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1. Introduction

The history of Marfan syndrome (MFS) began with it being clinically described
for the first time in 1896 by French pediatrician Antoine-Bernard Marfan, who presented
the case of a five-year-old girl exhibiting elongated limbs and joint contractures [1].
Although the complete clinical picture of what would later be recognized as MFS was not
captured in this initial description, subsequent case reports expanded the phenotypic
profile of the disorder, including notable associations with skeletal abnormalities, ocular
manifestations, and, most critically, cardiovascular involvement, particularly aneurysmal
dilation of the ascending aorta, which was increasingly recognized as a major cause of

morbidity and mortality [2].

MFS is currently considered the most prevalent and extensively studied
fibrillinopathy, affecting approximately 1 in 5,000 individuals worldwide regardless of
sex or race [3]. It is caused by fibrillin-1 gene (FBNI) mutations, which occur de novo in
approximately 25% of cases, although the majority (roughly 75%) are inherited following
an autosomal dominant pattern [4]. In exceptional cases, recessive FBNI mutations have
also been described [5]. FBNI encodes the glycoprotein fibrillin-1, an essential
component of microfibrils within the extracellular matrix (ECM) of connective tissues.
The ubiquitous distribution of fibrillin-1 underlies the multisystemic involvement in MFS
[6,7]. However, of primary concern is the vast cardiovascular pathology, encompassing
aortic disease, valvular dysfunction, pulmonary artery and extra-aortic vascular

involvement, arrhythmia, and primary cardiomyopathy [8].

The aneurysmal dilation of the aorta and its subsequent progression to acute aortic
events represent the main determinants of survival in up to 80% of the Marfan population
[9]. Aortic wall dissection occurs in MFS individuals at a younger age compared to the
general cohort [10]. In this regard, timely prophylactic aortic surgery constitutes the most
effective intervention to avoid life-threatening complications and improve life expectancy
[11,12]. Current strategies advocate for integrating molecular data into surgical decision-
making, with growing interest in establishing genotype-phenotype correlations. Specific
FBNI mutations are being investigated for their potential to enhance risk stratification
and facilitate more personalized, timely surgical management of individuals living with

MFS [13].



1.1. Genetics of Marfan syndrome

In humans, the fibrillin protein family comprises three homologous isoforms —
fibrillin-1, fibrillin-2, and fibrillin-3 — encoded by FBNI, FBN2, and FBN3, respectively.
Among these, FBN1, located on the long arm of chromosome 15 (15g21.1), is associated
with MFS [14]. FBNI contains 65 coding exons and spans approximately 200 kilobases,
producing a large, cysteine-rich glycoprotein that is pivotal to the architecture and
function of extracellular microfibrils [15,16]. Over 3,000 mutations have been identified
in FBNI [17]. The resulting molecular dysfunction typically involves a dominant-

negative (DN) effect or haploinsufficiency (HI).

The DN effect is predominantly attributed to missense mutations, which result in
the substitution of a single amino acid within the fibrillin-1 polypeptide chain. These
mutations do not typically affect the overall length of the protein, as the open reading
frame remains intact; rather, they induce a qualitative alteration in the protein’s primary
structure [18]. As a result, both the wild-type and mutant alleles are transcribed and
translated, leading to the synthesis of a full complement of fibrillin-1 molecules.
However, the incorporation of structurally aberrant monomers into multimeric
microfibrils impairs their assembly or function [19]. Additionally, as cysteine residues are
critical for intra-domain stability and inter-domain and supramolecular assembly, DN
mutations are further classified based on cysteine involvement [20,21]. By contrast, HI
may arise through several distinct genetic mechanisms that ultimately result in the
quantitative or functional loss of one FBNI allele. “True” HI occurs when transcription
or translation is completely disrupted by the deletion of the entire gene or its critical
coding regions, and is primarily associated with an overall reduction of the amount of
functional fibrillin-1, which leads to quantitative deficits in microfibrillar formation [22].
Functional HI is mostly associated with nonsense mutations, which introduce a premature
termination codon (PTC) within the FBNI messenger ribonucleic acid (mRNA)
sequence. This aberration leads to early cessation of translation and the production of a
truncated, typically nonfunctional polypeptide. In most cases, the mutant transcript
undergoes nonsense-mediated mRNA decay (NMD) or the resulting polypeptide is
subject to accelerated degradation due to misfolding or instability. The consequence is,
conceivably, a quantitative deficiency of functional fibrillin-1, because only the wild-type

allele remains capable of producing the full-length protein. This monoallelic expression



is insufficient to maintain normal microfibrillar architecture and function, particularly in

tissues subjected to high mechanical stress [23].
1.2. Molecular basis
1.2.1. Fibrillin-1

From an evolutionary perspective, fibrillin-1 is a highly conserved protein across
vertebrate species, playing a fundamental role in the structural and regulatory
organization of connective tissues [24]. In the human organism, it serves as the main
component of fibrillin-1 microfibrils, which are integral to the physiology of the ECM,
fulfilling both mechanical and signaling purposes [25]. During histogenesis, fibrillin-1
microfibrils build a scaffold for the formation of elastic fibers, later becoming embedded
in the elastin network, where they contribute significantly to tissue elasticity [26,27].
Fibrillin-1 microfibrils represent a mechanical backbone not only in elastin-rich, highly
dynamic tissues and organs (e.g., ligaments, dermis, pulmonary parenchyma, aortic wall),
where they contribute to long-range elastic recoil, but also in structures virtually devoid
of elastin, including the ciliary zonule, renal glomerulus, and tendon, where they

primarily provide tensile strength and structural resilience [28].

As a large, cysteine-rich glycoprotein, fibrillin-1 encompasses 2,871 amino acids
and is estimated to have a molecular weight of 320 kDa in its active form [29]. Its modular
structure (Figure 1) is primarily composed of 47 epidermal growth factor (EGF)-like
domains, of which 43 possess calcium-binding capability (cbEGF) [30]. The binding of
calcium to the cbEGF domains protects the fibrillin-1 molecule against proteolytic
degradation and maintains its structural integrity [31,32]. Moreover, it stabilizes the rigid,
rod-like structure of certain domains, thus facilitating the role of microfibrils in load-
bearing tissues [33]. Interspersed among the EGF domains are seven transforming growth
factor-B-binding protein-like (TB) domains — also referred to as 8-cysteine domains —
with TB4 containing an arginine-glycine-aspartic acid (RGD) motif that facilitates
interactions with integrin receptors, thereby promoting cell adhesion [34,35]. Additional
modules include two hybrid domains, which exhibit structural similarities to both coEGF
and TB domains; a variable, proline-rich domain, which differs from its fibrillin-2 and -3
homologs in that they contain either glycine or both proline and glycine, respectively; and

unique N- and C-terminal domains, the latter being critical for the furin-mediated



proteolytical processing that precedes the assembly of fibrillin-1 molecules into

microfibrils [26,36].
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Figure 1. The domain structure of fibrillin-1. Adapted from Sulea et al. [37].

Fibrillin-1 engages in a vast array of molecular interactions mediated by its
various domains. Through its N-terminal region, it interacts with heparan sulfate
proteoglycans, contributing to the spatial organization of matrix components and
influencing cellular behavior [38]. Its cbEGF and TB domains form covalent and non-
covalent associations with other ECM components, including elastin, versican, fibulins,
microfibril-associated glycoproteins, fibrillin-2, and latent transforming growth factor-f3
binding proteins (LTBPs) [27,39-43]. These molecular interactions are essential for the
assembly and stability of microfibrils and for the proper sequestration and regulation of
transforming growth factor-p (TGF-f) signaling. The dysregulation of the latter
mechanism is mainly incriminated in the pathogenesis of aortopathy and other MFS-
specific manifestations. Therefore, the regulatory role of fibrillin-1 in modulating TGF-3

bioavailability warrants special consideration.
1.2.2. TGF-P signaling

The TGF-p signaling cascade regulates a wide array of cellular processes. In
mammals, the TGF-f3 family comprises three isoforms — TGF-B1, TGF-B2, and TGF-3
— that exert their functions through canonical and non-canonical intracellular signaling
pathways [44-46]. In its canonical form, TGF-f3 signaling is initiated upon ligand binding
to a heterotetrameric receptor complex composed of two type I TGF-B receptors
(TGFBR1) and two type II TGF-B receptors (TGFBR2). Ligand binding prompts
TGFBR2 to phosphorylate and activate TGFBR1, which phosphorylates receptor-
regulated small mothers against decapentaplegic (R-SMAD) proteins, primarily SMAD?2



and SMAD3. Through the further involvement of the common mediator SMADA4, they
translocate to the nucleus to regulate the transcription of target genes [47,48]. The
canonical pathway is responsible for the induction of ECM components (e.g., collagen,
fibronectin), modulation of inflammatory responses, and control of cell cycle regulators.
The non-canonical activation relies on several SMAD-independent cascades involving,
among others, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, or TGF-
B-activated kinase 1, and is implicated in numerous cellular events, such as survival and

metabolism, migration, proliferation, and apoptosis [49].

TGF-B is initially synthesized in precursor form, as part of a small latent complex
(SLC) composed of the mature cytokine non-covalently bound to a latency-associated
peptide (LAP) [50]. Through the LAP, the SLC is then covalently linked via disulfide
bonds to an LTBP, forming the large latent complex (LLC) [51]. Following its secretion
from the cell, the LLC is sequestered in the ECM, and its availability is tightly controlled
to prevent untimely or excessive signaling. Fibrillin-1 plays a central role in this
regulation by anchoring the LLC to the microfibrillar network through specific
interactions with LTBPs [52]. Therefore, fibrillin-1 exerts control over TGF-J activation.
The release of active TGF-B from the ECM can be induced by proteolytic cleavage
mediated by matrix metalloproteinases (MMP), mechanical strain, or integrin-mediated

conformational changes [49,53,54].

Genetic mutations leading to aberrant TGF-f signaling have been associated with
disorders of the connective tissue. In MFS, FBNI mutations compromise the integrity of
fibrillin-1 and thus its ability to bind LTBPs and sequestrate TGF-f3, a mechanism that has
been strongly implicated in the development of the disorder’s clinical manifestations,
including aortic aneurysm formation and emphysematous changes in the pulmonary
parenchyma [55,56]. Increased TGF-f transduction has been found to promote
fibrogenesis, as demonstrated by murine experiments in which exogenous cytokine
administration to subcutaneous or pulmonary tissue induced fibrotic reactions [57,58].
Independent studies further established plasma TGF-B levels as a prognostic biomarker
for aortic events in adult human subjects with MFS [59,60]. It is, however, plausible that
an interplay exists between biochemical dysregulation and mechanical failure, whereby

structurally impaired microfibrils contribute to and amplify tissue dysfunction.



1.2.3. Fibrillin-1 microfibrils

Fibrillin-1 molecules assemble to form microfibrils with a beaded structure
characterized by 56 nm periodicity (i.e., the distance between the centers of two
successive beads) and an approximate mass of 2.55 MDa per repeat [61]. They have been
described as measuring 10-12 nm in diameter based on early transmission electron
microscopy images [7]. Immunofluorescence studies placed fibrillin-1 microfibrils in the
ECM of various tissues such as the dermis, aortic media, pulmonary and hepatic
parenchyma, tendon and cartilage, and ocular structures, where they associate with
basement membranes, elastic fibers, and integrin-rich cell surfaces, forming an extensive
and well-organized matrix scaffold [62-66]. Their arrangement and overall abundance are
influenced not only by FBNI defects, but also by various other pathological conditions
and lifestyle factors, such as diabetes mellitus, photoaging, smoking, and chronic kidney

disease [67-69].

The assembly of fibrillin-1 microfibrils takes place on the cell surface, where
fibrillin-1 monomers that had initially undergone preprotein processing and
multimerization are aligned in a head-to-tail configuration [36]. The interaction between
the N- and C-terminal ends of adjacent fibrillin-1 molecules is facilitated by furin-
mediated proteolytic cleavage, which enables the subsequent axial and lateral assembly
[26,36,70]. The process is further regulated by additional molecules that promote stronger
multimer binding, such as heparan sulfate proteoglycans, glutamine aminotransferase,
and fibronectin. However, microfibrillar assembly may depend on cell type and,

subsequently, the presence or absence of fibronectin networks [71].

The ultrastructure of fibrillin-1 microfibrils is made of alternating beads and
connecting segments, which further contain arms, a central interbead region, and a
shoulder region [72]. Scanning transmission electron microscopy mass mapping
demonstrated that the regions of highest mass correspond with the beads, accounting for
approximately 1.1 MDa [73,74]. Studies using various imaging techniques have reported
a range of bead diameters, from approximately 15-18 nm in automated electron
tomography data sets to 30—40 nm in atomic force microscopy (AFM) [75,76]. However,
bead morphology seems to be tissue-dependent [77].



