left ventricular dimensions, stroke volume, global 

longitudinal strain, aortic root diameter, ventricular filling pressure (E/e’ lat), and atrial 

contraction (MV-A). 

Overall, the results contribute to a more detailed physiological interpretation of peripheral 

pulse wave morphology and highlight which PPG-derived parameters provide stable and 

interpretable information under standardized conditions in healthy individuals. These 

findings establish a physiological basis for future hypothesis-driven studies investigating 

specific cardiovascular conditions and well-defined clinical questions.  



51 

8. References  

1. World Health Organization. Cardiovascular diseases [Internet]. [cited 2023 Aug 

14]. Available from: https://www.who.int/health-topics/cardiovascular-

diseases#tab=tab_1  

2. Ciccarelli M, Giallauria F, Carrizzo A, Visco V, Silverio A, Cesaro A, Calabrò P, 

De Luca N, Mancusi C, Masarone D, Pacileo G, Tourkmani N, Vigorito C, 

Vecchione C. Artificial intelligence in cardiovascular prevention: New ways will 

open new doors. J Cardiovasc Med. 2023; 24 :E106–15. 

doi:10.2459/JCM.0000000000001431 

3. Chen SF, Loguercio S, Chen KY, Lee SE, Park JB, Liu S, Sadaei HJ, Torkamani 

A. Artificial Intelligence for Risk Assessment on Primary Prevention of Coronary 

Artery Disease. Curr Cardiovasc Risk Rep. 2023; 17 :215–31. 

doi:10.1007/s12170-023-00731-4 

4. Meskó B, Drobni Z, Bényei É, Gergely B, Győrffy Z. Digital health is a cultural 

transformation of traditional healthcare. mHealth. 2017; 3 :38. 

doi:10.21037/mhealth.2017.08.07 

5. Ezeamii VC, Okobi OE, Wambai-Sani H, Perera GS, Zaynieva S, Okonkwo CC, 

Ohaiba MM, William-Enemali PC, Obodo OR, Obiefuna NG. Revolutionizing 

Healthcare: How Telemedicine Is Improving Patient Outcomes and Expanding 

Access to Care. Cureus. 2024 Jul; 16(7) :e63881. doi:10.7759/cureus.63881 

6. Shaver J. The State of Telehealth Before and After the COVID-19 Pandemic. Prim 

Care. 2022 Dec; 49(4) :517–30. doi:10.1016/j.pop.2022.04.002 

7. World Health Organization. Hypertension [Internet]. 2023 [cited 2025 May 5]. 

Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension  

8. Viigimaa M, Talvik A, Wojciechowska W, Kawecka-Jaszcz K, Toft I, Stergiou 

GS, Nasothimiou EG, Kotsis V, Agabiti Rosei E, Salvetti M, Dorobantu M, 

Martell-Claros N, Abad-Cardiel M, Hernández-Hernández R, Doménech M, Coca 

A. Identification of the hemodynamic modulators and hemodynamic status in 

uncontrolled hypertensive patients. Blood Press. 2013; 22(6) :362–70. 

doi:10.3109/08037051.2013.782900 

9. Shahim B, Kapelios CJ, Savarese G, Lund LH. Global Public Health Burden of 

Heart Failure: An Updated Review. Card Fail Rev. 2023; 9 :e11. 



52 

doi:10.15420/cfr.2023.05 

10. Saugel B, Hoppe P, Nicklas JY, Kouz K, Körner A, Hempel JC, Vos JJ, Schön G, 

Scheeren TWL. Continuous noninvasive pulse wave analysis using finger cuff 

technologies for arterial blood pressure and cardiac output monitoring in 

perioperative and intensive care medicine: a systematic review and meta-analysis. 

Br J Anaesth. 2020; 125(1) :25–37. doi:10.1016/j.bja.2020.03.013 

11. Cohrs RJ, Martin T, Ghahramani P, Bidaut L, Higgins PJ, Shahzad A. 

Translational medicine definition by the European society for translational 

medicine. New Horizons Transl Med. 2015; 2(3) :86–8. 

doi:10.1016/j.nhtm.2014.12.002 

12. Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. 

Modeling arterial pulse waves in healthy aging: a database for in silico  evaluation 

of hemodynamics and pulse wave indexes. Am J Physiol Heart Circ Physiol. 2019 

Nov; 317(5) :H1062–85. doi:10.1152/ajpheart.00218.2019 

13. Alastruey J, Parker KH, Sherwin SJ. Arterial pulse wave haemodynamics. In: 

Anderson S, editor. BHR Group - 11th International Conferences on Pressure 

Surges. Lisbon, Portugal: BHR Group; 2012 Sep 13 p. 401–42.  

14. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol 

Rev [Internet]. 2012 Feb [cited 2016 Oct 31]; 8(1) :14–25. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/22845812 

doi:10.2174/157340312801215782 

15. Charlton PH, Paliakaitė B, Pilt K, Bachler M, Zanelli S, Kulin D, Allen J, Hallab 

M, Bianchini E, Mayer CC, Terentes-Printzios D, Dittrich V, Hametner B, 

Veerasingam D, Žikić D, Marozas V. Assessing hemodynamics from the 

photoplethysmogram to gain insights into vascular age: a review from 

VascAgeNet. Am J Physiol Circ Physiol [Internet]. 2022 Apr 1 [cited 2022 Jan 

18]; 322(4) :H493–522. Available from: 

https://journals.physiology.org/doi/abs/10.1152/ajpheart.00392.2021 

doi:10.1152/ajpheart.00392.2021 

16. Nichols WW, Denardo SJ, Wilkinson IB, McEniery CM, Cockcroft J, O’Rourke 

MF. Effects of arterial stiffness, pulse wave velocity, and wave reflections on the 

central aortic pressure waveform. J Clin Hypertens. 2008; 10(4) :295–303. 



53 

doi:10.1111/j.1751-7176.2008.04746.x 

17. Parker KH, Jones CJH. Forward and Backward Running Waves in the Arteries: 

Analysis Using the Method of Characteristics. J Biomech Eng [Internet]. 1990; 

112(3) :322. Available from: 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=13984

16 doi:10.1115/1.2891191 

18. Mendes-Pinto D, Rodrigues-Machado M da G. Applications of arterial stiffness 

markers in peripheral arterial disease. J Vasc Bras. 2019; 18 :e20180093. 

doi:10.1590/1677-5449.009318 

19. E-Med4All Europe Kft. HeartReader Training Manual. Budapest: E-Med4All 

Europe Kft.; 2020.  

20. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, 

Wang JG, Wilkinson IB, Williams B, Vlachopoulos C. Central blood pressure 

measurements and antihypertensive therapy: A consensus document. 

Hypertension. 2007; 50(1) :154–60. 

doi:10.1161/HYPERTENSIONAHA.107.090068 

21. Haseler E, Sinha MD. Precision approaches to paediatric hypertension: linking 

pathophysiology to therapy. Pediatr Nephrol [Internet]. 2025; (0123456789). 

Available from: https://doi.org/10.1007/s00467-025-07100-w 

doi:10.1007/s00467-025-07100-w 

22. O’Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol 

[Internet]. 2001 Jun [cited 2019 Aug 13]; 51(6) :507–22. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/11422010 doi:10.1046/j.0306-

5251.2001.01400.x 

23. Nelson MR, Stepanek J, Cevette M, Covalciuc M, Hurst RT, Tajik AJ. 

Noninvasive measurement of central vascular pressures with arterial tonometry: 

Clinical revival of the pulse pressure waveform? Mayo Clin Proc. 2010; 85(5) 

:460–72. doi:10.4065/mcp.2009.0336 

24. Alastruey J, Charlton PH, Bikia V, Paliakaite B, Hametner B, Bruno RM, Mulder 

MP, Vennin S, Piskin S, Khir AW, Guala A, Mayer CC, Mynard J, Hughes AD, 

Segers P, Westerhof BE. Arterial pulse wave modeling and analysis for vascular-

age studies: a review from  VascAgeNet. Am J Physiol Heart Circ Physiol. 2023 



54 

Jul; 325(1) :H1–29. doi:10.1152/ajpheart.00705.2022 

25. Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, Yin FCP, 

Chou P, Chen CH. Central or peripheral systolic or pulse pressure: which best 

relates to target organs and future mortality? J Hypertens [Internet]. 2009 Mar 

[cited 2019 Aug 12]; 27(3) :461–7. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/19330899 

doi:10.1097/hjh.0b013e3283220ea4 

26. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, Hughes 

AD, Thurston H, O’Rourke M. Differential impact of blood pressure-lowering 

drugs on central aortic pressure and clinical outcomes: Principal results of the 

Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006; 113(9) 

:1213–25. doi:10.1161/CIRCULATIONAHA.105.595496 

27. Crowe LA, Genecand L, Hachulla AL, Noble S, Beghetti M, Vallée JP, Lador F. 

Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging 

and Thermodilution in Pulmonary Hypertension. J Clin Med. 2022; 11(10) :1–13. 

doi:10.3390/jcm11102717 

28. Gabbert DD, Kheradvar A, Jerosch-Herold M, Oechtering TH, Uebing AS, 

Kramer HH, Voges I, Rickers C. MRI-based comprehensive analysis of vascular 

anatomy and hemodynamics. Cardiovasc Diagn Ther. 2021; 11(6) :1367–78. 

doi:10.21037/cdt-20-767 

29. Bianchini E, Lønnebakken MT, Wohlfahrt P, Piskin S, Terentes-Printzios D, 

Alastruey J, Guala A. Magnetic Resonance Imaging and Computed Tomography 

for the Noninvasive Assessment of Arterial Aging: A Review by the VascAgeNet 

COST Action. J Am Heart Assoc. 2023; 12(10) :1–15. 

doi:10.1161/JAHA.122.027414 

30. Avolio AP, Butlin M, Walsh A. Arterial blood pressure measurement and pulse 

wave analysis-their role in enhancing cardiovascular assessment. Vol. 31, 

Physiological Measurement. 2009. doi:10.1088/0967-3334/31/1/R01 

31. Gallagher D, Adji A, O’Rourke MF. Validation of the transfer function technique 

for generating central from peripheral upper limb pressure waveform. Am J 

Hypertens. 2004; 17(11) :1059–67. doi:10.1016/j.amjhyper.2004.05.027 

32. Gao M, Rose WC, Fetics B, Kass DA, Chen CH, Mukkamala R. A Simple 



55 

Adaptive Transfer Function for Deriving the Central Blood Pressure Waveform 

from a Radial Blood Pressure Waveform. Sci Rep. 2016; 6(August) :1–9. 

doi:10.1038/srep33230 

33. Millasseau SC, Patel SJ, Redwood SR, Ritter JM, Chowienczyk PJ. Pressure wave 

reflection assessed from the peripheral pulse: is a transfer function necessary? 

Hypertens (Dallas, Tex  1979) [Internet]. 2003 May 1 [cited 2019 Aug 22]; 41(5) 

:1016–20. Available from: 

https://www.ahajournals.org/doi/10.1161/01.HYP.0000057574.64076.A5 

doi:10.1161/01.HYP.0000057574.64076.A5 

34. Friedberg MK, Silverman NH. Cardiac Ventricular Diastolic and Systolic Duration 

in Children With Heart Failure Secondary to Idiopathic Dilated Cardiomyopathy. 

Am J Cardiol [Internet]. 2006 Jan 1; 97(1) :101–5. Available from: 

https://doi.org/10.1016/j.amjcard.2005.07.127 doi:10.1016/j.amjcard.2005.07.127 

35. Zahedi E, Chellappan K, Ali MAM, Singh H. Analysis of the Effect of Ageing on 

Rising Edge Characteristics of the Photoplethysmogram using a Modified 

Windkessel Model. Cardiovasc Eng [Internet]. 2007 Dec 9 [cited 2017 Aug 14]; 

7(4) :172–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17992571 

doi:10.1007/s10558-007-9037-5 

36. Monos E. Hemodinamika: A vérkeringés dinamikája. 4th. ed. Budapest: 

Semmelweis Kiadó; 2004. 1–104 p.  

37. von Wowern E, Östling G, Nilsson PM, Olofsson P. Digital photoplethysmography 

for assessment of arterial stiffness: Repeatability and comparison with applanation 

tonometry. West J, editor. PLoS One [Internet]. 2015 Aug 20 [cited 2018 Jan 9]; 

10(8) :1–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26291079 

doi:10.1371/journal.pone.0135659 

38. Millasseau S, Kelly R, Ritter J, Chowienczyk P. Determination of age-related 

increases in large artery stiffness by digital pulse contour analysis. Clin Sci. 2002; 

103(4) :371–7. doi:10.1042/cs1030371 

39. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De 

Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, 

Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu 

D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M. The role 



56 

of ventricular-arterial coupling in cardiac disease and heart failure: assessment, 

clinical implications and therapeutic interventions. A consensus document of the 

European Society of Cardiology Working Group on Aorta & Peripheral Vascular 

Diseas. Eur J Heart Fail. 2019; 21(4) :402–24. doi:10.1002/ejhf.1436 

40. Paliakaité B, Charlton PH, Rapalis A, Pluščiauskaitė V, Piartli P, Kaniusas E, 

Marozas V. Blood Pressure Estimation Based on Photoplethysmography: Finger 

Versus Wrist. In: 2021 Computing in Cardiology (CinC). Brno, Czech Republic: 

Computing in Cardiology; 2021 Sep 12 p. 1–4. 

doi:10.23919/CinC53138.2021.9662716 

41. Calcagnini G, Triventi M, Censi F, Mattei E, Bartolini P, Mele F. An algorithm for 

the detection of atrial fibrillation using the pulse oximetric signal. In: Proceedings 

of the International Conference on Bio-inspired Systems and Signal Processing 

(BIOSIGNALS-2011). Rome, Italy: Setúbal: INSTICC Press; 2011 Jan 26 p. 429–

32. doi:10.5220/0003150804290432 

42. Task Force of the European Society of Cardiology and the North American Society 

of Pacing and Electrophysiology. Heart rate variability: standards of measurement, 

physiological interpretation and clinical use. Circulation [Internet]. 1996 Mar 1 

[cited 2016 Nov 25]; 93(5) :1043–65. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/8598068 doi:10.1161/01.CIR.93.5.1043 

43. Inoue N, Kawakami H, Yamamoto H, Ito C, Fujiwara S, Sasaki H, Kihara Y. 

Second derivative of the finger photoplethysmogram and cardiovascular mortality 

in middle-aged and elderly Japanese women. Hypertens Res [Internet]. 2017 Feb 

[cited 2017 Apr 24]; 40(2) :207–11. Available from: 

http://www.nature.com/doifinder/10.1038/hr.2016.123 doi:10.1038/hr.2016.123 

44. Haiden A, Eber B, Weber T. U-Shaped Relationship of Left Ventricular Ejection 

Time Index and All-Cause Mortality. Am J Hypertens [Internet]. 2014 May 1 

[cited 2018 Mar 21]; 27(5) :702–9. Available from: 

https://academic.oup.com/ajh/article-lookup/doi/10.1093/ajh/hpt185 

doi:10.1093/ajh/hpt185 

45. Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, 

Chowienczyk PJ. Noninvasive assessment of the digital volume pulse. Comparison 

with the peripheral pressure pulse. Hypertension [Internet]. 2000 Dec [cited 2015 



57 

Feb 6]; 36(6) :952–6. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/11116106 doi:10.1161/01.HYP.36.6.952 

46. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, 

Ibukiyama C. Assessment of vasoactive agents and vascular aging by the second 

derivative of photoplethysmogram waveform. Hypertension [Internet]. 1998 Aug 

[cited 2015 Feb 2]; 32(2) :365–70. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/9719069 doi:10.1161/01.HYP.32.2.365 

47. Nirala N, Periyasamy R, Singh BK, Kumar A. Detection of type-2 diabetes using 

characteristics of toe photoplethysmogram by applying support vector machine. 

Biocybern Biomed Eng [Internet]. 2019 Jan 1 [cited 2020 Apr 19]; 39(1) :38–51. 

Available from: https://linkinghub.elsevier.com/retrieve/pii/S0208521617304266 

doi:10.1016/j.bbe.2018.09.007 

48. Paradkar N, Roy Chowdhury S. Coronary artery disease detection using 

photoplethysmography. In: 2017 39th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC). Jeju, Korea (South): 

Piscataway (NJ): IEEE; 2017 Jul 11 p. 100–3. doi:10.1109/EMBC.2017.8036772 

49. Huotari M, Vehkaoja A, Määttä K, Kostamovaara J. Photoplethysmography and 

its detailed pulse waveform analysis for arterial stiffness. Raken Mek [Internet]. 

2011 [cited 2020 Apr 19]; 44(4) :345–62. Available from: 

https://www.researchgate.net/publication/260321650_Photoplethysmography_an

d_its_detailed_pulse_waveform_analysis_for_arterial_stiffness  

50. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, Eber B. Arterial 

Stiffness, Wave Reflections, and the Risk of Coronary Artery Disease. Circulation. 

2004; 109(2) :184–9. doi:10.1161/01.CIR.0000105767.94169.E3 

51. Kulin D, Antali F, Kulin S, Wafa D, Lucz KI, Veres DS, Miklós Z. Preclinical, 

multi-aspect assessment of the reliability of a photoplethysmography-based 

telemonitoring system to track cardiovascular status. Appl Sci. 2020; 10(22) :1–

17. doi:10.3390/app10227977 

52. Allen J, Kyriacou P. Photoplethysmography: Technology, Signal Analysis and 

Applications. 1st. ed. Amsterdam, The Netherlands: Elsevier; 2021. 1–490 p. 

doi:10.1016/C2020-0-00098-8 

53. Almarshad MA, Islam MS, Al-Ahmadi S, Bahammam AS. Diagnostic Features 



58 

and Potential Applications of PPG Signal in Healthcare: A Systematic Review. 

Healthc. 2022; 10(3) :1–28. doi:10.3390/healthcare10030547 

54. Park J, Seok HS, Kim SS, Shin H. Photoplethysmogram Analysis and 

Applications: An Integrative Review. Front Physiol. 2022; 12(March) :1–23. 

doi:10.3389/fphys.2021.808451 

55. Antali F, Kulin D, Lucz KI, Szabó B, Szűcs L, Kulin S, Miklós Z. Multimodal 

Assessment of the Pulse Rate Variability Analysis Module of a 

Photoplethysmography-Based Telemedicine System. Sensors [Internet]. 2021 

[cited 2022 Feb 2]; 21(16) :5544. Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401087/ 

doi:10.3390/s21165544 

56. Antali F, Kulin D, Kulin S, Miklós Z. Evaluation of the Age Dependence of 

Conventional and Novel Photoplethysmography Parameters. Artery Res [Internet]. 

2025; 31(1). Available from: https://doi.org/10.1007/s44200-025-00068-w 

doi:10.1007/s44200-025-00068-w 

57. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, 

Levy D. Changes in Arterial Stiffness and Wave Reflection With Advancing Age 

in Healthy Men and Women The Framingham Heart Study. Hypertension 

[Internet]. 2004 [cited 2018 Sep 26]; 43(6) :1239–45. Available from: 

https://www.ahajournals.org/doi/10.1161/01.hyp.0000128420.01881.aa 

doi:10.1161/01.HYP.0000128420.01881.aa 

58. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. The vascular impact of 

aging and vasoactive drugs: Comparison of two digital volume pulse 

measurements. Am J Hypertens. 2003; 16(6) :467–72. doi:10.1016/S0895-

7061(03)00569-7 

59. Mok Ahn J. New aging index using signal features of both photoplethysmograms 

and acceleration plethysmograms. Healthc Inform Res. 2017; 23(1) :53–9. 

doi:10.4258/hir.2017.23.1.53 

60. Fine J, Branan KL, Rodriguez AJ, Boonya-ananta T, Ajmal, Ramella-Roman JC, 

McShane MJ, Coté GL. Sources of Inaccuracy in Photoplethysmography for 

Continuous Cardiovascular Monitoring. Biosensors [Internet]. 2021 Apr 16; 11(4) 

:126. Available from: https://www.mdpi.com/2079-6374/11/4/126 



59 

doi:10.3390/bios11040126 

61. Ghodeshwar GK, Dube A, Khobragade D. Impact of Lifestyle Modifications on 

Cardiovascular Health: A Narrative Review. Cureus. 2023 Jul; 15(Ldl) :e42616. 

doi:10.7759/cureus.42616 

62. Benczur B, Miklos Z, Kulin D, Nemcsik J. Az artériás életkor meghatározásának 

klinikai jelentôsége. Lege Artis Med. 2022; 32(10) :457–64. 

doi:10.33616/lam.32.037 

63. Bruno RM, Nilsson PM, Engström G, Wadström BN, Empana JP, Boutouyrie P, 

Laurent S. Early and Supernormal Vascular Aging: Clinical Characteristics and 

Association With Incident Cardiovascular Events. Hypertension. 2020; 76(5) 

:1616–24. doi:10.1161/HYPERTENSIONAHA.120.14971 

64. O’Rourke MF. Arterial aging: Pathophysiological principles. Vasc Med. 2007; 

12(4) :329–41. doi:10.1177/1358863X07083392 

65. Karimpour P, May JM, Kyriacou PA. Photoplethysmography for the Assessment 

of Arterial Stiffness. Sensors. 2023; 23(24). doi:10.3390/s23249882 

66. Stergiou GS, Mukkamala R, Avolio A, Kyriakoulis KG, Mieke S, Murray A, Parati 

G, Schutte AE, Sharman JE, Asmar R, McManus RJ, Asayama K, De La Sierra A, 

Head G, Kario K, Kollias A, Myers M, Niiranen T, Ohkubo T, Wang J, Wuerzner 

G, O’Brien E, Kreutz R, Palatini P. Cuffless blood pressure measuring devices: 

Review and statement by the European Society of Hypertension Working Group 

on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2022; 

40(8) :1449–60. doi:10.1097/HJH.0000000000003224 

67. Allen J, Overbeck K, Nath AF, Murray A, Stansby G. A prospective comparison 

of bilateral photoplethysmography versus the ankle-brachial pressure index for 

detecting and quantifying lower limb peripheral arterial disease. J Vasc Surg. 2008 

Apr 1; 47(4) :794–802. doi:10.1016/j.jvs.2007.11.057 

68. Duncker D, Ding WY, Etheridge S, Noseworthy PA, Veltmann C, Yao X, Bunch 

TJ, Gupta D. Smart Wearables for Cardiac Monitoring—Real-World Use beyond 

Atrial Fibrillation. Sensors [Internet]. 2021; 21(7). Available from: 

https://www.mdpi.com/1424-8220/21/7/2539 doi:10.3390/s21072539 

69. Väliaho ES, Kuoppa P, Lipponen JA, Martikainen TJ, Jäntti H, Rissanen TT, Kolk 

I, Castrén M, Halonen J, Tarvainen MP, Hartikainen JEK. Wrist band 



60 

photoplethysmography in detection of individual pulses in atrial fibrillation and 

algorithm-based detection of atrial fibrillation. Europace. 2019 Jul; 21(7) :1031–8. 

doi:10.1093/europace/euz060 

70. Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial 

Fibrillation in the 21st Century. Circ Res [Internet]. 2020 Jun 19; 127(1) :4–20. 

Available from: https://doi.org/10.1161/CIRCRESAHA.120.316340 

doi:10.1161/CIRCRESAHA.120.316340 

71. Scholte NTB, Van Ravensberg AE, Edgar R, Van Den Enden AJM, Van Mieghem 

NMDA, Brugts JJ, Bonnes JL, Bruining N, Van Der Boon RMA. 