The precise spatial arrangement of fibrillin-1 monomers within the microfibrillar
architecture has been a subject of considerable debate. Several models have been
proposed, each aiming to integrate structural observations with biochemical findings.
They have included both parallel (head-to-tail) and antiparallel alignments, as well as
staggered and unstaggered configurations [78]. Given the length of a single fibrillin-1
monomer (148 nm) [79] and the observed microfibrillar periodicity of approximately 56
nm, different theories have suggested certain degrees of molecular folding where fibrillin-
1 molecules span one, two, or three repeats [80-82]. However, a completely extended
state of the fibrillin-1 molecules within relaxed microfibrils would be unable to explain
their extensibility. Regardless of the degree of stagger, all models propose that both N-
and C-terminal ends of the molecules interact in or near the beads. Additionally, it has
been demonstrated that eight parallel fibrillin-1 molecules can be accommodated along

the microfibrillar axis [76,83].

Fibrillin-1 microfibrils possess distinct mechanical properties that allow them to
provide both tensile strength and elasticity within the ECM. In the ciliary zonule, which
is made predominantly of fibrillin-1 bundles, these microfibrils act like reinforcing
structures, demonstrated by a lower breaking force due to a depleted fibrillin-1 network
[84]. Under mechanical stress, which may occur physiologically in elastic tissues, the
microfibrillar assemblies are capable of significant elongation without permanent
deformation. Within the 56—90 nm periodicity range, they are capable of reversible stretch
and recoil owing to TB-cbEGF interdomain sliding events within the interbead segments
exclusively. Extension above 90-100 nm was found to be accompanied by irreversible

conformational changes, hinting at the unravelling of the beads [73,85].

Efforts to characterize the elasticity of fibrillin-1 microfibrils have yielded a wide
spectrum of results, reflecting not only the diversity of the experimental setups across
studies but also the wide variety of tissue sources from which samples have been obtained.
Due to the invasiveness of human tissue harvesting for mechanical testing, most studies
have relied on animal models to estimate microfibrillar Young’s modulus. This
fundamental measure of stiffness quantifies how much a material resists deformation
under stress, defined as the ratio of applied stress to the resulting strain [86]. The studies
demonstrated estimates for the Young’s modulus of pure fibrillin-1 microfibrils or

fibrillin-1-containing elastic fibers spanning three orders of magnitude — from 0.2 MPa
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to 96 MPa — emphasizing the influence of both biological variability and methodological
design (Table 1).

Table 1. Previously estimated Young’s modulus values of fibrillin-1-containing structures.

Species Tissue Method Young’s modulus
sea cucumber dermis network macroscopic stretching 0.2 MPa [87]
pig aorta mechanical testing 0.4 MPa [88]
octopus aorta mechanical testing 0.4 MPa [89]

horse ligamentum nuchae AFM indentation 0.56-0.74 MPa [90]
jellyfish mesogleal fibers mechanical testing 0.9 MPa [91]
lobster aorta transmural pressure 1.06 MPa [92]

cow zonular filament macroscopic stretching 0.19-1.88 MPa [93]

cow zonular filament molecular combing 78-96 MPa [85]

In the aortic wall, fibrillin-1 microfibrils exhibit a circumferential disposition
within the media, where they form a sheath-like structure around the amorphous core of
elastic fibers and are interwoven with collagen fibers and smooth muscle cells [94]. Their
dysfunction, whether through impaired regulatory capacity or altered biomechanical
properties, has been identified as a central pathogenic mechanism in the development of

clinical manifestations in MFS.
1.3. Clinical manifestations

The clinical picture of MFS includes a broad spectrum of features due to the
ubiquitous role of fibrillin-1 in connective tissue homeostasis. Moreover, the disorder
presents with high variability even among individuals carrying the same mutation [95].
However, MFS symptomatology is dominated by disorders of the skeletal, ocular, and
cardiovascular systems. Although skeletal and ocular manifestations are clinically
relevant and impact quality of life, cardiovascular involvement remains the primary area

of concern, as it is associated with the highest morbidity and mortality in MFS.

Skeletal involvement is one of the most visually apparent hallmarks of MFS and
is often the first feature to raise clinical suspicion. The skeletal phenotype is
predominantly characterized by excessive linear growth of the long bones, leading to a
typically tall and slender habitus with disproportionate limb length and arachnodactyly
[96]. These characteristics translate into key diagnostic features, such as reduced upper-

to-lower segment ratio (US/LS), increased arm span-to-height ratio, and the thumb and
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wrist signs. Additional features include pectus excavatum or carinatum, scoliosis or
kyphosis, joint hypermobility, and foot deformities. Craniofacial features may also be
present in the form of dolichocephaly, down-slanting palpebral fissures, enophthalmos,
retrognathia, and malar hypoplasia. These manifestations reflect the underlying
connective tissue laxity and may significantly impact quality of life, requiring corrective

surgery [97].

The eye is another major site of clinical involvement. The cardinal ocular
manifestation in MFS is ectopia lentis, which occurs in up to approximately 70% of
patients [98]. The lens typically displaces upward and temporally due to weakened or
fragmented zonular fibers, which are rich in fibrillin-1. Other ophthalmological findings
include myopia (often severe), increased axial length of the eye globe, early-onset
cataracts, and a predisposition to retinal detachment [99]. These changes may
significantly impair visual acuity and require regular ophthalmologic surveillance and, in

some cases, surgical intervention.

Other important physical manifestations include spontaneous pneumothorax,
dural ectasia, skin lesions, particularly striae atrophicae, and an increased tendency to
develop hernias due to connective tissue fragility [14]. Obstructive respiratory
impairment occurs in 20 to 25% of patients [100,101]. Nevertheless, the most critical and
potentially fatal manifestations of MFS occur within the cardiovascular system, making

its thorough monitoring and timely management essential.
1.3.1. Aortic involvement

The aortic root is the most commonly affected vascular segment in MFS. Its
progressive dilation, occurring particularly at the level of the sinuses of Valsalva, results
from a structural degeneration within the medial layer of the aortic wall, including elastic
fiber fragmentation, smooth muscle cell loss, and ECM disorganization, a process
exacerbated by aberrant TGF-p signaling [102]. As the aortic diameter increases, wall
tension rises, predisposing the aorta to continued dilation and the risk of aneurysm
development. A predisposing factor for this specific localization, besides the locally
increased blood pressure, may be the thinner and stiffer structure of the sinuses of

Valsalva compared to other aortic segments [103].
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Typically, an aneurysm refers to the localized enlargement of a vessel by more
than 50% of its normal diameter. However, as the risk of dissection is significantly
elevated even at smaller sizes, in clinical practice, it is defined as an aortic diameter of 45
mm or more [104]. In MFS, a standardized measure, known as the aortic Z-score, is used
to assess whether the aortic root diameter is abnormally enlarged relative to the patient’s
body surface area, age, and sex by quantifying how many standard deviations (SD) the

given measurement deviates from the mean of a matched healthy population [105].

Aortic root aneurysms in MFS typically develop during adolescence or early
adulthood, but dilation may also be detectable in childhood [106]. The estimated
prevalence of aortic aneurysm in individuals with MFS revolves around 90% by the age
of 60 [107], with progression rates and onset age influenced by the specific nature of the
FBN1 mutation and other modifying factors [108]. Aortic root aneurysms tend to grow at
a significantly accelerated rate in individuals with MFS, thereby elevating the risk of

associated complications [109].

If aortic dilation is not identified and managed appropriately, it may be
complicated by aortic dissection, a life-threatening condition characterized by the
separation of the layers within the aortic wall. This disruption can severely compromise
blood flow, leading to end-organ ischemia or, if affecting the ascending aorta, sudden
death due to complications such as aortic rupture, acute aortic valve insufficiency,
myocardial infarction, or cardiogenic shock [110]. MFS-related aortic dissections account
for approximately 5% of all aortic dissection cases [111]. In MFS, aortic dissection occurs

at a significantly younger age compared to the general population [10].
1.3.2. Extra-aortic vascular manifestations

Vasculopathy in MFS extends beyond the aortic root and ascending aorta. Dilation
of the main pulmonary artery has been observed in up to 70% of adults and approximately
10% of pediatric patients with MFS [112,113]. Similar to proximal aortic dilation,
pulmonary artery enlargement can become clinically relevant when exerting compression
on adjacent structures. However, due to the lower pressure in the pulmonary circulation,
dissection of the main pulmonary artery remains a rare complication [114]. Nonetheless,
its presence seems to be associated with a more severe systemic phenotype in affected

individuals [113].
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Peripheral arterial involvement in MFS often presents as increased visceral,
intracranial, or retinal artery tortuosity [115-117]. This condition describes the presence
of abnormal curvature, looping, or kinking along the axis of a blood vessel. Although it
has also been observed in other heritable aortopathies, arterial tortuosity has been

proposed as an indicator of aortic phenotype severity in individuals with MFS [118,119].
1.3.3. Cardiac pathology

Beyond the well-documented vascular complications, MFS is also associated with
distinct forms of cardiac involvement, primarily affecting the valves and, to a lesser
degree, the myocardial function. Mitral valve prolapse is the most frequent valvular
abnormality in MFS, with prevalence estimates reaching up to 80% [120]. It may present
with varying degrees of mitral regurgitation and, in more severe cases, particularly among
pediatric patients, can progress to congestive heart failure [121]. Mitral annular
disjunction, defined as a structural separation between the mitral valve hinge point and
the adjacent left ventricular (LV) myocardium, has been reported in a third of an MFS
cohort and was associated with an elevated risk of arrhythmias [122]. Additionally,
degenerative changes affecting the tricuspid valve have been documented in
approximately 12% of MFS patients undergoing aortic or valvular surgery [123]. Aortic
valve insufficiency may also occur, typically due to annular dilation related to progressive
aortic root enlargement [ 124]. Nevertheless, myocardial dysfunction and LV impairment
have been observed in MFS even in the absence of significant valvular disease and in

pediatric populations, suggesting a possible intrinsic “Marfan cardiomyopathy”.
1.3.3.1. Marfan cardiomyopathy

Several studies have reported intrinsic myocardial dysfunction in patients with
MFS, often characterized as mild in severity [125-127]. Decreased LV ejection fraction
(below 55%) has been observed in up to 25% of cases [125]. Moreover, magnetic
resonance studies have revealed subtle systolic impairment even in patients with
preserved ejection fraction [128]. While biventricular dilation and dysfunction are
typically subclinical and not accompanied by overt symptoms, these changes can manifest
independently of other cardiovascular abnormalities, such as valvular pathology,

suggesting a primary myocardial involvement. Current evidence suggests that this
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inherent ventricular dysfunction may predispose MFS individuals to developing heart

failure when exposed to additional cardiac stressors [127].

The underlying pathophysiology of Marfan cardiomyopathy is not yet fully
elucidated. Abnormal fibrillin-1 microfibril architecture in the myocardium may impair
force transmission across the ECM, contributing to reduced contractile performance. This
hypothesis is supported by the spatial distribution of fibrillin-1 within the ventricular
myocardium, where it is more abundantly localized in the inner trabecular region, the area
that suffers the greatest mechanical stress and dynamic changes during the cardiac cycle
[129]. Additionally, TGF-f dysregulation has been implicated in myocardial remodeling
processes, including interstitial fibrosis, cellular hypertrophy, and apoptosis, further

promoting myocardial dysfunction [130].

The primary myocardial dysfunction in MFS shares some phenotypic overlap with
dilated cardiomyopathy (DCM), a myocardial disorder defined by enlargement of the
cardiac chambers and compromised ventricular contractility. Approximately 40% of cases
have a genetic origin, being caused by truncating variants in the 77N gene (TTNtv), which
encodes the sarcomeric protein titin [131]. Although 77N gene mutations are not typically
associated with MFS, the intrinsic nature of Marfan cardiomyopathy has led

investigations into potentially overlapping molecular pathways.
1.3.3.2. Titin

Titin, the largest known human protein, ranks as the third most abundant
myofilament in striated muscle after myosin and actin [132]. It spans from the Z-disk to
the M-line within the half-sarcomere, contributing to structural integrity and passive
muscle tension [133]. Due to distinct structural domains, titin’s mechanical and functional
properties vary along its length (Figure 2). The A-band region is largely inextensible,
serving, hypothetically, as a scaffold for thick filament assembly through fibronectin type
IIT and immunoglobulin (Ig)-like domains. The M-band portion supports structural and
regulatory roles via protein interactions and a titin kinase domain [134]. In contrast, the
I-band segment is elastic and contains extensible elements such as Ig regions, the special
proline-, glutamate-, valine-, and lysine-rich (PEVK) domain, and the N2B-unique

sequence, which confer titin’s spring-like characteristics. Anchoring occurs at both ends
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of the molecule, at the Z-disk and the M-band, where additional unique sequence motifs

further contribute to titin’s specialized structural and regulatory functions [135].

Z disk M line Z disk
|

thin filament (actin)

thick filament (myosin)

| | | }DE_I-I:' N2BA isoform (~ 3.5 MDa)
| | | }....................I:l N2B isoform (~ 3 MDa)
_ Nx3 Novex-3 isoform (~ 650 kDa)

Figure 2. Disposition of titin in the sarcomere (top) and I-band structure of cardiac titin isoforms (bottom). Dotted

lines mark alternative splicing sites. Adapted from Loescher ef al. [135].

Titin exists in multiple isoforms that are generated through alternative mRNA
splicing during development and differ in terms of stiffness and extensibility due to their
different spring lengths [135]. This post-transcriptional regulatory mechanism occurs
particularly in the I-band region and enables the myocardium to adapt its passive tension
and compliance in response to various stimuli. In mammalian hearts, two primary
isoforms are co-expressed in variable proportions: N2B, a shorter and stiffer variant, and
N2BA, a longer and more compliant form (Figure 2). The relative expression of the two
isoforms in the myocardium reflects species-specific hemodynamic demands: the N2B
isoform is predominantly expressed in small mammals such as rodents, where it
contributes to higher passive tension in the cardiac sarcomere and confers greater
resistance to stretch, while the N2BA isoform is more prevalent in larger mammals such
as pigs and humans, as it imparts greater elasticity and allows increased stroke volumes.
Consequently, the N2BA:N2B ratio is around 0.25 in mice and approximately 0.66 in pigs

[136], whereas in non-ischemic, non-diseased human myocardial tissue, the ratio ranges
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between 0.47 and 0.56 [137,138]. The N2BA:N2B isoform ratio also adapts in response
to physiological (e.g., endurance training) and pathological (e.g., diastolic dysfunction)
conditions, where increased N2BA expression was observed [135,139]. This isoform shift

appears to serve as an adaptive mechanism to modulate myocardial stiffness.

A minor myocardial isoform of titin, novex-3, is significantly shorter and lacks
much of the extensible functionality. It primarily includes the novex-3-specific region
(Nx3) and is thought to contribute to signaling pathways within the myocardium and
sarcomeric remodeling triggered by mechanical stretch, both during muscle development

and in the context of cardiac disease [140].
1.4. Diagnosis

The precise and timely diagnosis of MFS is critical, given the overall morbidity
and potentially life-threatening cardiovascular complications associated with the disease.
MES is currently diagnosed based on a set of clinical criteria known as the revised Ghent
nosology, first established in 1996 and updated in 2010 to enhance its diagnostic value
and to incorporate molecular genetic findings [14]. The updated Ghent criteria emphasize
the importance of aortic involvement and ectopia lentis, alongside systemic

manifestations and a confirmed pathogenic variant in FBN]I.

A definitive diagnosis in the absence of a positive family history relies on the

presence of one of the following four scenarios [14]:

1. aortic Z-score > 2 or aortic dissection AND ectopia lentis;
aortic Z-score > 2 or aortic dissection AND FBNI mutation;

aortic Z-score > 2 or aortic dissection AND systemic score > 7;

EalE

ectopia lentis AND FBNI mutation known to be associated with aortic aneurysm.

In individuals with a positive family history of MFS, the presence of any one of

the following criteria is sufficient for diagnosis [14]:

1. ectopia lentis;
2. systemic score > 7;

3. aortic Z-score > 2 or > 3 above or below the age of 20, respectively.

The systemic score quantifies the degree of systemic connective tissue

involvement by assigning specific point values to various physical features based on their
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relevance to the disorder (Table 2). A cumulative score of at least 7 points supports

systemic involvement consistent with MFS [14].

Table 2. Physical manifestations included in the calculation of the systemic score. Adapted from Loeys et al. [14].

Physical feature Points

Wrist AND thumb sign

Wrist OR thumb sign

Pectus carinatum

Pectus excavatum OR chest asymmetry
Hindfoot deformity

Pes planus

Spontaneous pneumothorax

Dural ectasia (on imaging)

[\ [\ N = N —= N [— W

Protrusio acetabuli (on imaging)

Reduced US/LS AND increased arm span-to-height ratio AND no severe scoliosis 1

Scoliosis OR thoracolumbar kyphosis 1

Reduced elbow extension (less than 170°) 1

Facial features (at least three of the following: dolichocephaly, enophthalmos, downslanting
palpebral fissures, malar hypoplasia, retrognathia)

Skin striae 1

Myopia greater than 3 diopters 1

Mitral valve prolapse (on echocardiography) 1

Genetic testing for FBNI mutations has become an essential component in the
management of MFS, improving diagnostic accuracy and facilitating familial screening.
Given the considerable phenotypic variability of MFS and its clinical overlap with other
connective tissue disorders, molecular confirmation can significantly aid in distinguishing
MFS from related conditions. In a research setting, exploring genotype-phenotype
correlations has revealed that certain FBN/ mutation types may be associated with
distinct clinical patterns and disorder severity, thus offering potential for a more

personalized approach to patient care in this population [141].
1.4.1. Differential diagnosis

MEFS represents the most prevalent syndromic form of heritable thoracic aortic
disease (HTAD), a spectrum of genetic disorders characterized by an increased risk of
thoracic aortic aneurysms, dissections, and related vascular abnormalities. Eleven genes,
including FBN1, are strongly linked to HTAD [142]. Some variants cause non-syndromic
forms of HTAD, such as bicuspid aortic valve and familial thoracic aortic aneurysm and

dissection, which should still be considered in the differential diagnosis of MFS despite
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the absence of widespread systemic features [143]. Distinguishing MFS from related
HTADs is critical for appropriate surveillance, management, and genetic counseling
[144]. In ambiguous cases, especially in young individuals or those with incomplete

phenotypes, molecular testing is the definitive tool in establishing the correct diagnosis.

Loeys-Dietz syndrome (LDS) is perhaps the most phenotypically similar
condition to MFS, characterized by arterial tortuosity and aortic disease. Unlike MFS,
LDS involves craniofacial abnormalities and more aggressive vascular disease with
widespread aneurysms and dissection at smaller aortic diameters, warranting earlier
surgical intervention. Genetic testing is essential to differentiate the disorders, as LDS is

typically associated with mutations in genes of the TGF-f signaling cascade [145].

Ehlers-Danlos syndrome encompasses a spectrum of disorders primarily affecting
collagen-encoding genes, leading to symptoms such as skin hyperextensibility, tissue
fragility, and joint hypermobility. Its vascular subtype is particularly notable for severe
arterial complications such as spontaneous arterial rupture without significant aneurysmal

dilation, often in peripheral arteries rather than the ascending aorta [145].

Additional FBNI-associated conditions to include are Shprintzen-Goldberg
syndrome, presenting with craniosynostosis and skeletal features but rare aortic
manifestations; the MASS phenotype, consisting of mitral valve prolapse, myopia, non-
progressive aortic root dilation, musculoskeletal manifestations, and skin striae; and
familial ectopia lentis, which lacks aortic features [114]. Congenital contractural
arachnodactyly (Beals-Hecht syndrome) presents with disproportionally long extremities,
arachnodactyly, and tall stature, features that closely resemble MFS, but is distinguished
by congenital joint contractures and characteristic external ear malformations. Aortic

involvement is uncommon. The condition is caused by FBN2 pathogenic variants [146].
1.4.2. Genotype-phenotype correlations

Studies indicate that the type and localization of FBNI mutations influence the
clinical phenotype and prognosis of MFS. Ectopia lentis was found to strongly correlate
with missense mutations affecting cysteine residues within fibrillin-1 [108,147].
Similarly, PTC mutations are more frequently linked to pronounced skeletal and skin
manifestations [107]. Mutations clustered in a specific region of FBNI, namely exons 24—

32, associate with the occurrence of neonatal MFS, a severe, early-onset form of the
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disease marked by severe physical manifestations and high early mortality due to cardiac
failure [148]. At the tissue level, this phenotype corresponds to severely compromised
microfibril formation, where fibroblasts fail to assemble fibrillin-1 into organized

microfibrils, resulting in nearly absent elastic fiber formation [149].

Franken et al. reported that MFS patients with HI variants had a 2.5-fold higher
risk of experiencing cardiovascular death and a 1.6-fold greater likelihood of developing
aortic complications compared to those with DN variants [141]. These findings are
supported by murine experiments, where HI mutations resulted in a sparser microfibrillar
matrix with reduced tensile strength [150]. These insights warrant the importance of
further nanoscale structural and biomechanical investigations, as they may reveal key

features underlying the pathomechanism of MFS.
1.5. Management

In addition to multidisciplinary care addressing the systemic manifestations of
MFS and lifestyle changes to limit physical exertion, the primary focus of MFS
management is the prevention of life-threatening cardiovascular complications. Given the
often silent progression of aortic dilation until advanced stages, regular imaging
surveillance (e.g., echocardiography, magnetic resonance imaging, etc.) is essential for
monitoring aortic root size and detecting enlargement. Pharmacotherapy with beta-
blockers or angiotensin receptor blockers (e.g., losartan) is commonly prescribed to
reduce hemodynamic stress on the aorta. Prophylactic surgery is typically recommended
upon reaching an aortic root diameter of 50 mm, or even earlier (at 45 mm) in the presence
of rapid growth (> 5 mm/year), a family history of acute aortic events, or additional risk
factors such as severe aortic regurgitation or pregnancy [151]. Composite graft
replacement (Bentall procedure) is preferred for managing aortic root dilation in MFS,
with valve-sparing approaches (Yacoub and Tirone-David procedures) increasingly
favored when anatomically feasible [12,152]. Psychological challenges also warrant
attention, as MFS significantly impacts psychosocial well-being, particularly influenced
by surgery [153,154]. Optimizing patient selection and the timing of preventive surgery
require the identification of accurate prognostic markers. A deeper understanding of the
tissue-level alterations in MFS could provide valuable insight into disease progression

and support the development of improved therapeutic strategies.
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2. Objectives

As dysregulation of the TGF-J signaling pathway is widely regarded as the central
mechanism underlying the pathophysiology of MFS, the nanoscale characteristics of
fibrillin-1 microfibrils remain insufficiently explored. In particular, human aortic fibrillin-
1 microfibrils have not yet been directly investigated at the ultrastructural level.
Additionally, increasing evidence of myocardial involvement suggests that the giant
sarcomeric protein titin, a key determinant of cardiomyocyte elasticity and function, may
play a role in Marfan cardiomyopathy. The present research aimed to address these
understudied aspects, offering new insights into the molecular consequences of MFS on

the cardiovascular system.
The primary objectives of this study were as follows:

1. To investigate the morphological and nanomechanical properties of
individual fibrillin-1 microfibrils isolated from human aortic tissue in MFS

and non-MFS individuals. This included:

a. assessing structural dimensions and stiffness of human aortic fibrillin-1

microfibrils using AFM;

b. evaluating the impact of FBNI mutations on the morphology and

biomechanics of single fibrillin-1 microfibrils in MFS;

c. exploring potential associations between types of FBNI mutations and
measured biophysical parameters, thereby contributing to improved

genotype-phenotype correlations.

2. To explore the possible role of sarcomeric titin in the myocardial impairment
observed in Marfan cardiomyopathy by analyzing total titin levels and titin
isoform expression in LV myocardial tissue from MFS patients using molecular

biology techniques.
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3. Methods

3.1. Experimental design

The research was elaborated and conducted in accordance with the Helsinki
Declaration of 1975, amended in 2013. Ethical approval for the harvesting and use of
human tissues and the use of genomic data was obtained from the Medical Research
Council of Hungary (ethical permission numbers: TUKEB 73/2005, ETT TUKEB
7891/2012/EKU (119/P1/12.), ETT TUKEB 12751-3/2017/EKU, ETT TUKEB
IV/10161-1/2020/EKU, and ETT TUKEB BM/17671-3/2024). All patients provided their

informed consent prior to inclusion in the study.
The participants were selected based on the following inclusion criteria:

1. Marfan syndrome (MFS) group (n = 10):
a. Genetically confirmed diagnosis of MFS through the detection of a (likely)
pathogenic FBNI variant;
b. Undergoing aortic root surgery for MFS-related aortic complications (i.e.,
aortic root aneurysm, annuloaortic ectasia);
c. Age>15years.
2. Non-Marfan syndrome/control group (n = 10):
a. Medical history unsuggestive of connective tissue disorders or aortic
disease;
b. Undergoing orthotopic heart transplantation due to cardiac failure of
ischemic etiology;
c. Age>15 years.
3. Marfan syndrome group within the titin study (n = 12):
a. Genetically confirmed diagnosis of MFS through the detection of a (likely)
pathogenic FBNI variant;
b. Undergoing aortic root surgery for MFS-related aortic complications (i.e.,
aortic root aneurysm, annuloaortic ectasia);

c. Any age.