Photoplethysmography and intracardiac pressures: early insights from a pilot 

study. Eur Heart J Digit Health. 2024 May 1; 5(3) :379–83. 

doi:10.1093/ehjdh/ztae020 

72. Shah AJ, Isakadze N, Levantsevych O, Vest A, Clifford G, Nemati S. Detecting 

heart failure using wearables: a pilot study. Physiol Meas [Internet]. 2020 May 4; 

41(4) :044001. Available from: https://iopscience.iop.org/article/10.1088/1361-

6579/ab7f93 doi:10.1088/1361-6579/ab7f93 

73. Su F, Li Z, Sun X, Han N, Wang L, Luo X. The Pulse Wave Analysis of Normal 

Pregnancy: Investigating the Gestational Effects on Photoplethysmographic 

Signals. Biomed Mater Eng. 2014; 24(1) :209–19. doi:10.3233/BME-130801 

74. Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res 

[Internet]. 2014 Mar 15 [cited 2023 Nov 23]; 101(4) :561–70. Available from: 

https://pubmed.ncbi.nlm.nih.gov/24448313/ doi:10.1093/CVR/CVU013 

75. Arioz DT, Saglam H, Demirel R, Koken G, Cosar E, Sahin FK, Dursun H, Aral İ, 

Onrat E, Yilmazer M. Arterial stiffness and dipper/nondipper blood pressure status 

in women with preeclampsia. Adv Ther. 2008; 25(9) :925–34. 

doi:10.1007/s12325-008-0090-2 

76. Kulin D, Várfalvi M, Kulin S. Digital Support for Family Health Protection by 

Health Visitors: The “Health Visitors for a Healthy Generation and Nation” 

Project. Aranypajzs. 2023; 2(1) :19–24. doi:10.56077/ap.2023.t1.2 

77. Allen J. Photoplethysmography and its application in clinical physiological 

measurement. Physiol Meas [Internet]. 2007 Mar 1 [cited 2018 Jan 24]; 28(3) :R1–

39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17322588 



61 

doi:10.1088/0967-3334/28/3/R01 

78. Korhonen I, Yli-Hankala A. Photoplethysmography and nociception: Review 

Article. Acta Anaesthesiol Scand. 2009; 53(8) :975–85. doi:10.1111/j.1399-

6576.2009.02026.x 

79. Elgendi M. Detection of c, d, and e waves in the acceleration photoplethysmogram. 

Comput Methods Programs Biomed [Internet]. 2014 Nov [cited 2017 Mar 15]; 

117(2) :125–36. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S0169260714003010 

doi:10.1016/j.cmpb.2014.08.001 

80. Charlton PH, Allen J, Bailon R, Baker S, Behar JA, Chen F, Clifford GD, Clifton 

DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, 

Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, 

Kyriacou PA, Laguna P, Lazaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic 

DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, 

Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, 

Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable 

photoplethysmography roadmap. Physiol Meas. 2023; doi:10.1088/1361-

6579/acead2 

81. Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of 

vascular aging and atherosclerosis in hypertensive subjects: Second derivative of 

photoplethysmogram versus pulse wave velocity. Am J Hypertens. 2000; 13(2) 

:165–71. doi:10.1016/S0895-7061(99)00192-2 

82. Imanaga I, Hara H, Koyanagi S, Tanaka K. Correlation between wave components 

of the second derivative of plethysmogram and arterial distensibility. Jpn Heart J 

[Internet]. 1998 Nov [cited 2016 Nov 27]; 39(6) :775–84. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/10089939 doi:10.1536/ihj.39.775 

83. Hashimoto J, Chonan K, Aoki Y, Nishimura T, Ohkubo T, Hozawa A, Suzuki M, 

Matsubara M, Michimata M, Araki T, Imai Y. Pulse wave velocity and the second 

derivative of the finger photoplethysmogram in treated hypertensive patients: their 

relationship and associating factors. J Hypertens. 2002; 20(12) :2415–22. 

doi:10.1097/01.hjh.0000042887.24999.7b 

84. Otsuka T, Kawada T, Katsumata M, Ibuki C. Utility of second derivative of the 



62 

finger photoplethysmogram for the estimation of the risk of coronary heart disease 

in the general population. Circ J [Internet]. 2006 Mar [cited 2016 Nov 25]; 70(3) 

:304–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16501297 

doi:10.1253/circj.70.304 

85. Hyun JB, Jung SK, Yun SK, Haet BL, Kwang SP. Second derivative of 

photoplethysmography for estimating vascular aging. In: 2007 6th International 

Special Topic Conference on Information Technology Applications in 

Biomedicine. Tokyo, Japan: Piscataway (NJ): IEEE; 2007 Nov 8 p. 70–2. 

doi:10.1109/ITAB.2007.4407346 

86. Pilt K, Meigas K, Ferenets R, Temitski K, Viigimaa M. Photoplethysmographic 

signal waveform index for detection of increased arterial stiffness. Physiol Meas. 

2014; 35(10) :2027–36. doi:10.1088/0967-3334/35/10/2027 

87. Pilt K, Ferenets R, Meigas K, Lindberg LG, Temitski K, Viigimaa M. New 

photoplethysmographic signal analysis algorithm for arterial stiffness estimation. 

ScientificWorldJournal [Internet]. 2013 [cited 2016 Dec 2]; 2013 :169035. 

Available from: http://www.ncbi.nlm.nih.gov/pubmed/23983620 

doi:10.1155/2013/169035 

88. Segers P, Kips J, Trachet B, Swillens A, Vermeersch S, Mahieu D, Rietzschel E, 

De Buyzere M, Van Bortel L. Limitations and pitfalls of non-invasive 

measurement of arterial pressure wave reflections and pulse wave velocity. Artery 

Res [Internet]. 2009 Jun [cited 2017 Aug 16]; 3(2) :79–88. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S1872931209000118 

doi:10.1016/j.artres.2009.02.006 

89. Miyashita H, Katsuda S ichiro I. Basis of monitoring central blood pressure and 

hemodynamic parameters by peripheral arterial pulse waveform analyses. In: 

Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society. Osaka, Japan: Piscataway (NJ): IEEE; 2013 Jul 3 p. 221–4. 

doi:10.1109/EMBC.2013.6609477 

90. Miyashita H. The time is ripe to reevaluate the second derivative of the digital 

photoplethysmogram (SDPTG), originating in Japan, as an important tool for 

cardiovascular risk and central hemodynamic assessment. Hypertens Res. 2017; 

40(5) :429–31. doi:10.1038/hr.2016.175 



63 

91. Chen G, Meng L, Alexander B, Tran NP, Kain ZN, Cannesson M. Comparison of 

noninvasive cardiac output measurements using the Nexfin monitoring device and 

the esophageal Doppler. J Clin Anesth [Internet]. 2012; 24(4) :275–83. Available 

from: http://dx.doi.org/10.1016/j.jclinane.2011.08.014 

doi:10.1016/j.jclinane.2011.08.014 

92. Duan W, Zheng D, Eggett C, Langley P, Murray A. Development of techniques 

for measurement of left ventricular ejection time. In: Murray A, editor. Computing 

in Cardiology. Cambridge, Massachusetts, USA: Piscataway (NJ): IEEE; 2014 Sep 

7 p. 241–4.  

93. Meah VL, Backx K, Shave RE, Stöhr EJ, Cooper SM. Comparison between 

Modelflow® and echocardiography in the determination of cardiac output during 

and following pregnancy at rest and during exercise. J Hum Sport Exerc [Internet]. 

2022 Jan 1 [cited 2024 May 2]; 17(1) :116–35. Available from: 

https://doaj.org/article/099876e83a104a3481d21d12267a1020 

doi:10.14198/JHSE.2022.171.12 

94. Blanié A, Soued M, Benhamou D, Mazoit JX, Duranteau J. A Comparison of 

Photoplethysmography Versus Esophageal Doppler for the Assessment of Cardiac 

Index During Major Noncardiac Surgery. Anesth Analg [Internet]. 2016 Feb 1 

[cited 2024 May 2]; 122(2) :430–6. Available from: 

https://pubmed.ncbi.nlm.nih.gov/26649910/ 

doi:10.1213/ANE.0000000000001113 

95. Özen Kavas P, Recep Bozkurt M, Kocayiğit İ, Bilgin C. Machine learning-based 

medical decision support system for diagnosing HFpEF and HFrEF using PPG. 

Biomed Signal Process Control [Internet]. 2023; 79(August 2022) :104164. 

Available from: 

https://www.sciencedirect.com/science/article/pii/S1746809422006188 

doi:https://doi.org/10.1016/j.bspc.2022.104164 

96. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, 

Flachskampf F, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, 

Picard MH, Retzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. 

Recommendations for cardiac chamber quantification by echocardiography in 

adults: An update from the American Society of Echocardiography and the 



64 

European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015; 

28(1) :1. doi:10.1016/j.echo.2014.10.003 

97. Kulin D, Antali F, Horváth M, Kulin S, Kulin Jr. S, Miklós Z, Szűcs A. Evaluating 

photoplethysmography-based pulsewave parameters and composite scores for 

assessment of cardiac function: A comparison with echocardiography. Physiol Int. 

2025; 112(3) :229–47. doi:10.1556/2060.2025.00675 

98. Abdullah S, Hafid A, Folke M, Lindén M, Kristoffersson A. A Novel Fiducial 

Point Extraction Algorithm to Detect C and D Points from the Acceleration 

Photoplethysmogram (CnD). Electron. 2023; 12(5). 

doi:10.3390/electronics12051174 

99. Green EM, van Mourik R, Wolfus C, Heitner SB, Dur O, Semigran MJ. Machine 

learning detection of obstructive hypertrophic cardiomyopathy using a wearable 

biosensor. npj Digit Med. 2019; 2(1) :1–4. doi:10.1038/s41746-019-0130-0 

100. Steinberg RS, Udeshi E, Dickert N, Quyyumi A, Chirinos JA, Morris AA. Novel 

Measures of Arterial Hemodynamics and Wave Reflections Associated With 

Clinical Outcomes in Patients With Heart Failure. J Am Heart Assoc. 2023; 12(6). 

doi:10.1161/JAHA.122.027666 

101. Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen 

T. The significance of left ventricular ejection time in heart failure with reduced 

ejection fraction. Eur J Heart Fail. 2021; 23(4) :541–51. doi:10.1002/ejhf.2125 

102. Obata Y, Mizogami M, Singh S, Nyhan D, Berkowitz DE, Steppan J, Barodka V. 

Ejection time: Influence of hemodynamics and site of measurement in the arterial 

tree. Hypertens Res. 2017; 40(9) :811–8. doi:10.1038/hr.2017.43 

103. Pangarkar T. Wearable Technology Statistics 2025 By Tech and Human [Internet]. 

2025 [cited 2025 Aug 12]. Available from: https://scoop.market.us/wearable-

technology-statistics/  

104. Voigt JU. Left ventricular function, heart failure, and resynchronization therapy. 

In: Camm A, Lüscher T, Serruys P, editors. The ESC Textbook of Cardiovascular 

Medicine [Internet]. 3rd. ed. Oxford: Oxford University Press; 2018. p. 450–4. 

Available from: 

https://academic.oup.com/book/doi/10.1093/med/9780198784906.003.0092 

doi:10.1093/med/9780198784906.003.0092 



65 

105. Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, Conti 

CR. Effects of age on ventricular-vascular coupling. Am J Cardiol. 1985 Apr; 55(9) 

:1179–84. doi:10.1016/0002-9149(85)90659-9 

106. Li Q, Huang H, Lu X, Yang Y, Zhang Y, Chen W, Lai W, Liang G, Shi S, Wang 

X, Chen J, Chen S, Yan X. The Association between Left Ventricular End-

Diastolic Diameter and Long-Term Mortality in Patients with Coronary Artery 

Disease. Rev Cardiovasc Med [Internet]. 2023 Mar 8; 24(3) :84. Available from: 

https://www.imrpress.com/journal/RCM/24/3/10.31083/j.rcm2403084 

doi:10.31083/j.rcm2403084 

107. Alsaddique AA. Recognition of diastolic heart failure in the postoperative heart. 

Eur J Cardio-Thoracic Surg [Internet]. 2008 Dec 1 [cited 2024 May 2]; 34(6) 

:1141–8. Available from: https://dx.doi.org/10.1016/j.ejcts.2008.05.030 

doi:10.1016/J.EJCTS.2008.05.030 

108. Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health 

and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll 

Cardiol [Internet]. 1997; 30(1) :8–18. Available from: 

http://dx.doi.org/10.1016/S0735-1097(97)00144-7 doi:10.1016/S0735-

1097(97)00144-7 

109. Weber T, Auer J, O’Rourke MF, Punzengruber C, Kvas E, Eber B. Prolonged 

mechanical systole and increased arterial wave reflections in diastolic dysfunction. 

Heart. 2006; 92(11) :1616–22. doi:10.1136/hrt.2005.084145 

110. Bearak J, Popinchalk A, Ganatra B, Moller AB, Tunçalp Ö, Beavin C, Kwok L, 

Alkema L. Unintended pregnancy and abortion by income, region, and the legal 

status of abortion: estimates from a comprehensive model for 1990–2019. Lancet 

Glob Health. 2020; 8(9) :e1152–61. doi:10.1016/S2214-109X(20)30315-6 

 

  



66 

9. Bibliography of the candidate’s publications  

Publications tightly related to the dissertation: 

Kulin D, Antali F, Kulin S, Wafa D, Lucz KI, Veres DS, Miklós Z. Preclinical, 

multi-aspect assessment of the reliability of a photoplethysmography-based 

telemonitoring system to track cardiovascular status. Appl Sci. 2020;10(22):1–17. 

doi:10.3390/app10227977 

IF: 2.679 

Kulin D, Antali F, Horváth M, Kulin S, Kulin S Jr, Miklós Z, Szűcs A. 

Evaluating photoplethysmography-based pulsewave parameters and composite 

scores for assessment of cardiac function: A comparison with echocardiography. 

Physiol Int. 2025;112(3), 229-247. doi: 10.1556/2060.2025.00675 

IF: (article published after the submission) 

Antali F, Kulin D, Lucz KI, Szabó B, Szűcs L, Kulin S, Miklós Z. Multimodal 

assessment of the pulse rate variability analysis module of a 

photoplethysmography-based telemedicine system. Sensors. 2021;21(16):5544. 

doi:10.3390/s21165544 

IF: 3.847 

Antali F, Kulin D, Kulin S, Miklós Z. Evaluation of the age dependence of 

conventional and novel photoplethysmography parameters. Artery Res. 

2025;31(1):118–126. doi:10.1007/s44200-025-00068-w 

IF: 1.6  

Charlton PH, Paliakaitė B, Pilt K, Bachler M, Zanelli S, Kulin D, Allen J, 

Hallab M, Bianchini E, Mayer CC, Terentes-Printzios D, Dittrich V, 

Hametner B, Veerasingam D, Žikić D, Marozas V. Assessing hemodynamics 

from the photoplethysmogram to gain insights into vascular age: a review from 

VascAgeNet. Am J Physiol Heart Circ Physiol. 2022;322(4):H493–H522. 

doi:10.1152/ajpheart.00392.2021 

IF: 4.8 

Publications referenced in, but not strongly related to the dissertation: 

https://doi.org/10.1556/2060.2025.00675


67 

D. Kulin, M. Várfalvi, and S. Kulin, “Digital Support for Family Health Protection 

by Health Visitors: The ‘Health Visitors for a Healthy Generation and Nation’ 

Project,” Aranypajzs, vol. 2, no. 1, pp. 19–24, 2023. DOI: 10.56077/AP.2023.t1.2 

IF: - 

 

 

  



68 

10. Acknowledgements 

This dissertation - and all the work behind it - has been the main project of my 

professional life since 2014. First and foremost, I wish to express my deepest gratitude to 

God, my Heavenly Father, the King of Kings, who guided me through the hardships and 

was present in the celebrations of every milestone along the way. 

I would also like to express my heartfelt thanks to Zsuzsanna Miklós, an exceptional 

mentor and friend, who has been my lighthouse in the foggy, stormy waters of the 

scientific ocean and sometimes my personal life too. 

Throughout this journey, I came to realize that professional success means little without 

family. I am immensely grateful to my beautiful wife, Zsófi, with whom we worked 

together as medical students to better understand the relationship between pulse wave 

features and various pregnancy pathologies. Besides her, I am grateful for our three 

wonderful, smart, and funny daughters for their support, patience, and love. The members 

of this family are my most precious gifts from God. 

My deepest thanks also go to my father, my closest colleague and partner from the very 

beginning. He was the one who kickstarted this journey, and his unwavering energy and 

drive helped me overcome many of the challenges we’ve faced. He is not alone - he has 

a wonderful wife, whom I am proud to call my mum. Thank you, Anya, for giving me 

life and for the love with which you raised me and my four other siblings up. 

I want to thank Flóra Antali, my closest research partner for many years. Together, we 

formed a truly effective team. Her attention to detail and her endurance with monotony 

are true superpowers. Although she has moved on in recent years, our friendship remains 

strong and lasting. 

In more recent years, my brother joined the mission - my only and best brother, a brilliant 

software engineer and invaluable data scientist. His contributions have significantly 

accelerated our work. Thank you, Sano! 

I also owe a big thank you to Péter Kulin and Bogi Barcza, the quiet forces behind the 

scenes. Their tireless work, enthusiasm, and loyalty in managing the non-scientific 

aspects of this immense project made it all possible. 



69 

At this point, I must also mention three other gentlemen: Balázs Szabó, Marcel Visschers, 

and Paul Obers, with whom I had the privilege to join forces and dream big—sharing a 

vision of elevating PPG-based telemedicine to the next level. I truly hope that one day all 

the effort we invested will bear meaningful fruit. 

I would like to express my appreciation to Professor Zoltán Benyó, the laid-back yet 

consistently supportive head of the Institute of Translational Medicine. His open-

mindedness and kind support have always been a source of strength. 

I’m grateful to Zsuzsanna Győrffy, PhD, my first supervisor, who introduced me to the 

world of telemedicine and digital health. 

A warm thank-you goes to all the clinicians, patients, and volunteers who, despite their 

busy lives, donated their time and effort to our studies. I pray for a happy, healthy, and 

blessed life for each of you. 

I am also thankful for the support and mentorship of Dr. Krisztina Szőllős and Professor 

Szabolcs Várbíró, who guided our very first scientific project as medical students - an 

experience that laid the foundation for this entire endeavor. 

Finally, I would like to thank everyone who, in any way, contributed to this work or 

supported the milestones we’ve achieved over the years. Special thanks to the Science 

Management Workgroup for their helpful materials in the dissertation writing process. 

I hope this big project will go further - reaching the point where it can truly improve the 

lives of millions of patients and their caregivers worldwide. 

 



applied  
sciences

Article

Preclinical, Multi-Aspect Assessment of the
Reliability of a Photoplethysmography-Based
Telemonitoring System to Track Cardiovascular Status

Dániel Kulin 1,2,*, Flóra Antali 1,2, Sándor Kulin 2, Dina Wafa 1 , Konrád István Lucz 2,
Dániel Sándor Veres 3 and Zsuzsanna Miklós 1,*

1 Institute of Translational Medicine, Semmelweis University, 1092 Budapest, Hungary;
antali.flora@gmail.com (F.A.); dina.wafa.93@gmail.com (D.W.)

2 E-Med4All Europe ltd., 1036 Budapest, Hungary; dr.kulin.sandor@pregnascan.eu (S.K.);
luczkonrad@gmail.com (K.I.L.)

3 Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
veres.daniel@med.semmelweis-univ.hu

* Correspondence: kulin.daniel@med.semmelweis-univ.hu (D.K.);
miklos.zsuzsanna@med.semmelweis-univ.hu (Z.M.); Tel.: +36-30-922-6206 (D.K.); +36-20-585-8099 (Z.M.)

Received: 28 September 2020; Accepted: 8 November 2020; Published: 10 November 2020 ����������
�������

Abstract: Telemonitoring systems equipped with photoplethysmography-based contour analysis of
the digital arterial volume pulse (DVP) can be optimal tools for remote monitoring of cardiovascular
patients; however, the method is known to be sensitive to errors. We aimed to show that DVP
analysis is a reliable method to track cardiovascular status. We used our proprietary SCN4ALL
telemedicine system and analyzed nine parameters derived from the DVP and its second derivative
(SDDVP). First, we assessed the repeatability of system measurements by detecting artificial signals.
Then test–retest reliability of human measurements was evaluated in healthy individuals under
standardized conditions. The SCN4ALL system analyzed each parameter with high accuracy
(coefficients of variation (CVs) < 1%). Test–retest reliability of most parameters (stiffness index,
reflection index, left ventricular ejection time index, b/a, heart rate) was satisfactory (CVs < 10%) in
healthy individuals. However, aging index and d/a ratio derived from the SDDVP were more variable.
Photoplethysmography-based pulse contour analysis is a reliable method to monitor cardiovascular
status if measurements are performed with a system of high accuracy. Our results highlighted that
SDDVP parameters can be interpreted with limitations due to (patho)physiological variations of the
DVP. We recommend the evaluation of these parameters only in measurements where all inflections
of SDDVP are detected reliably.

Keywords: pulse wave analysis; photoplethysmography; telemedicine; test–retest reliability;
pulse contour

1. Introduction

Despite the enormous effort invested in research and development of new treatments to break the
dominance of cardiovascular diseases in morbidity and mortality statistics, they are still among the
leading causes of death [1,2]. A potential breakthrough could be achieved by launching extensive home
surveillance programs that allow close follow-up of cardiovascular patients. The pandemic months
of COVID-19 underline the need for reliable telemedicine surveillance tools to reduce the need for
personal visits to outpatient clinics, thus reducing the chance of infection of the highest risk population.

Development of a cardiovascular telemonitoring system requires the incorporation of a
cardiovascular measurement that is noninvasive, easy-to-use for the patient, convenient, timesaving,
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and not least provides clinically relevant information about the current cardiovascular status of
the patient. The detection and analysis of digital arterial volume pulse (DVP) recorded by the
photoplethysmographic (PPG) method is a perfect option as it fits all these requirements. In fact,
the DVP tracks the changes of vessel diameter and blood volume in the arteries which occur due to
arterial pulsation [3,4], and hence its shape is identical to the digital arterial pulse wave.

Mechanistically, the arterial pulse wave is a pressure wave that is initiated by cardiac ejection and
runs through the arterial system. It is an invaluable source of information about the cardiovascular
status of the patient, as its amplitude and contour are influenced by the dynamics of cardiac function,
the elasticity of the arteries, and also by the pressure augmentation caused by the superimposing
reflected pressure wave [5], which is highly affected by the tone of the resistance vessels. Moreover,
all these factors are dependent on the current status of the autonomic nervous system. Not surprisingly,
altered cardiovascular conditions (both physiological and pathological) cause well-defined characteristic
changes in the shape and propagation velocity of the pulse wave [6–11]. Therefore, by detecting the
changes in pulse wave contour, it is possible to establish the cardiovascular status of the patient.

Mathematical analysis of the pulse wave and DVP is well established in the literature [4,12–14].
Several cardiovascular indices, termed pulse contour parameters, derived from the raw curve and
from its first and second derivatives have been identified as measures of various elements of cardiac
and vascular function (Figure 1). Alterations of these indices have been associated with cardiovascular
pathologies such as arterial stiffness, atherosclerosis, hypertension, aging, diabetes, coronary heart
disease, and heart failure [12–19].

Undoubtedly, these scientifically well-established characteristics of PPG-based detection and
analysis of DVP make this method an optimal tool for remote cardiovascular monitoring. Despite this,
it has not gained ground in clinical practice so far. The reason behind this is that there are controversies
about the applicability of this method in clinical diagnostics and the lack of large-population studies
that could establish the guidelines for follow-up and those patient groups in which it would have the
highest benefit.