A total of 32 patients were included across two studies (i.e., fibrillin-1 and titin
studies). All surgical interventions took place at the Heart and Vascular Center of

Semmelweis University. The clinical data of the participants were obtained from the
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databases of the Hungarian Marfan Register [155] and the Transplantation Biobank of the

Heart and Vascular Center of Semmelweis University.
3.2. Fibrillin-1 study

Aortic root tissue samples were collected from 10 MFS patients (labeled MFS1—
MFS10) and 10 non-MFS control individuals (labeled C1—C10). The tissue was received
as pieces cut from above the sinuses of Valsalva. Following removal, the specimens were
immediately immersed in 0.9% saline solution and transported on ice to the Department
of Biophysics and Radiation Biology of Semmelweis University, where they were stored

at 4°C until being processed within 48 hours of collection.
3.2.1. Fibrillin-1 microfibril purification

The microfibril isolation protocol was conducted as previously described [37],
based on an adapted version of an earlier methodology [156,157]. All reagents and

materials were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Following the careful removal of adipose tissue from the adventitia, a full-
thickness aortic wall piece weighing roughly 1 gram was prepared for purification. The
tissue was cut up into fine pieces and then homogenized in 5 mL of 0.05 M Tris-HCI
buffer (pH 7.4) containing 0.4 M NaCl, 0.01 M CaCl,, 0.01% NaNj3, and protease
inhibitors, namely 10 mM N-ethylmaleimide and 2 mM phenylmethylsulfonyl fluoride
(PMSF), using a handheld, blade-type homogenizer. 5 mg of type 1A bacterial
collagenase was added to the tissue suspension, and the digestion was allowed to proceed
for 4 hours at room temperature (around 22°C) with gentle stirring. The digestion process
was terminated by adding 100 pL ethylenediaminetetraacetic acid (EDTA), and the
homogenate was centrifuged at a relative centrifugal force of 10,000 g for 30 minutes.
The excluded supernatant (labeled “low salt extract) was filtered using a 0.22 um syringe
filter unit and stored at 4°C. The pellet was resuspended in 5 mL of 0.05 M Tris-HCI
buffer (pH 7.4) containing 1 M NaCl, 10 mM EDTA, 0.01% NaN3, and protease inhibitors
(10 mM N-ethylmaleimide, 2 mM PMSF), and left to extract for 48 hours at 4°C with
gentle stirring. After centrifugation at 10,000 g for 30 minutes, the supernatant (labeled
“high salt extract”) was filtered and stored as described previously. The extracts
underwent size-exclusion chromatography at room temperature on a Sepharose CL-2B

column (150 x 1.5 cm) in 0.05 M Tris-HCI buffer (pH 7.4) containing 0.4 M NaCl and
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0.01% NaNs. The column eluate corresponding to the chromatogram peaks was collected
in the form of 1 mL fractions. All pooled fractions were further investigated for protein
concentration by measuring ultraviolet light absorbance at 280 nm using a NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Aliquots from

the fractions with the highest protein concentrations were selected for AFM imaging.
3.2.2. Atomic force microscopy imaging

AFM is a high-resolution imaging technique widely used in nanoscience to
visualize and manipulate materials at the nanoscale. It employs a sharp probe (tip)
mounted on a flexible cantilever to scan the surface of a sample (Figure 3). As the tip
moves across the sample surface, intermolecular forces between the tip and the sample
cause the cantilever to deflect. Using a laser beam focused on the surface of the cantilever
and reflected onto a photodetector, this deflection is recorded and converted into three-
dimensional topographical images of the scanned surface, showing height differences at
(sub)nanometer resolution. This mechanism is characteristic of the non-contact/tapping
mode of AFM scanning, where the tip oscillates just above the sample surface, measuring
attractive forces without touching it, and is more suitable for soft biological materials in
order to minimize damage. Beyond imaging, AFM can perform force spectroscopy, where
the probe indents the sample to measure local mechanical properties such as stiffness

(Young’s modulus), elasticity, and adhesion forces [158].

photodetector

feedback cantilever
eedbac with tip
electronics
microfibril
mica

piezoelectric scanner

Figure 3. Schematic representation of the main components of an AFM.
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AFM is especially suitable for biological samples due to its ability to operate both
in air and in aqueous environments, enabling the investigation of hydrated, soft, and
dynamic systems in near-physiological conditions. It requires minimal sample

preparation or fixation, preserving the native state of biological structures [158].
3.2.2.1. Morphological measurements

Aliquots were diluted with chromatographic buffer based on the
spectrophotometric readings when necessary. 20 puL from the obtained suspension were
pipetted onto a freshly cleaved mica surface and allowed to equilibrate for 15 minutes
before being rinsed with ultrapure water and dried using gentle high-purity nitrogen gas

stream.

To assess microfibrillar morphology, probe scanning was performed with an
Asylum Research Cypher ES AFM (Oxford Instruments, Santa Barbara, CA, USA) at
room temperature. Topographical images (height data) were recorded in tapping mode,
employing OMCL-AC160TS-R3 microcantilevers (Olympus Corporation, Shinjuku
City, Tokyo, Japan) with force constant of 26 N/m and resonance frequency of 300 + 100
kHz. Scanning was conducted at a typical setpoint of 700 mV and image resolution of
512 x 512 pixels. Image processing and data analysis were carried out using the Igor Pro
6 environment (WaveMetrics, Lake Oswego, OR, USA) and the open-source Gwyddion
software [159].

The morphological analysis of individual fibrillin-1 microfibrils focused firstly on
a detailed characterization of the bead regions. Measured parameters included maximum
and average height, length, width, projected area, volume, bead roundness, and aspect
ratio. In addition, microfibril length, interbead segment height, and periodicity were
assessed [37]. Following the individual assessment of each sample, comparative analyses
were performed between the MFS and control groups. Within the MFS cohort, subgroup
comparisons were carried out between patients harboring HI and DN FBN/ mutations
and between each subgroup and the control group to investigate genotype-specific effects

on microfibril properties.
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3.2.2.2. Mechanical measurements

Force spectroscopy was carried out in liquid (chromatographic buffer) at room
temperature. The mica substrate had been affixed to the bottom of a small petri dish in
order to allow complete immersion of the scanning surface, minimizing evaporation
during measurements. The mica was first coated with 100 pL of poly-L-lysine and
incubated for 20 minutes. It was then rinsed with ultrapure water and dried using nitrogen
gas. Sample aliquots (100 uL) were applied to the mica surface and allowed to equilibrate
for 15 minutes. After incubation, the surface was gently washed five times with
chromatographic buffer using pipette aspiration, and finally covered with 1.5 mL of the

same buffer to maintain full coverage during measurements.

The stiffness of fibrillin-1 microfibril beads was investigated with a DriveAFM
instrument (Nanosurf AG, Liestal, Switzerland) using BL-AC40TS cantilevers (Olympus
Corporation, Shinjuku City, Tokyo, Japan) with force constant of 0.1 N/m and resonance
frequency of 110 = 35 kHz. Cantilever calibration was conducted using the thermal
method prior to imaging. Force mapping was performed in static mode at a setpoint force
of 500 pN. Young’s modulus values were determined by fitting the Hertzian mechanics
model to the approach segment of the recorded force-distance curves in the integrated
Nanosurf Studio 12 software (Nanosurf AG, Liestal, Switzerland), assuming a conical
indenter geometry and Poisson's ratio of 0.25. The generated height and Young’s modulus

maps were exported and further processed using Gwyddion.

As with the morphological measurements, equivalent comparisons were

conducted between groups and within the MFS subgroups.
3.3. Titin study

Human myocardial tissue samples were sourced from the Transplantation
Biobank of the Heart and Vascular Center of Semmelweis University. LV septal
endomyocardium specimens had been collected from 12 MFS patients (labeled PAP, in
accordance with the identification codes (ID) given in the Transplantation Biobank
database) undergoing aortic root surgical interventions. Following excision, the samples
were immediately snap-frozen in liquid nitrogen under sterile conditions and stored at -
80°C until analysis [160]. Additionally, myocardial samples from two DCM patients
(labeled DCM) without titin truncating variants (77Ntv-) [161] and one adult male Wistar
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rat (labeled HK9) were included in the analysis as control and reference specimens.

Previously investigated 77Ntv- DCM specimens [161] were used for comparison.
3.3.1. Protein solubilization

The solubilization protocol followed an earlier established method [161]. The
small LV myocardial fragments (10—15 mg) were homogenized in glass Kontes Dounce
tissue grinders under liquid nitrogen. After a 20-minute incubation at -20°C, the samples
were solubilized at 60°C for 15 minutes in a 50% urea buffer (8§ M urea, 2 M thiourea, 50
mM Tris-HCL, 75 mM dithiothreitol, 3% sodium dodecyl sulfate (SDS), and 0.03%
bromophenol blue, pH 6.8) and 50% glycerol supplemented with protease inhibitors (0.04
mM E64, 0.16 mM leupeptin, and 0.2 mM PMSF). Following solubilization, the samples
were centrifuged at 16,000 g for 5 minutes, aliquoted, snap-frozen in liquid nitrogen, and

stored at -80°C.
3.3.2. Titin isoform analysis

Titin expression levels were assessed using 1% SDS-agarose gel electrophoresis,
conducted at 16 mA per gel for 3.5 hours [160,161]. The gels were stained overnight with
SYPRO Ruby Protein Gel Stain (Thermo Fischer Scientific, Waltham, MA, USA) before
being digitized with a Typhoon laser scanner (Amersham Biosciences, Amersham, UK).
The optical density of the titin bands was analyzed using the ImagelJ software (National
Institutes of Health, Bethesda, MD, USA). These data were further used to calculate the
relative titin isoform ratio (N2BA:N2B ratio). The relative content of full-length titin
(T1), which included N2BA and N2B, and titin’s proteolytic degradation product (T2),
were normalized to the myosin heavy chain (MHC). The total titin (TT) amount,

representing the sum of T1 and T2, was also normalized to MHC.
3.3.3. Titin truncated protein detection

To confirm whether the additional bands observed on the gel represented truncated
titin fragments, Western blot analysis was performed [139,160,161]. Protein samples
were separated on a 0.8% SDS-agarose gel and transferred onto a Hybond LFP
polyvinylidene fluoride membrane (Amersham Biosciences, Amersham, UK) using a
Trans-Blot Cell semi-dry electrophoretic transfer system (Bio-Rad Laboratories,
Hercules, CA, USA). The membranes were incubated overnight at 4°C with two primary

antibodies targeting titin’s termini: anti-T12, targeting the N-terminal region (obtained
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from the University of Bonn, Germany; dilution 1:1,000), and anti-M8M 10, targeting the
C-terminal region (Myomedix, GmbH, Neckargemiind, Germany; dilution 1:1,000). This
was followed by incubation with CyDye-conjugated secondary antibodies (Amersham
Biosciences, Amersham, UK). Blots were visualized using a Typhoon laser scanner, and
relative protein expression levels were quantified using the Image] software. The

truncated proteins detected on the gels were normalized to T1.
3.4. Statistical analysis

Statistics were performed using GraphPad Prism 8 (GraphPad Software, Boston,
MA, USA). Outliers were identified and excluded using the ROUT method (Q = 1%).
For pooled group analysis, all original data points were included, and outliers were re-
evaluated within each group using the same criteria. The normality of data was assessed
either with the Shapiro-Wilk test or the Anderson-Darling test, depending on dataset sizes.
The data are reported as mean with SD or median with Q1-Q3 interquartile range (IQR).
For comparisons between two groups, the unpaired Student’s t-test with Welch’s
correction in cases of unequal variances, or the Mann-Whitney U test was applied.
Categorical variables were compared using Fisher’s exact test. For comparisons involving
more than two groups, the Kruskal-Wallis test was used, followed by Dunn’s post hoc test
with correction for multiple comparisons. Correlations were tested using either the
Pearson or Spearman test, depending on data distribution; corresponding regression lines
were plotted to visualize linear relationships. The results were considered significant at a

P value of less than 0.05.
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4. Results

4.1. Fibrillin-1 study
4.1.1. Study population

Tables 3 and 4 present the relevant general and clinical characteristics (including
atherosclerotic risk factors) and preoperative echocardiographic findings in the two
patient groups, including the revised Ghent diagnostic criteria [14] for the MFS cohort.
Table 5 summarizes the specific genetic mutations identified in the MFS patient cohort.
MEFS patients were significantly younger (34.1 + 12.7 years vs. 56.5 = 7.0 years, P <
0.001) and had lower body mass index (BMI) (23.3 + 5.9 kg/m? vs. 27.5 + 2.7 kg/m?* P
= 0.026) at the time of surgery. The control group had a higher prevalence of certain
atherosclerotic risk factors, namely hyperlipidemia (P = 0.006) and diabetes mellitus (P
= 0.033). No significant differences were observed regarding the prevalence of
hypertension (P = 0.087), smoking (P = 0.350), and obesity (BMI > 30.0) (P > 0.999) in
the two patient groups. In the MFS cohort, the mean diameters of the aortic annulus,
sinuses of Valsalva, and ascending aorta were 24.9 +£ 2.9 mm, 49.6 + 8.8 mm, and 42.7 +
8.0 mm, respectively. Comprehensive preoperative echocardiographic assessments were
unavailable for most control patients, owing to the absence of recent imaging or

incomplete records.

Table 3. General characteristics and preoperative echocardiographic data of the control group subjects. Present

features are marked with “+”. Symbols: @, female; 3, male.

Control sample ID C1 C2 C3 C4 C5 Cé6 C7 C8 C9 C10
Age 66 56 67 52 52 43 57 55 56 61
Sex 3 3 3 ? 3 3 ? 3 3 ?
BMI (kg/m?) 291 278 246 250 263 30.1 287 306 226 299

Risk factors for atherosclerosis

Hypertension + + + + + + + + + +
Hyperlipidemia + + + + + + + +
Diabetes mellitus + + + + +
Smoking + + + + +
Obesity + 4

Preoperative echocardiographic findings

Aortic root diameter (mm) 17 28 21 29

Ascending aortic diameter (mm) 28 28 27 37 32 37
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Table 4. Overview of the key characteristics in the studied MFS cohort. For each patient, present features are marked

with “+”. Symbols: @, female; &, male.

7 2 7 & 7 & & # ) =
MFS sample ID = = = = = B B B B z
= = = = = = = = = =
Age 37 17 36 44 28 16 29 50 54 30
Sex Q 3 Q Q ) d 3 3 3 d
BMI (kg/m?) 234 161 27.8 240 213 260 329 238 260 119
Risk factors for atherosclerosis
Hypertension + + + + + +
Hyperlipidemia +
Diabetes mellitus
Smoking + +
Obesity +
Preoperative echocardiographic findings
Aortic root diameter (mm) 20 26 21 25 26 29 25 24 28
Sinus Valsalva diameter (mm) 48 49 41 50 52 46 46 73 47 44
Ascending aortic diameter (mm) 46 56 33 37 48 39 40 34 51
MFS-specific diagnostic criteria (revised Ghent nosology [14])
FBNI mutation + + + + + + + + + +
Family history + + + + + +
Aortic involvement + + + + + + + + + +
Ectopia lentis + + + +
Systemic involvement + + + + + + + +
Systemic score 9 8 9 7 8 7 6 2 8 7
Wrist sign + + + + + + +
Thumb sign + + + + + + +
Pectus carinatum + + + + + +
Pectus excavatum or deformity + + + +
Hindfoot deformity + +
Pes planus + + + + +
Reduced US/LS and increased
arm span/height ratios with no +
severe scoliosis
Scohos.ls or thoracolumbar N N N N . N . N
kyphosis
Dolichocephaly +
Enophthalmos +
Downslanting palpebral fissures + + +
Malar hypoplasia
Retrognathia + +
Skin striae + + + + + + + +
Myopia > 3 diopters + + + + +
Mitral valve prolapse + + + +
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Table 5. FBNI variants identified in the MFS cohort.

or the Universal Protein resource

I8

(UniProt) [163]; **where a publication was not found, the Single Nucleotide Polymorphism Database (National

*according to published literature, the Universal Mutation Database (UMD) [162

Center for Biotechnology Information, Bethesda, MD, USA) identifier was used.
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Among the 10 MFS individuals, a diverse spectrum of (likely) pathogenic FBNI
mutations was identified, including five missense, three nonsense, and two splice site
variants (Table 5). Four variants were presumably de novo; one of them was novel and
had not been previously reported in public variant databases or the scientific literature.
Namely, in patient MFS8, the missense mutation c.7564 7566delinsAGA, leading to the
amino acid substitution p.Cys2522Arg, was detected. This variant was classified as likely
pathogenic and was found in a 50-year-old male who met the diagnostic criteria for MFS
based on aortic involvement and the confirmed genetic mutation. At the same time, the

fulfillment of systemic features, ectopia lentis, and family history were absent.
4.1.2. Fibrillin-1 microfibril purification and AFM imaging

Chromatographic separation of collagenase-digested aortic extracts showed
characteristic elution profiles indicative of both high-molecular-weight aggregates and
smaller soluble components [157]. Both low and high salt extracts exhibited two
prominent peaks (Figure 4). Initial AFM imaging revealed that the first peak contained
predominantly fibrillin-1 microfibrils and thinner collagen VI filaments, whereas the
second peak consisted largely of densely aggregated, poorly visualizable material. High
salt extraction yielded a relatively larger quantity of fibrillin-1 microfibrils than the low
salt extract. Therefore, all AFM analyses were conducted on fractions from the first peak

of the high salt extract chromatogram.

g

Figure 4. Typical profile of a chromatogram (MFS6, high salt extract).

AFM visualization revealed fibrillin-1 microfibrils with conserved aspect across
all samples, irrespective of pathological status (Figure SA). Their typical “beads-on-a-

string” appearance was dominated by globular beads connected by filamentous interbead
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regions. The interbead regions often presented as multiple thin “arms” bridging adjacent
beads. Additionally, most beads displayed thread-like lateral projections extending from
their surface (Figure SB) [37].

Tran

Figure 5. AFM imaging of fibrillin-1 microfibrils. A. Microfibrils isolated from MFS and control aorta. B. Zoomed-

in aspect of a fibrillin-1 microfibril, showing bead and interbead details, and lateral projections.

4.1.2. Morphological assessment

To quantitatively assess the morphology of fibrillin-1 microfibrils, we developed
a customized image analysis workflow. Initial measurements were performed in Igor Pro
6 along two orthogonal axes: microfibril length, bead length, and periodicity were
analyzed along the longitudinal axis of the microfibrils, while bead width and maximum
interbead height were measured laterally. Bead length and width were defined as the full
width at half maximum of the respective height profiles (Figure 6). Microfibril length
was measured as the axial distance between the peaks of the first and last beads. For
advanced morphological characterization, we used Gwyddion, where individual beads
were segmented using Otsu’s thresholding method, enabling objective and standardized

bead selection while excluding interbead regions. From these segmented beads, we
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extracted data on their maximum and average height, projected area, and volume.
Additionally, bead roundness was computed as the ratio between the largest inscribed and
the smallest circumscribed circle diameters, and bead aspect ratio was calculated as the

width-to-length ratio, providing a comprehensive quantification of bead geometry.

> :
[\, periodicity | {1\
/ ‘ ] /
“o ,.zlength /
/ . j
‘3 half of bead height
. 0. 2 200
_:_ lateral axis
®
®
B
-
Thalf of bead height

Figure 6. Workflow of the morphological analysis of fibrillin-1 microfibrils performed in Igor Pro 6, where

parameters were measured along two perpendicular axes of the height profile.

For each sample, around 200 bead repeats were included. Only microfibrils
exhibiting a relatively linear disposition and free from entanglement with other structures
were selected for analysis. In total, 4,370 beads from 176 individual fibrillin-1
microfibrils were analyzed, comprising 98 microfibrils with 2,229 beads in the MFS
group and 78 microfibrils with 2,141 beads in the control group. The results of the bead-
specific parameters for each sample are summarized in Table 6. Interbead region height

and periodicity data are detailed in Table 7 and Figure 7.
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Table 6. Values of measured bead parameters for each sample. For consistency, all variables are reported as median

with IQR, regardless of distribution.
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Table 7. Maximum interbead region height and periodicity values for all included samples. For consistency, all

variables are reported as median with IQR, regardless of distribution.

Correlation analysis

Sample ID I“terbe“d(;fng)i"“ height Periodicity (nm) Spfi;'l‘:lae“’s P value
MFS1 1.10 (0.87-1.38) 52.4 (48.7-55.8) -0.381 <0.001
MFS2 1.06 (0.81-1.44) 49.9 (45.4-52.5) -0.570 <0.001
MFS3 1.09 (0.93-1.29) 55.0 (50.0-61.7) -0.426 <0.001
MFS4 1.28 (0.99-1.79) 52.7 (46.3-58.2) -0.486 <0.001
MEFSS 1.33(0.99-1.91) 52.3 (46.6-57.2) -0.463 <0.001
MFSé6 1.66 (1.10-2.48) 48.1 (38.9-56.4) -0.686 <0.001
MFS7 1.43 (1.05-2.00) 49.3 (43.5-554) -0.660 <0.001
MFS8 1.39 (1.08-1.77) 51.2 (46.0-56.8) -0.469 <0.001
MFS9 1.17 (0.92-1.49) 52.7 (48.1-57.5) -0.163 0.018
MFS10 1.74 (1.34-2.19) 50.8 (45.2-55.4) -0.602 <0.001

C1 1.44 (1.16-1.86) 54.3 (49.6-57.5) -0.359 <0.001

C2 1.21 (0.95-1.53) 52.7 (48.3-58.3) -0.498 <0.001

C3 1.25 (0.91-1.85) 52.8 (48.4-57.6) -0.201 0.003

C4 1.45 (1.18-1.76) 52.8 (47.4-58.5) -0.277 <0.001

C5 1.37 (1.10-1.74) 50.7 (45.6-55.9) -0.284 <0.001

Cé6 1.39 (0.99-1.89) 53.0 (47.1-57.3) -0.375 <0.001

Cc7 1.26 (0.92-1.80) 54.7 (49.4-59.5) -0.475 <0.001

C8 1.67 (1.29-2.14) 53.7 (47.4-58.6) -0.488 <0.001

9 1.60 (1.30-1.95) 52.8 (47.5-57.0) -0.588 <0.001

C10 1.63 (1.22-2.00) 51.1 (45.9-55.8) -0.588 <0.001
&600' E300-

B Contrl group B DN subgronp
é 400- %200
7? 2001 5 1001

0- 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 * 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Periodicity (nm) Periodicity (nm)

Figure 7. Distribution of fibrillin-1 microfibril periodicity across the MFS and control groups (A), and within the HI
and DN subgroups (B).

The comparative analysis of fibrillin-1 microfibril morphology between MFS and
control samples is illustrated in Figure 8, which displays results across the ten

investigated structural parameters. Figure 9 presents the results of the genotype-based
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stratification, along with comparisons between each genetic subgroup and the control

group, following the same parameter structure.
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Figure 8. Comparative analysis of fibrillin-1 microfibril characteristics between MFS and control samples:
maximum (A) and average (B) bead height, length (C), width (D), projected area (E), volume (F), roundness (G), and
aspect ratio (H), interbead region height (I), and periodicity (J). Box plots display the median (horizontal line), IQR

(box), and minimum-to-maximum values (whiskers). Median values are indicated next to each box.
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Figure 9. Genotype-based subgroup comparison of fibrillin-1 microfibril morphological parameters in MFS samples
with HI and DN FBNI mutations, alongside comparisons with the control group: maximum (A) and average (B) bead
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minimum-to-maximum values (whiskers). Median values are indicated next to each box.




The length of purified individual microfibrils varied substantially, from short
chains comprising only a few bead units to elongated assemblies reaching up to 15 pm,
with most measuring around 0.5-2 pum [37]. The analysis performed on 1,010
microfibrillar assemblies yielded no significant differences in microfibril length between

the MFS and control groups, nor between the HI and DN subgroups (Figure 10).
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Figure 10. Fibrillin-1 microfibril length distribution within the MFS and control groups (A), and across the HI and
DN subgroups (B).

4.1.3. Mechanical investigation

In force mapping AFM mode, a force-distance curve is acquired for each scanned
pixel. Following a similar approach to the structural analysis, bead regions were identified
on the corresponding height maps using Otsu’s thresholding method in Gwyddion and

subsequently mapped onto the Young’s modulus images (Figure 11). Thus, 1-2

representative force curves were selected per bead, corresponding to their peaks.
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Figure 11. AFM force mapping. Height (A) and stiffness (B) maps of a fibrillin-1 microfibril.

A total of 3,930 beads were analyzed across 281 individual fibrillin-1 microfibrils,
based on data extracted from over 7,000 recorded force-distance curves. Table 8

summarizes the median Young’s modulus and IQR for each sample.

Table 8. Young’s modulus of fibrillin-1 microfibrils measured by AFM nanoindentation in individual samples.

Sample ID 3:;3?;181) Youn%l’sur)r:;dulus Sample ID glr;il]le);z(e;l) Youn%;llr)r:;dulus
MFS1 331 2.28 (1.52-3.32) C1 322 3.40 (2.61-4.37)
MFS2 381 1.96 (1.37-2.73) C2 382 2.53 (1.81-3.29)
MFS3 305 2.18 (1.60-3.10) C3 431 2.63 (1.94-3.47)
MFS4 432 2.51(1.92-3.17) C4 348 2.70 (2.01-3.41)
MFSS 361 2.43 (1.71-3.39) Cs 203 2.75 (1.97-3.54)
MFS6 318 2.92 (2.17-3.73) Co6 315 2.67 (1.77-3.47)
MFS7 342 2.59 (2.05-3.13) (oy) 325 2.63 (1.87-3.58)
MFS8 226 2.58 (1.81-3.62) C8 304 2.75 (1.90-3.70)
MFS9 305 3.16 (2.44-4.05) c9 217 3.12 (2.11-4.61)
MFS10 257 3.21 (2.35-4.57) C10 373 3.00 (2.10-3.80)

Median Young’s modulus values showed greater dispersion among MFS samples,
indicating higher variability in bead stiffness. However, the distribution in the DN
subgroup closely overlapped with that of the control group (Figure 12A and B). Overall,
MFS samples exhibited a lower median Young’s modulus than controls. In the HI
subgroup, median Young’s modulus was significantly lower than in both DN and control
groups (P <0.001). At the same time, there was no significant difference in bead stiffness

between DN and control samples (P = 0.327) (Figure 12C and D).
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Figure 12. Scatter plots illustrating the distribution of median Young’s modulus values calculated across the MFS and
control groups (A), and between the HI and DN samples (B). Comparison between MFS and control groups (A), and
between HI and DN subgroups (B) regarding median Young’s modulus values and IQR. Median values are indicated

next to each box.