One reason why the applicability of the method is debated that the parameters computed from
DVP are sensitive to errors and cannot be detected reliably as they fluctuate from one measurement to
another even if the cardiovascular status of the patient is stable [20–23]. However, this controversy is
fostered in part by the fact that no data are available in the scientific literature about the reliability of
the measurements. This issue is particularly emphasized in the case of those parameters which are
derived from the second derivative of the DVP. The second derivative of the DVP (often referred to as
acceleration plethysmogram) has several distinguished points from which valuable cardiovascular
indices can be calculated (Figure 1). Among these, c and d points have been introduced as characteristics
that may facilitate our understanding of the dynamics of wave reflection and the pulse wave analysis
based evaluation of the severity of arterial aging [14,24–28]. However, the detection of these points has
become a challenge for mathematical algorithms to identify [8,29,30].

This study was designed to address these controversies in order to show that the detection
and computation of DVP contour parameters is a reliable method. We postulated that fluctuations
in measured values most probably reflect real changes in cardiovascular functioning and are not
caused by poor reliability of DVP analysis. To answer our specific questions, we used a PPG-based
telemedicine system which has been developed with the participation of our research team (SCN4ALL
ver.1.0, E-Med4All Europe Ltd., Budapest, Hungary) (Figure 2), and we analyzed nine pulse contour
parameters, the medical significance of which has been proposed by various studies (Figure 1).
Our specific questions addressed not only the reliability of DVP analysis in general, but also the
measurement reliability of our system.
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Figure 1. Pulse contour parameters calculated by the SCN4ALL system. Representative pulse wave
recording (panel A), and its first (panel B) and second derivative curves (panel C). ET represents ejection
time measured as the duration between the foot of the pulse wave and the dicrotic notch. ET was
normalized for heart rate to calculate left ventricular ejection time index (LVETI) using the formulae
LVETI = 1.7 × heart rate + ET and LVETI = 1.6 × heart rate + ET in males and females, respectively.
Pulse transit time (PTT) is the duration measured between the systolic and diastolic peaks of the curve.
PTT was used to calculate stiffness index as the height of the subject over PT. IBI represents interbeat
interval, which is the pulse duration measured from peak to peak. Here, x and y are amplitudes of
the systolic and diastolic peaks, respectively, and are used for calculation of the reflection index as
x/y. Points a–e represent notable inflection points of the second derivative curve. Second derivative
inflection points were used to calculate b/a, d/a, aging index (calculated as (b − c − d − e)/a), and c–d
point detection ratio (the percentage of pulse cycles in the 2-min recording in which c and d points
were successfully identified by the algorithm).

Figure 2. Outline of the SCN4ALL telemedicine system. Peripheral arterial pulse wave is detected by a
transmission pulse oximeter. The device (Berry Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd.,
Shanghai, China) communicates via Bluetooth connection with a mobile application (SCN4ALL) which
initiates and terminates the 2-min-long data acquisition and transmits the recording to a cloud database.
A cloud-based automated algorithm calculates the pulse contour variables which are then reported to
the dashboard of the physician and, in brief form, to the mobile application of the user.
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In this context, firstly we assessed the measurement error of our telemedicine system to rule out
its relevant contribution to measurement variability in human tests.

As a next step, we aimed to test the reliability (test–retest variability) of PPG-based pulse contour
analysis in human measurements. As a satellite question, we also aimed to clarify whether using
different fingers for the measurement has an influence on the measurement of pulse contour indices.

Finally, using the results of the performed measurements, we evaluated the applicability of our
proprietary algorithm to detect c and d points on the acceleration plethysmograph.

2. Materials and Methods

2.1. Subjects

Healthy, informed, consenting volunteers participated in the study. Volunteers who smoked,
received any kind of medication, were pregnant, or had BMI > 30 were excluded. The study was
approved by the Regional and Institutional Committee of Science and Research Ethics at Semmelweis
University (approval number 120/2018).

2.2. Measurements with the SCN4ALL System

In each investigational protocol, pulse wave detection and analysis were performed by the
1.0 version of the SCN4ALL telemedicine system (E-Med4All Europe Ltd., Budapest, Hungary).
Pulse wave was recorded as DVP detected by a commercially available transmission pulse oximeter
(Berry Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China; hardware: 32-bit AD
converter, 200 Hz sampling rate). The device emits light to the tissues of the finger from an LED light
source and detects the transmitted light by a photodiode. Vessel diameter and blood volume in the
arteries change with pulsation, and so does the amount of transmitted light, enabling the detection of a
continuous DVP. The pulse oximeter device communicates via Bluetooth connection with a mobile
application that initiates and terminates a 2-min-long data acquisition and transmits the recording to a
cloud-based automated algorithm that was developed by our research group (Figure 2).

Signal preprocessing by the algorithm starts with upsampling the 200 Hz sampling frequency
of the device to 1 kHz. In order to condition the PPG signal, a digital bandpass filter—fourth-order
Butterworth—with −3 dB points at 0.1 and 10 Hz is applied. Then, the algorithm identifies the pulse
cycles. Afterward, within each cycle, particular distinct points of the DVP (primary curve, first and
second derivatives) are identified. Then, contour parameters are computed for every individual cycle.
Afterward, the means of all cycles are calculated and displayed on an internet platform for the physician.
In this study, these averages were exported as spreadsheets for further analysis. The measurement
data are stored at a cloud-based server (Amazon Web Services, Amazon Web Services EMEA SARL,
1855 Luxembourg, Luxemburg) equipped with safe data protection that conforms to the applicable
regulations ((EU) 2016/679).

The automatically calculated pulse contour parameters that this study focuses on are as follows:
mean interbeat interval (IBI, ms), heart rate (HR, 1/min), stiffness index (calculated as the height of
the subject over pulse transit time (PTT), m/s [4,6]), reflection index (the ratio of the amplitude of
the diastolic peak to the amplitude of the systolic peak), left ventricular ejection time index (LVETI,
ejection time (ET) normalized for heart rate using the formulae LVETI = 1.7 × heart rate + ET and
LVETI = 1.6 × heart rate + ET in males and females, respectively [13]), b/a (parameter relating the
amplitude of the second wave of the DVP second derivative to the first wave), d/a (ratio of the fourth
and first inflection points of the second derivative of the DVP), aging index (a parameter derived from
the amplitudes of inflections of the second derivative of the DVP as (b − c − d − e)/a [31]), and c–d point
detection ratio (a value that specifies the percentage of those pulse cycles in the 2-min recording in
which c and d points of the second derivative were successfully identified by the algorithm) (Figure 2).
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2.3. Protocols

2.3.1. Measurement Reliability of the Telemedicine System

In order to exclude major effects of measurement error of our telemedicine system on the
evaluation of human pulse contour readings, we explored the repeatability of measurements. To define
measurement error by the SCN4ALL system (combined error of DVP recording, data processing,
and analysis), we recorded artificial signals generated by a pulse simulator device (MS100 SpO2

Simulator, Contec Medical Systems Co., Ltd., Qinhuangdao, China). Besides the generation of
high-quality, physiological simulated pulse signals (“normal”—SpO2: 98%, heart rate: 55/min),
the simulator offers signals which model frequent signal variants, “Abnormal 1” (titled “geriatric”
in the simulator’s software) (SpO2: 92%, heart rate: 95/min) and “Abnormal 2” titled “weak” in the
software (SpO2: 90%, heart rate: 95/min) signal settings. The latter simulates a pulse wave in which
the detectable signal is of low intensity (Figure 3). We performed five repeated measurements for
each signal setting (Normal, Abnormal 1, Abnormal 2) with five different pulse oximeters of the same
product release.

2.3.2. Reliability of Human Pulse Wave Measurements at Standard Conditions

The reliability of human DVP measurements was assessed by measuring test–retest variability by
performing consecutive measurements on healthy individuals under standardized conditions, in which
physiological fluctuations of cardiovascular functioning are supposed to be minimal. We performed 10
repeated 2-min-long measurements on 10 young healthy volunteers (M/F: 5/5, Age: 19–35, Mean ± SD:
25.3 ± 4.3) under standard conditions. The course of successive measurements took approximately
30 min. We defined ‘standard condition’ as the set of measurement conditions which we recommend our
users to maintain when they perform their daily morning measurements during follow-up. The criteria
for standard conditions are as follows: measurement takes place in a quiet room at room temperature;
in the morning hours at least two hours after the last meal and coffee; and in a sitting, resting position,
with hands held quietly on a table. Moreover, consumption of energy drinks and alcoholic beverages
and intensive physical activity on the day of the measurement were avoided in this study. For these
measurements, the pulse oximeter was placed on the left index finger.

2.3.3. Parallel Measurement on Four Fingers

To investigate whether a different anatomical disposition of the fingers affects the measured
pulse contour parameters, we placed four pulse oximeters on four fingers (left and right indices and
ring fingers) and made parallel 2-min measurements. We made two consecutive pulse recordings on
25 healthy individuals (M/F: 17/8; Age: 19–49, Mean ± SD: 29.4 ± 8.4), and took the average of the two
measurements for each individual.
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Figure 3. Representative recordings obtained on a healthy individual and the pulse oximeter stimulator.
(Panel A) shows representative recording of one of our healthy subjects. (Panel B) shows recording of
an artificial pulse wave generated by the Normal setting of the pulse oximeter simulator. Recordings of
(panels C and D) demonstrate pulse waves generated by the Abnormal 1 and Abnormal 2 signal
settings of the pulse oximeter simulator device. Both are high heart rate signals (95/min) and are
characterized by disappearance of c and d inflections of the second derivative curve. Abnormal 2
setting was a low-intensity signal but was still recorded accurately with the SCN4ALL system. In each
panel, the upper graph shows the recorded digital volume pulse (DVP), whereas the middle and lower
panels show the first and second derivatives of the DVP, respectively. AU: arbitrary units.
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2.4. Data Analysis and Statistics

Cycles with irregular durations and unusual morphology were automatically excluded from
the analysis by the algorithm (in each case <5% of all recorded cycles). Afterward, the means of
values calculated for the individual pulse cycles of the 2-min-long recording were calculated for each
parameter. For the present analysis, means were exported from the system in spreadsheets. These mean
values were used for further characterizations. The descriptive statistics are presented as mean with
its 95% confidence interval. To estimate variability between repeated measurements of the artificial
signal (repeatability) and to characterize test–retest variability of repeated human measurements under
standard conditions, we used coefficient of variation (CV = (SD/mean × 100) × (1 + 1/4 n) where n is
the sample size) [32]. For repeatability measurements, we predefined the criterion of acceptance for CV
as 2%, whereas this was defined as 10% for test–retest variability measurements. For the four-finger
measurements, we calculated intraclass correlation coefficients (ICC) to show the correlation between
fingers and assess the contribution of interpersonal variability to overall variability. The ICC calculation
was based on a linear mixed-effects model. All statistical analyses were performed by using IBM SPSS
Statistics for Windows, version 26 (Armonk, NY, USA: IBM Corp.).

3. Results

3.1. Measurement Reliability of the Telemedicine System

Before addressing our main goal, i.e., that of assessing the reliability of human DVP measurements
in general, we determined the repeatability of measurements made by our telemedicine system.
Measurement error was assessed by detecting stable artificial signals generated by a pulse oximeter
simulator (Figure 3). The overall measurement error of the telemedical system may be produced by the
data analyzing algorithm, the measurement error of a single pulse oximeter, or the variability due to
using different pulse oximeter devices to detect the pulse signals. Firstly, in order to assess the combined
contribution of the algorithm and the error of a single pulse oximeter to the overall measurement
error, we detected the normal pulse signals of the simulator with a single, randomly chosen pulse
oximeter and repeated it five times (Table 1; Normal condition, 1st column). The results showed that
the measurement was stable: the confidence intervals (CIs) were very close to the mean of the five
measurements, and the coefficient of variation was below 1% for each calculated variable.

Then, we randomly chose four other pulse oximeters of the same release, repeated the
measurements as described above, and averaged the results of the 25 measurements. These showed
that the output data had low variability as evidenced by narrow CIs and small (lower than 1%) CVs for
each parameter (Table 1; Normal condition, 2nd column).

After proving that our system detects and analyzes normal pulse signals reliably, we repeated
the measurements described above with signal presets of the simulator, which simulate abnormal
conditions. For this purpose, we used the Abnormal 1 and the Abnormal 2 presets (Figure 3). The former
preset of the simulator generates a signal with high heart rate (95/min). In this setting, the reliability of
pulse detection and analysis was similar to that of the Normal condition except for the calculation of
the aging index and d/a parameter, as the second derivative of this preset has no detectable c and d
points (Table 1; Abnormal 1 condition).

The Abnormal 2 signal preset mimics a condition where the signal is of low intensity (a typical
source of error in DVP detection). Similar to what we observed with the Abnormal 1 signals, the results
of these measurements also showed stable detection and analysis for most parameters, except for the
aging index and the d/a ratio—for the same reasons as in Abnormal 1 (Table 1; Abnormal 2 condition).
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Table 1. Results of repeatability measurements. Means (and confidence intervals (CIs)) and coefficients of variation (CVs) of pulse contour variables measured by
the SCN4ALL telemedicine system. In order to evaluate the repeatability of the measurements by the system, we detected and analyzed artificial pulse signals
generated by a pulse oximeter simulator device. Three different signal settings of the simulator were selected (Normal, Abnormal 1, and Abnormal 2). For each setting,
measurements were repeated 5 times with a single randomly chosen pulse oximeter (n = 5 columns), and then these measurements were supplemented with the
repeated measurements from 4 other pulse oximeters of the same release (n = 25 columns, showing the results of 5 × 5 measurements).

Normal Abnormal 1 Abnormal 2
n = 5 n = 25 n = 5 n = 25 n = 5 n = 25

Variables Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%) Mean [CI] CV (%)

Aging index −1.13 [−1.14; −1.12] 0.41 −1.14 [−1.14; −1.13] 0.57 −3.37 [−4.45; −2.29] 27.1 −3.12 [−3.46; −2.79] 26.1 −3.71 [−4.60; −2.81] 20.4 −3.84 [−4; −3.69] 9.9
b/a −1.78 [−1.79; −1.78] 0.26 −1.79 [−1.79; −1.78] 0.32 −1.59 [−1.59; −1.59] 0.29 −1.59 [−1.60; −1.59] 0.32 −1.60 [−1.60; −1.59] 0.36 −1.60 [−1.59; −1.56] 0.33

c-d point detection
ratio (%) 100 [100; 100] 0 100 [100; 100] 0 0.60 [0.08; 1.28] 95.9 0.44 [0.23; 0.65] 116 2 [0.48; 3.52] 64.3 2.70 [2.25; 3.19] 42.2

d/a −0.75 [−0.75; −0.74] 0.77 −0.75 [−0.75; −0.75] 0.37 −0.48 [−1.01; −0.06] 95.9 −0.35 [0.18–0.52] 116 −0.64 [−1.09; −0.20] 58.7 −0.71 [−0.79; −0.63] 26.9
Left ventricular

ejection time index
(ms)

552 [552; 554] 0.22 553 [552; 553] 0.27 462 [461; 462] 0.06 462 [462; 462] 0.05 462 [462; 463] 0.06 462 [462; 463] 0.07

Heart rate (1/min) 55 [55; 55] 0 55 [55; 55] 0 95 [95; 95] 0 95 [95; 95] 0 95 [95; 95] 0 95 [95; 95] 0
Interbeat interval

(ms) 1089 [1089; 1089] 0 1089 [1088; 1090] 0.21 631 [631; 631] 0 631 [631; 631] 0.19 630 [630; 631] 0.07 631 [631; 632] 0.18

Reflection index (%) 35.5 [35.5; 35.6] 0.13 35.5 [35.5; 35.6] 0.11 32.7 [32.7; 32.8] 0.12 32.7 [32.7; 32.8] 0.13 32.8 [32.6; 32.9] 0.35 32.8 [32.7; 32.8] 0.42
Stiffness index (m/s) 4.62 [4.62; 4.63] 0.10 4.62 [4.62; 4.63] 0.26 7.34 [7.34; 7.34] 0 7.34 [7.33; 7.34] 0.18 7.34 [7.33; 7.36] 0.16 7.34 [7.33; 7.35] 0.34
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3.2. Reliability of Human Pulse Wave Measurements at Standard Conditions

In order to address our main goal of assessing the reliability of human pulse wave measurements
in general, we evaluated the test–retest variability of pulse wave parameter analysis under standard
conditions. For this purpose, resting measurements were repeated 10 times in 10 healthy individuals.
After calculating the coefficient of variation for each individual, the CVs of the 10 subjects were averaged.
The mean CVs for each parameter are presented in Table 2. These show that b/a, left ventricular ejection
time index, mean interbeat interval, stiffness index, and mean heart rate are parameters that remain
stable under standard measurement conditions (CVs lower than 10%). However, the aging index is
slightly variable (CV: 13.6%), and d/a and c–d point detection ratio are highly variable even when
measured under unchanged conditions.

Table 2. Results of test–retest variability measurements. Test–retest variability of pulse contour
parameters measured by the SCN4ALL telemedicine system. Measurements were performed on 10
healthy volunteers 10 times repeatedly under standardized conditions. Coefficient of variation (CV) for
the results of the consecutive measurements was calculated for each individual. Afterwards individual
CVs were averaged; they are presented in the table along with bracketed confidence intervals (CI).

Pulse Contour Variables CV % [CI]

Aging index 13.6 [4.78; 22.5]
b/a 3.84 [2.13; 5.55]

c–d point detection ratio (%) 33.6 [17.1; 50.1]
d/a 83.9 [9.5; 177]

Left ventricular ejection time (ms) 1.30 [0.75; 1.84]
Heart rate (1/min) 3.19 [1.99; 4.39]

Interbeat interval (ms) 3.23 [2.11; 4.35]
Reflection index (%) 7.43 [2.79; 12.1]
Stiffness index (m/s) 4.34 [2.20; 6.48]

In order to visualize how the detected test–retest (intrapersonal) variability relates to interpersonal
variability, Figure 4 displays the mean of measurements obtained from the 10 subjects for each
sequential measurement time point, with confidence intervals (CIs), along with the individual graphs
of the subjects. The graphs show that for each parameter, individual curves appear similar and show no
trend, only random fluctuations. The mean curves show no trends or extremes and have homogeneous
confidence intervals. The variability of the individual curves among measurements and the variability
between the individual curves look comparable.
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Figure 4. Graphs demonstrating the relationship between interpersonal variability and intrapersonal
variations of the computed pulse contour parameters. Measurements were performed on 10 healthy
volunteers 10 times repeatedly under standardized conditions. Means (±confidence intervals) are
presented (red solid line) for each consecutive measurement along with individual measurement data
(black lines). Individual lines are similar to each other and to the average line. The variability of the
individual curves among measurements and the variability between the individual curves seem to fall
in the same order of magnitude.
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3.3. Parallel Measurements on Four Fingers

Concomitant measurements on four different fingers were also performed in 25 individuals to test
how slightly different anatomic disposition of the fingers affects the detected pulse wave parameters.
The results are summarized in Table 3. The mean measurements of the four fingers are presented,
showing no relevant difference between the fingers. Moreover, the intraclass correlation coefficients
were over 99% for mean interbeat interval, mean heart rate, and left ventricular ejection time index,
indicating that the effect of using different fingers for measurement is negligible. The intraclass
correlation coefficients (ICCs) for stiffness index and c–d point detection ratio were about 90%, and they
were over 80% for reflection index, b/a, d/a, and aging index. These confirm that the effect of using
different fingers on variability is much less than that of the interindividual differences for these
parameters (see Table 3 for exact values for the different parameters).

Table 3. Results of measurements performed in parallel on 4 separate fingers on 25 healthy individuals.
For each individual, 2 consecutive 4-finger measurements were taken, and the average of the 2 was
used for further calculations. The results of the 25 subjects were averaged for each finger separately
and are presented in the table with bracketed confidence intervals (CIs). Intraclass coefficients (ICC)
were calculated to assess the correlation of results within the same individuals.

Left Index Finger Left Ring Finger Right Index Finger Right Ring Finger ICC

Pulse contour
variables

n = 25 n = 25 n = 25 n = 25
Mean [CI] Mean [CI] Mean [CI] Mean [CI]

Aging index −1.29 [−1.46; −1.13] −1.30 [−1.47; −1.13] −1.34 [−1.15; −1.12] −1.47 [−1.17; −1.25] 0.81

b/a −1.21 [−1.26; −1.152] −1.22 [−1.29; −1.16] −1.25 [−1.312; −1.20] −1.24 [−1.30; −1.17] 0.83

c–d point detection
ratio (%) 33.8 [25.3; 42.4] 31.3 [23.1; 39.5] 31.9 [22.9; 40.8] 32.3 [23.9; 40.78] 0.90

d/a −0.15 [−0.24; −0.06] −0.16 [−0.26; −0.07] −0.17 [−0.29; −0.06] −0.10 [−0.21; −0.01] 0.82

Left ventricular
ejection time index

(ms)
148 [56; 240] 148 [57; 240] 147 [56; 238] 147 [56; 237] >0.99

Heart rate (1/min) 70.6 [67.1; 74.2] 71.0 [67.5; 74.2] 70.9 [67.4; 74.4] 71.0 [67.4; 74.5] >0.99

Interbeat interval (ms) 862 [817; 906] 862 [818; 908] 862 [816; 907] 861 [817; 907] >0.99

Reflection index (%) 62.2 [59.2; 65.1] 60.8 [57; 64.6] 61.5 [58.4; 64.5] 61.3 [57.6; 65.0] 0.81

Stiffness index (ms) 7.74 [7.37; 8.10] 7.71 [7.32; 8.10] 7.58 [7.20; 7.97] 7.59 [7.13; 8.05] 0.90

4. Discussion

Home monitoring of cardiovascular patients is a promising approach in patient care which is
expected to gain ground in the upcoming decades and may constitute a relevant breakthrough in
primary and secondary prevention of cardiovascular diseases. Implementation of noninvasive simple
measurements, which give a deep insight into the momentary cardiovascular condition of the patient
and thus allow extensive evaluation, and reliable fast data analysis are basic requirements for such
telemedical systems. Incorporation of photoplethysmography-based analysis of the digital pulse wave
in telemedical systems may be an optimal solution for cardiovascular telecare; however, its reliability
is debated [21,33,34]. Our main purpose was to address the controversies related to the reliability of
PPG-based cardiovascular evaluation. We showed that measurement and evaluation of most pulse
contour parameters are reliable when analyzed with the SCN4ALL automated system, which is able
to track stable signals with high repeatability. This was confirmed by low test–retest variability of
repeated measurements performed under apparently constant cardiovascular conditions. Our study
also showed that otherwise valuable pulse contour parameters derived from the second derivative
of the DVP curve can only be evaluated with limitations. The detection of c and d deflections on
this curve is prone to errors, which interferes with the reliable interpretation of the aging index and
d/a parameter, which are indices of arterial stiffening and aging [14,24–28]. These limitations are
related to typical alterations of pulse wave morphology rather than inaccuracies in analysis, as the
automated algorithm used in this study was proven to detect c and d points reliably on normal stable
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curves. In conclusion, our study showed that PPG-based pulse wave analysis performed in this study
operates reliably with acceptable measurement errors and is capable of monitoring subtle alterations
in cardiovascular functioning.