During force spectroscopy measurements, a subset of approach curves displayed
consistent indentation-like features (“steps” in the force signal), interpreted as indicative
of disruptive tip-sample interactions at the bead surface. To analyze these events, the
respective force-distance curves were extracted and processed using a custom Python
script. First, the force data were smoothed using a rolling average with a window size of
15 data points to reduce noise. Indentation events were then identified using the
find peaks function from the SciPy library, applying the following parameters:
prominence = 3 x 1072 N and minimum peak height = 0.5 x 10"'°N. These values were
chosen empirically based on exploratory analysis to ensure optimal sensitivity for
detecting small but distinct deflections while minimizing false positives due to noise.

Force values corresponding to the detected peaks were recorded for statistical analysis
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(Figure 13). Only curves with well-defined indentation peaks were retained for

quantitative evaluation.
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Figure 13. Python force-distance curve analysis: smoothed approach segment displaying characteristic indentation,

with indentation peak marked (red line).

All force-distance curves corresponding to bead measurements were manually
inspected, resulting in the identification of 100—130 indented curves per sample. After
excluding outliers, around 1,400 peak force values were retained for analysis (Table 9).
The median indentation force was 178 (IQR, 107-262) pN in the MFS group and 240
(IQR, 170-340) pN in controls (P < 0.001). The HI and DN subgroups exhibited median
forces of 182 (IQR, 116-258) pN and 177 (IQR, 102-265) pN, respectively (P = 0.322),
both significantly lower than the control group (P < 0.001) (Figure 14).

Table 9. Median indentation peak values with IQR per sample.

Sample ID 1\3::11 ez‘n(;f Peak force (pN) Sample ID l\i)l::l?s ez‘n(;f Peak force (pN)
MFS1 28 223 (131-294) C1 29 269 (201-359)
MFS2 37 155 (94-241) C2 49 225 (170-392)
MFS3 86 169 (109-268) C3 67 306 (219-366)
MFS4 64 160 (115-223) C4 123 232 (166-317)
MFSS 69 194 (112-304) Cs 91 176 (122-315)
MFS6 86 185 (103-271) Coé 91 210 (163-317)
MFS7 74 172 (104-266) (oy) 40 228 (146-354)
MFS8 100 136 (88-212) C8 82 271 (214-360)
MFS9 27 208 (174-396) c9 106 239 (150-322)
MFS10 80 193 (105-273) C10 94 280 (182-371)
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Figure 14. Indentation peak force analysis from AFM force-distance curves. A. Histogram comparing the distribution

of force values between the MFS and control cohorts. B. Comparison between the HI and DN subgroups.

4.2. Titin study
4.2.1. Study population

The investigated cohort consisted of six females and six males with a mean age
of 33.0 £ 10.9 years and a BMI of 21.6 + 3.7 kg/m? at the time of surgery. Besides
hypertension, which had been diagnosed in three patients (25%), no other atherosclerotic
risk factors were present in the population. Coronary artery disease and symptomatic heart
failure (New York Heart Association class II) were each present in two cases (16.7%).
MFS-specific diagnostic criteria and the results of FBNI genetic testing are presented in
Table 10. All included patients had genetically confirmed FBNI mutations: six DN
missense variants and six HI mutations, namely two nonsense, two splice site, one copy
number variation, and one frameshift mutation. Systemic involvement (score equal to or
greater than 7 according to the revised Ghent criteria [ 14]) was established in ten patients
(83.3%), with a median score of 8 (7-9). All patients had aortic involvement in the form
of aortic root aneurysm, and one patient also had a previous history of chronic Stanford
type B aortic dissection. Familial history of MFS was present in five patients (41.7%).
Ectopia lentis occurred in 30% of cases, exclusively among individuals with cysteine-

affecting missense variants.
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Table 10. MFS-specific diagnostic criteria and results of FBNI genetic testing in the PAP cohort [160].
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Surgery was indicated by annuloaortic ectasia, often with associated ascending
aortic aneurysm (n = 9), or aortic (n = 5) or mitral (n = 1) valve insufficiency. The aortic
valve had a tricuspid conformation in all patients. The median grade of regurgitation for
both the aortic and mitral valves was 1 (0-2). Mitral valve prolapse was present in seven
cases. Preoperative echocardiographic assessment revealed no wall motion abnormalities.

Detailed echocardiographic results are summarized in Table 11.

Table 11. Preoperative echocardiographic findings [160]. Reference values are stated according to the

Recommendations of the European Society of Cardiology and the American Society of Echocardiography [174,175].

Investigated parameter Measured values Normal values

Ejection fraction (%) 60.83 £3.97 52-72

LV end-systolic diameter (mm) 35.60 £8.75 25.0-39.8

LV end-diastolic diameter (mm) 50.08 £7.75 42.0-58.4
Aortic annulus diameter (mm) 23.75+191 26+3
Diameter at the sinuses of Valsalva (mm) 50.42 +7.54 34+3
Ascending aorta diameter (mm) 40.20 £ 9.85 304
Aortic valve regurgitation > 1 (n) 4 (30%) absent
Mitral valve regurgitation > 1 (n) 4 (30%) absent

Mitral valve E/A ratio 1.32+0.36 0.73-2.33

Deceleration time (msec) 205.11 £51.91 138-219

4.2.2. Proteomic analysis

The SDS-agarose gel electrophoresis revealed clearly distinguishable N2BA and
N2B titin isoform bands in both PAP and DCM samples, while the rat control sample
predominantly displayed the stiffer N2B band (Figure 15A). Diffuse T2 bands, indicative
of titin degradation products, were also observed. Notably, several PAP samples
(particularly PAP100 and PAP104) exhibited additional prominent bands above those
corresponding to the MHC. Gel densitometry analysis was performed to quantify titin
isoform expression and their relative proportions (Figure 15B and C). The mean
N2BA:N2B ratio in PAP myocardial samples was 0.71 £0.19 (Table 12), markedly
higher than in the control rat heart (0.28), but lower (P = 0.045) than in previously
investigated 7TNtv- DCM specimens (0.84 £0.19) [161]. Overall, the N2BA:N2B ratios
in PAP samples exceeded values typically reported for healthy human myocardium

(around 0.5) [137,138] (Figure 15D). The expression profile in PAP specimens resembled
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that of DCM samples, with a marked predominance of the more compliant N2BA isoform,

in contrast to the control rat heart, where the stiffer N2B isoform dominated (Figure 15C).
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Figure 15. Proteomic analysis of titin [160].
(labeled PAP), including samples used as control (HK9, rat; DCM6 and DCM75, human). The beige squares

A. 1% SDS-agarose gel analysis of included samples from MFS patients

highlight the additional bands observed more prominently in samples PAP100 and PAP104. B. Magnified gel regions

showing the titin isoforms N2BA and N2B, and titin’s proteolytic cleavage product T2, in the three types of samples,

as well as the respective calculated N2BA:N2B ratios. C. A typical optical density plot profile used to calculate the

titin isoform ratios from the areas under the curves. D. N2BA:N2B titin isoform ratios calculated across the PAP

patient cohort. The green segmented line indicates the mean conceived normal ratio (approximately 0.5).
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Table 12. Proteomic analysis of titin isoforms in PAP samples [160].

Sample ID N2BA:N2B N2BA:MHC  N2B:MHC T1:MHC T2:MHC TT:MHC
PAP33 0.41 0.02 0.06 0.08 0.05 0.13
PAP37 0.67 0.07 0.11 0.18 0.05 0.23
PAP39 0.70 0.07 0.10 0.17 0.05 0.22
PAP46 0.53 0.06 0.11 0.16 0.05 0.21
PAPS7 1.08 0.08 0.07 0.15 0.04 0.19
PAP70 0.49 0.06 0.13 0.19 0.04 0.24
PAPS87 0.80 0.07 0.08 0.15 0.04 0.19
PAP90 0.87 0.06 0.07 0.12 0.03 0.16
PAP93 0.62 0.06 0.09 0.15 0.05 0.20
PAP100 0.72 0.05 0.07 0.11 0.04 0.15
PAP101 0.78 0.07 0.09 0.16 0.05 0.21
PAP104 0.86 0.07 0.08 0.14 0.06 0.20

Mean 0.71 0.06 0.09 0.15 0.05 0.19
SD 0.19 0.01 0.02 0.03 0.01 0.03

TT level normalized to MHC was 0.19 £+ 0.03, lower (P = 0.004) than values
observed in earlier analyzed 77TNtv- DCM samples (0.27 = 0.09) [161]. T1 expression
relative to MHC was also significantly lower in PAP than in 77Ntv- DCM samples
(0.15£0.03 vs. 0.22+0.08, P <0.001), while titin degradation (T2:MHC) showed no
significant difference between groups (0.05+0.01 vs. 0.04 +0.02, P=0.117) (Table 12).

Western blotting using titin-specific antibodies T12 and M8M10 (Figure 16)
showed weak labeling of the additional bands by the T12 antibody, while M8M10
produced no detectable signal. These findings indicate that the prominent bands,
particularly in PAP100 and PAP104, likely correspond to N-terminal titin fragments

associated with T2.
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Figure 16. Western blot analysis of additional bands [160]. A. T12 antibody labeling, which binds the N-terminus of
titin. B. M8M10 anti-titin antibody labeling, which binds titin near its C-terminus. The smaller or partial titin forms

are also indicated.
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4.2.3. Clinical correlations

To assess whether the titin isoform expression ratio in MFS LV myocardium is

linked to cardiac performance, potential correlations between the N2BA:N2B ratio and a

range of clinical and echocardiographic parameters (Figure 17). Three patients (PAP33,

PAP90, and PAP100) exhibited LV enlargement based on end-systolic and end-diastolic

diameter measurements. However, due to the small cohort size and the generally

preserved cardiac function across most cases, no clear associations between the

N2BA:N2B ratio and any of the assessed parameters could be established.
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Figure 17. Correlation analyses between the N2BA:N2B titin isoform expression ratio and selected clinical and

echocardiographic parameters in the PAP cohort [160]. Each panel (A—K) displays a scatter plot; linear regression

lines are shown for datasets analyzed with Pearson’s correlation. Spearman’s correlation (rs) was used for non-

normally distributed datasets (H and I), for which no r? values or regression lines are shown.
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5. Discussion

The present study explored two aspects of cardiovascular involvement in MFS:
the structural and nanomechanical properties of aortic fibrillin-1 microfibrils, and the
expression of myocardial titin isoforms. Our findings provide insight into how defects in
extracellular and sarcomeric structural components may shape aortic pathology and

myocardial dysfunction, thus contributing to the complex MFS cardiovascular phenotype.
5.1. Fibrillin-1 study

We hypothesized that ultrastructural and mechanical alterations in fibrillin-1
microfibrils contribute to aortic root pathology in MFS. To investigate this, we first
performed a detailed AFM-based analysis focusing on quantitative parameters that
describe bead and interbead morphology. These metrics reflect the molecular
organization, packing, and surface topography of the microfibrils, which are dependent
on biochemical composition. To evaluate the mechanical properties of human aortic
fibrillin-1 microfibrils and the impact of FBNI mutations on their elastic behavior,
transverse stiffness was measured using AFM-based force spectroscopy. To our
knowledge, this study represents the first characterization of fibrillin-1 microfibrils in

human aortic tissue, specifically comparing MFS and non-MFS samples.
5.1.1. MFS cohort genetic profile

Seven of the identified variants affected cysteine residues within fibrillin-1
(Figure 18). Cysteine is the most abundant amino acid in fibrillin-1, accounting for 12.6%
of'its sequence, as reported in the National Center for Biotechnology Information RefSeq
database (accession NM 000138.4) [176]. This high cysteine content reflects the
prevalence of (cb)EGF and TB domains within fibrillin-1, which relies on disulfide
bonding for proper folding and structural integrity. These domains contain six and eight
conserved cysteines, respectively, that form disulfide bonds in characteristic pairings: 1—
3, 24, and 5-6 in (cb)EGF modules, and 1-3, 2-6, 4-7, and 5-8 in TB domains
[177,178]. Missense mutations substituting or generating cysteine residues are the most
frequent MFS-causing variants identified in FBN/ [162]. In this cohort, five of the seven
cysteine-altering variants were missense changes predicted to disrupt disulfide bonding
within cbEGF or EGF domains, thereby destabilizing domain structure and overall

protein conformation.
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Figure 18. The spectrum of FBNI variants identified in the MFS cohort, listed according to their location within the

fibrillin-1 molecule and the predicted pathogenic mechanism. The novel variant is highlighted in red.

In cases with nonsense variants, the mutant fibrillin-1 is predicted to undergo
NMD, as the PTCs occur well upstream of the final exon-exon junction or the last 50 base
pairs of the penultimate exon [179]. This mechanism would result in functional HI, with
degradation of truncated fibrillin-1 before it can be incorporated into microfibrils,
ultimately reducing total protein levels [180]. While not directly introducing a PTC, the
two splice site mutations are anticipated to result in protein truncation, although they may

also cause exon skipping or other splicing abnormalities [181].

Overall, the genetic spectrum identified in this cohort reflects the well-established
allelic heterogeneity of MFS. The predicted molecular consequences of the identified
FBNI1 mutations range from localized structural disruption at critical residues within
fibrillin-1 to complete transcript degradation due to NMD. These molecular effects are

important to consider in interpreting microfibril morphology and mechanics.
5.1.2. Structural measurements

Fibrillin-1 microfibrils were easily identifiable on AFM images based on their
typical “beads-on-a-string” appearance. While their overall aspect was preserved across
all samples regardless of disease status, subtle size differences were apparent. The
interbead regions typically appeared as two or, occasionally, three thin arms linking
adjacent beads, though they often formed a thicker connecting band. In some cases, these
regions were extremely thin and barely discernible. The purified microfibrils displayed

considerable variability in length in both MFS and control specimens.

In many cases, fine filamentous projections extended laterally from the beads.

Previous experiments demonstrated that C-terminal fibrillin-1 fragment multimerization

50



produces assemblies that closely mimic native microfibrillar beads, often displaying
lateral projections terminating in globular domains, resembling monomeric fibrillin-1
particles [182]. Therefore, these structures may contribute to the lateral association and

spatial organization of microfibrils within the ECM.

MFS microfibrils displayed significant morphological alterations compared with
controls across multiple parameters. Maximum and average bead heights were slightly
increased in the MFS group, whereas bead length and width were significantly reduced
compared to controls. Consequently, the projected area of the control beads greatly
exceeded that of MFS beads. To better capture the three-dimensional complexion of the
beads, we also assessed their volume, which was significantly lower in MFS microfibrils,

potentially indicating reduced protein density or impaired bead assembly.

The maximum bead height values measured in both groups aligned with previous
AFM reports [75,183]. However, the lateral dimensions (19-25 nm) appeared somewhat
smaller than earlier AFM measurements (30—40 nm) [75]. This discrepancy can likely be
attributed to the known fact that horizontal AFM measurements are strongly affected by
cantilever tip geometry. As a result, AFM has historically yielded larger bead widths than
other imaging modalities, such as rotary shadowing electron microscopy, which typically
reported bead diameters in the range of 22—29 nm [182]. Nevertheless, the consistency of
our measurements supports the reliability of the observed differences between samples

and groups.

Bead roundness and aspect ratio were evaluated to further explore morphological
differences. Although statistically significant, the absolute values were similar,
suggesting minimal practical variation between individual specimens. Roundness
indicated a slightly elongated bead shape, consistent with AFM observations. The aspect
ratio reinforced this finding, with most beads appearing laterally elongated. Thus, based
on our analysis, fibrillin-1 microfibril beads appear as ellipsoid structures with
dimensions of 8.2 x 18.8 x 19.7 nm and 7.0 x 23.7 x 24.4 nm in MFS and control aortic

tissue, respectively.

Interbead region height showed considerable variability among individual MFS
samples but remained relatively uniform in the control group. This variability may reflect

structural disruptions caused by FBNI mutations affecting regions of the fibrillin-1
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molecule that are localized in the interbead segments. On average, interbead height was
significantly reduced in the MFS group. In contrast, periodicity ranged narrowly from
approximately 50 to 56 nm across individual samples, independent of clinical diagnosis.
Despite reaching statistical significance, the difference in periodicity between groups
seems to have limited biological relevance, as this interval for periodicity is within the

expected physiological range for relaxed microfibrils [73,75,76,85].

A significant negative correlation was consistently observed between interbead
region height and periodicity across all samples, suggesting that microfibril elongation is
accompanied by an increase in bead-to-bead distance and thinning of the interbead region.
This aligns with previous findings by Baldock et al., who proposed that elongation up to
approximately 100 nm results from reversible interbead unfolding involving TB-EGF
domain flexibility, whereas elongations beyond 100 nm involve irreversible bead
unraveling and loss of elasticity [73,184]. Similarly, Wang et al. demonstrated that
periodicity changes up to 85 nm arise from reversible salt bridge dynamics, and that

elongation beyond this threshold leads to bead mass reduction [185].

When stratifying MFS patients based on the predicted molecular mechanism of
the respective FBNI mutation, different morphological patterns became apparent. Across
most parameters, DN microfibrils occupied an intermediate position between the HI and
control groups regarding size. Compared to HI samples, DN beads exhibited slightly
lower heights but larger horizontal dimensions, resulting in greater projected areas and
increased volume. Bead roundness and aspect ratio did not differ significantly between
subgroups. However, intriguing differences were observed regarding the interbeads, as
the interbead region height in DN samples closely resembled that of controls. In contrast,
HI samples showed a marked reduction in this parameter despite having a comparable

median periodicity.

To interpret these results, it is important to consider the distinct molecular
mechanisms underlying each MFS case. However, the precise arrangement of fibrillin-1
molecules within microfibrils remains incompletely resolved, limiting our ability to
interpret variant-specific effects. Previous antibody mapping studies supported by recent
mass spectrometry data suggest that the EGF4-TB2 regions of the eight fibrillin-1

molecules forming a repeat are localized deep within the bead core [20,72,73,77].
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Domains upstream of this segment, extending to the first hybrid domain, are likely
positioned near the bead periphery. Given that fibrillin-1 molecules align head-to-tail,
with N- and C-terminal regions connecting within the beads, and considering the
substantial bead mass, it is plausible that terminal regions overlap considerably within the

bead, while the remaining portions extend outward to form the interbead regions [72].

In the studied MFS cohort, all DN mutations were missense variants causing
single amino acid substitutions, particularly cysteine, within fibrillin-1. These mutant
transcripts remain bioavailable and can incorporate into microfibrillar assemblies [186].
Therefore, they are implicated in MFS pathogenesis by impacting local folding and/or
molecular interactions. According to UMD predictions, samples MFS6 and MFS7
involve the loss of cysteine residue 1 in cbEGF domains 40 and 22, respectively; in MFS5
and MFSS, cysteine residue 6 is compromised in modules cbEGF30 and cbEGF39,
respectively; in sample MFS10, cysteine residue 4 in EGF2 is affected [162]. These
variants are expected to disrupt disulfide bonds essential for proper domain folding,
potentially destabilizing fibrillin-1 and impairing interactions with associated molecules
that normally add to repeat mass, thus resulting in altered structural parameters in DN
microfibrils [72]. Furthermore, mutations disrupting calcium-binding sequences likely
increase proteolytic susceptibility, as calcium protects fibrillin-1 from degradation
[32,187]. FBNI variants affecting disulfide bonds in (cb)EGF domains have been shown
to compromise thermostability and heighten fibrillin-1 susceptibility to proteases [188].
Nevertheless, point mutations in critical domains of fibrillin-1 appear to lead to the
formation of structurally abnormal microfibrillar assemblies [18]. The classification of
cysteine-altering DN mutations as a distinct severity subgroup is gaining recognition, as
emerging evidence suggests they are associated with a more severe aortic phenotype

compared to non-cysteine DN variants [189].

The pronounced morphological alterations seen in the HI subgroup were
remarkable. Since the truncated transcripts are predicted to undergo NMD, HI
microfibrils, containing predominantly wild-type fibrillin-1, would be expected to be
more similar to controls. Instead, they differed significantly, indicating that HI leads not
only to reduced overall fibrillin-1 abundance in tissues but also impairs microfibril
assembly [190]. This could be the consequence of the resulting quantitative fibrillin-1

monomer deficiency interfering with microfibril synthesis and aggregation into the ECM.
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Microfibril formation is a concentration-dependent process: insufficient levels of normal
fibrillin-1 are primarily responsible for the defective matrix deposition and impaired
microfibrillar assembly observed in mouse models and pulse-chase studies involving
human fibroblasts [186,191]. An alternative hypothesis is that small amounts of
structurally abnormal mutant transcripts become incorporated into microfibrils. For FBN1
variants introducing PTCs, mutant transcripts have been detected at levels ranging from
2% to 28% relative to the wild-type protein [191-194]. Although direct evidence of
truncated fibrillin-1 protein incorporation into microfibrils remains limited due to their
low expression and detection challenges [195], a contribution to defective microfibril
architecture cannot be excluded. Finally, similarly to DN cases, these thinner microfibrils
may exhibit increased susceptibility to mechanical stress or proteolytic degradation,

further exacerbating their aberrant morphology.

All in all, multiple mechanisms offer plausible explanations for the alterations
seen in MFS fibrillin-1 microfibrils. The morphological similarities between HI and
cysteine-affecting DN microfibrils may explain the comparable severity of aortic
manifestations reported for both mutation types [196]. Our results enrich previous
findings suggesting that mutant FBNI alleles structurally disrupt the normal fibrillin-1

microfibrillar network regardless of the predicted molecular effect.

It is important to note that various disease states, such as diabetes mellitus, have
been linked to morphological alterations of microfibrils, including changes in periodicity
[197]. This consideration is particularly relevant to our control cohort, which consisted of
older individuals with a higher prevalence of atherosclerotic risk factors. It could be
argued that some of the microfibrillar features observed in this group may reflect
pathological remodeling rather than physiological baseline structure. However, access to
truly healthy aortic tissue, especially from age-matched individuals without
cardiovascular pathology, is extremely limited. As the bead dimensions measured in
control samples closely matched those previously reported from different imaging
studies, and the microfibrillar parameters showed minimal inter-sample variability, we
argue that these points support the suitability of this control group as a structural reference
and further strengthen the conclusion that the morphological abnormalities observed in

the MFS cohort are not attributable to technical artifacts, aging, or underlying
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comorbidities, but are instead consistent with FBNI mutation-associated microfibrillar

disruption.
5.1.3. Mechanical assessment

Median Young’s modulus values for human aortic fibrillin-1 microfibrils ranged
from 1.96 to 3.40 MPa. In MFS samples, medians varied between 1.96 and 3.21 MPa,
whereas those from controls ranged from 2.53 to 3.40 MPa. These approximate
previously reported stiffness values for fibrillin-1-rich structures across invertebrate and
vertebrate species. For instance, the fibrillin-1 microfibrillar network in the sea cucumber
dermis exhibited a Young’s modulus of approximately 0.2 MPa [87], while jellyfish
mesogleal fibers demonstrated values around 0.9 MPa [91]. Stiffness measurements in
aortic tissue revealed values of approximately 0.4 MPa in both porcine and octopus
samples [88,89], whereas a higher value of 1.06 MPa was recorded in lobster aorta [92].
Fibrillin-1-rich fibers derived from equine nuchal ligament and bovine zonular filaments
have shown moduli between 0.56-0.74 MPa and 0.19—-1.88 MPa, respectively [90,93].
An alternative measurement approach applied to fibrillin-1 microfibrils isolated from
bovine zonular filaments yielded substantially higher Young’s modulus values, ranging
from 78 to 96 MPa [85]. The data reflect differences based on species, tissue type, and

experimental setup. As a result, cross-comparisons remain limited.

The MFS group showed a broader distribution of median Young’s moduli, likely
reflecting inter-individual heterogeneity caused by the distinct pathogenic variants, each
exerting unique effects on fibrillin-1 folding, assembly, and network organization. Still,
MFS microfibrils exhibited an overall reduction in microfibrillar stiffness compared to
controls. Notably, HI microfibrils had significantly lower stiffness than both their DN
counterparts and controls, whereas DN and control values did not differ significantly. The
HI subgroup shifted toward lower stiffness values, indicating reduced bead rigidity, while
DN values largely overlapped with the higher control range. The narrower distribution in
control samples suggests a stable mechanical profile characteristic of normal aortic

fibrillin-1 microfibrils.

When considered alongside our structural findings, the decreased Young’s
modulus observed in the HI subgroup supports a model of diminished protein content

within the beads, resulting in increased compliance. This hypothesis supports the notion
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that HI may lead to reduced incorporation of fibrillin-1 monomers into the microfibrils
due to a quantitative deficit in available wild-type fibrillin-1 molecules during early
assembly stages [186,191]. Alternatively, HI microfibrils may incorporate both wild-type
and truncated mutant monomers, with the latter lacking essential domains, thereby
contributing less mass and structural rigidity to the beads. In contrast, the comparable
stiffness observed in DN and control microfibrils suggests that microfibrils contain a
similar amount of fibrillin-1, but the presence of structurally aberrant monomers likely
alters bead organization and internal packing. This interpretation is consistent with
evidence that point mutations disrupting disulfide bonds or calcium-binding motifs in
cbEGF domains impair folding and molecular packing without necessarily reducing
microfibrillar incorporation [198]. Moreover, DN-associated misfolding may interfere
with the binding of fibrillin-associated proteins essential for bead growth and maturation,
leading to smaller bead dimensions as observed, without substantially compromising the

nanomechanical integrity of the microfibril core itself [72].