Although the reliability of PPG-based pulse contour analysis is debated, no data are available on
the repeatability of the systems which are used for analysis in research studies. However, as these
systems are complex and comprise several sources of measurement errors, it is impossible to validly
interpret biological data obtained by PPG-based systems if information concerning repeatability is
not available. Therefore, we firstly checked the repeatability of the pulse contour measurements of
our telemonitoring system. This was assessed by calculating the variability of the DVP parameters
obtained from successive measurements of stable artificial pulse signals, which simulated healthy pulse
waves and were generated by a pulse oximeter simulator device. Such variability can be caused by
measurement errors of the pulse oximeter instrument and also by the automated algorithm analyzing
the detected pulse wave. The combined effect of these two factors on measurement variability was
investigated by testing the agreement among the results of five successive measurements performed
by the same randomly chosen pulse oximeter device. The variation was smaller than the predefined
2% criterion of acceptance for each parameter (Table 1; Normal condition). Afterward, we extended
the investigation to four additional instruments with which we performed the same measurements.
We pooled the 5 × 5 measurements and calculated the overall CVs, which then reflected the combined
variation caused by measurement error of a single pulse oximeter, analysis by the algorithm, and also
the “interinstrumental” variability of several pulse oximeters of the same product. The CVs calculated
in this way were also below the limit of acceptance (Table 1; Normal condition), showing that
measurements are highly repeatable even if different pulse oximeters are used. Testing of pulse
oximeter reliability was relevant in this setting because the applied devices had only been tested for the
reliability of oxygen saturation and heart rate calculations by the manufacturers, but it was unknown
whether they accurately track a continuous pulse wave for minutes.

After proving that our system reliably tracks stable signals, we addressed our main question
of determining whether PPG-based monitoring and analysis of the DVP are reliable. We aimed to
resolve the controversy in which it is often doubted that PPG-based methods can be used as diagnostic
tools [21,33,34] because they are highly sensitive to errors, causing pulse contour parameters to fluctuate
even if there is no alteration in cardiovascular functioning. However, we postulate that these alterations
reflect real changes in cardiovascular condition. To show this, we measured test–retest variability
under standardized measurement conditions. Measurements were performed in a quiet room at room
temperature; in the morning hours, preferably at least two hours after the last meal and coffee; in a
sitting, resting position, with hands held calm on a table. Speaking, moving, and mental activity
were avoided during data collection [24,26,35,36]. Naturally, this standardization does not remove
variability completely. However, the output contour parameters of our telemedical system showed
minimal test–retest variability for most of the parameters, namely for b/a, left ventricular ejection time
index, mean interbeat interval, stiffness index, and mean heart rate (CVs lower than 10%; Table 2).
This indicates that these parameters are suitable for patient follow-up and may well support clinical
decision, as the deviation of a measurement from the standard individual value most probably indicates
real, physiological, or pathological alterations in cardiovascular function. Anyway, to enhance the
precision of pulse contour analysis, we need to advise the users of PPG-based telemedical systems
to perform their daily measurements preferably under standard conditions. This standardization
does not require any particular cooperation from users; the recommendations are as simple as those
for blood pressure measurement and are confined to those conditions which have been reported to
influence pulse contour parameters [24,26,35,36].

In our study, we also provided preliminary data on the interpersonal variability of the studied
contour parameters (Figure 4). Based on our observations, we can conclude that interpersonal and
intrapersonal variabilities of the studied parameters are in the same range for healthy individuals
when measurements are performed under standard conditions. This indicates that normal ranges
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can be identified for these parameters and that deviations from these ranges may reflect DVP—and
hence cardiovascular—abnormalities both at individual (when compared to other results of the same
patient) and at population levels (when data are compared to values of healthy individuals). However,
larger studies should be conducted to define the normal reference ranges for the contour parameters
computed by telemedicine systems and to determine which alterations can be considered clinically
relevant. Indeed, reference ranges for these parameters are scant in the literature, and they have only
limited validity for larger populations [6,14,25,27,28,37–40].

As a satellite question, we also tested in this study how different anatomical disposition of the
fingers affects the results of pulse contour analysis. Without question, we recommend the use of the
same finger for each measurement. However, for some reason, the occasional use of another finger
may occur, which may limit the valid remote interpretation of the recordings. Therefore, we need to be
aware of whether this error causes significant alterations in the output results. In healthy individuals,
we could observe that there was no relevant difference in pulse contour parameters when measured
in parallel on the index and ring fingers of the two hands (Table 3). The calculated ICCs showed
that the effect of using different fingers on the variability of the outcomes is much less than the effect
of interpersonal differences. Therefore, changing to different fingers does not constitute a relevant
measurement error. However, we need to keep in mind that pathological alterations and diseases of
the supplying arterial tree may have an impact on the blood flow of the digital arteries. For this reason,
at the first patient visit, it is recommended to record pulse signals on several fingers on both sides and
analyze whether there are differences in the output parameters.

Finally, we evaluated the reliability of our proprietary analysis engine to detect and analyze
distinguished deflections of the second derivative PPG curve. Pulse wave analysis was originally
extended to the second derivative of the DVP by Takazawa et al. [14]. They defined notable points of
the curve which facilitate understanding of the pressure wave. Since then, several research groups
have related the height of the b, c, and d waves to the a-wave to create measures that can index
vascular pathologies (vascular aging, hypertension, arterial stiffness) and predict cardiovascular
endpoints [14,28,41,42]. Among these points, c and d points are particularly valuable, as they are
supposed to hold information about wave reflection [14], and the parameters derived from them
provide information about arterial stiffening [14,35]. However, detection of c and d inflections has
reportedly become a challenge for automated algorithms as their position and amplitude change along
with pathophysiological alterations of the PPG [8,22,43]. In this study, we analyzed the success of
c and d point identification by our algorithm and variability of parameters (namely d/a and aging
index) derived from these points. When we tracked the stable, normal artificial signal of the pulse
oximeter stimulator, the ratio of those cycles in which we could detect c and d points was 100% and
the variability of the aging index and d/a was minimal (CVs below 1%) (Table 1; Normal condition).
This shows that our engine reliably analyzes the second derivative curve. However, when we analyzed
the abnormal signals offered by the pulse oximeter simulator, the success of c and d point detection
became less reliable. We tested two different abnormal signal settings: Abnormal 1 setting generates
a pulse signal of high heart rate and almost totally absent second derivative c–d points, whereas
Abnormal 2 is a signal that simulates a weak pulse wave (e.g., similar to that observed in case of
vasoconstriction due to cold). Second derivative c–d points are absent in this setting as well. With
these settings, the calculation of other pulse contour parameters was still highly repeatable (CVs below
2%). However, c–d point detection ratio, the parameter which expresses the percent of those pulse
cycles in which c and d points are recognized by the algorithm, fell below 5% for each setting (Table 1;
Abnormal 1 and Abnormal 2 conditions). This increased the variability of all the parameters that are
derived from c and d values, namely aging index and d/a.

When performing repeated human measurements, we also observed diminished reliability of c
and d point analysis. Parameters derived from c and d points of the second derivative of the DVP
became more variable (aging index, d/a) (Table 2). This concurs with the relatively high variations in
c–d point detection ratio of consecutive measurements.
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The optimum solution for this problem is to improve the automated algorithm in order to make
the identification of second derivative c and d points more reliable. However, literature data suggest
that this may have limitations (reviewed by M. Elgendi [22]). Although we recognize that attempts
to make c–d point detection more precise are inevitable, we also propose the use of the c–d point
detection ratio as a tool that aids clinical assessment of parameters derived from the second derivative.
If the c–d point detection ratio reaches a certain value, we can reliably use parameters derived from the
second derivative to support patient evaluation; however, when it is low, these parameters should be
neglected. Determination of the minimum c–d point detection ratio that allows valid second derivative
parameter interpretation requires further studies; however, based on our preliminary observations,
it is around 30% (data not shown). Moreover, in the follow-up of a patient, a sudden or progressive
change in c–d point detection may be evaluated as a warning for pulse wave abnormalities.

5. Conclusions

In this study, we characterized the reliability of using PPG-based pulse contour analysis to support
clinical decision. For this purpose, we applied our self-developed SCN4ALL telemedical system and
used a multidirectional approach to explore and characterize the possible measurement errors in depth
in order to establish the reliability of this diagnostic tool. We showed that if we use a PPG-based
telemedicine system, which is proven to track artificial signals with high repeatability, it can analyze
most pulse contour parameters (e.g., stiffness index, reflection index, left ventricular ejection time
index) with high precision in human measurements. This allows high-fidelity evaluation of these
parameters and the detection of small cardiovascular alterations. However, correct evaluation of
some parameters derived from the second derivative of the pulse wave (i.e., aging index, d/a) can be
hindered by pathophysiological alterations or normal variants of the pulse wave which make c and
d point identification difficult. To handle this limitation, we recommend the introduction of the c–d
point detection ratio in pulse wave analysis and the consideration of second derivative parameters
only if its value is acceptable. In summary, we can claim that PPG-based pulse wave analysis is a
reliable measurement tool and meets the requirements set for cardiovascular telemonitoring devices.
Clearly, further, large-population studies are warranted to establish the guidelines for its application in
patient follow-up.
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Abstract: Alterations of heart rate variability (HRV) are associated with various (patho)physiological
conditions; therefore, HRV analysis has the potential to become a useful diagnostic module of
wearable/telemedical devices to support remote cardiovascular/autonomic monitoring. Continuous
pulse recordings obtained by photoplethysmography (PPG) can yield pulse rate variability (PRV)
indices similar to HRV parameters; however, it is debated whether PRV/HRV parameters are
interchangeable. In this study, we assessed the PRV analysis module of a digital arterial PPG-based
telemedical system (SCN4ALL). We used Bland–Altman analysis to validate the SCN4ALL PRV
algorithm to Kubios Premium software and to determine the agreements between PRV/HRV results
calculated from 2-min long PPG and ECG captures recorded simultaneously in healthy individuals
(n = 33) at rest and during the cold pressor test, and in diabetic patients (n = 12) at rest. We found
an ideal agreement between SCN4ALL and Kubios outputs (bias < 2%). PRV and HRV parameters
showed good agreements for interbeat intervals, SDNN, and RMSSD time-domain variables, for total
spectral and low-frequency power (LF) frequency-domain variables, and for non-linear parameters
in healthy subjects at rest and during cold pressor challenge. In diabetics, good agreements were
observed for SDNN, LF, and SD2; and moderate agreement was observed for total power. In
conclusion, the SCN4ALL PRV analysis module is a good alternative for HRV analysis for numerous
conventional HRV parameters.

Keywords: pulse rate variability; pulse wave analysis; photoplethysmography; telemedicine

1. Introduction

The time duration between heart beats (interbeat intervals, IBIs) continuously changes,
even at rest. These alterations are referred to as heart rate variability (HRV) and are brought
about by various oscillating regulatory mechanisms that directly or indirectly affect heart
rate (HR). These processes dominantly act by modifying the balance of sympathetic and
parasympathetic effects on the heart; however, HR fluctuations due to other regulatory
mechanisms (chemical, hormonal, and hemodynamic factors) also participate [1–4]. Control
mechanisms contributing to HRV are diverse (e.g., respiratory rhythm, oscillations of
baroreceptor activity, thermoregulation, etc.) and operate at different timescales [2,3,5,6].
In general, fluctuations of parasympathetic activity occur at higher frequencies, whereas
those of sympathetic activity and hormonal effects at lower frequencies [6].

HRV analysis provides indices that characterize the variability of the IBIs (time-domain
parameters) [2] and also that reflect the contribution of control mechanisms oscillating at
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different frequencies to this variability (frequency-domain parameters). In addition, so-
called non-linear parameters that characterize the unpredictability of HR are also derived.
HRV analysis is performed by analyzing normal-to-normal (i.e., non-arrhythmic) IBIs of
sequential heartbeats acquired from continuous ECG recordings of various lengths (from
2 min to 24 h) [1,5,7]. In general, healthy people tend to have higher HRV values, which
reflect the flexibility of regulatory systems to respond to different cardiovascular and
homeostatic challenges [8–13], whereas depressed HRV has been associated with a wide
variety of diseases and pathophysiological disorders. Moreover, alterations of certain HRV
indices have been proposed to be applicable for assessment of prognosis in post-infarction
patients and in patients with congestive heart failure [14–26].

These observations indicate that HRV analysis has a promising potential to evolve to
a useful medical tool to monitor cardiovascular status. Since physiological fluctuations
of autonomic functions make HRV parameters highly variable even within the same in-
dividual, HRV evaluation offers the most benefit if regular measurements are available.
This can be easily accomplished by using telemedical and wearable monitoring systems
equipped with HRV analysis modules. Nowadays, photoplethysmography (PPG)-based
devices to monitor heart rate and oxygen saturation are very common both in clinical
practice and everyday activities. PPG is a technique that detects blood volume changes in
the tissues with an optical method. The PPG signal is an invaluable source of information
of cardiovascular and autonomic functions. Among others, continuous PPG recordings
obviously offer the opportunity to determine IBIs from which pulse rate variability (PRV)
indices similar to HRV indices can be derived. However, it is debated whether PPG-based
PRV indices can be interpreted similarly to HRV parameters, since IBIs are defined as RR
intervals from ECG, and as pulse durations from PPG are not obviously identical. RR
intervals signify the duration of the electrical cardiac cycle, which may slightly differ from
PPG pulse durations (most often defined as peak-to-peak intervals of PPG pulse waves),
since the timing of peripheral pulse peaks is influenced by several additional factors includ-
ing the dynamics of ventricular ejection, elasticity of large arteries, peripheral resistance,
and the propagation velocity of the pulse wave [27–29]. Moreover, this implies that PRV
parameters may bear additional information about cardiovascular functioning, which is
not available in HRV indices. Disparities between HRV and PRV have already been studied
by several researchers, and various HRV and PRV indices have been reported to highly
correlate in healthy individuals [30–39]. However, most of these studies are restricted to
selected HRV parameters and resting healthy conditions. Comprehensive investigations
covering numerous HRV indices [27,31,34] (including time-domain, frequency-domain,
and non-linear parameters in the same study) and studies focusing on agreements between
HRV and PRV parameters under autonomic challenge [39] and in diseased conditions are
scarce in the literature.

Our research group has recently introduced a telemedical system (SCN4ALL) that
is designed for the remote monitoring of cardiovascular patients and is based on the
photoplethysmographic (PPG) detection and analysis of the digital arterial pulse wave [40].
The system analyzes continuous 2-min long PPG recordings, which are used to evaluate
morphological pulse characteristics [40]. In order to offer the most benefit for our users,
we have also elaborated an automated algorithm for PRV computation and equipped
the telemedical system with a PRV analysis module. The ultimate aim of this study is
the comprehensive assessment of the performance of the SCN4ALL pulse rate variability
analysis module.

First, we aimed to assess the agreements between the most widespread conventional
HRV and PRV indices computed from ECG and PPG captures, respectively. For this
purpose, we simultaneously recorded ECG and PPG on healthy individuals at rest and also
under cold pressor challenge, when the autonomic balance was disrupted. We calculated
IBIs and 17 HRV parameters from both captures using a clinically validated and widely
accepted algorithm (Kubios HRV Premium) [41] and then compared the results with Bland–
Altman analysis. The agreements of HRV and PRV parameters were also investigated in
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diabetic patients in order to assess if the interchangeability observed in healthy individuals
also holds for diseased conditions.

Automated algorithms used for HRV analysis use slightly different mathematical
approaches for the power spectral and non-linear analysis of HRV. In this study, we also
aimed to validate our proprietary SCN4ALL algorithm to a clinically accepted algorithm
in order to show its reliability before introduction to clinical research and practice. For
this purpose, we performed PRV analysis on 2-min long PPG recordings both with the
Kubios HRV Premium [41] and the SCN4ALL algorithms and compared the results with
Bland–Altman analysis.

2. Materials and Methods
2.1. Subjects

A total of 33 informed and consenting healthy (M/F: 14/19, age between 19 and
55, mean ± SD: 32.1 ± 9.7 years) and 12 type 2 diabetic (M/F:5/7, age between 43–79,
mean ± SD: 61.1 ± 12.8 years) subjects participated in this study. None of the healthy vol-
unteers had a history of cardiovascular disease, or cardiovascular medication, and none of
them reported any symptoms that may affect autonomic balance (sleep deprivation, stress,
headache, etc.). The participating diabetic patients had been treated for type 2 diabetes for
more than one year. The study was approved by the Regional and Institutional Committee
of Science and Research Ethics at Semmelweis University (approval number: 120/2018).

2.2. Measurements of HRV
2.2.1. Signal Recording

ECG. Einthoven II lead ECG was recorded with the Biopac BSL MP45 data acquisition
system (Biopac Systems Incl., Goleta, CA, USA). For ECG recording, disposable ECG elec-
trodes were attached to the right shoulder, left lower abdomen, and right lower abdomen,
and then connected to the negative, positive, and ground wires of a Biopac SS2LB electrode
lead set, respectively. The signal was amplified by a Biopac MP45 data acquisition unit,
which was directly connected to a desktop computer. BSL 3.7.7 software was used to
capture ECG for 2 min at a sample rate of 1000 Hz. ECG recordings were saved as .acq
files and were used to identify RR intervals by the Kubios HRV Premium analysis software
(Kubios Ltd., Kuopio, Finland) [41]. RR intervals were used as IBIs (IBI-ECG) to calculate
HRV parameters (for details, see data analysis).

PPG. For recording the PPG signal, a finger-clip transmission pulse oximeter (Berry
Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China) was attached to
the left index finger. Pulse wave detection and analysis were performed by the SCN4ALL
telemedicine system (E-Med4All Europe Ltd., Budapest, Hungary). In the system, the
pulse oximeter communicates via Bluetooth connection with a mobile application, which
initiates and terminates data acquisition and transmits the recording to a cloud-based
automated algorithm, which has been developed by our research group. First, the signals
sampled at a frequency of 200 Hz are upsampled to 1000 Hz; then, the algorithm identifies
the pulse cycles and peak-to-peak intervals as IBIs (IBI-PPG). Time series of IBI-PPG were
used to calculate PRV parameters (for details, see data analysis). Data captured by the
SCN4ALL system is stored on a cloud-based server equipped with safe data protection,
which conforms to the applicable regulations ((EU)2016/679) [40].

2.2.2. Protocol

We performed the measurements on 33 healthy and 12 diabetic participants under
the following conditions: measurement took place in a quiet room at room temperature,
in a sitting, resting position, with hands held quietly on a table. The pulse oximeter
was placed on the left index finger, and the ECG electrodes were attached as described
above. After mounting the devices, participants were instructed to minimize movements.
Measurements were initiated after 10 min of rest. First, we measured the blood pressure
of the participants with an Omron M3 Intellisense arm-cuff blood pressure meter 3 times,
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with 2-min intervals between the measurements (OMRON Corporation, Kyoto, Japan).
Afterwards, ECG and PPG signals were simultaneously recorded for 2 min using Biopac
3.7.7 software and SCN4ALL application, respectively.

After completion of the resting examination, the healthy volunteers remained seated,
and we repeated the measurements in these subjects also during a cold pressor cardiovas-
cular challenge, which was applied to disturb the resting autonomic balance. First, we
measured the participants’ blood pressures. Then, the right hand was immersed in a bowl
of cold water (+3–5 ◦C). ECG and PPG recordings were initiated simultaneously with the
cold pressor challenge and lasted for 2 min. Blood pressure measurements were repeated
immediately after the termination of the 2-min recording period.

2.3. Data Analysis

In the analysis, only those recordings were evaluated that consisted of normal-to-
normal IBIs. For this reason, results of 3 healthy subjects were completely excluded from
the study, because in 2 cases, previously unknown arrhythmia was seen on the ECG, and in
1 case, the PPG was contaminated with motion artefacts. Four additional healthy subjects
were excluded from the ‘cold pressor test’ study either for not tolerating the challenge
or for producing numerous PPG artefacts. Therefore, in the healthy group, results of
control measurements are presented for 30 (M/F: 14/16, age range 19–55, mean ± SD:
33 ± 9.7 years), and those of the cold pressor study for 26 subjects (M/F: 11/15, age range
19–55, mean ± SD: 33 ± 9.9 years).

We calculated HRV/PRV parameters from the two detection modalities (ECG and
PPG) by three methods:

1. ECG recordings (.acq files captured by the Biopac system) were opened in Kubios
HRV Premium software (ver. 3.3.1), which identified RR intervals (IBI-ECG) and
then computed HRV parameters. As only non-arrhythmic recordings were used, the
calculations were made using no artefact correction and with unfiltered settings. As a
result, HRV-ECG values were generated.

2. We saved peak-to-peak intervals calculated by the SCN4ALL algorithm from each
PPG recording (IBI-PPG) as .csv files. The PRV analysis of the IBI-PPG datasets were
executed with Kubios HRV Premium, with the same settings as in Point 1. As a result,
PRV-Kubios values were created.

3. The automatic algorithm of the SCN4ALL system was also used to calculate PRV
parameters from IBI-PPG data to produce PRV-SCN4ALL values. The functions of the
algorithm were programmed in Matlab. The algorithm uses the statistical approaches
recommended by the ‘Task Force of the European Society of Cardiology and the
North American Society of Pacing Electrophysiology’ [5] to determine time-domain
parameters. For frequency-domain analysis, a power spectrum density estimate
was calculated by the algorithm using a Fast Fourier Transform (FFT)-based Welch’s
periodogram method. After obtaining the FFT spectrum, absolute power values for
each frequency band were calculated by simply integrating the spectrum within the
band limits. To compute non-linear PRV parameters, detrended fluctuation analysis
was performed according to the work of C.G Peng et al. [42]. SCN4ALL also displays
a Poincaré plot with SD1 and SD2 parameters. Poincaré plot is a graph of IBI(n)
on the x-axis versus IBI(n + 1) on the y-axis [43,44]. SD1 is the standard deviation
of the distance of the points from the “x = y” axis and reflects short-term changes,
whereas SD2 is the standard deviation of the distance of the points from the “x = −y +
2xIBI(mean)” axis [44,45]. SD1 and SD2 determine the length and width of a fitted
ellipsis, respectively, the center of which is at the coordinate of (IBI(mean);IBI(mean)).
In fact, SD1 and SD2 can be mathematically derived from time-domain indices;
therefore, we calculated SD1 and SD2 as follows [44,46–48]:

SD1 = rMSSD× 1√
2
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SD2 =
√

2× SDNN2 − SD12

Comparison of the HRV and PRV results derived according to points 1 and 2 describes
the agreement between the ECG and PPG methodologies (performed for healthy indi-
viduals at rest and during cold pressor test and for diabetic subjects at rest). In contrast,
comparison of the PRV results between points 2 and 3 provides information about the
performance of the SCN4ALL PRV analysis engine compared to the widely used and
clinically accepted Kubios HRV Premium analysis [41]. The analysis was performed for a
wide range of HRV/PRV parameters, which are listed in Table 1.

Table 1. Heart rate variability parameters analyzed in the study.

Time-Domain Parameters

Mean IBI The mean normal-to-normal interbeat interval (IBI)
SDNN The standard deviation (SD) of IBIs (NN: normal-to-normal IBI)
MHR Mean heart rate

RMSSD The square root of the mean squared differences of successive IBIs
pNN50 The proportion of differences of successive IBIs exceeding 50 ms (NN: normal-to-normal IBI)
MnHR Minimum heart rate
MxHR Maximum heart rate

Frequency-Domain Parameters

LF power Absolute power of the low-frequency (LF) band (0.04–0.15 Hz)
HF power Absolute power of the high-frequency (HF) band (0.15–0.4 Hz)

LFnu Relative power of the low-frequency (LF) band expressed in normalized units (nu)
HFnu Relative power of the high-frequency (HF) band expressed in normalized units (nu)
Ptotal Total spectral power (P)

LF/HF ratio Ratio of low frequency (LF) to high frequency (HF)

Non-Linear Parameters

SD1 Standard deviation (SD) 1 of the Poincaré plot representing the length of the ellipse fitted to the plot
SD2 Standard deviation (SD) 2 of the Poincaré plot representing the width of the ellipse fitted to the plot

SD1/SD2 The ratio of SD1 and SD2
DFAα1 Short term fluctuation slope (α1) obtained by detrended fluctuation analysis (DFA)

2.4. Bland–Altman Analysis

The agreements between HRV/PRV parameter values (HRV-ECG vs. PRV-Kubios
and PRV-Kubios vs. PRV-SCN4ALL) were assessed by Bland–Altman analysis [49,50].
The differences of measurements were plotted against the means of the measurements.
Bias was defined as mean difference and is presented with 95% confidence intervals
(C.I.). To calculate percentage bias, bias is expressed as the percentage of the mean of the
measurements. Limits of agreement were calculated as bias ± 1.96 standard deviation.
The analysis was performed with MedCalc Statistical Software v.19.6.4 (MedCalc Software,
Ostend, Belgium).

3. Results
3.1. Agreements between ECG-Based HRV and PPG-Based PRV Parameters

The Bland–Altman plots used for the analysis of agreement between PRV and HRV
parameters derived from 2-min long PPG and ECG recordings, respectively, are shown
in Figure 1. In this setting, conventional HRV indices were calculated by the algorithm
of the Kubios HRV Premium software. The values of variables referring to IBI duration
(IBI, mean HR, minimum HR, and maximum HR) are apparently identical in PPG and
ECG based calculations (Figure 1A, and Supplementary Figure S1A). Among time-domain
parameters, SDNN and RMSSD showed good agreement. The percentage biases were
−3.2% (95% C.I.: −5.2; −1.2) and −9.5% (95% C.I.: −14.3; −4.6), respectively, indicating
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that the values calculated from PPG recordings are slightly higher. However, in the case
of pNN50, the bias was −27.3% (95% C.I.: −53.2; −1.4) (Figure 1A). Among frequency-
domain parameters, good agreement was observed for total and low-frequency spectral
power (percentage bias −8.2% (95% C.I.: −10.6; −5.8) for total power (Ptotal); and −2.7%
(95% C.I.: −4.9; −0.5) for LF) (Figure 1B and Supplementary Figure S1B)). However, the
agreement for high-frequency power was weaker (percentage bias−26.5% (95% C.I.: −35.6;
−17.5) (Supplementary Figure S1B)), with significant overestimation of the parameter by
the PPG based calculation. The calculated non-linear parameters (DFAα1, SD1, SD2, and
SD1/SD2) each showed good agreement (Figure 1C).
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Figure 1. Bland–Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long ECG
(indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings captured under resting
conditions. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs
exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low frequency to high
frequency), LF (absolute power of the low-frequency band (0.04–0.15 Hz)), HF (absolute power of the high-frequency band
(0.15–0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),
SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as
‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD) and
their confidence intervals.

When Bland–Altman analysis was performed on HRV vs. PRV parameters calculated
from 2-min ECG and PPG recordings obtained from healthy individuals during cold
pressor test, similar tendencies could be observed with similar IBI durations, and with
good, clinically acceptable agreements for SDNN, RMSSD, total power, and LF; and also,
for non-linear parameters (Figure 2 and Supplementary Figure S2.).
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Figure 2. Bland–Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long
ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained during cold
pressor test. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs
exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low frequency to high
frequency), LF (absolute power of the low-frequency band (0.04–0.15 Hz)), HF (absolute power of the high-frequency band
(0.15–0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),
SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short-term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as
‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD) and
their confidence intervals.

In diabetic individuals, the Bland–Altman analysis showed good agreements be-
tween HRV and PRV values for IBI durations (Figure 3A), SDNN (Figure 3A), LF power
(Figure 3B), and SD2 variables (Figure 3C) (percentage bias < 10% for each parameter).
Slightly weaker, moderate agreements were observed for total power (Figure 3B; percent-
age bias −14.2% (95% C.I.: −23.3; −5.1)); and for DFAα1 non-linear parameter (Figure 3C;
percentage bias 13.8% (95% C.I.: 0.0; 27.6)). However, in case of RMSSD and pNN50 time-
domain variables (Figure 3A); HF and relative (HFnu, LFnu, LF/HF) frequency-domain
indices (Figure 3B and Supplementary Figure S3); and SD1 and SD1/SD2 non-linear pa-
rameters (Figure 3C), the agreements were found to be insufficient (percentage bias > 20%).
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Figure 3. Bland–Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long ECG
(indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from diabetic
patients under resting conditions. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of
IBIs), RMSSD (the square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of
successive IBIs exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low
frequency to high frequency), LF (absolute power of the low-frequency band (0.04–0.15 Hz)), HF (absolute power of the
high-frequency band (0.15–0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the
line of identity), SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1
(short-term fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences
(indicated as ‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard
deviations (SD) and their confidence intervals.

3.2. Agreements between PRV Calculations of the SCN4ALL and Kubios HRV
Premium Algorithms

Comparison of the PRV parameters calculated by the SCN4ALL and the Kubios HRV
Premium algorithm from 2-min long PPG recordings showed perfect agreement in case of
all PRV variables. For time-domain and non-linear variables (Supplementary Figure S3),
the percentage biases were smaller than 0.5%. In case of frequency-domain variables,
these values were below 2% and well within the clinically acceptable limits and with no
significant difference between the outputs of the two algorithms (Figure 4).

The agreement between the outputs of the algorithms remained unaltered when 2-
min long recordings acquired in healthy subjects during cold pressor test (Figure 5 and
Supplementary Figure S5) and in diabetic patients at rest (Figure 6 and Supplementary
Figure S6) were used for analysis.
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Figure 5. Bland–Altman plots of frequency-domain HRV/PRV parameters calculated by the SCN4ALL (indicated as
‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min
long PPG recordings obtained during cold pressor test. (A) Ptotal (total spectral power), (B) LF/HF (ratio of low frequency
to high frequency), (C) LF (absolute power of the low-frequency band (0.04–0.15 Hz)), (D) HF (absolute power of the
high-frequency band (0.15–0.4 Hz)) Bias is calculated as the mean of differences (indicated as ‘Mean’—blue solid line) and is
presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD) and their confidence intervals.
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Figure 6. Bland–Altman plots of frequency-domain HRV/PRV parameters calculated by the SCN4ALL (indicated as
‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from
2-min long PPG recordings obtained from diabetic patients under resting conditions. (A) Ptotal (total spectral power),
(B) LF/HF (ratio of low frequency to high frequency), (C) LF (absolute power of the low-frequency band (0.04–0.15 Hz)),
(D) HF (absolute power of the high-frequency band (0.15–0.4 Hz)). Bias is calculated as the mean of differences (indicated
as ‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD)
and their confidence intervals.

4. Discussion

In our study, using Bland–Altman plots, we have shown that PRV and HRV calcula-
tions (obtained from PPG and ECG recordings, respectively) are in good agreement for
several conventional HRV/PRV parameters when the analysis is performed using short
(2-min long) recordings. Apparently, there is no significant difference in mean interbeat
intervals defined from PPG and ECG captures, and for several HRV/PRV parameters
computed by the Kubios software, the limits of agreement are within 10% (i.e., SDNN and
RMSSD among time-domain variables, total power and LF frequency-domain indices, and
non-linear parameters). The agreement of HRV parameters obtained by the two methods
prevailed even if the resting autonomic balance had been disrupted by a cardiovascular
challenge (cold pressor test). In diabetic individuals, the good agreements between HRV
and PRV indices were also valid for SDNN, LF, and SD2 indices, and moderate agreements
could be detected between total spectral power and DFAα1 values. However, for parame-
ters that are considered to be conventional markers of short-term HRV, weaker agreements
were found. We have also shown that the outputs of the PRV algorithm of the SCN4ALL
telemonitoring system are in perfect agreement with the values computed by Kubios HRV
Premium when the analysis is performed on data derived from short (2-min long) PPG
captures. Our study extends our scientific knowledge about the interchangeability of HRV
and PRV analysis with relevant new pieces, as it is a comprehensive investigation covering
a large number of HRV/PRV parameters and assessing their agreements not only in healthy
individuals at rest but also under autonomic challenge and in diabetes.

Autonomic function has been in the focus of research for decades, and several non-
invasive techniques have been proposed for its evaluation (ECG, PPG, electroencephalogra-
phy, sudomotor function, etc.) [51–53]. Many of these may also be incorporated in remote
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monitoring systems, and experiences acquired in signal analysis of one method have
often facilitated progression in the procession of other signals. Using the HRV analysis
approach for PPG signals is a good example of this. However, in the literature, it is con-
troversial whether HRV parameters calculated from time series of RR intervals obtained
from ECG recordings and from pulse durations obtained from PPG signals or continuous
non-invasive blood pressure monitoring (e.g., Finapress) can be used alternatively [54].
Nowadays, the number of wearable and telemedical devices that are equipped with either
ECG or PPG detectors dynamically increases [55,56]. This may open new prospects for sci-
entists and physicians to exploit the opportunities offered by HRV/PRV analysis in patient
evaluation. However, most of our scientific knowledge on HRV alterations in different
(patho)physiological conditions relies on ECG-based studies, mostly following a task force
statement of the European Society of Cardiology and the North American Society of Pacing
Electrophysiology [5]. Therefore, it is important to assess the agreement between HRV and
PRV under different (physiological and pathological) conditions in order to confidently
accept the PPG-based PRV-analysis as a reliable alternative to monitor HRV changes. So
far, several studies have compared PRV to the gold standard of ECG-derived HRV [30–39].
Some publications found good agreements between PRV and HRV, especially in younger
subjects and at rest [31,57], or during sleep [58], and mostly in time-domain parameters.
However, some studies have found weaker agreements between HRV and PRV values for
HRV indices, which are generally influenced by short-term regulatory fluctuations (RMSSD,
pNN50, HF, LF/HF, SD1) [32,34,36,54,59–61]. Their results indicate that PRV overestimates
HF but underestimates LF/HF ratio and LF percentage. However, it is notable that this is
observed more often in continuous blood pressure monitoring studies (Finapress) than in
PPG studies. There is sparse evidence of whether frequency-domain PRV variables behave
similarly to HRV variables and have some value in diagnosing autonomic function [38,62].
In our study, we have shown that among time-domain variables, PPG-based and ECG-
based SDNN and RMSSD values have good agreements (Figure 1A). Similar to previous
studies, pNN50 was overestimated when PPG-based IBIs were used [27,32,34,36,54,59].
On the other hand, total spectral power and low-frequency power computed from PPG
and ECG had similar values (Figure 1B). Interestingly, high-frequency power was signif-
icantly overestimated by the PPG-based analysis (Figure 1B). This is in agreement with
some studies, in which similar observations were made for certain frequency-domain vari-
ables [32,34,36,39,54,60,61,63]. It has been speculated that the reason for this disparity in
HF power and other indices reflecting short-term variability is that spontaneous breathing
rate lying within the HF frequency band has a greater impact on PRV than on ECG-based
HRV [54,59,62,64].

We also observed good agreements for non-linear parameters. The relevance of these
parameters in HRV analysis is not completely established, and there is no consensus on the
measurement duration which can yield clinically informative non-linear variables [65–67].
Moreover, some of these parameters are in a direct mathematical relationship with other
parameters and bear the same information (e.g., SD1 and RMSSD). Anyway, our results
show that PPG-based PRV analysis is a good alternative for HRV analysis in case of
non-linear parameters, too.

Although several studies have shown correlations between PRV and HRV variables,
these were observed at rest or during sleep. However, exercise, stress, or changing position
were observed to diminish these agreements. The authors speculated that in physically
active states, the disagreement is most probably due to motion artefacts [34,39]. On the
other hand, the disparity between PRV and HRV variables can also be the consequence
of the altered autonomic balance, which may affect pulse rate and heart rate differentially.
In our study, we used the cold pressor cardiovascular challenge to disrupt the resting
autonomic balance. This allowed examination of the effects of altered autonomic func-
tion without producing motion artefacts. Although not every subject had the same usual
and expected cardiovascular response during the test, there was some disruption of the
autonomic balance in every case (average increase in systolic pressure: 5.4 ± 7.7 mmHg,
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average increase in diastolic pressure: 3.7 ± 6.6 mmHg). The agreements in the PPG- and
ECG-based analysis described at rest could also be observed during the cold pressor test
(Figure 2, and Supplementary Figure S2), implying that PPG-based PRV analysis can be
applicable also in conditions in which altered autonomic function has been described by
HRV analysis. In our study, we chose a cold pressor test to modify autonomic balance,
because this allowed us to avoid undesirable motion artefacts. However, this may have
limitations, as in another study it has been shown that whole-body cold exposure has
differential effects on HRV and PRV parameters, thereby modifying the agreements be-
tween them [27]. It was speculated that this can be most probably due to the unbalanced
influence of cold exposure on central and peripheral sympathetic activity. In our study,
cold exposure on one hand did not abolish the agreements of HRV and PRV parameters,
presumably because its effects differ from those of whole-body cold exposure.

We have also conducted a pilot study to assess the agreements between HRV and PRV
indices in type 2 diabetic patients in order to find out whether the agreements observed
in healthy individuals are also valid in a diseased condition. Diabetes is characterized
by reduced total and LF power, and also by the decrease of HRV parameters that signify
mainly short-term variability (SDNN, RMSSD, pNN50, HF) [68–71]. These alterations
are caused by the deleterious effects of the impaired glucose metabolism on autonomic
nerves [70]. We found that for several relevant HRV parameters, such as SDNN, LF power,
and SD2 parameters, good agreements can be detected between HRV and PRV derived
values. Moreover, we observed moderate agreements (bias < 15%) in case of DFAα1 and
total power. However, in case of those parameters that describe short-term variability
(RMSSD, pNN50, SD1) though both HRV and PRV values tended to be lower in the
diabetic group, the HRV-PRV agreements were weaker than those observed in healthy
individuals. Our results suggest that several conventional HRV/PRV parameters can be
used interchangeably not only in healthy but also in diabetic individuals; however, there are
other parameters with non-negligible disparities. It does not necessarily imply that those
parameters that show weaker agreements in our study are not worth evaluating. However,
our findings highlight the relevance of larger-scale comparative HRV vs. PRV studies to
verify whether diabetes or various other disease conditions are associated with typical
alterations of these PRV variables. Data mining techniques to identify correlations between
PRV patterns and different diseases could effectively improve our scientific knowledge
in this field. As a result, we may identify the differences even in localized autonomic
responses accounting for HRV and PRV disparities in order to establish sound diagnostic
indications for HRV and PRV analyses.

HRV algorithms used for calculation of HRV variables may apply different mathemat-
ical approaches. This may limit the comparison of studies and the valid interpretation of
the HRV variables and their alterations in different conditions. Therefore, we considered it
to be relevant to validate our algorithm to a clinically widely accepted and frequently used
HRV algorithm, the Kubios HRV Premium. In case of time-domain variables, we should
expect perfect agreement between algorithms, since these parameters are calculated as sta-
tistical parameters describing IBI variability using formulae recommended by a task force
statement [5]. However, for spectral analysis, two main different approaches can be used
to separate HRV into frequency components, namely Fast Fourier Transformation (FFT)
and autoregressive modeling [5]. For each approach, several slightly different functions
can be applied. The SCN4ALL algorithm uses an FFT-based Welch’s periodogram method,
which is similar to the one applied by the Kubios algorithm. For calculation of non-linear
parameters, the SCN4ALL algorithm uses detrended fluctuation analysis according to
the work of Peng et al. [42] and a Poincaré plot, which are characterized by SD1 and SD2
parameters defined in the “Methods” section above. Comparison of the SCN4ALL algo-
rithm outputs to the Kubios outputs by Bland–Altman analysis showed perfect agreement
between the methods when we analyzed 2-min long PPG-based IBI time series obtained
from either healthy individuals at rest and during cold pressor cardiovascular challenge or
from diabetic patients at rest. In case of those parameters where a simple mathematical for-
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mula is applied (time-domain variables, SD1 and SD2 non-linear variables), the negligible
differences between the SCN4ALL and Kubios results are attributable to slightly different
rounding schemes used by the algorithms.

Signal processing of telemedical systems may be prone to signal loss and uncertainty
due to multistep signal transformation [72,73]. This can be interpreted as the uncertainty of
the data used for classification. Effective classification of evidence requires the use of fuzzy
classifiers [74,75]. Based on multiple studies [76–78], the fuzzy data application allows to
increase the accuracy of the classification of uncertain data [79]. In the case of the PPG-
based system used in our study, there are two possible steps where signal loss may occur.
The first is the analog-to-digital conversion of the signal. In the case of heart rate variability,
only the quantization error can play a role. The SCN4ALL telemedicine system operates at
a sampling rate of 200 Hz, meaning that at a heart rate of 60 beats/minutes, it only creates a
0.5% error. This is clinically acceptable and does not affect the diagnostic value of the given
system. The second step where some information loss can be expected is at the filtering of
the digitized signal. However, it only affects the morphology of the PPG signal but not the
timely relations of the fiducial timepoints. Therefore, filtering the signal does not affect the
peak-to-peak distances of the pulse wave from which IBIs for PRV calculation are derived.
Furthermore, in our previous article [40], we examined how artificial non-variable PPG
signals generated by a simulator (both normal and simulated pathological signals) were
processed by the system, and the repeatability was found to be perfect in case of most
studied parameters [40]. Although this study focused on morphological parameters, we
also investigated the reliability of IBI determination, and the error (expressed as coefficient
of variation) was virtually zero. Our PRV analysis module uses only IBIs as detected signals
for further computation, so we think that signal loss and uncertainty have a negligible
effect on our analysis.

5. Conclusions

Our study showed that the HRV algorithm of the SCN4ALL system is as accurate as
the widely used Kubios HRV Premium algorithm for PRV analysis of short (2-min long)
time series of interbeat intervals obtained by PPG recordings. PRV analysis performed on
PPG pulse signals is in good agreement with ECG-based analysis for numerous clinically
relevant HRV parameters, including SDNN and RMSSD time-domain parameters, total
and low-frequency spectral power frequency-domain variables, and non-linear parameters
in healthy individuals at rest, and also under an autonomic challenge. Moreover, we
identified several parameters (SDNN, total power, LF, SD2, and DFAα1) that showed
moderate to good HRV-PRV agreements in diabetic patients. This indicates that these
parameters can be reliably used for HRV-based evaluation of autonomic function in healthy
and diabetic individuals regardless of whether ECG or PPG provides the time series of
interbeat intervals. Other conventional PRV parameters computed from PPG recordings
should be interpreted cautiously, keeping in mind that clinical evidence obtained on ECG-
based HRV alterations in different disease conditions can be applied with limitations.
Despite these limitations, we can claim that PPG-based PRV analysis of the SCN4ALL
system is suitable for evaluation of PRV alterations, and to pursue research to establish
the clinical relevance of PRV analysis in the follow-up of autonomic dysregulation in
various diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21165544/s1, Supplementary Figure S1: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings captured in healthy individuals
under resting conditions; Supplementary Figure S2: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from healthy individuals
during cold pressor test; Supplementary Figure S3: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
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ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from diabetic patients
under resting conditions; Supplementary Figure S4. Bland–Altman plots of HRV/PRV parameters
calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium
HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min long PPG recordings captured
in healthy individuals under resting conditions; Supplementary Figure S5: Bland–Altman plots of
HRV/PRV parameters calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL’) and
the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min long PPG
recordings obtained from healthy individuals during cold pressor test; Supplementary Figure S6:
Bland–Altman plots of HRV/PRV parameters calculated by the SCN4ALL (indicated as ‘parameter
name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms
from 2-min long PPG recordings obtained from diabetic patients under resting conditions.
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Supplementary Figure S1: Bland-Altman plots of HRV/PRV parameters computed by the Kubios Premium 
algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter 
name-PPG’) recordings captured in healthy individuals under resting conditions. 

 
 
A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart 
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative 
power of the high-frequency band). Bias is calculated as the mean of differences  (indicated as ‘Mean’ - 
blue solid line)  and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations 
(SD) and their confidence intervals.  



 
Supplementary Figure S2:  Bland-Altman plots of HRV/PRV parameters computed by the Kubios 
Premium algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as 
‘parameter name-PPG’) recordings obtained from healthy individuals during cold pressor test.  

 
A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart 
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative 
power of the high-frequency band). Bias is calculated as the mean of differences  (indicated as ‘Mean’ - 
blue solid line)  and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations 
(SD) and their confidence intervals.  
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Supplementary Figure S3: Bland-Altman plots of HRV/PRV parameters computed by the Kubios Premium 
algorithm from 2-min long ECG (indicated as ‘parameter name-ECG’) and PPG (indicated s ‘parameter 
name-PPG’) recordings obtained from diabetic patients under resting conditions. 
 
 

 
A: Time-domain parameters: HR (mean heart rate), HR min (minimum heart rate), HR max (maximum heart 
rate) B: Frequency-domain parameters: LFnu (relative power of the low-frequency band), HFnu (relative 
power of the high-frequency band). Bias is calculated as the mean of differences  (indicated as ‘Mean’ - 
blue solid line)  and is presented with 95% confidence intervals (green) and +/- 1.96 standard deviations 
(SD) and their confidence intervals.  
 



 
Supplementary Figure S4: Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL 
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings captured in healthy individuals under resting 
conditions.  
 
 

 
 
 
A: Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the 
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of 
successive IBIs exceeding 50 ms), HR (mean heart rate). B. Frequency-domain parameters: LFnu (relative 
power of the low-frequency band), HFnu (relative power of the high-frequency band). C: Non-linear 
parameters: SD1 (Poincaré plot standard deviation perpendicular the line of identity), SD2 (Poincaré plot 
standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short term fluctuation 
slope obtained by detrended fluctuation analysis) 
Bias is calculated as the mean of differences  (indicated as ‘Mean’ - blue solid line)  and is presented with 
95% confidence intervals (green) and +/- 1.96 standard deviations (SD) and their confidence intervals.  
 
 
  



Supplementary Figure S5: Bland-Altman plots of HRV/PRV parameters calculated by the SCN4ALL 
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings obtained from healthy individuals  during cold pressor 
test.  
 

 
 
 
A: Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the 
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of 
successive IBIs exceeding 50 ms), HR (mean heart rate). B. Frequency-domain parameters: LFnu (relative 
power of the low-frequency band), HFnu (relative power of the high-frequency band). C: Non-linear 
parameters: SD1 (Poincaré plot standard deviation perpendicular the line of identity), SD2 (Poincaré plot 
standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short term fluctuation 
slope obtained by detrended fluctuation analysis) 
Bias is calculated as the mean of differences  (indicated as ‘Mean’ - blue solid line)  and is presented with 
95% confidence intervals (green) and +/- 1.96 standard deviations (SD) and their confidence intervals.  
  



 
 
 
Supplementary Figure S6: Bland-Altman plots of  HRV/PRV parameters calculated by the SCN4ALL 
(indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-
Kubios’) algorithms from 2-min long PPG recordings obtained from diabetic patients under resting 
conditions. 
 

 
 
 
A: Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the 
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of 
successive IBIs exceeding 50 ms), HR (mean heart rate). B. Frequency-domain parameters: LFnu (relative 
power of the low-frequency band), HFnu (relative power of the high-frequency band). C: Non-linear 
parameters: SD1 (Poincaré plot standard deviation perpendicular the line of identity), SD2 (Poincaré plot 
standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short term fluctuation 
slope obtained by detrended fluctuation analysis) 
Bias is calculated as the mean of differences  (indicated as ‘Mean’ - blue solid line)  and is presented with 
95% confidence intervals (green) and +/- 1.96 standard deviations (SD) and their confidence intervals.  
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Evaluation of the Age Dependence 
of Conventional and Novel 
Photoplethysmography Parameters
Flóra Antali1*, Dániel Kulin1,2, Sándor Kulin2 and Zsuzsanna Miklós1,3 

Abstract 

Background  Cardiovascular (CV) mortality increases with age partly due to physiological ageing of the CV system. 
Early vascular ageing raises CV risks. Personalizing CV risk assessment by defining CV age could reduce CV events. 
Photoplethysmography (PPG), which analyses the peripheral arterial pulse wave, may be an effective method for esti-
mating CV age. Ageing index (AGEi) and some other PPG parameters were proven to have age correlation; however, 
the age dependence of many other pulse wave parameters remains unclear. We aimed to identify age correlations 
of PPG indices and pulse rate variability (PRV) parameters including a few novel parameters which were calculated 
to further investigate the various aspects of ageing.