The indentation-like features observed on the force-distance curves, considered to
reflect conformational changes or mechanical failure at the bead level, appeared at
significantly lower forces in MFS microfibrils. Median forces were similar between the
HI and DN subgroups but markedly reduced relative to controls, indicating a decreased
resistance to mechanical deformation in MFS microfibrils. These results seem to contrast
those of the nanomechanical calculations, where DN microfibrils demonstrated stiffness
values comparable to controls and substantially higher than HI microfibrils. This apparent
discrepancy may reflect underlying differences in microfibril organization that are not
fully captured by stiffness measurements alone. One possible interpretation is that,
although DN microfibrils maintain normal fibrillin-1 protein content similar to controls,
resulting in preserved stiffness, their internal structural integrity is compromised due to
aberrant domain folding or disrupted molecular packing caused by missense mutations in
key domains. As a result, these microfibrils may fail locally under similar forces as HI
microfibrils, which conceivably contain less fibrillin-1. Thus, despite differing stiffness
profiles, both mutation types share a reduced threshold for structural disruption when
subjected to mechanical stress, pointing to a common architectural vulnerability

associated with FBNI mutations.
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5.1.4. Practical interpretation of AFM findings

In the aortic wall, fibrillin-1 microfibrils surround elastin cores in the media, thus
enforcing the resulting elastic fibers and possibly mediating force transmission across
these units [88]. Elastin fibers form thick, concentric lamellae alongside circumferentially
arranged smooth muscle cells and collagen [199], creating a configuration that enables
the arterial wall to dynamically accommodate blood pressure fluctuations throughout the
cardiac cycle. In this architectural context, fibrillin-1 microfibrils have been proposed to

act as load-bearing elements involved in elastic recoil [28].

The extent to which fibrillin-1 microfibrils contribute to overall tissue elasticity
remains uncertain. Some studies suggest a limited role; for example, experiments on
elastic fibers from equine nuchal ligament showed no significant change in elastic
properties after the removal of fibrillin-1 microfibrils, with Young’s modulus values
remaining comparable to those of elastin (0.56—0.74 MPa) [90]. In contrast, Sherratt et
al. reported exceptionally high stiffness values for isolated fibrillin-1 microfibrils,
indicating a potential reinforcing function within elastic fibers [85]. Supporting this view,
studies on pig aorta elastic fibers demonstrated that microfibril removal altered fiber
compliance under mechanical strain, implying that these microfibrils may participate in

modulating load distribution across the elastic fiber network [88].

Our analysis indicated that MFS fibrillin-1 microfibrils exhibit architectural
defects that lead to compromised nanomechanical performance. Microfibrils isolated
from MFS aortic tissue showed altered structural integrity, evidenced by reduced bead
and interbead dimensions, lower stiffness, and decreased resistance to mechanical failure,
which may limit their capacity to reinforce and stabilize elastic fibers under normal
physiological strain. This impaired resilience likely limits their ability to withstand
repetitive mechanical loading, contributing to the disarray and fragmentation of elastic
fibers, which is a defining feature of medial degeneration in the MFS aorta [9].
Furthermore, defective microfibrils may impair the mechanical integration and anchorage
of elastic lamellae, thereby increasing local wall stress and promoting aneurysm
formation. Over time, these molecular abnormalities likely exacerbate extracellular

matrix degradation and smooth muscle cell loss, ultimately culminating in aortic

dissection [200].
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5.2. Titin study

MEFS is characterized by significant cardiac involvement, most commonly
valvular abnormalities. Mitral valve prolapse, affecting up to 40% of patients, is the most
frequent, while tricuspid valve degeneration has been reported in 12% of MFS patients
undergoing cardiac surgery [123,201]. Multivalvular dysfunction can result in chronic
volume overload, potentially leading to LV dilation and dysfunction. Approximately 5%
of MFS patients with mitral regurgitation develop cardiac failure [202]. Notably, in MFS,
myocardial dysfunction has been observed independently of significant valvular disease,
including in pediatric cases, contributing to the recognition of Marfan cardiomyopathy as

a distinct clinical entity [125,203,204].

In specific cardiomyopathies, especially DCM, the link between cardiac muscle
impairment and titin is well-established. 77Ntvs are the most frequent known cause of
DCM, being responsible for approximately a quarter of the cases [205]. The giant elastic
sarcomeric protein titin governs passive myocardial stiffness by acting as a molecular
spring between the Z-disk and M-band [133]. Regulatory alternative splicing in the 77N
gene generates two main myocardium-specific isoforms (N2B and N2BA) with different
structures and mechanical properties. Their relative expression modulates titin-based
passive tension in the cardiac sarcomere, but also varies with developmental stage,
species, and pathological states [136,206,207]. In disease models such as tachycardia-
induced DCM in dogs or hypertensive rats, an isoform shift toward the N2B isoform was
described, associated with increased myocardial passive stiffness and increased LV
afterload, respectively [208,209]. Conversely, human DCM hearts typically exhibit an
elevated N2BA:N2B ratio, reflecting a reduction in passive stiffness and compensatory
remodeling [137,138,210]. With increasing evidence pointing to intrinsic myocardial
dysfunction in MFS, we sought to explore the role of titin isoform expression in the

mechanisms underlying Marfan cardiomyopathy.

Our findings constitute the first report of titin isoform composition in the
myocardium of MFS patients. We quantified the total titin content in MFS myocardium
by normalizing the sum of the N2BA, N2A, and T2 bands to MHC, yielding a mean value
of 0.19+0.03. This is comparable to previously reported levels in normal human

myocardium (0.20 4+ 0.02 and 0.23 £0.03) [137,211] and to that measured in the included
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TTNtv- DCM samples (0.19 + 0.05), although lower than values observed in DCM in our
earlier work [161]. Notably, the amount of full-length titin (T1I/MHC) was reduced in PAP
samples compared to DCM samples, possibly suggesting proteolytic degradation, an idea
supported by the presence of additional protein bands in electrophoretic analyses, though

further investigations are required.

We identified a shift in isoform expression toward the more compliant N2BA titin
in the MFS myocardium, with a mean N2BA:N2B ratio of 0.71 £0.19. This markedly
exceeds values reported in healthy donor hearts (approximately 0.4-0.56) [137,138]
while nearing levels measured in 77Ntv- DCM myocardial tissue [161]. Although no
significant correlations were observed between the N2BA:N2B ratio and the investigated
clinical and echocardiographic variables, this may reflect the limited cohort size rather
than a true absence of correlation. Nevertheless, the observed isoform shift likely
indicates a compensatory molecular remodeling response to altered myocardial
mechanics in MFS. This hypothesis is consistent with recent cardiac magnetic resonance
imaging findings showing diffuse myocardial fibrosis in MFS tissue, suggesting that
ECM abnormalities contribute to altered sarcomeric mechanics [212]. In particular,
increased ECM stiffness, driven by defective fibrillin-1/elastin networks and enhanced
TGF-pB signaling, may increase mechanical load on titin, thus promoting the isoform
switching. Additionally, insufficient TGF- sequestration by fibrillin-1 microfibrils can
result in pathway overactivation, potentially altering titin phosphorylation and elasticity

[53].

All in all, the results indicate a preserved total amount of titin but reduced full-
length titin content and marked N2BA isoform expression in MFS myocardium,
paralleling patterns observed in DCM and hinting at potential molecular mechanisms

involved in the development of Marfan cardiomyopathy.
5.3. Limitations

An important limitation across both projects (fibrillin-1 and titin) is the relatively
small sample size, inherent to research on rare genetic disorders such as MFS.
Nevertheless, the cohort size exceeded that of many comparable studies employing AFM-

based approaches [156,197]. Obtaining patient material, especially fresh surgical aortic
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and myocardial samples, is particularly challenging, further limiting large-scale

recruitment.

Another significant barrier in this type of investigation is the inability to include
truly healthy individuals as controls. The use of cadaveric samples was excluded to
preserve tissue quality and maintain a uniform harvesting process. Thus, controls were
derived from patients undergoing surgery for other cardiovascular conditions but without
evidence of connective tissue or aortic diseases. Despite efforts to match cohorts, age and
tissue quality differences may have introduced subtle, disease-related variations in

microfibril properties.

In the case of the fibrillin-1 microfibril analysis, methodological constraints also
apply. AFM relies on examining microfibrils outside their native ECM environment,
where biological dynamics are absent. While this allows for high-resolution structural and
mechanical investigations, it reduces the biological context. Furthermore, the technique
is sensitive to experimental variables; however, under standardized preparation and

measurement protocols, the measurements and comparisons remain valid and robust.

In the titin analysis, although we identified an adaptive sarcomeric response in the
MFS myocardium, functional measurements at the cardiomyocyte level were not
performed, limiting the ability to directly correlate molecular changes to biomechanical
performance. Age-related or disease-independent factors may also influence titin isoform
expression. However, the identification of a titin isoform shift, even in a small cohort,
offers valuable evidence of intrinsic sarcomeric adaptation to extracellular matrix
dysfunction, supporting the concept of an early, disease-specific myocardial phenotype.
This novel finding lays important groundwork for future studies to better understand and

target cardiac involvement in MFS.

Despite these constraints, the study provides novel molecular-level insights into
how FBNI variants disrupt the structure and mechanical integrity of fibrillin-1
microfibrils and alter myocardial titin composition. These findings highlight potential
mechanisms by which ECM dysregulation contributes to both aortic and myocardial
pathology in MFS. Future studies should explore links with TGF-f signaling activity and
integrate functional data from vascular and myocardial tissues, in order to develop a more

complete model of MFS pathogenesis.
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6. Conclusions

In this study, we explored the morphological and nanomechanical characteristics

of individual fibrillin-1 microfibrils isolated from human aortic tissue in MFS and non-

MEFS individuals. In parallel, we examined the potential involvement of sarcomeric titin

in the myocardial changes associated with Marfan cardiomyopathy.

1.

Our analysis provided a detailed characterization of human aortic fibrillin-1

microfibrils.

AFM imaging showed that, although the typical beaded aspect of fibrillin-1
microfibrils was preserved across all samples, MFS microfibrils, regardless of the
underlying FBNI mutation type, exhibited pronounced morphological alterations,
notably reduced bead and interbead dimensions, suggestive of disrupted

molecular organization.

Force spectroscopy measurements demonstrated a notable reduction in transverse
stiffness (Young’s modulus) in MFS microfibrils, particularly in those from
patients with HI FBNI mutations. Additionally, AFM-based nanomanipulation
revealed failure-like events at the level of the beads, indicating a compromised

ability of MFS microfibrils to withstand mechanical stress.

Proteomic analysis of LV myocardium revealed a shift in titin isoform expression
in MFS hearts, characterized by an increased N2BA:N2B ratio, while total titin
content remained unchanged. We propose that this shift toward the more
compliant N2BA isoform represents a compensatory mechanism aimed at
reducing passive myocardial stiffness in response to ECM abnormalities

associated with MFS.

Collectively, these findings reveal that FBNI mutations lead to structural and

mechanical impairment of fibrillin-1 microfibrils within the aortic wall and are associated

with molecular remodeling of titin in the myocardium. Both mechanisms may contribute

to the vascular fragility and intrinsic myocardial dysfunction characteristic of MFS.
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7. Summary

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder
caused by pathogenic variants in BN/, which encodes fibrillin-1, the core component of
extracellular microfibrils. In the aortic wall, these structures are critical for maintaining
structural integrity and bearing mechanical loads. FBNI mutations are expected to impact
the function of fibrillin-1 microfibrils, thereby contributing to the main manifestations of
MFS, namely progressive aortic aneurysm and dissection, which remain the leading
causes of morbidity and mortality in affected individuals. In addition to aortic
involvement, growing evidence suggests that MFS may also involve an intrinsic form of
cardiomyopathy, a condition typically linked to the sarcomeric protein titin. These
observations highlight the need for a deeper molecular understanding of how FBNI

variants translate into structural and functional alterations within cardiovascular tissues.

We examined the morphology and nanomechanical properties of individual
fibrillin-1 microfibrils isolated from the aortic tissue of MFS patients and non-MFS
controls. Atomic force microscopy revealed a preserved microfibrillar appearance but
significant morphological changes in MFS samples, where microfibrils exhibited a more
fragile structure. Force spectroscopy showed a reduction in microfibrillar stiffness in
MEFS patients carrying haploinsufficient BN/ variants. Indentation-like features in the
force-distance curves, interpreted as localized mechanical failure, appeared at

significantly lower forces in MFS microfibrils, emphasizing their mechanical fragility.

In parallel, we assessed titin expression within the left ventricular myocardium of
MFS patients. Proteomic profiling revealed a shift toward the more compliant N2BA
isoform in MFS patients, without a change in total titin content. This change may
represent an adaptive response to the extracellular matrix alterations characteristic of

MEFS, aimed at preserving diastolic function through reduced myocardial stiffness.

In summary, our findings provide a detailed characterization of the molecular and
mechanical consequences of BN/ mutations in the human aorta and myocardium. The
results indicate that aortic fibrillin-1 microfibrils are morphologically and mechanically
compromised in MFS, while sarcomeric remodeling in the left ventricular myocardium
occurs even in the absence of overt valvular disease, suggesting a broader compensatory

response to altered mechanical homeostasis in this condition.
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