Our study included 118 healthy (M/F: 53/65, mean age: 31.8 ± 11.8 SD) volunteers for PPG parameter calcula-
tion and 106 (M/F: 44/62, mean age: 32.6 ± 12.2 SD) for PRV parameters (age: 19–74). 2-min pulse wave recording 
was obtained using a pulse oximeter. An automated, proprietary software evaluated PPG and PRV parameter values, 
which were compared with chronological age (Pearson correlation and non-linear analysis).

Results  PPG parameters describing various time-dependent aspects of cardiac ejection positively correlated 
with age, while those indicating arterial elasticity showed negative correlation. Composite PPG parameters proposed 
as indicators of CV health and fitness had negative, non-linear correlation. Most PRV parameters exhibited negative 
correlation, indicating reduced adaptive capacity due to ageing (p < 0.05, IrI > 0.3).

Conclusions  PPG-based pulse waveform analysis provides a wide range of age-related parameters which display 
different patterns of age correlation, making it a promising method for estimating cardiovascular age. Future studies 
will include subjects with vascular ageing conditions beyond physiological values (e.g., hypertension, heart failure, 
coronary artery disease).

Keywords  Photoplethysmography, Vascular ageing, Pulse wave analysis, Pulse rate variability

1  Introduction
Cardiovascular (CV) diseases, including atherosclero-
sis and stroke are major public health challenges, con-
sistently ranking among the leading causes of death 
worldwide in recent decades, especially in the elderly 
population [1, 2]. Age-related phenotypic alterations 
in the CV system, and more importantly their acceler-
ated development brought about by CV risk factors, are 
among the most relevant (patho)physiological changes 
that drive these diseases [3, 4]. Therefore, identifying 
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new, affordable biomarkers that reflect (CV) aging is crit-
ical for improving treatments and preventive strategies.

Peripheral pulse wave analysis may offer a valuable 
method for monitoring CV health and predicting disease 
progression [5, 6]. Calculating heart rate from continuous 
pulse wave recordings may have relevance in diagnostics, 
as pulse rate variability (PRV) is an important indicator 
of various diseases [7–9]. Beyond PRV, the morphologi-
cal characteristics of pulse waves have yielded consider-
able attention, with numerous studies suggesting that 
these parameters may be associated with CV disease 
states such as atherosclerosis and heart failure [5, 10, 11].

Photoplethysmography (PPG) is a simple, easily acces-
sible, and highly repeatable method for real-time moni-
toring of pulse waves [12]. This non-invasive technique 
involves illuminating the skin and tissues below, typi-
cally the finger, with an LED and measuring the intensity 
of the reflected or transmitted light, which corresponds 
to pressure changes in the vascular system. Importantly, 
PPG has no known adverse effects [13].

The promising results from previous studies suggest 
that PPG-based pulse wave analysis could gain traction in 
CV diagnostics and home monitoring in the near future 
[14]. While it holds potential as a tool for assessing CV 
aging, its broader use is constrained by the limited inves-
tigation of age-related correlations in most PPG-derived 
parameters. Although some parameters have been linked 
to age-related changes, most studies have focused on the 
age dependence of individual or a few selected parame-
ters, leaving the majority unexplored [6, 15–17].

However, a combination of parameters or composite 
measures derived from multiple parameters might bet-
ter capture age-related changes than single parameters 
alone. PPG-based monitoring devices, equipped with 
advanced algorithms, enable the simultaneous assess-
ment and complex analysis of numerous parameters [5, 
18]. Consequently, research aimed at identifying a set of 
simultaneously recorded PPG features with the strong-
est correlation to CV age could significantly enhance the 
potential of PPG-based pulse wave analysis. Additionally, 
most published studies have assumed linear age depend-
ence of parameters [15–17], which may not accurately 
reflect reality. Many parameters could exhibit non-linear 
relationships with age, particularly in women, where CV 
changes accelerate after menopause.

The primary goal of our research was to identify age-
dependent changes in a large set of simultaneously 
recorded pulse wave parameters, including PRV parame-
ters, pulse morphology parameters and newly developed 
composite score parameters, aiming to establish the util-
ity of PPG-based pulse wave analysis as a tool to assess 
CV aging. For this purpose, we utilized an efficient, 
automated software that enables accurate, rapid, and 

reproducible evaluation of large datasets; and a compre-
hensive database of pulse wave data from a healthy adult 
population was established. To better characterize age-
dependent parameter changes, we used both linear and 
non-linear analyses to describe age-related trends.

2 � Methods
Participants were required to meet specific inclusion cri-
teria, including self-reported good physical and mental 
health, absence of CV disease, no use of CV medications, 
non-pregnancy, a BMI between 18 and 26  kg/m2, non-
smoker status, negligible alcohol consumption, and no 
reported history of chronic or cancerous diseases.

Subjects were primarily recruited from among the 
healthy employees, relatives of employees, and students 
of Semmelweis University. Recruitment was facilitated by 
the University’s Occupational Health Service and social 
networking platforms. All tests were conducted in the 
laboratory facilities of Semmelweis University. The study 
protocol was designed in accordance with the Declara-
tion of Helsinki and approved by the Semmelweis Uni-
versity Regional and Institutional Committee of Science 
and Research Ethics (approval number: 120/2018).

Participants provided informed consent and completed 
a health questionnaire, which collected personal and 
health-related data, including medical history, lifestyle, 
and medication use. Blood pressure (BP) was measured 
three times using an automatic sphygmomanometer. 
Subjects with systolic BP higher than 140, and/or dias-
tolic BP exceeding 90  mmHg were excluded from the 
study. All data was recorded anonymously.

Pulse wave recordings were obtained using a Berry BM 
1000B pulse oximeter placed on the right index finger. 
This non-invasive device, certified by the manufacturer, 
recorded pulse waves for 140  s while the participant 
remained seated and still. The pulse oximeter transmitted 
data via Bluetooth to a mobile application (SCN4ALL/
HeartReader), developed by E-Med4All Europe Ltd. 
(Budapest, Hungary), which uploaded the recordings to 
a secure online database. The studies for the repeatabil-
ity and reliability of the measurements, along with the 
detailed description of signal processing methods of the 
system have already been published [19, 20]. Briefly, the 
measurement takes 140  s to be completed. Due to fil-
tering and preprocessing reasons discussed in detail by 
Kulin et al. [19], 120 s of the recording is used for further 
analysis. Parameters were defined for each individual 
cycle that met certain predefined signal quality criteria, 
and the average of these values was reported.

The proprietary software used for analysis identified 
fiducial points on the pulse wave, allowing for the calcu-
lation of both classical and novel pulse wave parameters 
(PPG parameters), including pulse rate variability (PRV 
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parameters) metrics. The primary criterion for selecting 
parameters was to choose those that, according to the lit-
erature, describe various aspects of CV function—such 
as temporal relationships, arterial elasticity, and auto-
nomic function—and have previously been reported to 
correlate with CV age, mortality, and (severity) of vari-
ous CV diseases. Table 1. shows the parameters and their 
descriptions.

The parameter values obtained from the pulse wave-
form analysis were compared with the age (in years) of 
the volunteers (JASP 0.19.1 software, JASP Team (2024)) 
using Pearson correlation and Generalised Additive 
Models (GAM) analysis (Google Colaboratory. Retrieved 
December 14, 2024, from https://​colab.​resea​rch.​google.​
com/). GAM is an advanced statistical modelling method 
designed to capture both linear and non-linear relation-
ships between variables. (see the ‘Additional file1.docx’ 
for a more detailed description of the model). A p value 
of <  = 0.05 was accepted as significant throughout.

During the preparation of this work the author(s) used 
ChatGPT and Grammarly to improve the readability and 
find shorter expressions to fit word limit. After using 
these tools/services, the authors reviewed and edited 
the content as needed and took full responsibility for the 
content of the publication.

3 � Results
Our study included 118 healthy (M/F: 53/65, mean age: 
31.8 ± 11.8 SD) volunteers for PPG parameter calcula-
tion and 106 (M/F: 44/62, mean age: 32.6 ± 12.2 SD) for 
PRV parameters. Participants were aged between 19 and 
74 years.

The relationship between age and CV function may 
encompass both linear and non-linear factors. To com-
prehensively evaluate this, we performed two distinct 
analyses: a Pearson correlation to assess linear associa-
tions and a GAM analysis to capture potential non-linear 
trends.

Tables  2. and 3. summarize the results of Pearson 
correlation and GAM analysis between PPG and PRV 
parameters and age.

3.1 � Pearson Correlation Analysis
Among the conventional PPG morphology parameters 
that significantly correlated with age, AGEi (r = 0.485), 
SysAlpha (r = −  0.418), and d/a (r = −  0.376) (Fig.  1A) 
demonstrated the strongest age dependence. Addition-
ally, time-related parameters of the PPG curve that 
characterize ejection-related ventricular activity, such 
as ET(PPG) (r = 0.589), Crest Time (r = 0.570), LVETi 
(r = 0.539), and the proprietary parameters eLVET1* 
(r = 0.548) and eLVET2* (r = 0.450), also exhibited strong 
correlations with age (Table 2., Fig. 2.).

Furthermore, age correlation was observed in other 
novel parameters, including DNi* (r = -0.517) and 
c-d incidence* (r = 0.419) (Fig.  1B). Finally, all propri-
etary score parameters demonstrated significant cor-
relations with age: Heart Fitness Score (r = − 0.493), CV 
Health Score (r =−   0.450), and Total Score (r = − 0.301) 
(p < 0.001 for all cases).

Several of the PRV parameters exhibited a moderate, 
but significant negative correlation with age (Table  3. 
and Fig. 3.). The cTotalPower (r = − 0.325) (Fig. 3A) and 
cSDRR (r = −  0.401) parameters (Fig.  3B) exhibited the 
strongest age dependence (p < 0.001) among frequency-
domain and time-domain measures, respectively. The age 
correlation of non-linear PRV parameters proved to be 
weaker, except for cSD2 (r = − 0.428).

3.2 � GAM Analysis
The GAM analysis allowed the identification of non-lin-
ear trends. Similar to the Pearson correlation analysis, 
this analysis also found significant correlations (p < 0.05) 
between age and PPG parameters, except for Si and b/a 
parameters. Among the PRV parameters, cSDRR, cTotal-
Power, cHFpow and cSD2 were significantly correlated 
with age based on GAM analysis. The GAM analysis 
confirmed linear (for AGEi, LVETi, eLVET2*, DNi*, 
SysAlpha) or near-linear (for b/a, d/a, Ri, Si) relation-
ship between most PPG parameters and age. However, 
for some parameters, a non-linear trend with age was 
observed.

All Score parameters demonstrated a clear non-linear 
decline, especially after the age of 40. (Fig. 4A and B). The 
eLVET1* and c-d incidence* parameters showed a mod-
erate non-linear upward trend followed by a plateau.

Crest Time exhibited extreme non-linearity with multi-
ple inflection points (Fig. 4C).

For PRV parameters, cTotalPower and cSDRR showed 
a clear linear decrease with age. The cMHR did not have 
a significant correlation with age (nor did it when Pear-
son correlation analysis was performed) (Fig. 4D).

4 � Discussion
From a public health perspective, addressing the assess-
ment and monitoring of CV ageing is crucial, as CV 
diseases continue to be the leading cause of mortality, 
particularly in older populations. As the global popula-
tion ages, the demand for reliable, non-invasive methods 
to meet this need is increasing. Photoplethysmography 
(PPG) appears to be a promising tool in this regard, as 
it offers a simple but effective way to monitor CV func-
tion by pulse wave analysis. Although the age correlation 
of some PPG parameters has been investigated, the full 
scope of age-related changes in pulse wave character-
istics is not yet fully evaluated. [21–23] This study, by 
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examining both conventional and novel PPG parameters, 
as well as PRV characteristics, provides a more compre-
hensive understanding of the effects of chronological 
ageing on the pulse waveform morphology. The impor-
tance of our research is emphasized by the fact that age is 
arguably the most significant risk factor for CV morbidity 
and mortality. This is supported by the results of Pencina 
et  al. who found that age, sex, and race capture 63% to 
80% of the prognostic performance of CV risk mod-
els [24]. This is further emphasized in the Framingham 
risk score, where age contributes more to the total risk 
score than any other variable. [25] Our study identified 

a diverse set of simultaneously recorded PPG parameters 
including ones that are related to cardiac ejection time, 
arterial elasticity and loss of PRV. These findings high-
light the correlation of PPG parameters with chrono-
logical age, suggesting their potential use for monitoring 
age-related CV changes and evaluating CV health across 
different age groups. In addition, a major strength of this 
study lies in the use of a proprietary, automated software 
system capable of analyzing large datasets with high effi-
ciency that enhance reliability, ensures the reproducibil-
ity of study’s results [19].

Among the 16 PPG morphology parameters, ET, 
including its subcomponent eLVET1, as described by our 
research group, and LVETi, as described by Weber et al., 
demonstrated the strongest correlations with age, indi-
cating a gradual decline in CV efficiency as individuals 
age [21, 26, 27]. Using GAM analysis, an extreme non-
linear relationship with multiple inflection points was 
observed between crest time and age. This is probably 
due to sparse sampling in older age groups. This high-
lights the sensitivity of nonlinear models to small sample 
sizes and outliers.

Arterial stiffening due to loss of arterial elasticity and 
structural changes in the vascular wall, such as increased 
collagen deposition and reduced elastin, is a hallmark of 
CV aging and contributes to elevated CV risk [28]. There-
fore, reliable characterization of arterial distensibility by 
easily accessible biomarkers is an important step toward 
early detection and prevention of CV diseases, as well as 
the assessment of vascular aging [5, 29].

Our results also confirmed the findings of previous 
studies describing age-dependent changes in the AGEI. 
AGEi is a parameter derived from the second derivative 
of the pulse contour wave, and its correlation with age 
and arterial stiffness is widely recognized (as noted by 
Takazawa and colleagues) [15].

While pulse wave velocity (PWV) is often considered 
a better measure for assessing CV aging because of its 
broader predictive power at the population level, AGEi 
shows considerable potential as a complementary tool, 
particularly in individual risk assessment. The strong 
correlation between the second-derivative PPG signal 
parameters, particularly AGEi and PWV, has been pub-
lished in several publications [16, 30]. These results high-
light the potential of AGEi as a practical, non-invasive 
measure of individual risk stratification, especially when 
measurement of PWV is less accessible. The sensitivity of 
AGEi to age-related vascular changes is a valuable addi-
tion to CV diagnostics, complementing PWV’s popula-
tion-level insights. Our study has also shown that DNi 
has stronger age dependence than AGEi suggesting that 
it may have relevant potential in monitoring a progres-
sive decline in arterial distensibility (DNi, a proposed 

Table 2  Results of correlation analysis of PPG parameters and 
age

EDOF effective degrees of freedom, ET(PPG) left ventricular ejection time 
measured by PPG, LVETi left ventricular ejection time index, AGEi ageing-index, 
SysAlpha systolic slope inclination, d/a and b/a ratios of the different inflection 
points of the second derivative of the pulse wave, Si stiffness index, Ri reflection 
index, eLVET1* and eLVET2* the early left ventricular ejection time 1 and 2 are the 
two-time components of "Crest Time”, DNi* dicrotic notch index, c-d incidence* 
c-d point detection ratio, Score parameters scores were calculated based on the 
30 + parameters derived from the proprietary analysis of the 2 min pulse-wave 
recording
* These parameters are developed by our research group. Most of them are not 
yet validated in clinical studies

For more information on GAM and an explanation of its measured values, see 
the Additional file1.docx

For a more detailed description of the PPG parameters, see Table 1

PPG parameters Correlation 
values of PPG 
parameters with 
age

Results of GAM analysis of 
the relationship between 
age and PPG parameters

Pearson’s r p Deviance 
explained

EDOF p

Conventional PPG parameters

 ET(PPG) 0.589  < .001 0.4000 5.6458  < .001

 Crest Time 0.570  < .001 0.5092 12.4659  < .001

 LVETi 0.539  < .001 0.2944 2.5483  < .001

 AGEi 0.485  < .001 0.2385 2.5483  < .001

 SysAlpha -0.418  < .001 0.1834 2.5483  < .001

 d/a -0.376  < .001 0.1540 2.5483  < .001

 b/a 0.207 0.025 0.0487 2.5483 0.052

 Si 0.181 0.050 0.0708 2.7463 0.099

 Ri -0.159 0.085 0.0635 2.8567 0.010

Novel PPG parameters

 eLVET1* 0.548  < .001 0.3574 5.6458  < .001

 DNi* -0.517  < .001 0.2693 2.5483  < .001

 eLVET2* 0.450  < .001 0.2063 2.5483  < .001

 c-d incidence* 0.419  < .001 0.2459 5.6458  < .001

PPG Score parameters

 Heart Fitness 
Score*

-0.493  < .001 0.3310 3.3728  < .001

 CV Health Score* -0.450  < .001 0.2253 2.7463  < .001

 Total Score* -0.301  < .001 0.1815 3.3728  < .001
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Fig. 1  Scatter plots of correlation results between age and PPG parameters (AGEi and DNi*). A The scatter plot of the correlation analysis 
between age and AGEi, and B the scatter plot of the correlation analysis between age and DNi* parameters

Fig. 2  Scatter plots of correlation results between age and the ejection-related PPG parameters. A The scatter plots of the correlation analysis 
between LVETi, B eLVET1, C Crest Time and D ET(PPG) and age
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marker of aortic distensibility and coronary flow pressure 
gradient). Si is another PPG parameter proposed by sev-
eral authors to characterize arterial stiffening. Based on 
the previous publication of Millasseau (Determination 
of age-related increases in large artery stiffness by digi-
tal pulse contour analysis), PWV and Si are significantly 
correlated with each other, and both are correlated with 
age. Interestingly, the Si showed a weak correlation with 
age in our study [31]. One possible explanation for this 
may be the different age and sex distribution of the two 
studies. In the study of Millaseau et al., 29 of the 87 par-
ticipants were women; the mean age was 47 years, with 
a range of 21–68 years. Whereas our study age distribu-
tion for females found to contain a higher proportion of 
women mostly in premenopausal age. These observations 
emphasize that precise characterization of age correla-
tion may require accounting for sex-specific differences 
and other confounding factors in the analysis; however, 
this necessitates analysis performed on large datasets.

In addition to the individual parameters, "composite 
scores" of multiple PPG parameters, such as the Total 
Score, Heart Fitness Score and CV Health Score, also 
showed significant correlations with age, both using 
Pearson correlation and GAM analysis. This supports 
the unpublished observations of the manufacturer that 
suggested strong age dependence of these parameters in 
a large inhomogeneous patient population coming from 
real-world data of more than 98 000 processed meas-
urements from more than 5 800 individuals in various 
age, sex and health status [32]. The composite scores 
were developed to simplify the interpretation of CV 
health indicators by aggregating multiple PPG-derived 
parameters into a single, more user-friendly metric. This 

Table 3  Results of correlation analysis of PRV parameters and 
age

EDOF Effective degrees of Freedom, cSDRR The standard deviation of the 
interbeat intervals (ms), crMSSD The square root of the mean squared differences 
of successive interbeat intervals, cpNN50 the proportion of differences of 
successive IBIs exceeding 50 ms, cMRR the mean normal-to-normal interbeat 
interval, cMHR the mean heart rate, cTotalPower It specifies the area under the 
complete frequency-domain analysis curve, cHFpow absolute Power of the 
high-frequency band, cLFpow absolute power of the low-frequency band; cSD1 
and cSD2: standard deviation 1 and 2 of the Poincaré plot representing the 
length and width of the ellipse fitted to the plot. The c in front of the parameter 
name stands for: corrected: automatic detection of irregular cycle lengths and 
application of cubic spline interpolation applied

For more information on GAM and an explanation of its measured values, see 
the Additional file1.docx

For a more detailed description of the PRV parameters, see Table 1

Correlation values 
of PRV parameters 
with age

Results of GAM analysis of 
the relationship between 
age and PRV parameters

Pearson’s r p Deviance 
Explained

EDOF p

Time domain parameters

 cSDRR – 0.401  < .001 0.1627 2.5413  < .001

 crMSSD – 0.266 0.006 0.0807 2.5413 0.058

 cpNN50 – 0.225 0.021 0.0940 2.9638 0.080

 cMRR 0.082 0.404 0.0628 3.7356 0.413

 cMHR – 0.109 0.264 0.0711 3.7356 0.472

Frequency domain parameters

 cTotalPower – 0.325  < .001 0.1065 2.5413 0.028

 cHFpow – 0.299 0.002 0.0902 2.5413 0.035

 cLFpow – 0.277 0.004 0.0768 2.5413 0.270

Non-linear parameter

 cSD2 – 0.428  < .001 0.1887 2.5413  < .001

 cSD1 – 0.266 0.006 0.0807 2.5413 0.058

Fig. 3   Scatter plots of correlation results between age and PRV parameters A The scatter plot of the correlation analysis between age 
and cTotalPower, and B the scatter plot of the correlation analysis between age and cSDRR parameters
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approach can make it easier for end-users to track and 
understand their metrics, especially for non-specialists 
for whom interpretation of multiple individual param-
eters (e.g. 15–20) can be challenging. While the exact 
calculation methods for these scores are proprietary, 
they are based on established PPG signal features asso-
ciated with vascular and cardiac health. These include 
parameters related to arterial stiffness, pulse wave char-
acteristics, and temporal signal dynamics, all of which are 
linked to age-dependent CV changes. The validation of 
these composite scores as independent predictors of CV 
health. requires further studies. However, preliminary 
findings suggest that they could support CV risk evalu-
ations. All score parameters in this study showed a clear 
non-linear, decreasing relationship with age, especially 
after age 40. This sharp decline is consistent with pub-
lished data showing accelerated ageing during middle age 
[33].

Some PRV parameters, such as total power (cTotal-
Power) and SDNN (cSDRR), showed a significant cor-
relation with age. Both parameters showed a decrease 
with increasing age; this could indicate a less sensitive 

autonomic nervous system, which may contribute to the 
reduced cardiovascular adaptive capacity observed in the 
elderly. This finding is consistent with the existing litera-
ture, which suggests that decreased heart rate variability 
reflects reduced autonomic control of the CV system, 
and highlights the importance of monitoring autonomic 
function through PRV parameters as part of a compre-
hensive CV health assessment. [7–9, 34].

In summary, our results reveal a set of PPG and PRV 
parameters associated with age-related changes with 
distinct differences between parameters in the aspect 
of linearity, emphasizing the potential of simultaneous 
recording and analysis of multiple PPG parameters in CV 
prevention, though further research is required. Addi-
tionally, combining different PPG parameters has yielded 
composite scores with unique age-dependent patterns 
which might reflect the non-linear trends of ageing, 
which may prove useful in identifying age-related CV 
events or conditions. We believe that our study may serve 
as a foundational step in developing personalized PPG-
based CV age assessment tools. However, future research 
should explore whether individuals positioned above or 

Fig. 4  Plots of GAM analysis. A, B The plot of the GAM analysis between age and Heart Fitness and Total Score parameters, C the plot of the GAM 
analysis between age and Crest Time PPG parameter and D the plot of the GAM analysis between age and cpNN50 PRV parameter



Page 10 of 11Antali et al. Artery Research            (2025) 31:5 

below the correlation trend line represent distinct CV 
aging phenotypes, such as early vascular aging or super-
normal vascular aging. [35, 36].

5 � Limitations of the study
A limitation of our study is that the age distribution of 
the sample population is not fully uniform and may not 
be fully representative of the general population. Future 
research should, therefore, be extended to a wider, more 
diverse cohort to further verify these results.

Clinical validation of the proprietary PPG param-
eters introduced could be a critical next step towards 
their wider use and clinical utility. Although the aim of 
this study was primarily to explore the age dependence 
of these parameters, it is important to outline possible 
avenues for future validation. Future studies are planned 
to focus on the correlation of the new PPG composite 
scores with widely accepted CV risk scores such as the 
Framingham Risk Score or the HeartScore (European 
Society of Cardiology), as well as with established meas-
ures such as lipid profiles, hs-CRP, plasma creatinine, 
carotid Doppler and echocardiography results, and pulse 
wave velocity (PWV). Further validation efforts include 
analysing how composite scores interact with clinical and 
lifestyle factors, including patient history and modifiable 
risk behaviours, to increase their predictive accuracy. In 
addition, to ensure wider applicability, we plan to evalu-
ate the performance of these scores in different patient 
subgroups, including individuals with different CV risk 
profiles and comorbidities. These studies may be benefi-
cial to further refine the interpretation of the identified 
age-related indicators, as different PPG parameters may 
be more relevant in certain pathological contexts, such as 
hypertension or heart failure.

6 � Conclusion
This study has successfully identified age-related linear 
and non-linear correlations across both conventional and 
novel PPG parameters, highlighting their potential as val-
uable indicators of CV ageing. The findings demonstrate 
that parameters related to cardiac ejection time, arterial 
elasticity, and PRV, among others, consistently corre-
late with age, offering a comprehensive view of how the 
CV system evolves over time. The introduction of novel 
composite PPG score parameters, which showed notable 
age correlations, may complement traditional metrics, 
although further validation is needed to confirm their 
specific contributions. The clinical relevance of these 
findings is that they draw attention to the potential of 
pulse wave analysis to monitor CV ageing non-invasively 
and position PPG as a promising tool in both clinical 
and preventive cardiology. However, translation of this 

method to clinical settings requires further research in 
patients with various CV conditions and comorbidities.
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Supplementary material for Generalized Additive 

Models (GAM) 
 

Generalized Additive Models (GAM) are an advanced statistical modeling method designed to 

flexibly capture linear and non-linear relationships between predictor and response variables. 

Unlike traditional linear regression, GAMs allow for smooth, data-driven fits using spline-based 

smoothing functions, enabling the analysis to identify complex trends in datasets without 

imposing a rigid functional form. In this study, GAM was employed to assess the relationship 

between age (predictor variable) and various PPG (Photoplethysmography) and PRV (Pulse 

Rate Variability) parameters (response variables). This method proved particularly useful in 

identifying both linear trends and non-linear patterns, offering insights that traditional linear 

approaches like Pearson correlation might overlook. 

Main parameters calculated by the GAM analysis 

Deviance Explained: Measures the proportion of variability in the response variable that is 

explained by the predictor variable. Higher values indicate a better fit of the model to the data, 

similar to the R-squared in linear regression. 

Effective Degrees of Freedom (EDOF): Reflects the model’s complexity and the smoothness of 

the curve. A higher EDOF indicates a more flexible, non-linear fit, while lower EDOF 

corresponds to simpler (near-linear) relationships. 

Generalized Cross-Validation (GCV) Score: A measure of model performance that balances fit 

and complexity. Lower GCV values indicate better model performance and smoother curves 

without overfitting. 



Scale: The residual variance (error term) of the model, indicating how well the model predicts 

the data. 

p-Value: Represents the statistical significance of the smoothing term (relationship between 

predictor and response). p < 0.05 indicates a significant relationship. 

Determination of Optimal Lambda (λ) Values 

In GAM analysis, the smoothing parameter λ plays a critical role in determining the trade-off 

between curve smoothness and model fit. Small λ produces a highly flexible curve, which can 

overfit the data. Large λ results in a very smooth (near-linear) curve, potentially underfitting 

the data. To ensure that the models were optimized, a grid search approach was used to 

identify the best lambda values for each parameter. The lambda grid covered a broad range of 

values, from highly flexible to very smooth: 

• Logarithmic Scaling (0.01 to 10): Captures smaller, more flexible fits. 

• Fine Grid (90 to 110): Focuses on tuning lambda around commonly observed optimal 

values. 

• Extended Range (100 to 1000): Allows for extremely smooth curves when necessary. 

For each response variable, GAM was applied iteratively, and the Generalized Cross-Validation 

(GCV) score was used to identify the optimal λ: The model with the lowest GCV score was 

selected as the optimal solution. This ensured that each parameter had the most appropriate 

balance between smoothness and fit. 

Summary 



The GAM method successfully identified optimal λ values for every PPG and PRV parameter by 

minimizing the GCV score. This allowed for precise modeling of age-related trends while 

accommodating both linear and non-linear relationships. This approach ensures that GAM 

results provide robust insights into the complex interactions between age and cardiovascular 

parameters, emphasizing the importance of non-linear analyses for understanding biological 

aging. 

 

Suppl. Table: Results of GAM analysis of the relationship between Age and PPG parameters 

PPG and 
PRV 

parameters 
GCV Score Scale 

Optimal 
"lambda" 

Deviance 
Explained 

EDOF p 

Conventional PPG parameters 

ET(PPG) 414.757 379.197 10 0.4000 5.6458 < .001 

Crest Time 214.855 174.428 0.1 0.5092 12.4659 < .001 

LVETi 447.489 430.128 1000 0.2944 2.5483 < .001 

AGEi 0.183 0.176 1000 0.2385 2.5483 <.001 

SysAlpha 5.397 5.188 1000 0.1834 2.5483 <.001 

d/a 0.041 0.040 1000 0.1540 2.5483 <.001 

b/a 0.024 0.023 1000 0.0487 2.5483 0.052 

Si 0.776 0.743 599.484 0.0708 2.7463 0.099 

Ri 116.139 111.089 464.159 0.0635 2.8567 0,01 

Novel PPG parameters 

eLVET1* 35.413 32.377 10 0.3574 5.6458 <.001 

DNi* 49.289 47.376 1000 0.2693 2.5483 <.001 

eLVET2* 169.317 162.748 1000 0.2063 2.5483 <.001 

c-d 
incidence* 

410.381 375.196 10 0.2459 5.6458 <.001 

PPG Score parameters 

Heart 
Fitness 
Score* 

157.167 149.102 166.810 0.3310 3.3728 <.001 

CV Health 
Score* 

132.846 127.292 599.484 0.2253 2.7463 <.001 

Total Score* 91.313 86.627 166.810 0.1815 3.3728 <.001 

Time domain PRV parameters 



cSDRR 276.899 264.976 1000 0.1627 2.5413 < .001 

crMSSD 372.614 356.570 1000 0.0807 2.5413 0.058 

cpNN50 352.120 334.444 359.381 0.0940 2.9638 0.080 

cMRR 13943.825 13062.171 90 0.0628 3.7356 0.413 

cMHR 97.989 91.793 90 0.0711 3.7356 0,472 

Frequency domain PRV parameters 

cTotalPower 3618748.208 3462928.12 1000 0.1065 2.5413 0,028 

cHFpow 684814.250 655326.756 1000 0.0902 2.5413 0.035 

cLFpow 854121.978 817344.243 1000 0.0768 2.5413 0.270 

Non-linear PRV parameters 

cSD2 435.314 416.570 1000 0.1887 2.5413 < .001 

cSD1 186.307 178.285 1000 0.0807 2.5413 0,058 
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ABSTRACT

Introduction: This study assesses the utility of photoplethysmography (PPG) as a non-invasive method to
evaluate cardiac function, addressing the critical need for accessible biomarkers in various cardiovascular
conditions, including heart failure management. Methods: By conducting simultaneous echocardiography
and PPG measurements on 37 healthy volunteers, we analyzed both traditional and novel composite pulse
wave scores to correlate peripheral PPG data with central echocardiographic outcomes. Results: Our results
show a good correlation between PPG-based and echocardiography-derived ejection times (r 5 0.648,
P < 0.001), though Bland-Altmann analysis results reveal that PPG consistently overestimated ejection
times by a mean difference of þ95 ms. Moreover, eleven PPG parameters significantly correlated with key
echocardiographic indicators of systolic and diastolic function, such as left ventricular dimensions, global
longitudinal strain, aortic functionality, atrial contraction (MV-A), and ventricular filling pressure (E/e’ lat)
with clinical relevance indicated by correlations (r) above 0.4 (P < 0.05). Conclusion: The findings pave the
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way for further studies in various patient groups to explore the potential of PPG in enhancing home
monitoring and regular cardiovascular assessments. This work not only broadens our understanding of the
physiological relationships between peripheral and central cardiovascular measures but also introduces
innovative metrics that might bring some added value to the current standards of patient care by facilitating
early detection and personalized management of heart conditions.

KEYWORDS

photoplethysmography (PPG), echocardiography, cardiac function, pulse wave analysis, central hemodynamics,
peripheral hemodynamics

INTRODUCTION

The rising prevalence of cardiovascular (CV) diseases, including heart failure � projected to
increase from 6.7 million to 8.5 million Americans by 2030 � underscores the urgent need for
advanced diagnostic and home monitoring solutions to manage better and mitigate their
growing impact on public health [1, 2].

Managing heart failure requires pharmacotherapy, routine cardiology visits, and patient
adherence to prescribed regimens. Echocardiography provides detailed insights into heart
morphology and function [3]. Given the challenge of screening and monitoring the growing
affected population, there is a pressing need for new biophysical, remote-monitoring biomarkers
to improve personalized treatment and continuous monitoring of heart failure [4].

The peripheral arterial pulse wave (PPW) holds promise as a potential biomarker. PPW,
influenced by cardiac dynamics, arterial elasticity, and resistance vessel tone, reflects changes in
CV status [5, 6].

Mathematical analysis of PPW parameters has shown potential in identifying CV pathol-
ogies associated with HF [7]. The term PPW is most commonly used when referring to pressure
waveforms measured by tonometry. In contrast, photoplethysmography (PPG) records related
but distinct signals: it optically measures pulsatile changes in blood volume within the illumi-
nated tissue, including contributions from small arteries, arterioles, and the microvascular bed,
rather than directly capturing arterial pressure. This is particularly relevant for transmissive PPG
recordings, such as fingertip measurements, where the entire cross-section of perfused tissue
contributes to the composite signal. Despite this difference, the resulting PPG waveform retains
morphological features analogous to the pressure pulse wave. Because PPG is non-invasive,
widely accessible, and simple to use, it has become increasingly common in devices such as
pulse oximeters and smartwatches [5]. In the remainder of this manuscript, for simplicity, we
will refer to the PPG-derived signal as the pulse wave and to its evaluation as pulse wave analysis
(PWA), while acknowledging this refers specifically to volume-based measurements.

Regardless of the many potential benefits, integration of PPG-based PWA into patient
monitoring faces a challenge, mainly because the relationship between routinely used cardiac
ultrasound measures and PPG-derived parameters is not established. The limited number of
studies addressing this gap focused on exploring relationships between selected parameters
[8–10].
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The goal is to identify those characteristics of the pulse wave that offer the greatest potential
for monitoring cardiovascular status, especially when echocardiography is not available.

Our study aims to comprehensively analyze the association between echocardiographic and
PPW parameters in healthy subjects, thereby advancing our understanding of PPG’s possible
role in the future of heart failure monitoring.

MATERIALS AND METHODS

Subjects

Subjects were recruited through multiple channels, including internal invitations distributed
among university staff members and outreach via our professional and personal networks, in
order to obtain a diverse volunteer population. The study involved healthy adult volunteers
(n 5 37), who claimed themselves healthy by filling out a detailed questionnaire, had a normal
body mass index (BMI: 18–25 kg/m2), had no history of smoking, and denied drinking alcohol
regularly. Those who had been diagnosed with or had received treatment for diabetes or any CV
disease were excluded from the study. Further exclusion criteria involved: pregnancy, previous
cancerous disease, wearing false nails, and SARS-CoV-2 infection in the last 6 months before the
exam. The measurements were conducted at Semmelweis University’s Városmajor Heart and
Vascular Centre.

Ethical Compliance

The study protocols were rigorously designed to align with the highest ethical standards, con-
forming to the principles outlined in the 2013 Declaration of Helsinki. Informed consent was
obtained from all participants, documented in writing. The study received approval from the
Regional and Institutional Committee of Science and Research Ethics at Semmelweis University,
Budapest (Approval No. 120/2018-3).

Protocol

After arriving for the exam, patients were allowed to rest for 20 min before starting the study
protocol. The protocol consisted of a simultaneous echocardiographic examination and
recording of PPG signals from a peripheral artery using a pulse oximeter placed on the right
index finger.

Echocardiography

The echocardiographic protocol followed the methodology described by Horváth et al. (2023)
[11]. Blood pressure (BP) was measured three times using an automatic sphygmomanometer
before conducting a cardiac ultrasound scan. During the scan, the participant lay on the exam-
ination bed with the upper body undressed, positioned on the left side. 2D echocardiography
examinations were performed with a GE Vivid E95 system with a 4Vc-D phased-array trans-
ducer (GE Vingmed Ultrasound, Horten, Norway). LV-focused, ECG-gated datasets were ob-
tained from parasternal long and short axis, apical four-chamber, apical three-chamber, and
apical two-chamber views at a minimum rate of 50 frames per second. Offline analyses of these
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datasets were performed after selecting the optimal heart cycles using commercially available
software (Autostrain LV, TOMTEC Imaging Systems GmbH, Unterschleissheim, Germany);
echocardiographic parameter data were derived by averaging the data from 1 to 3 heartbeats.
The algorithm automatically generated the endocardial contours of the cavities, which were
manually corrected throughout the entire cardiac cycle. The speckle tracking technique was used
for the deformation analysis. The assessed parameters can be found in Table 1.

PPG measurements

During the cardiac ultrasound, a pulse waveform was recorded for 140 s using a special pulse
oximeter on the patient’s right index finger, with a 200 Hz sampling frequency (Shanghai Berry
Electronic Tech Co., Ltd., Shanghai, China). The patients lay on their side, staying still. The
oximeter, wirelessly connected to the SCN4ALL mobile app (E-Med4All Europe Ltd, Budapest,
Hungary), sent the anonymized data in real time to a secure online database as described
previously [19].

The SCN4ALL software analyzed the signals, its proprietary algorithm identifies points of
interest on the pulse wave from which it calculates over 30 morphological and pulse rate
variability parameters online. PPG parameters were calculated by averaging measurements from
each heartbeat of the continuous recordings. The system’s reliability, repeatability, and detailed
descriptions of its architecture and signal processing have been published previously [19, 20]
(The SCN4ALL parameters assessed in this study are found in – List of echocardiographic and
PPG parameters, with abbreviations and definitions Table 1). Besides “conventional” PPG
parameters, already known from the literature, composite parameters, called “Scores” were also
analyzed. The different “Scores” are constructed using different combinations of parameters,
each of which is assigned a value based on specific cutoff values along a monotonous or
U-shaped Likert scale. The scores, with a maximum of 100, indicate health levels for evaluated
aspects. Their actual reliability and validity in clinical practice are evaluated based on the current
and upcoming studies. The exact constituents of the Scores are a proprietary secret, kept
confidential at the manufacturer’s discretion.

Statistics, data analysis

To evaluate the agreement between ejection time measurements derived from photoplethys-
mography (PPG) and echocardiography (Echo), Bland–Altman analysis was performed. For
each paired observation, the mean of the two methods and the absolute difference (PPG �
Echo) were calculated. The bias (mean difference) and 95% limits of agreement (mean ± 1.96
standard deviations) were determined to quantify systematic and random error. In addition,
ratios between PPG- and Echo-derived ejection times were computed to assess proportional
differences. The mean ratio and the mean percent difference were reported to describe relative
agreement. Bland–Altman calculations were performed in Google Colab using a custom Py-
thon script.

Parameter values obtained by echocardiography were compared with corresponding
PPG-derived parameter values using correlation analysis performed in JASP software
(JASP Version 0.19.3; JASP Team, 2025). Normality of each variable was assessed with the
Shapiro–Wilk test. For variable pairs where both distributions did not significantly deviate from
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Table1. List of echocardiographic and PPG parameters, with abbreviations and definitions

Echocardiography
parameter
abbreviations

Echocardiography
parameter definition

PPG parameter
abbreviations PPG parameter definition [5]

ET (ECHO) (ms) Left ventricular
ejection time

Si(s) (m s�1) Stiffness index Si 5 h/ΔT (m s�1);
h is the height of the person in

meters. ΔT is the time between the
systolic peak and diastolic peak on

the pulse curve [12].
LV-EDD (mm) Left ventricular end-

diastolic diameter
b/a The ratio of the first two inflection

points of the second derivative of the
pulse wave [13].

LV-ESD (mm) Left ventricular
end-systolic diameter

d/a The ratio of the fourth to the first
inflection points of the second

derivative of the pulse wave [14].
LV-EDV (mL) Left ventricular

end-diastolic volume
AGEi Ageing-index Value calculated from

the fiducial points of the second
derivative of the pulse wave.

AGEi 5 b-c-d-e/a
LV-ESV (mL) Left ventricular

end-systolic volume
Ri(s) Reflection index The ratio of the

amplitude of the diastolic peak to
the amplitude of the systolic peak.

LV-SV (mL) Left ventricular stroke
volume

SysAlpha(s) (8) Systolic slope inclination The angle
between the maximal inclination of
systolic upstroke and the horizontal

axis [15].
LV-GLS (%) Global longitudinal

strain
LVETi (ms) Left ventricular ejection time

indexed for heart rate (LVETi) was
calculated from sex-specific
resting regression equations
LVETi(male) 5 1,73 heart

rate þ ET, LVETi(female) 5 1,63
heart rate þ ET [16].

LVOT-VTI (cm) Left ventricular
outflow tract velocity

time integral

DNi p Dicrotic notch index p Describes
the relative position of the diastolic
peak to the dicrotic notch (the valley
induced by the aortic valve closure

before the diastolic peak).
MV-grad (av)
(Hgmm)

Mean pressure
difference between the
left atrium and left
ventricle measured at

the mitral valve
during diastole

eLVET1 p (ms) Early left ventricular ejection time
1 and Early left ventricular ejection
time 2 ELVET1 is measured from
the start of the period to the first
peak of the first derivative of the

pulse, whereas ELVET2 is defined as
(continued)
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Table1. Continued

Echocardiography
parameter
abbreviations

Echocardiography
parameter definition

PPG parameter
abbreviations PPG parameter definition [5]

the time duration from the first peak
of the first derivative PTG to the

peak of the systolic wave.

MV-E (cm s�1) Mitral E-wave velocity eLVET2 p(ms)
MV-A (cm s�1) Mitral A-wave

velocity
eLVET1 @75 p(s)

(ms)
MV-E/A The ratio between

E-wave and A-wave
eLVET2 @75 p

(ms)
DT (ms) Left ventricular

deceleration time
Crest Time (ms) Crest Time - The time elapsed

between the beginning of the period
(foot) and the maximum systolic

amplitude (peak)
e’-lat (cm s�1) Mitral lateral annulus

velocity
Crest Time @75

(ms)
E/e’ - lat Ratio of early diastolic

mitral inflow velocity
to early diastolic
mitral annulus

velocity

ET(PPG) (ms) PPG based Left ventricular ejection
time. It is the time elapsed between

the lowest point between
consecutive systolic peaks and the
marker of aortic valve closure
(dicrotic notch/e-point on the

second derivative of the PPG) [17].
e’-med (cm s�1) Mitral medial annulus

velocity
ET(PPG) @75(s)

(ms)
Ao, root diam (mm) Aortic root diameter Sys/Dias Time(s) Systolic/diastolic time ratio

Systolic/diastolic time ratio relates
the duration of cardiac systole to

diastole.
Ao-vmax (m s�1) Aortic maximum flow

velocity
HR (1/min) Mean Heart Rate The mean value of

the heart beats per minute (1/min).
The algorithm calculates a heart rate
from the length of each period of the
120-s recording and averages them.

Ao-gr (peak) (Hgmm) Peak aortic pressure
gradient

CV Health Score
p

Obtained from the parameters that
correspond with the function of the
heart and the condition and aging of

the arteries.
Ao-gr (av) (Hgmm) Average aortic

pressure gradient
Heart Fitness

Score p

Certain pulse wave parameters are
influenced by the athletic lifestyle
and athletic capabilities of the

subject, so these aspects are marked
by this score.

Ao-VTI (cm) Aortic maximum flow
velocity time integral

Ao-accT (ms) Aortic acceleration
time

pThese parameters are developed by the scientific team behind the SCN4ALL system. Most of them are not
yet validated in clinical studies, their definition and meaning are hypotheses based on the current
understanding of pulsewave physiology. (s)The findings for these parameters are presented in the
supplementary materials, due to their correlation being lower than 0.4 (Supplementary Tables 1 and 2).
Meaning of “@75” after some PPG indices: the original time value is corrected to 75/min heart rate [18].
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normality, Pearson correlation coefficients were calculated; for pairs in which at least one
variable showed non-normal distribution, Spearman correlation was used.

Significant correlations (P < 0.05) with correlation coefficients above r5 0.4 are presented in
the main manuscript; additional correlations, including those weaker or influenced by heart rate
as determined by partial correlation analyses, are provided in Supplementary Table 1.

RESULTS AND DISCUSSION

Results

The results of a total of 37 healthy volunteers aged 20–57 years were used in the data analysis
(M/F: 16/21; mean age: 36.9 ± 11.4 SD years, BMI mean: 22.4 ± 2.3 SD, Systolic brachial BP:
115 ± 12 SD Hgmm, Diastolic brachial BP: 64 ± 9 SD).

The results of the correlation tests are shown in Table 2 and Supplementary Tables 1 and 2.

Results related to left ventricular ejection time (LVET)

Agreement between PPG and echocardiographic ejection times. Bland–Altman analysis
demonstrated a mean difference (bias) of 95 ms between PPG- and Echo-derived ejection times
(SD5 21 ms), with 95% limits of agreement ranging from 53.98 to 136.02 ms. The mean ratio of
PPG to Echo measurements was 1.353, corresponding to an average relative overestimation of
29.74% by PPG. The Bland–Altman plots showed a consistent positive bias across the measure-
ment range, with no substantial evidence of proportional error in the log-transformed ra-
tios (Fig. 1).

ET (ECHO) (ms) measured by cardiac ultrasound showed a good correlation with ejection
time measured by PPG (ET(PPG)) (r 5 0.648; P < 0.001) (Fig. 2).

We also found correlations with other parameters related to systolic time, such as Crest
Time (r5 0.567; P < 0.001); and the early left ventricular ejection time 1 (eLVET1 p) (r5 0.478;
P 5 0.003 – result in Supplementary Table 1) and 2 (eLVET2 p) (r 5 0.472; P 5 0.003).

ET (ECHO) inversely correlated with the Dicrotic notch index (DNip), too (r 5 �0.496;
P 5 0.002).

Given the significant, inverse correlation between heart rate measured by PPG and echo-
cardiographic LVET (r 5 �0.538; P < 0.001), we conducted partial correlation tests conditioned
on heart rate. The correlation persisted for the parameters ET(PPG), Crest Time, eLVET2p,
DNip, suggesting an independent relationship with heart rate. However, the correlation disap-
peared for the parameters eLVET1p, indicating that the association was driven by the relation-
ship with heart rate in this case.

Results related to cardiac systolic function

Several PPG parameters were significantly correlated with echocardiographic parameters which
are routinely used in monitoring of systolic function and have known prognostic values.
The parameters with the strongest correlation are shown in Table 2 and Fig. 3.
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Table 2. Results of Pearson’s and Spearman’s correlations: comparisons of echocardiographic parameters
and PPG parameters

Correlation of echocardiography parameters with PPG (Pearson)
Echocardiography: ejection time PPG parameters Pearson’s

correlations
Pearson’s partial

correlations
conditioned on

HR
r P r P

ET (ECHO) (ms) ET(PPG) 0.648 <0.001 0.555 <0.001
Crest Time 0.567 <0.001 0.371 0.026

DNi p �0.496 0.002 �0.479 0.003
HR �0.538 <0.001 N/A N/A

Echocardiography: systolic function PPG parameters Pearson’s
correlations

Pearson’s partial
correlations

conditioned on
HR

r P r P
LV-EDD (mm) AGEi �0.51 0.001 N/A N/A

d/a 0.47 0.003 N/A N/A
b/a �0.41 0.013 N/A N/A

LV-ESD (mm) AGEi �0.52 0.001 N/A N/A
d/a 0.45 0.005 N/A N/A
b/a �0.42 0.01 N/A N/A

LV-GLS (%) DNi p 0.5 0.001 N/A N/A
LVOT-VTI (cm) DNi p �0.4 0.015 N/A N/A
Ao-VTI (cm) DNi p �0.44 0.007 N/A N/A
Echocardiography: diastolic function PPG parameters Pearson’s

correlations
Pearson’s partial

correlations
conditioned on

HR
r P r P

MV-A (cm s�1) b/a 0.52 <0.001 0.51 0.001
HR 0.5 0.005 N/A N/A

MV-E (cm s�1) AGEi 0.4 0.014 N/A N/A
e’-med (cm s�1) Crest Time �0.41 0.012 N/A N/A
Correlation of echocardiography parameters with PPG (Spearman)
Echocardiography: ejection time PPG parameter Spearman’s

correlations
Spearman’s

partial
correlations

conditioned on
HR

ρ P ρ P
LVET (ms) eLVET2 p 0.496 0.002 0.404 0.015

(continued)
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Results related to cardiac diastolic function

PPG parameters like eLVET2@75, b/a, HeartFitnessScore, or LVETi showed the strongest (but
still moderate) correlations with indicators of atrial contraction (MV-A) and left ventricular
filling pressure (E/e’ lat). Given that some parameter pairs exhibited correlations with heart rate,
we further analyzed these relationships using partial correlation to account for heart rate vari-
ability. Table 2 and Fig. 4 showcase these significant correlations.

DISCUSSION

The ongoing quest for effective, accessible methods to assess heart function is a key focus in
cardiovascular research, particularly in the field of echocardiography.

Although other authors have presented some aspects of the correlation between cardiac
function and PWA, to our knowledge, our publication is the first to offer comprehensive insights
into how echocardiography relates to pulse wave measurements at the periphery. In addition, in

Table 2. Continued

Echocardiography: systolic function PPG parameters Spearman’s
correlations

Spearman’s
partial

correlations
conditioned on

HR
ρ P ρ P

LV-EDD (mm) Heart Fitness Score p 0.492 0.002 N/A N/A
CV Health Score p 0.459 0.004 N/A N/A
Crest Time @75 �0.472 0.003 N/A N/A
eLVET2 @75 p �0.436 0.007 N/A N/A

LV-ESD (mm) Heart Fitness Score p 0.479 0.003 N/A N/A
eLVET2 @75 p �0.409 0.012 N/A N/A

Ao, root diam (mm) DNi p 0.482 0.003 N/A N/A
Echocardiography: diastolic function PPG parameters Spearman’s

correlations
Spearman’s

partial
correlations

conditioned on
HR

ρ P ρ P
MV-A (cm s�1) eLVET2 @75 p 0.572 <0.001 NA NA

Heart Fitness Score p �0.516 0.001 �0.375 0.024
Crest Time @75 0.517 0.001 NA NA

HR 0.5 0.005 N/A N/A
MV-E/A HR �0.451 0.005 N/A N/A
E/e’ - lat LVETi 0.423 0.009 N/A N/A

r: Pearson’s correlation coefficient; ρ(rho): Spearman’s correlation coefficient, P 5 P-value (significance
value <0.05) Given the correlation between heart rate measured by PPG and some echocardiographic
parameters, where applicable, partial correlation tests were performed as a function of heart rate.
p: Proprietary SCN4ALL parameters. List of abbreviations found in Table 1.
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Fig. 2. Correlation between ejection times with the two methods.
Pearson’s correlation of LVET (ECHO) (ms) and ejection time (ms) measured by PPG (ET(PPG))

(r5 0.648; P < 0.001)

Fig. 1. Agreement between photoplethysmography (PPG) and echocardiography (ECHO) in measuring
ejection time (ET) in milliseconds (ms) using Bland-Altman analysis.

Middle dashed line: mean difference (95.0), upper and lower dashed line are mean difference ± 1.96 SD
(standard deviation) (136.0 and 54.0), respectively
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this paper, we have presented the performance of a novel pulse wave analysis system with both
established and novel composite parameters and scores in healthy individuals. We identified
several PPG parameters that can be good candidates to support home monitoring of the
alterations of several aspects of cardiac function, such as ejection time, systolic, and diastolic
performance. Our findings offer a basis for future research to establish the utility of PPG analysis
in regular cardiology care and self-management for HF patients.

Despite extensive research, PPG-based PWA has not become common in clinical practice
due to issues like sensitivity to artifacts, varying algorithms, scientific debates over physiological
interpretations, and the complexity of pulsewave changes in the arterial tree [21]. However, the
growing interest in PPG technology, especially given its inclusion in over 1.1 billion wearables

Fig. 3. Correlation plots between parameters describing systolic function
LV-EDD – left ventricular(LV) end diastolic diameter, LV-ESD – LV end systolic diameter, LV-GLS – LV
global longitudinal strain, Heart Fitness Score - Certain pulse wave parameters are influenced by the
athletic lifestyle and athletic capabilities of the subject, so these aspects are marked by this score.
AGEi - Value calculated from the fiducial points of the second derivative of the pulse wave.

AGEi 5 b-c-d-e/a, DNi - Describes the relative position of the diastolic peak to the dicrotic notch.
P < 0.05 for all parameters
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[22], suggests its potential in health and disease monitoring might outweigh these limitations
[21], aided by advances in machine learning and big data analysis [23].

Furthermore, our results support that peripheral cardiovascular parameters may be valuable
in the assessment of central hemodynamics, which is consistent with previous studies investi-
gating this concept, even with different methods [7, 24, 25].

Fig. 4. Correlation plots between parameters describing diastolic function
PPG parameters with some of the strongest correlations with echocardiographic parameters indicative of
diastolic function. MV-A – Mitral A-wave velocity, E/e’-lat - Ratio of early diastolic mitral inflow velocity
to early diastolic mitral annulus velocity, eLVET2@75p- ELVET2 is defined as the time duration from the
first peak of the first derivative PTG to the peak of the systolic wave, b/a - The ratio of the first two in-
flection points of the second derivative of the pulse wave, Crest Time@75 - The time elapsed between the
beginning of the period (foot) and the maximum systolic amplitude (peak), @75 - the original time value is
corrected to 75/min heart rate, LVETi - Left ventricular ejection time indexed for heart rate (LVETi) was

calculated from sex-specific resting regression equations. P < 0.05 for all parameters
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Ejection time

The left ventricular ejection time (ET), a crucial parameter for evaluating left ventricular func-
tion, holds increasing clinical significance. It can independently predict all-cause mortality in
heart failure (HF) with reduced ejection fraction. Additionally, it proves useful as an indicator
for assessing the impact of various drugs in HF [26].

Despite echocardiography being the prevalent method for ET assessment, the easily acces-
sible PPG method offers broader availability and emerges as a potential alternative for esti-
mating ET [18]. Nevertheless, the performance of PPG in ejection time calculation is not firmly
established, partly due to the use of different algorithms across various devices. In our study, we
evaluated the performance of the SCN4ALL algorithm in ejection time calculation.

Our study showed that ET(ECHO) significantly correlated with several PPG parameters:
ET(PPG), Crest Time, eLVET1p, eLVET2p, DNi, in healthy subjects, which indicates that these
PPG parameters or a combination of them may be appropriate indices to estimate ET. Though
most probably the ET(PPG) has the highest clinical value among these, it is important to
highlight that it is not identical to ET(ECHO). We observed a significant, but moderate corre-
lation between them, but the absolute values were different. This is consistent with the results of
Obata and colleagues, who showed that peripherally recorded ejection time was significantly
increased compared to centrally measured values [27]. These results suggest that, although the
peripheral parameters alone do not allow an accurate clinical evaluation of central left ventric-
ular ET, they support the applicability of PPG in the assessment of ejection time.

The correlation of ET(ECHO) with DNIp - a novel parameter hypothesized to describe
ventriculo-arterial coupling and aortic distensibility - reveals a wider interconnectedness of
the hemodynamic elements beyond time-domain parameters.

Systolic function

Monitoring systolic function, especially in HF patients, is crucial in secondary and tertiary
prevention, therapy monitoring, and timely clinical decision making. Echocardiography is
considered the first-choice tool to assess systolic performance by evaluating global and
segmental myocardial contractility [28].

Left ventricular diameters and volumes. The anatomical measures of the left ventricle,
including end-diastolic and end-systolic diameters and volumes, are key indicators of cardiac
health [3].

In this study, LV-EDD showed the strongest correlation with AGEi and the proprietary
Heart Fitness Score, which may indicate that these PPG parameters can be peripheral candidates
to reflect changes in LV-EDD. A large study by Li et al. (N 5 33,147) has confirmed the
predictive value of LV-EDD in the outcome of patients with coronary artery disease [29].
Moreover, the findings of this study might have further clinical relevance as there are significant
associations between LV-EDD and mortality from hypertrophic-, dilatative cardiomyopathy,
and heart failure [29].

Concerning LV-ESD, a remarkable association with AGEi was found. In a recent study by
Takada et al., it was found that LV-ESD is the strongest predictor in heart failure with reduced
ejection fraction (HFrEF) patients for non-improvement one year after hospital discharge.
Moreover, persistent HFrEF patients had significantly worse prognosis and outcomes [30].
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LV-ESD plays an important role in the determination of the severity of mitral and aortic
regurgitation and the necessity of surgery in those conditions [31]. Therefore, it is conceivable
that PPG monitoring of AGEi might have relevance in these conditions.

Volume parameters showed significant, but weaker (r/rho<0,4) correlations with composite
PPG parameters, especially the CardioVascular Health Score and Heart Fitness Score (Results
found in Supplementary Tables 1 and 2). However, Ageing-index, d/a, and CrestTime@75 might
also be useful in the future in the differentiation of patients with altered LV anatomy and
function, as they also exhibited significant but weak correlations.

To our knowledge, no other publication has described a correlation between PPG-derived
features and ventricular volumes. However, a recent article by Kavas et al. demonstrated the
potential of using machine learning to classify PPG signals in differentiating HFpEF and HFrEF
from healthy measurements [23].

Stroke volume, ejection fraction and global longitudinal strain (GLS). Similar to LV-ESV and
LV-EDV, stroke volume (LV-SV) showed significant, but weaker correlation with several PPG
parameters, like Heart Fitness Score, followed by Cardiovascular Health Score and d/a
(Supplementary Tables 1 and 2). In clinical practice, LV-SV is often considered inferior to
ejection fraction (EF). However, it is mostly relevant in the assessment of valvular diseases
and HFpEF, independent of EF [32]. Interestingly, we observed an absence of significant cor-
relation between ejection fraction (EF) and parameters derived from the PPG. This reflects that a
peripheral signal like PPG is less likely to convey precise data about the volume ratio of blood
ejected from the left ventricle compared to the residual blood volume in the chamber. Instead,
PPG parameters are more indicative of the general efficiency of heart contractions and vascular
elasticity, which collectively contribute to either adequate or inadequate blood perfusion.

The importance of GLS is emerging, and in most cases, it is added to the assessment of EF to
get more comprehensive information on the ventricular function [32]. It has undergone exten-
sive evaluation and has been proven to offer additional prognostic insights into mortality rates
among patients with an LVEF greater than 35% [33]. It’s worth noting that early signs of left
myocardial dysfunction are observable in heart failure cases with HFpEF [34]. In such cases,
cardiac malfunction starts with compromised longitudinal strains, even if the EF remains stan-
dard for extended periods.

To our knowledge, this is the first study that compares ventricular strain with PPG-related
indices.

Our study’s findings highlight a significant correlation between the Dicrotic Notch Index and
GLS. This connection is particularly important given its attributes in the management of HFpEF
patients [34]. This discovery might open the door for using PPG-based PWA in monitoring and
preventing issues in HFpEF patients, pending further research validation.

Aortic root diameter, aortic-, and left ventricular outflow tract velocity time integral (Ao-VTI,
LVOT-VTI). Aortic root diameter is crucial for diagnosing and managing aortic diseases, and
guiding follow-up and surgery decisions [35]. The left ventricular outflow tract velocity time integral
(LVOT-VTI) is essential for assessing cardiac systolic function and output, predicting survival and
hospitalization in heart failure and coronary artery disease, and is reliable even in severe heart failure
[36]. The Aortic Velocity Time Integral (Ao VTI) estimates stroke volume and cardiac output, key in
evaluating heart function, especially in aortic valve disease and heart failure [37].
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DNi is a proprietary pulsewave parameter that was created when evaluating pulsewave
recordings of elderly subjects with severe atherosclerosis and found that the Stiffness index,
originally created to inform about aortic stiffness [5], was not sensitive enough. However, the
height ratio of the dicrotic notch to the diastolic peak might serve as a sensitive tool in the
differentiation between elderly individuals and younger subjects (unpublished data). We hy-
pothesize the DNi to be a surrogate marker of ventriculo-arterial coupling; however, further
studies are needed to confirm this hypothesis. Nonetheless, interestingly, DNi demonstrated a
significant correlation with static and dynamic parameters related to aortic functions, such as
aortic root diameter, Ao-VTI, LVOT-VTI, ejection time (besides GLS%) with a correlation
coefficient higher than 0.4, the second-highest correlation with Ao-root diameter (rho 5
0.482) (the strongest correlation of DNi was found with ET(ECHO)). Further research is
required to confirm these initial findings and fully establish DNi as a reliable marker of ejection
function, aortic distensibility, and ventriculo-arterial coupling.

Diastolic function

Our study reveals significant correlations between PPG parameters, such as the eLVET2@75,
b/a, CrestTime@75, or Heart Fitness Score, and echocardiographic indicators of diastolic func-
tion. Additionally, LVETi (which in this study showed the strongest correlation with E/e’-lat.)
has been independently linked to diastolic dysfunction in prior research using other techniques
[16]. This comprehensive analysis of a wide range of PPG-derived parameters is unprecedented,
highlighting its possible utility in evaluating diastolic function.

This study found significant correlations between PPG parameters and MV-A, a param-
eter that measures late mitral velocity characterizing atrial contraction and its contribution
to ventricular filling. MV-A’s increase, which can be influenced by aging and impaired
ventricular relaxation, is linked to diastolic function and post-surgical recovery insights
[38, 39].

The E/e’-lat ratio, an echocardiography parameter, that estimates left ventricular filling
pressure and has diagnostic and prognostic value in heart failure (HF) and diastolic dysfunction.
Higher values suggest increased filling pressure and are linked to worse HF outcomes, influ-
encing treatment decisions [40]. In this study, LVETi (formerly published to possibly correlate
with diastolic function) presented significant and moderate correlation with E/e’-lat, whereas
Cardiovascular Health Score and d/a showed weaker, but still significant correlations indicating
PPG’s future potential in assessing cardiac diastolic function.

In heart failure (HF), diastolic dysfunction significantly affects symptoms, functionality, and
prognosis, making its assessment crucial, especially in systolic LV impairment [41]. Our study
suggests that photoplethysmography data could offer a non-invasive, accessible, and cost-effec-
tive way to be added to the existing tools to screen and follow-up patients with diastolic
dysfunction, aiding in identifying or monitoring asymptomatic HFpEF patients. Future research
aims to extend these findings across diverse HF patient groups, examining how diastolic
dysfunction parameters correlate with clinical outcomes and respond to treatments like SGLT2
inhibitors. This could help pinpoint high-risk individuals or those in early HF stages, potentially
benefiting from more intensive monitoring or treatment strategies.
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CONCLUSIONS

PPG-recorded pulse waves hold potential as an insightful source of information on cardiovas-
cular function and have been shown to exhibit altered characteristics in different CV diseases,
including heart failure. Its utility in cardiovascular monitoring of HF patients largely depends on
the extent to which PPG-derived parameters correspond with established measures of cardio-
vascular function, such as echocardiographic measurements. However, medical literature still
lacks sufficient studies on estimating cardiac function using peripheral signals. In this study, we
observed moderate correlations in the majority of cases between echocardiographic parame-
ters and PPG indices in healthy individuals that may have clinical relevance. These preliminary
findings support that PPG-based monitoring could be considered a complementary tool for CV
assessment. However, further research in HF patients is necessary to verify the observed re-
lationships between PPG and echocardiography parameters, in order to assess the potential
clinical relevance of PPG analysis in supporting patient care in HF.
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Correlation of echocardiography parameters with PPG 

Echocardiography: Ejection time PPG 
parameters 

Pearson’s 
correlations 

Pearsosn’s Partial 
correlations condition on 
HR 

r p r p 

LVET (ms) Ri 0.346 0.036 -0.086 0.618 

eLVET1 * 0.478 0.003 0.155 0.367 

HR -0.538 < .001 N/A N/A 

Echocardiography parameters 
indicating systolic function 

PPG 
parameters 

Pearson’s 
correlations 

  

r p 
  

LV-EDD (mm) SysAlpha 0.328 0.048 
  

DNi * 0.348 0.035 
  

eLVET2 * -0.331 0.045 
  

LV-ESD (mm) SysAlpha 0.363 0.027 
  

DNi * 0.341 0.039 
  

eLVET2 * -0.366 0.026 
  

Crest Time 
@75 

-0.37 0.024 
  

LV-EDV (ml) CV Health 
Score * 

0.383 0.021 
  

d/a 0.334 0.046 
  

AGEi -0.338 0.044 
  

Crest Time 
@75 

-0.333 0.047 
  

LV-ESV (ml) CV Health 
Score * 

0.358 0.032 
  

https://doi.org/10.1556/2060.2025.00675


Heart Fitness 
Score * 

0.369 0.027 
  

LV-SV (ml) CV Health 
Score * 

0.387 0.020 
  

d/a 0.356 0.033 
  

AGEi -0.343 0.040 
  

Crest Time 
@75 

-0.341 0.042 
  

Ao, root diam (mm) Si -0.36 0.029 
  

AGEi -0.356 0.030 
  

eLVET1 @75 * -0.375 0.022 
  

Crest Time 
@75 

-0.389 0.017 
  

Crest Time -0.356 0.030 
  

Ao-vmax (m/s) AGEi -0.332 0.045 
  

DNi * -0.389 0.017 
  

eLVET2 @75 * 0.352 0.033 
  

Ao-gr (av) (Hgmm) DNi * -0.326 0.049 
  

Ao-gr (peak) (Hgmm) DNi * -0.378 0.021 
  

eLVET2 @75 * 0.332 0.044 
  

Ao-VTI (cm) eLVET2 0.335 0.046 
  

Crest Time 0.334 0.047 
  

Echocardiography parameters 
indicating diastolic function 

PPG 
parameters 

Pearson’s 
correlations 

Pearsosn’s Partial 
correlations condition on 
HR 

r p r p 

MV-A (cm/s) ET(PPG) @75 0.464 0.004 0.272 0.109 

AGEi 0.337 0.042 0.434 0.008 

LVETi 0.362 0.028 0.279 0.100 

Sys/Dias Time 0.545 <.001 0.258 0.129 

HR 0.5 0.005 N/A N/A 

MV-grad (av) (Hgmm) Heart Fitness 
Score * 

-0.359 0.031 -0.248 0.151 

b/a 0.366 0.028 0.332 0.051 

Crest Time 
@75 

0.369 0.027 0.344 0.043 

ET(PPG) @75 0.374 0.024 0.203 0.242 

Sys/Dias Time 0.485 0.003 0.273 0.113 

HR 0.42 0.011 N/A N/A 

MV-E/A Sys/Dias Time -0.37 0.024 0.055 0.751 

HR -0.46 0.004 
  

MV-E (cm/s) SysAlpha -0.329 0.047 
  

DNi * -0.375 0.022 
  

eLVET2 @75 * 0.37 0.024 
  

Crest Time 
@75 

0.368 0.025 
  

e'-med (cm/s) eLVET1 * -0.365 0.026 
  



ET(PPG) -0.345 0.036 
  

E/e' - lat CV Health 
Score * 

-0.398 0.015 
  

d/a -0.382 0.020 
  

SysAlpha -0.377 0.022 
  

ET(PPG) @75 0.373 0.023 
  

DT (ms) CV Health 
Score * 

0.392 0.016 
  

b/a -0.365 0.026 
  

LVETi -0.347 0.035 
  

eLVET2 @75 * -0.394 0.016 
  

eLVET2 * -0.347 0.035 
  

Crest Time 
@75 

-0.36 0.029 
  

ET(PPG) @75 -0.34 0.040 
  

Supplementary Table 1. - Results of Pearson’s correlation: comparisons of echocardiographic 
parameters and PPG parameters not included in Table 2. r: correlation coefficient; p= p value 
(significance value <0.05) Given the correlation between heart rate measured by PPG and some 
echocardiographic parameters, where applicable, partial correlation tests were performed as a 
function of heart rate. *:proprietary SCN4ALL parameters 

 


	Introduction 
	Materials and Methods 
	Subjects 
	Measurements with the SCN4ALL System 
	Protocols 
	Measurement Reliability of the Telemedicine System 
	Reliability of Human Pulse Wave Measurements at Standard Conditions 
	Parallel Measurement on Four Fingers 

	Data Analysis and Statistics 

	Results 
	Measurement Reliability of the Telemedicine System 
	Reliability of Human Pulse Wave Measurements at Standard Conditions 
	Parallel Measurements on Four Fingers 

	Discussion 
	Conclusions 
	References
	Introduction 
	Materials and Methods 
	Subjects 
	Measurements of HRV 
	Signal Recording 
	Protocol 

	Data Analysis 
	Bland–Altman Analysis 

	Results 
	Agreements between ECG-Based HRV and PPG-Based PRV Parameters 
	Agreements between PRV Calculations of the SCN4ALL and Kubios HRV Premium Algorithms 

	Discussion 
	Conclusions 
	References
	Evaluation of the Age Dependence of Conventional and Novel Photoplethysmography Parameters
	Abstract 
	Background 
	Results 
	Conclusions 

	1 Introduction
	2 Methods
	3 Results
	3.1 Pearson Correlation Analysis
	3.2 GAM Analysis

	4 Discussion
	5 Limitations of the study
	6 Conclusion
	Acknowledgements
	References

	Outline placeholder
	Evaluating photoplethysmography-based pulsewave parameters and composite scores for assessment of cardiac function: A compa ...
	Introduction
	Materials and methods
	Subjects
	Ethical Compliance
	Protocol
	Echocardiography
	PPG measurements
	Statistics, data analysis

	Results and discussion
	Results
	Results related to left ventricular ejection time (LVET)
	Agreement between PPG and echocardiographic ejection times

	Results related to cardiac systolic function
	Results related to cardiac diastolic function

	Discussion
	Ejection time
	Systolic function
	Left ventricular diameters and volumes
	Stroke volume, ejection fraction and global longitudinal strain (GLS)
	Aortic root diameter, aortic-, and left ventricular outflow tract velocity time integral (Ao-VTI, LVOT-VTI)

	Diastolic function

	Conclusions
	Supplementary data
	References


